]> rtime.felk.cvut.cz Git - linux-imx.git/blob - drivers/gpu/drm/i915/intel_display.c
drm/i915: precompute pipe bpp before touching the hw
[linux-imx.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49         /* given values */
50         int n;
51         int m1, m2;
52         int p1, p2;
53         /* derived values */
54         int     dot;
55         int     vco;
56         int     m;
57         int     p;
58 } intel_clock_t;
59
60 typedef struct {
61         int     min, max;
62 } intel_range_t;
63
64 typedef struct {
65         int     dot_limit;
66         int     p2_slow, p2_fast;
67 } intel_p2_t;
68
69 #define INTEL_P2_NUM                  2
70 typedef struct intel_limit intel_limit_t;
71 struct intel_limit {
72         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
73         intel_p2_t          p2;
74         /**
75          * find_pll() - Find the best values for the PLL
76          * @limit: limits for the PLL
77          * @crtc: current CRTC
78          * @target: target frequency in kHz
79          * @refclk: reference clock frequency in kHz
80          * @match_clock: if provided, @best_clock P divider must
81          *               match the P divider from @match_clock
82          *               used for LVDS downclocking
83          * @best_clock: best PLL values found
84          *
85          * Returns true on success, false on failure.
86          */
87         bool (*find_pll)(const intel_limit_t *limit,
88                          struct drm_crtc *crtc,
89                          int target, int refclk,
90                          intel_clock_t *match_clock,
91                          intel_clock_t *best_clock);
92 };
93
94 /* FDI */
95 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
96
97 int
98 intel_pch_rawclk(struct drm_device *dev)
99 {
100         struct drm_i915_private *dev_priv = dev->dev_private;
101
102         WARN_ON(!HAS_PCH_SPLIT(dev));
103
104         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
105 }
106
107 static bool
108 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
109                     int target, int refclk, intel_clock_t *match_clock,
110                     intel_clock_t *best_clock);
111 static bool
112 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
113                         int target, int refclk, intel_clock_t *match_clock,
114                         intel_clock_t *best_clock);
115
116 static bool
117 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
118                       int target, int refclk, intel_clock_t *match_clock,
119                       intel_clock_t *best_clock);
120 static bool
121 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
122                            int target, int refclk, intel_clock_t *match_clock,
123                            intel_clock_t *best_clock);
124
125 static bool
126 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
127                         int target, int refclk, intel_clock_t *match_clock,
128                         intel_clock_t *best_clock);
129
130 static inline u32 /* units of 100MHz */
131 intel_fdi_link_freq(struct drm_device *dev)
132 {
133         if (IS_GEN5(dev)) {
134                 struct drm_i915_private *dev_priv = dev->dev_private;
135                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
136         } else
137                 return 27;
138 }
139
140 static const intel_limit_t intel_limits_i8xx_dvo = {
141         .dot = { .min = 25000, .max = 350000 },
142         .vco = { .min = 930000, .max = 1400000 },
143         .n = { .min = 3, .max = 16 },
144         .m = { .min = 96, .max = 140 },
145         .m1 = { .min = 18, .max = 26 },
146         .m2 = { .min = 6, .max = 16 },
147         .p = { .min = 4, .max = 128 },
148         .p1 = { .min = 2, .max = 33 },
149         .p2 = { .dot_limit = 165000,
150                 .p2_slow = 4, .p2_fast = 2 },
151         .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i8xx_lvds = {
155         .dot = { .min = 25000, .max = 350000 },
156         .vco = { .min = 930000, .max = 1400000 },
157         .n = { .min = 3, .max = 16 },
158         .m = { .min = 96, .max = 140 },
159         .m1 = { .min = 18, .max = 26 },
160         .m2 = { .min = 6, .max = 16 },
161         .p = { .min = 4, .max = 128 },
162         .p1 = { .min = 1, .max = 6 },
163         .p2 = { .dot_limit = 165000,
164                 .p2_slow = 14, .p2_fast = 7 },
165         .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_sdvo = {
169         .dot = { .min = 20000, .max = 400000 },
170         .vco = { .min = 1400000, .max = 2800000 },
171         .n = { .min = 1, .max = 6 },
172         .m = { .min = 70, .max = 120 },
173         .m1 = { .min = 8, .max = 18 },
174         .m2 = { .min = 3, .max = 7 },
175         .p = { .min = 5, .max = 80 },
176         .p1 = { .min = 1, .max = 8 },
177         .p2 = { .dot_limit = 200000,
178                 .p2_slow = 10, .p2_fast = 5 },
179         .find_pll = intel_find_best_PLL,
180 };
181
182 static const intel_limit_t intel_limits_i9xx_lvds = {
183         .dot = { .min = 20000, .max = 400000 },
184         .vco = { .min = 1400000, .max = 2800000 },
185         .n = { .min = 1, .max = 6 },
186         .m = { .min = 70, .max = 120 },
187         .m1 = { .min = 8, .max = 18 },
188         .m2 = { .min = 3, .max = 7 },
189         .p = { .min = 7, .max = 98 },
190         .p1 = { .min = 1, .max = 8 },
191         .p2 = { .dot_limit = 112000,
192                 .p2_slow = 14, .p2_fast = 7 },
193         .find_pll = intel_find_best_PLL,
194 };
195
196
197 static const intel_limit_t intel_limits_g4x_sdvo = {
198         .dot = { .min = 25000, .max = 270000 },
199         .vco = { .min = 1750000, .max = 3500000},
200         .n = { .min = 1, .max = 4 },
201         .m = { .min = 104, .max = 138 },
202         .m1 = { .min = 17, .max = 23 },
203         .m2 = { .min = 5, .max = 11 },
204         .p = { .min = 10, .max = 30 },
205         .p1 = { .min = 1, .max = 3},
206         .p2 = { .dot_limit = 270000,
207                 .p2_slow = 10,
208                 .p2_fast = 10
209         },
210         .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_hdmi = {
214         .dot = { .min = 22000, .max = 400000 },
215         .vco = { .min = 1750000, .max = 3500000},
216         .n = { .min = 1, .max = 4 },
217         .m = { .min = 104, .max = 138 },
218         .m1 = { .min = 16, .max = 23 },
219         .m2 = { .min = 5, .max = 11 },
220         .p = { .min = 5, .max = 80 },
221         .p1 = { .min = 1, .max = 8},
222         .p2 = { .dot_limit = 165000,
223                 .p2_slow = 10, .p2_fast = 5 },
224         .find_pll = intel_g4x_find_best_PLL,
225 };
226
227 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
228         .dot = { .min = 20000, .max = 115000 },
229         .vco = { .min = 1750000, .max = 3500000 },
230         .n = { .min = 1, .max = 3 },
231         .m = { .min = 104, .max = 138 },
232         .m1 = { .min = 17, .max = 23 },
233         .m2 = { .min = 5, .max = 11 },
234         .p = { .min = 28, .max = 112 },
235         .p1 = { .min = 2, .max = 8 },
236         .p2 = { .dot_limit = 0,
237                 .p2_slow = 14, .p2_fast = 14
238         },
239         .find_pll = intel_g4x_find_best_PLL,
240 };
241
242 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
243         .dot = { .min = 80000, .max = 224000 },
244         .vco = { .min = 1750000, .max = 3500000 },
245         .n = { .min = 1, .max = 3 },
246         .m = { .min = 104, .max = 138 },
247         .m1 = { .min = 17, .max = 23 },
248         .m2 = { .min = 5, .max = 11 },
249         .p = { .min = 14, .max = 42 },
250         .p1 = { .min = 2, .max = 6 },
251         .p2 = { .dot_limit = 0,
252                 .p2_slow = 7, .p2_fast = 7
253         },
254         .find_pll = intel_g4x_find_best_PLL,
255 };
256
257 static const intel_limit_t intel_limits_g4x_display_port = {
258         .dot = { .min = 161670, .max = 227000 },
259         .vco = { .min = 1750000, .max = 3500000},
260         .n = { .min = 1, .max = 2 },
261         .m = { .min = 97, .max = 108 },
262         .m1 = { .min = 0x10, .max = 0x12 },
263         .m2 = { .min = 0x05, .max = 0x06 },
264         .p = { .min = 10, .max = 20 },
265         .p1 = { .min = 1, .max = 2},
266         .p2 = { .dot_limit = 0,
267                 .p2_slow = 10, .p2_fast = 10 },
268         .find_pll = intel_find_pll_g4x_dp,
269 };
270
271 static const intel_limit_t intel_limits_pineview_sdvo = {
272         .dot = { .min = 20000, .max = 400000},
273         .vco = { .min = 1700000, .max = 3500000 },
274         /* Pineview's Ncounter is a ring counter */
275         .n = { .min = 3, .max = 6 },
276         .m = { .min = 2, .max = 256 },
277         /* Pineview only has one combined m divider, which we treat as m2. */
278         .m1 = { .min = 0, .max = 0 },
279         .m2 = { .min = 0, .max = 254 },
280         .p = { .min = 5, .max = 80 },
281         .p1 = { .min = 1, .max = 8 },
282         .p2 = { .dot_limit = 200000,
283                 .p2_slow = 10, .p2_fast = 5 },
284         .find_pll = intel_find_best_PLL,
285 };
286
287 static const intel_limit_t intel_limits_pineview_lvds = {
288         .dot = { .min = 20000, .max = 400000 },
289         .vco = { .min = 1700000, .max = 3500000 },
290         .n = { .min = 3, .max = 6 },
291         .m = { .min = 2, .max = 256 },
292         .m1 = { .min = 0, .max = 0 },
293         .m2 = { .min = 0, .max = 254 },
294         .p = { .min = 7, .max = 112 },
295         .p1 = { .min = 1, .max = 8 },
296         .p2 = { .dot_limit = 112000,
297                 .p2_slow = 14, .p2_fast = 14 },
298         .find_pll = intel_find_best_PLL,
299 };
300
301 /* Ironlake / Sandybridge
302  *
303  * We calculate clock using (register_value + 2) for N/M1/M2, so here
304  * the range value for them is (actual_value - 2).
305  */
306 static const intel_limit_t intel_limits_ironlake_dac = {
307         .dot = { .min = 25000, .max = 350000 },
308         .vco = { .min = 1760000, .max = 3510000 },
309         .n = { .min = 1, .max = 5 },
310         .m = { .min = 79, .max = 127 },
311         .m1 = { .min = 12, .max = 22 },
312         .m2 = { .min = 5, .max = 9 },
313         .p = { .min = 5, .max = 80 },
314         .p1 = { .min = 1, .max = 8 },
315         .p2 = { .dot_limit = 225000,
316                 .p2_slow = 10, .p2_fast = 5 },
317         .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_single_lvds = {
321         .dot = { .min = 25000, .max = 350000 },
322         .vco = { .min = 1760000, .max = 3510000 },
323         .n = { .min = 1, .max = 3 },
324         .m = { .min = 79, .max = 118 },
325         .m1 = { .min = 12, .max = 22 },
326         .m2 = { .min = 5, .max = 9 },
327         .p = { .min = 28, .max = 112 },
328         .p1 = { .min = 2, .max = 8 },
329         .p2 = { .dot_limit = 225000,
330                 .p2_slow = 14, .p2_fast = 14 },
331         .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
335         .dot = { .min = 25000, .max = 350000 },
336         .vco = { .min = 1760000, .max = 3510000 },
337         .n = { .min = 1, .max = 3 },
338         .m = { .min = 79, .max = 127 },
339         .m1 = { .min = 12, .max = 22 },
340         .m2 = { .min = 5, .max = 9 },
341         .p = { .min = 14, .max = 56 },
342         .p1 = { .min = 2, .max = 8 },
343         .p2 = { .dot_limit = 225000,
344                 .p2_slow = 7, .p2_fast = 7 },
345         .find_pll = intel_g4x_find_best_PLL,
346 };
347
348 /* LVDS 100mhz refclk limits. */
349 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
350         .dot = { .min = 25000, .max = 350000 },
351         .vco = { .min = 1760000, .max = 3510000 },
352         .n = { .min = 1, .max = 2 },
353         .m = { .min = 79, .max = 126 },
354         .m1 = { .min = 12, .max = 22 },
355         .m2 = { .min = 5, .max = 9 },
356         .p = { .min = 28, .max = 112 },
357         .p1 = { .min = 2, .max = 8 },
358         .p2 = { .dot_limit = 225000,
359                 .p2_slow = 14, .p2_fast = 14 },
360         .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
364         .dot = { .min = 25000, .max = 350000 },
365         .vco = { .min = 1760000, .max = 3510000 },
366         .n = { .min = 1, .max = 3 },
367         .m = { .min = 79, .max = 126 },
368         .m1 = { .min = 12, .max = 22 },
369         .m2 = { .min = 5, .max = 9 },
370         .p = { .min = 14, .max = 42 },
371         .p1 = { .min = 2, .max = 6 },
372         .p2 = { .dot_limit = 225000,
373                 .p2_slow = 7, .p2_fast = 7 },
374         .find_pll = intel_g4x_find_best_PLL,
375 };
376
377 static const intel_limit_t intel_limits_ironlake_display_port = {
378         .dot = { .min = 25000, .max = 350000 },
379         .vco = { .min = 1760000, .max = 3510000},
380         .n = { .min = 1, .max = 2 },
381         .m = { .min = 81, .max = 90 },
382         .m1 = { .min = 12, .max = 22 },
383         .m2 = { .min = 5, .max = 9 },
384         .p = { .min = 10, .max = 20 },
385         .p1 = { .min = 1, .max = 2},
386         .p2 = { .dot_limit = 0,
387                 .p2_slow = 10, .p2_fast = 10 },
388         .find_pll = intel_find_pll_ironlake_dp,
389 };
390
391 static const intel_limit_t intel_limits_vlv_dac = {
392         .dot = { .min = 25000, .max = 270000 },
393         .vco = { .min = 4000000, .max = 6000000 },
394         .n = { .min = 1, .max = 7 },
395         .m = { .min = 22, .max = 450 }, /* guess */
396         .m1 = { .min = 2, .max = 3 },
397         .m2 = { .min = 11, .max = 156 },
398         .p = { .min = 10, .max = 30 },
399         .p1 = { .min = 2, .max = 3 },
400         .p2 = { .dot_limit = 270000,
401                 .p2_slow = 2, .p2_fast = 20 },
402         .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_hdmi = {
406         .dot = { .min = 20000, .max = 165000 },
407         .vco = { .min = 4000000, .max = 5994000},
408         .n = { .min = 1, .max = 7 },
409         .m = { .min = 60, .max = 300 }, /* guess */
410         .m1 = { .min = 2, .max = 3 },
411         .m2 = { .min = 11, .max = 156 },
412         .p = { .min = 10, .max = 30 },
413         .p1 = { .min = 2, .max = 3 },
414         .p2 = { .dot_limit = 270000,
415                 .p2_slow = 2, .p2_fast = 20 },
416         .find_pll = intel_vlv_find_best_pll,
417 };
418
419 static const intel_limit_t intel_limits_vlv_dp = {
420         .dot = { .min = 25000, .max = 270000 },
421         .vco = { .min = 4000000, .max = 6000000 },
422         .n = { .min = 1, .max = 7 },
423         .m = { .min = 22, .max = 450 },
424         .m1 = { .min = 2, .max = 3 },
425         .m2 = { .min = 11, .max = 156 },
426         .p = { .min = 10, .max = 30 },
427         .p1 = { .min = 2, .max = 3 },
428         .p2 = { .dot_limit = 270000,
429                 .p2_slow = 2, .p2_fast = 20 },
430         .find_pll = intel_vlv_find_best_pll,
431 };
432
433 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
434 {
435         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
436
437         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
438                 DRM_ERROR("DPIO idle wait timed out\n");
439                 return 0;
440         }
441
442         I915_WRITE(DPIO_REG, reg);
443         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
444                    DPIO_BYTE);
445         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
446                 DRM_ERROR("DPIO read wait timed out\n");
447                 return 0;
448         }
449
450         return I915_READ(DPIO_DATA);
451 }
452
453 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
454                              u32 val)
455 {
456         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
457
458         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
459                 DRM_ERROR("DPIO idle wait timed out\n");
460                 return;
461         }
462
463         I915_WRITE(DPIO_DATA, val);
464         I915_WRITE(DPIO_REG, reg);
465         I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
466                    DPIO_BYTE);
467         if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
468                 DRM_ERROR("DPIO write wait timed out\n");
469 }
470
471 static void vlv_init_dpio(struct drm_device *dev)
472 {
473         struct drm_i915_private *dev_priv = dev->dev_private;
474
475         /* Reset the DPIO config */
476         I915_WRITE(DPIO_CTL, 0);
477         POSTING_READ(DPIO_CTL);
478         I915_WRITE(DPIO_CTL, 1);
479         POSTING_READ(DPIO_CTL);
480 }
481
482 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
483                                                 int refclk)
484 {
485         struct drm_device *dev = crtc->dev;
486         const intel_limit_t *limit;
487
488         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
489                 if (intel_is_dual_link_lvds(dev)) {
490                         if (refclk == 100000)
491                                 limit = &intel_limits_ironlake_dual_lvds_100m;
492                         else
493                                 limit = &intel_limits_ironlake_dual_lvds;
494                 } else {
495                         if (refclk == 100000)
496                                 limit = &intel_limits_ironlake_single_lvds_100m;
497                         else
498                                 limit = &intel_limits_ironlake_single_lvds;
499                 }
500         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
501                    intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
502                 limit = &intel_limits_ironlake_display_port;
503         else
504                 limit = &intel_limits_ironlake_dac;
505
506         return limit;
507 }
508
509 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
510 {
511         struct drm_device *dev = crtc->dev;
512         const intel_limit_t *limit;
513
514         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
515                 if (intel_is_dual_link_lvds(dev))
516                         limit = &intel_limits_g4x_dual_channel_lvds;
517                 else
518                         limit = &intel_limits_g4x_single_channel_lvds;
519         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
520                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
521                 limit = &intel_limits_g4x_hdmi;
522         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
523                 limit = &intel_limits_g4x_sdvo;
524         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
525                 limit = &intel_limits_g4x_display_port;
526         } else /* The option is for other outputs */
527                 limit = &intel_limits_i9xx_sdvo;
528
529         return limit;
530 }
531
532 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
533 {
534         struct drm_device *dev = crtc->dev;
535         const intel_limit_t *limit;
536
537         if (HAS_PCH_SPLIT(dev))
538                 limit = intel_ironlake_limit(crtc, refclk);
539         else if (IS_G4X(dev)) {
540                 limit = intel_g4x_limit(crtc);
541         } else if (IS_PINEVIEW(dev)) {
542                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
543                         limit = &intel_limits_pineview_lvds;
544                 else
545                         limit = &intel_limits_pineview_sdvo;
546         } else if (IS_VALLEYVIEW(dev)) {
547                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
548                         limit = &intel_limits_vlv_dac;
549                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
550                         limit = &intel_limits_vlv_hdmi;
551                 else
552                         limit = &intel_limits_vlv_dp;
553         } else if (!IS_GEN2(dev)) {
554                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
555                         limit = &intel_limits_i9xx_lvds;
556                 else
557                         limit = &intel_limits_i9xx_sdvo;
558         } else {
559                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
560                         limit = &intel_limits_i8xx_lvds;
561                 else
562                         limit = &intel_limits_i8xx_dvo;
563         }
564         return limit;
565 }
566
567 /* m1 is reserved as 0 in Pineview, n is a ring counter */
568 static void pineview_clock(int refclk, intel_clock_t *clock)
569 {
570         clock->m = clock->m2 + 2;
571         clock->p = clock->p1 * clock->p2;
572         clock->vco = refclk * clock->m / clock->n;
573         clock->dot = clock->vco / clock->p;
574 }
575
576 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
577 {
578         if (IS_PINEVIEW(dev)) {
579                 pineview_clock(refclk, clock);
580                 return;
581         }
582         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
583         clock->p = clock->p1 * clock->p2;
584         clock->vco = refclk * clock->m / (clock->n + 2);
585         clock->dot = clock->vco / clock->p;
586 }
587
588 /**
589  * Returns whether any output on the specified pipe is of the specified type
590  */
591 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
592 {
593         struct drm_device *dev = crtc->dev;
594         struct intel_encoder *encoder;
595
596         for_each_encoder_on_crtc(dev, crtc, encoder)
597                 if (encoder->type == type)
598                         return true;
599
600         return false;
601 }
602
603 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
604 /**
605  * Returns whether the given set of divisors are valid for a given refclk with
606  * the given connectors.
607  */
608
609 static bool intel_PLL_is_valid(struct drm_device *dev,
610                                const intel_limit_t *limit,
611                                const intel_clock_t *clock)
612 {
613         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
614                 INTELPllInvalid("p1 out of range\n");
615         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
616                 INTELPllInvalid("p out of range\n");
617         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
618                 INTELPllInvalid("m2 out of range\n");
619         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
620                 INTELPllInvalid("m1 out of range\n");
621         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
622                 INTELPllInvalid("m1 <= m2\n");
623         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
624                 INTELPllInvalid("m out of range\n");
625         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
626                 INTELPllInvalid("n out of range\n");
627         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
628                 INTELPllInvalid("vco out of range\n");
629         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
630          * connector, etc., rather than just a single range.
631          */
632         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
633                 INTELPllInvalid("dot out of range\n");
634
635         return true;
636 }
637
638 static bool
639 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
640                     int target, int refclk, intel_clock_t *match_clock,
641                     intel_clock_t *best_clock)
642
643 {
644         struct drm_device *dev = crtc->dev;
645         intel_clock_t clock;
646         int err = target;
647
648         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
649                 /*
650                  * For LVDS just rely on its current settings for dual-channel.
651                  * We haven't figured out how to reliably set up different
652                  * single/dual channel state, if we even can.
653                  */
654                 if (intel_is_dual_link_lvds(dev))
655                         clock.p2 = limit->p2.p2_fast;
656                 else
657                         clock.p2 = limit->p2.p2_slow;
658         } else {
659                 if (target < limit->p2.dot_limit)
660                         clock.p2 = limit->p2.p2_slow;
661                 else
662                         clock.p2 = limit->p2.p2_fast;
663         }
664
665         memset(best_clock, 0, sizeof(*best_clock));
666
667         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
668              clock.m1++) {
669                 for (clock.m2 = limit->m2.min;
670                      clock.m2 <= limit->m2.max; clock.m2++) {
671                         /* m1 is always 0 in Pineview */
672                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
673                                 break;
674                         for (clock.n = limit->n.min;
675                              clock.n <= limit->n.max; clock.n++) {
676                                 for (clock.p1 = limit->p1.min;
677                                         clock.p1 <= limit->p1.max; clock.p1++) {
678                                         int this_err;
679
680                                         intel_clock(dev, refclk, &clock);
681                                         if (!intel_PLL_is_valid(dev, limit,
682                                                                 &clock))
683                                                 continue;
684                                         if (match_clock &&
685                                             clock.p != match_clock->p)
686                                                 continue;
687
688                                         this_err = abs(clock.dot - target);
689                                         if (this_err < err) {
690                                                 *best_clock = clock;
691                                                 err = this_err;
692                                         }
693                                 }
694                         }
695                 }
696         }
697
698         return (err != target);
699 }
700
701 static bool
702 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
703                         int target, int refclk, intel_clock_t *match_clock,
704                         intel_clock_t *best_clock)
705 {
706         struct drm_device *dev = crtc->dev;
707         intel_clock_t clock;
708         int max_n;
709         bool found;
710         /* approximately equals target * 0.00585 */
711         int err_most = (target >> 8) + (target >> 9);
712         found = false;
713
714         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
715                 int lvds_reg;
716
717                 if (HAS_PCH_SPLIT(dev))
718                         lvds_reg = PCH_LVDS;
719                 else
720                         lvds_reg = LVDS;
721                 if (intel_is_dual_link_lvds(dev))
722                         clock.p2 = limit->p2.p2_fast;
723                 else
724                         clock.p2 = limit->p2.p2_slow;
725         } else {
726                 if (target < limit->p2.dot_limit)
727                         clock.p2 = limit->p2.p2_slow;
728                 else
729                         clock.p2 = limit->p2.p2_fast;
730         }
731
732         memset(best_clock, 0, sizeof(*best_clock));
733         max_n = limit->n.max;
734         /* based on hardware requirement, prefer smaller n to precision */
735         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
736                 /* based on hardware requirement, prefere larger m1,m2 */
737                 for (clock.m1 = limit->m1.max;
738                      clock.m1 >= limit->m1.min; clock.m1--) {
739                         for (clock.m2 = limit->m2.max;
740                              clock.m2 >= limit->m2.min; clock.m2--) {
741                                 for (clock.p1 = limit->p1.max;
742                                      clock.p1 >= limit->p1.min; clock.p1--) {
743                                         int this_err;
744
745                                         intel_clock(dev, refclk, &clock);
746                                         if (!intel_PLL_is_valid(dev, limit,
747                                                                 &clock))
748                                                 continue;
749                                         if (match_clock &&
750                                             clock.p != match_clock->p)
751                                                 continue;
752
753                                         this_err = abs(clock.dot - target);
754                                         if (this_err < err_most) {
755                                                 *best_clock = clock;
756                                                 err_most = this_err;
757                                                 max_n = clock.n;
758                                                 found = true;
759                                         }
760                                 }
761                         }
762                 }
763         }
764         return found;
765 }
766
767 static bool
768 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
769                            int target, int refclk, intel_clock_t *match_clock,
770                            intel_clock_t *best_clock)
771 {
772         struct drm_device *dev = crtc->dev;
773         intel_clock_t clock;
774
775         if (target < 200000) {
776                 clock.n = 1;
777                 clock.p1 = 2;
778                 clock.p2 = 10;
779                 clock.m1 = 12;
780                 clock.m2 = 9;
781         } else {
782                 clock.n = 2;
783                 clock.p1 = 1;
784                 clock.p2 = 10;
785                 clock.m1 = 14;
786                 clock.m2 = 8;
787         }
788         intel_clock(dev, refclk, &clock);
789         memcpy(best_clock, &clock, sizeof(intel_clock_t));
790         return true;
791 }
792
793 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
794 static bool
795 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
796                       int target, int refclk, intel_clock_t *match_clock,
797                       intel_clock_t *best_clock)
798 {
799         intel_clock_t clock;
800         if (target < 200000) {
801                 clock.p1 = 2;
802                 clock.p2 = 10;
803                 clock.n = 2;
804                 clock.m1 = 23;
805                 clock.m2 = 8;
806         } else {
807                 clock.p1 = 1;
808                 clock.p2 = 10;
809                 clock.n = 1;
810                 clock.m1 = 14;
811                 clock.m2 = 2;
812         }
813         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
814         clock.p = (clock.p1 * clock.p2);
815         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
816         clock.vco = 0;
817         memcpy(best_clock, &clock, sizeof(intel_clock_t));
818         return true;
819 }
820 static bool
821 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
822                         int target, int refclk, intel_clock_t *match_clock,
823                         intel_clock_t *best_clock)
824 {
825         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
826         u32 m, n, fastclk;
827         u32 updrate, minupdate, fracbits, p;
828         unsigned long bestppm, ppm, absppm;
829         int dotclk, flag;
830
831         flag = 0;
832         dotclk = target * 1000;
833         bestppm = 1000000;
834         ppm = absppm = 0;
835         fastclk = dotclk / (2*100);
836         updrate = 0;
837         minupdate = 19200;
838         fracbits = 1;
839         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
840         bestm1 = bestm2 = bestp1 = bestp2 = 0;
841
842         /* based on hardware requirement, prefer smaller n to precision */
843         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
844                 updrate = refclk / n;
845                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
846                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
847                                 if (p2 > 10)
848                                         p2 = p2 - 1;
849                                 p = p1 * p2;
850                                 /* based on hardware requirement, prefer bigger m1,m2 values */
851                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
852                                         m2 = (((2*(fastclk * p * n / m1 )) +
853                                                refclk) / (2*refclk));
854                                         m = m1 * m2;
855                                         vco = updrate * m;
856                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
857                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
858                                                 absppm = (ppm > 0) ? ppm : (-ppm);
859                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
860                                                         bestppm = 0;
861                                                         flag = 1;
862                                                 }
863                                                 if (absppm < bestppm - 10) {
864                                                         bestppm = absppm;
865                                                         flag = 1;
866                                                 }
867                                                 if (flag) {
868                                                         bestn = n;
869                                                         bestm1 = m1;
870                                                         bestm2 = m2;
871                                                         bestp1 = p1;
872                                                         bestp2 = p2;
873                                                         flag = 0;
874                                                 }
875                                         }
876                                 }
877                         }
878                 }
879         }
880         best_clock->n = bestn;
881         best_clock->m1 = bestm1;
882         best_clock->m2 = bestm2;
883         best_clock->p1 = bestp1;
884         best_clock->p2 = bestp2;
885
886         return true;
887 }
888
889 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
890                                              enum pipe pipe)
891 {
892         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
893         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
894
895         return intel_crtc->cpu_transcoder;
896 }
897
898 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
899 {
900         struct drm_i915_private *dev_priv = dev->dev_private;
901         u32 frame, frame_reg = PIPEFRAME(pipe);
902
903         frame = I915_READ(frame_reg);
904
905         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
906                 DRM_DEBUG_KMS("vblank wait timed out\n");
907 }
908
909 /**
910  * intel_wait_for_vblank - wait for vblank on a given pipe
911  * @dev: drm device
912  * @pipe: pipe to wait for
913  *
914  * Wait for vblank to occur on a given pipe.  Needed for various bits of
915  * mode setting code.
916  */
917 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
918 {
919         struct drm_i915_private *dev_priv = dev->dev_private;
920         int pipestat_reg = PIPESTAT(pipe);
921
922         if (INTEL_INFO(dev)->gen >= 5) {
923                 ironlake_wait_for_vblank(dev, pipe);
924                 return;
925         }
926
927         /* Clear existing vblank status. Note this will clear any other
928          * sticky status fields as well.
929          *
930          * This races with i915_driver_irq_handler() with the result
931          * that either function could miss a vblank event.  Here it is not
932          * fatal, as we will either wait upon the next vblank interrupt or
933          * timeout.  Generally speaking intel_wait_for_vblank() is only
934          * called during modeset at which time the GPU should be idle and
935          * should *not* be performing page flips and thus not waiting on
936          * vblanks...
937          * Currently, the result of us stealing a vblank from the irq
938          * handler is that a single frame will be skipped during swapbuffers.
939          */
940         I915_WRITE(pipestat_reg,
941                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
942
943         /* Wait for vblank interrupt bit to set */
944         if (wait_for(I915_READ(pipestat_reg) &
945                      PIPE_VBLANK_INTERRUPT_STATUS,
946                      50))
947                 DRM_DEBUG_KMS("vblank wait timed out\n");
948 }
949
950 /*
951  * intel_wait_for_pipe_off - wait for pipe to turn off
952  * @dev: drm device
953  * @pipe: pipe to wait for
954  *
955  * After disabling a pipe, we can't wait for vblank in the usual way,
956  * spinning on the vblank interrupt status bit, since we won't actually
957  * see an interrupt when the pipe is disabled.
958  *
959  * On Gen4 and above:
960  *   wait for the pipe register state bit to turn off
961  *
962  * Otherwise:
963  *   wait for the display line value to settle (it usually
964  *   ends up stopping at the start of the next frame).
965  *
966  */
967 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
968 {
969         struct drm_i915_private *dev_priv = dev->dev_private;
970         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
971                                                                       pipe);
972
973         if (INTEL_INFO(dev)->gen >= 4) {
974                 int reg = PIPECONF(cpu_transcoder);
975
976                 /* Wait for the Pipe State to go off */
977                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
978                              100))
979                         WARN(1, "pipe_off wait timed out\n");
980         } else {
981                 u32 last_line, line_mask;
982                 int reg = PIPEDSL(pipe);
983                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
984
985                 if (IS_GEN2(dev))
986                         line_mask = DSL_LINEMASK_GEN2;
987                 else
988                         line_mask = DSL_LINEMASK_GEN3;
989
990                 /* Wait for the display line to settle */
991                 do {
992                         last_line = I915_READ(reg) & line_mask;
993                         mdelay(5);
994                 } while (((I915_READ(reg) & line_mask) != last_line) &&
995                          time_after(timeout, jiffies));
996                 if (time_after(jiffies, timeout))
997                         WARN(1, "pipe_off wait timed out\n");
998         }
999 }
1000
1001 /*
1002  * ibx_digital_port_connected - is the specified port connected?
1003  * @dev_priv: i915 private structure
1004  * @port: the port to test
1005  *
1006  * Returns true if @port is connected, false otherwise.
1007  */
1008 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1009                                 struct intel_digital_port *port)
1010 {
1011         u32 bit;
1012
1013         if (HAS_PCH_IBX(dev_priv->dev)) {
1014                 switch(port->port) {
1015                 case PORT_B:
1016                         bit = SDE_PORTB_HOTPLUG;
1017                         break;
1018                 case PORT_C:
1019                         bit = SDE_PORTC_HOTPLUG;
1020                         break;
1021                 case PORT_D:
1022                         bit = SDE_PORTD_HOTPLUG;
1023                         break;
1024                 default:
1025                         return true;
1026                 }
1027         } else {
1028                 switch(port->port) {
1029                 case PORT_B:
1030                         bit = SDE_PORTB_HOTPLUG_CPT;
1031                         break;
1032                 case PORT_C:
1033                         bit = SDE_PORTC_HOTPLUG_CPT;
1034                         break;
1035                 case PORT_D:
1036                         bit = SDE_PORTD_HOTPLUG_CPT;
1037                         break;
1038                 default:
1039                         return true;
1040                 }
1041         }
1042
1043         return I915_READ(SDEISR) & bit;
1044 }
1045
1046 static const char *state_string(bool enabled)
1047 {
1048         return enabled ? "on" : "off";
1049 }
1050
1051 /* Only for pre-ILK configs */
1052 static void assert_pll(struct drm_i915_private *dev_priv,
1053                        enum pipe pipe, bool state)
1054 {
1055         int reg;
1056         u32 val;
1057         bool cur_state;
1058
1059         reg = DPLL(pipe);
1060         val = I915_READ(reg);
1061         cur_state = !!(val & DPLL_VCO_ENABLE);
1062         WARN(cur_state != state,
1063              "PLL state assertion failure (expected %s, current %s)\n",
1064              state_string(state), state_string(cur_state));
1065 }
1066 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1067 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1068
1069 /* For ILK+ */
1070 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1071                            struct intel_pch_pll *pll,
1072                            struct intel_crtc *crtc,
1073                            bool state)
1074 {
1075         u32 val;
1076         bool cur_state;
1077
1078         if (HAS_PCH_LPT(dev_priv->dev)) {
1079                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1080                 return;
1081         }
1082
1083         if (WARN (!pll,
1084                   "asserting PCH PLL %s with no PLL\n", state_string(state)))
1085                 return;
1086
1087         val = I915_READ(pll->pll_reg);
1088         cur_state = !!(val & DPLL_VCO_ENABLE);
1089         WARN(cur_state != state,
1090              "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1091              pll->pll_reg, state_string(state), state_string(cur_state), val);
1092
1093         /* Make sure the selected PLL is correctly attached to the transcoder */
1094         if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1095                 u32 pch_dpll;
1096
1097                 pch_dpll = I915_READ(PCH_DPLL_SEL);
1098                 cur_state = pll->pll_reg == _PCH_DPLL_B;
1099                 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1100                           "PLL[%d] not attached to this transcoder %d: %08x\n",
1101                           cur_state, crtc->pipe, pch_dpll)) {
1102                         cur_state = !!(val >> (4*crtc->pipe + 3));
1103                         WARN(cur_state != state,
1104                              "PLL[%d] not %s on this transcoder %d: %08x\n",
1105                              pll->pll_reg == _PCH_DPLL_B,
1106                              state_string(state),
1107                              crtc->pipe,
1108                              val);
1109                 }
1110         }
1111 }
1112 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1113 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1114
1115 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1116                           enum pipe pipe, bool state)
1117 {
1118         int reg;
1119         u32 val;
1120         bool cur_state;
1121         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1122                                                                       pipe);
1123
1124         if (HAS_DDI(dev_priv->dev)) {
1125                 /* DDI does not have a specific FDI_TX register */
1126                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1127                 val = I915_READ(reg);
1128                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1129         } else {
1130                 reg = FDI_TX_CTL(pipe);
1131                 val = I915_READ(reg);
1132                 cur_state = !!(val & FDI_TX_ENABLE);
1133         }
1134         WARN(cur_state != state,
1135              "FDI TX state assertion failure (expected %s, current %s)\n",
1136              state_string(state), state_string(cur_state));
1137 }
1138 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1139 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1140
1141 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1142                           enum pipe pipe, bool state)
1143 {
1144         int reg;
1145         u32 val;
1146         bool cur_state;
1147
1148         reg = FDI_RX_CTL(pipe);
1149         val = I915_READ(reg);
1150         cur_state = !!(val & FDI_RX_ENABLE);
1151         WARN(cur_state != state,
1152              "FDI RX state assertion failure (expected %s, current %s)\n",
1153              state_string(state), state_string(cur_state));
1154 }
1155 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1156 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1157
1158 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1159                                       enum pipe pipe)
1160 {
1161         int reg;
1162         u32 val;
1163
1164         /* ILK FDI PLL is always enabled */
1165         if (dev_priv->info->gen == 5)
1166                 return;
1167
1168         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1169         if (HAS_DDI(dev_priv->dev))
1170                 return;
1171
1172         reg = FDI_TX_CTL(pipe);
1173         val = I915_READ(reg);
1174         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
1177 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1178                                       enum pipe pipe)
1179 {
1180         int reg;
1181         u32 val;
1182
1183         reg = FDI_RX_CTL(pipe);
1184         val = I915_READ(reg);
1185         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1189                                   enum pipe pipe)
1190 {
1191         int pp_reg, lvds_reg;
1192         u32 val;
1193         enum pipe panel_pipe = PIPE_A;
1194         bool locked = true;
1195
1196         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1197                 pp_reg = PCH_PP_CONTROL;
1198                 lvds_reg = PCH_LVDS;
1199         } else {
1200                 pp_reg = PP_CONTROL;
1201                 lvds_reg = LVDS;
1202         }
1203
1204         val = I915_READ(pp_reg);
1205         if (!(val & PANEL_POWER_ON) ||
1206             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1207                 locked = false;
1208
1209         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1210                 panel_pipe = PIPE_B;
1211
1212         WARN(panel_pipe == pipe && locked,
1213              "panel assertion failure, pipe %c regs locked\n",
1214              pipe_name(pipe));
1215 }
1216
1217 void assert_pipe(struct drm_i915_private *dev_priv,
1218                  enum pipe pipe, bool state)
1219 {
1220         int reg;
1221         u32 val;
1222         bool cur_state;
1223         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1224                                                                       pipe);
1225
1226         /* if we need the pipe A quirk it must be always on */
1227         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1228                 state = true;
1229
1230         if (IS_HASWELL(dev_priv->dev) && cpu_transcoder != TRANSCODER_EDP &&
1231             !(I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_ENABLE)) {
1232                 cur_state = false;
1233         } else {
1234                 reg = PIPECONF(cpu_transcoder);
1235                 val = I915_READ(reg);
1236                 cur_state = !!(val & PIPECONF_ENABLE);
1237         }
1238
1239         WARN(cur_state != state,
1240              "pipe %c assertion failure (expected %s, current %s)\n",
1241              pipe_name(pipe), state_string(state), state_string(cur_state));
1242 }
1243
1244 static void assert_plane(struct drm_i915_private *dev_priv,
1245                          enum plane plane, bool state)
1246 {
1247         int reg;
1248         u32 val;
1249         bool cur_state;
1250
1251         reg = DSPCNTR(plane);
1252         val = I915_READ(reg);
1253         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254         WARN(cur_state != state,
1255              "plane %c assertion failure (expected %s, current %s)\n",
1256              plane_name(plane), state_string(state), state_string(cur_state));
1257 }
1258
1259 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
1262 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263                                    enum pipe pipe)
1264 {
1265         int reg, i;
1266         u32 val;
1267         int cur_pipe;
1268
1269         /* Planes are fixed to pipes on ILK+ */
1270         if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
1271                 reg = DSPCNTR(pipe);
1272                 val = I915_READ(reg);
1273                 WARN((val & DISPLAY_PLANE_ENABLE),
1274                      "plane %c assertion failure, should be disabled but not\n",
1275                      plane_name(pipe));
1276                 return;
1277         }
1278
1279         /* Need to check both planes against the pipe */
1280         for (i = 0; i < 2; i++) {
1281                 reg = DSPCNTR(i);
1282                 val = I915_READ(reg);
1283                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1284                         DISPPLANE_SEL_PIPE_SHIFT;
1285                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1286                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1287                      plane_name(i), pipe_name(pipe));
1288         }
1289 }
1290
1291 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1292 {
1293         u32 val;
1294         bool enabled;
1295
1296         if (HAS_PCH_LPT(dev_priv->dev)) {
1297                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1298                 return;
1299         }
1300
1301         val = I915_READ(PCH_DREF_CONTROL);
1302         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1303                             DREF_SUPERSPREAD_SOURCE_MASK));
1304         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1305 }
1306
1307 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1308                                        enum pipe pipe)
1309 {
1310         int reg;
1311         u32 val;
1312         bool enabled;
1313
1314         reg = TRANSCONF(pipe);
1315         val = I915_READ(reg);
1316         enabled = !!(val & TRANS_ENABLE);
1317         WARN(enabled,
1318              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1319              pipe_name(pipe));
1320 }
1321
1322 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1323                             enum pipe pipe, u32 port_sel, u32 val)
1324 {
1325         if ((val & DP_PORT_EN) == 0)
1326                 return false;
1327
1328         if (HAS_PCH_CPT(dev_priv->dev)) {
1329                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1330                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1331                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1332                         return false;
1333         } else {
1334                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1335                         return false;
1336         }
1337         return true;
1338 }
1339
1340 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1341                               enum pipe pipe, u32 val)
1342 {
1343         if ((val & SDVO_ENABLE) == 0)
1344                 return false;
1345
1346         if (HAS_PCH_CPT(dev_priv->dev)) {
1347                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1348                         return false;
1349         } else {
1350                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1351                         return false;
1352         }
1353         return true;
1354 }
1355
1356 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1357                               enum pipe pipe, u32 val)
1358 {
1359         if ((val & LVDS_PORT_EN) == 0)
1360                 return false;
1361
1362         if (HAS_PCH_CPT(dev_priv->dev)) {
1363                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1364                         return false;
1365         } else {
1366                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1367                         return false;
1368         }
1369         return true;
1370 }
1371
1372 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1373                               enum pipe pipe, u32 val)
1374 {
1375         if ((val & ADPA_DAC_ENABLE) == 0)
1376                 return false;
1377         if (HAS_PCH_CPT(dev_priv->dev)) {
1378                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1379                         return false;
1380         } else {
1381                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1382                         return false;
1383         }
1384         return true;
1385 }
1386
1387 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1388                                    enum pipe pipe, int reg, u32 port_sel)
1389 {
1390         u32 val = I915_READ(reg);
1391         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1392              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1393              reg, pipe_name(pipe));
1394
1395         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1396              && (val & DP_PIPEB_SELECT),
1397              "IBX PCH dp port still using transcoder B\n");
1398 }
1399
1400 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1401                                      enum pipe pipe, int reg)
1402 {
1403         u32 val = I915_READ(reg);
1404         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1405              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1406              reg, pipe_name(pipe));
1407
1408         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1409              && (val & SDVO_PIPE_B_SELECT),
1410              "IBX PCH hdmi port still using transcoder B\n");
1411 }
1412
1413 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1414                                       enum pipe pipe)
1415 {
1416         int reg;
1417         u32 val;
1418
1419         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1420         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1421         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1422
1423         reg = PCH_ADPA;
1424         val = I915_READ(reg);
1425         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1426              "PCH VGA enabled on transcoder %c, should be disabled\n",
1427              pipe_name(pipe));
1428
1429         reg = PCH_LVDS;
1430         val = I915_READ(reg);
1431         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1432              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1433              pipe_name(pipe));
1434
1435         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1436         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1437         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1438 }
1439
1440 /**
1441  * intel_enable_pll - enable a PLL
1442  * @dev_priv: i915 private structure
1443  * @pipe: pipe PLL to enable
1444  *
1445  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1446  * make sure the PLL reg is writable first though, since the panel write
1447  * protect mechanism may be enabled.
1448  *
1449  * Note!  This is for pre-ILK only.
1450  *
1451  * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1452  */
1453 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1454 {
1455         int reg;
1456         u32 val;
1457
1458         /* No really, not for ILK+ */
1459         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1460
1461         /* PLL is protected by panel, make sure we can write it */
1462         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1463                 assert_panel_unlocked(dev_priv, pipe);
1464
1465         reg = DPLL(pipe);
1466         val = I915_READ(reg);
1467         val |= DPLL_VCO_ENABLE;
1468
1469         /* We do this three times for luck */
1470         I915_WRITE(reg, val);
1471         POSTING_READ(reg);
1472         udelay(150); /* wait for warmup */
1473         I915_WRITE(reg, val);
1474         POSTING_READ(reg);
1475         udelay(150); /* wait for warmup */
1476         I915_WRITE(reg, val);
1477         POSTING_READ(reg);
1478         udelay(150); /* wait for warmup */
1479 }
1480
1481 /**
1482  * intel_disable_pll - disable a PLL
1483  * @dev_priv: i915 private structure
1484  * @pipe: pipe PLL to disable
1485  *
1486  * Disable the PLL for @pipe, making sure the pipe is off first.
1487  *
1488  * Note!  This is for pre-ILK only.
1489  */
1490 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1491 {
1492         int reg;
1493         u32 val;
1494
1495         /* Don't disable pipe A or pipe A PLLs if needed */
1496         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1497                 return;
1498
1499         /* Make sure the pipe isn't still relying on us */
1500         assert_pipe_disabled(dev_priv, pipe);
1501
1502         reg = DPLL(pipe);
1503         val = I915_READ(reg);
1504         val &= ~DPLL_VCO_ENABLE;
1505         I915_WRITE(reg, val);
1506         POSTING_READ(reg);
1507 }
1508
1509 /* SBI access */
1510 static void
1511 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
1512                 enum intel_sbi_destination destination)
1513 {
1514         u32 tmp;
1515
1516         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1517
1518         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1519                                 100)) {
1520                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1521                 return;
1522         }
1523
1524         I915_WRITE(SBI_ADDR, (reg << 16));
1525         I915_WRITE(SBI_DATA, value);
1526
1527         if (destination == SBI_ICLK)
1528                 tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
1529         else
1530                 tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
1531         I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
1532
1533         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1534                                 100)) {
1535                 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1536                 return;
1537         }
1538 }
1539
1540 static u32
1541 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
1542                enum intel_sbi_destination destination)
1543 {
1544         u32 value = 0;
1545         WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
1546
1547         if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1548                                 100)) {
1549                 DRM_ERROR("timeout waiting for SBI to become ready\n");
1550                 return 0;
1551         }
1552
1553         I915_WRITE(SBI_ADDR, (reg << 16));
1554
1555         if (destination == SBI_ICLK)
1556                 value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
1557         else
1558                 value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
1559         I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
1560
1561         if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1562                                 100)) {
1563                 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1564                 return 0;
1565         }
1566
1567         return I915_READ(SBI_DATA);
1568 }
1569
1570 /**
1571  * ironlake_enable_pch_pll - enable PCH PLL
1572  * @dev_priv: i915 private structure
1573  * @pipe: pipe PLL to enable
1574  *
1575  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1576  * drives the transcoder clock.
1577  */
1578 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1579 {
1580         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1581         struct intel_pch_pll *pll;
1582         int reg;
1583         u32 val;
1584
1585         /* PCH PLLs only available on ILK, SNB and IVB */
1586         BUG_ON(dev_priv->info->gen < 5);
1587         pll = intel_crtc->pch_pll;
1588         if (pll == NULL)
1589                 return;
1590
1591         if (WARN_ON(pll->refcount == 0))
1592                 return;
1593
1594         DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1595                       pll->pll_reg, pll->active, pll->on,
1596                       intel_crtc->base.base.id);
1597
1598         /* PCH refclock must be enabled first */
1599         assert_pch_refclk_enabled(dev_priv);
1600
1601         if (pll->active++ && pll->on) {
1602                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1603                 return;
1604         }
1605
1606         DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1607
1608         reg = pll->pll_reg;
1609         val = I915_READ(reg);
1610         val |= DPLL_VCO_ENABLE;
1611         I915_WRITE(reg, val);
1612         POSTING_READ(reg);
1613         udelay(200);
1614
1615         pll->on = true;
1616 }
1617
1618 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1619 {
1620         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1621         struct intel_pch_pll *pll = intel_crtc->pch_pll;
1622         int reg;
1623         u32 val;
1624
1625         /* PCH only available on ILK+ */
1626         BUG_ON(dev_priv->info->gen < 5);
1627         if (pll == NULL)
1628                return;
1629
1630         if (WARN_ON(pll->refcount == 0))
1631                 return;
1632
1633         DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1634                       pll->pll_reg, pll->active, pll->on,
1635                       intel_crtc->base.base.id);
1636
1637         if (WARN_ON(pll->active == 0)) {
1638                 assert_pch_pll_disabled(dev_priv, pll, NULL);
1639                 return;
1640         }
1641
1642         if (--pll->active) {
1643                 assert_pch_pll_enabled(dev_priv, pll, NULL);
1644                 return;
1645         }
1646
1647         DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1648
1649         /* Make sure transcoder isn't still depending on us */
1650         assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1651
1652         reg = pll->pll_reg;
1653         val = I915_READ(reg);
1654         val &= ~DPLL_VCO_ENABLE;
1655         I915_WRITE(reg, val);
1656         POSTING_READ(reg);
1657         udelay(200);
1658
1659         pll->on = false;
1660 }
1661
1662 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1663                                            enum pipe pipe)
1664 {
1665         struct drm_device *dev = dev_priv->dev;
1666         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1667         uint32_t reg, val, pipeconf_val;
1668
1669         /* PCH only available on ILK+ */
1670         BUG_ON(dev_priv->info->gen < 5);
1671
1672         /* Make sure PCH DPLL is enabled */
1673         assert_pch_pll_enabled(dev_priv,
1674                                to_intel_crtc(crtc)->pch_pll,
1675                                to_intel_crtc(crtc));
1676
1677         /* FDI must be feeding us bits for PCH ports */
1678         assert_fdi_tx_enabled(dev_priv, pipe);
1679         assert_fdi_rx_enabled(dev_priv, pipe);
1680
1681         if (HAS_PCH_CPT(dev)) {
1682                 /* Workaround: Set the timing override bit before enabling the
1683                  * pch transcoder. */
1684                 reg = TRANS_CHICKEN2(pipe);
1685                 val = I915_READ(reg);
1686                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1687                 I915_WRITE(reg, val);
1688         }
1689
1690         reg = TRANSCONF(pipe);
1691         val = I915_READ(reg);
1692         pipeconf_val = I915_READ(PIPECONF(pipe));
1693
1694         if (HAS_PCH_IBX(dev_priv->dev)) {
1695                 /*
1696                  * make the BPC in transcoder be consistent with
1697                  * that in pipeconf reg.
1698                  */
1699                 val &= ~PIPECONF_BPC_MASK;
1700                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1701         }
1702
1703         val &= ~TRANS_INTERLACE_MASK;
1704         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1705                 if (HAS_PCH_IBX(dev_priv->dev) &&
1706                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1707                         val |= TRANS_LEGACY_INTERLACED_ILK;
1708                 else
1709                         val |= TRANS_INTERLACED;
1710         else
1711                 val |= TRANS_PROGRESSIVE;
1712
1713         I915_WRITE(reg, val | TRANS_ENABLE);
1714         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1715                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1716 }
1717
1718 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1719                                       enum transcoder cpu_transcoder)
1720 {
1721         u32 val, pipeconf_val;
1722
1723         /* PCH only available on ILK+ */
1724         BUG_ON(dev_priv->info->gen < 5);
1725
1726         /* FDI must be feeding us bits for PCH ports */
1727         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1728         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1729
1730         /* Workaround: set timing override bit. */
1731         val = I915_READ(_TRANSA_CHICKEN2);
1732         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1733         I915_WRITE(_TRANSA_CHICKEN2, val);
1734
1735         val = TRANS_ENABLE;
1736         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1737
1738         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1739             PIPECONF_INTERLACED_ILK)
1740                 val |= TRANS_INTERLACED;
1741         else
1742                 val |= TRANS_PROGRESSIVE;
1743
1744         I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1745         if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1746                 DRM_ERROR("Failed to enable PCH transcoder\n");
1747 }
1748
1749 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1750                                             enum pipe pipe)
1751 {
1752         struct drm_device *dev = dev_priv->dev;
1753         uint32_t reg, val;
1754
1755         /* FDI relies on the transcoder */
1756         assert_fdi_tx_disabled(dev_priv, pipe);
1757         assert_fdi_rx_disabled(dev_priv, pipe);
1758
1759         /* Ports must be off as well */
1760         assert_pch_ports_disabled(dev_priv, pipe);
1761
1762         reg = TRANSCONF(pipe);
1763         val = I915_READ(reg);
1764         val &= ~TRANS_ENABLE;
1765         I915_WRITE(reg, val);
1766         /* wait for PCH transcoder off, transcoder state */
1767         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1768                 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1769
1770         if (!HAS_PCH_IBX(dev)) {
1771                 /* Workaround: Clear the timing override chicken bit again. */
1772                 reg = TRANS_CHICKEN2(pipe);
1773                 val = I915_READ(reg);
1774                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1775                 I915_WRITE(reg, val);
1776         }
1777 }
1778
1779 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1780 {
1781         u32 val;
1782
1783         val = I915_READ(_TRANSACONF);
1784         val &= ~TRANS_ENABLE;
1785         I915_WRITE(_TRANSACONF, val);
1786         /* wait for PCH transcoder off, transcoder state */
1787         if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1788                 DRM_ERROR("Failed to disable PCH transcoder\n");
1789
1790         /* Workaround: clear timing override bit. */
1791         val = I915_READ(_TRANSA_CHICKEN2);
1792         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1793         I915_WRITE(_TRANSA_CHICKEN2, val);
1794 }
1795
1796 /**
1797  * intel_enable_pipe - enable a pipe, asserting requirements
1798  * @dev_priv: i915 private structure
1799  * @pipe: pipe to enable
1800  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1801  *
1802  * Enable @pipe, making sure that various hardware specific requirements
1803  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1804  *
1805  * @pipe should be %PIPE_A or %PIPE_B.
1806  *
1807  * Will wait until the pipe is actually running (i.e. first vblank) before
1808  * returning.
1809  */
1810 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1811                               bool pch_port)
1812 {
1813         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1814                                                                       pipe);
1815         enum pipe pch_transcoder;
1816         int reg;
1817         u32 val;
1818
1819         if (HAS_PCH_LPT(dev_priv->dev))
1820                 pch_transcoder = TRANSCODER_A;
1821         else
1822                 pch_transcoder = pipe;
1823
1824         /*
1825          * A pipe without a PLL won't actually be able to drive bits from
1826          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1827          * need the check.
1828          */
1829         if (!HAS_PCH_SPLIT(dev_priv->dev))
1830                 assert_pll_enabled(dev_priv, pipe);
1831         else {
1832                 if (pch_port) {
1833                         /* if driving the PCH, we need FDI enabled */
1834                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1835                         assert_fdi_tx_pll_enabled(dev_priv,
1836                                                   (enum pipe) cpu_transcoder);
1837                 }
1838                 /* FIXME: assert CPU port conditions for SNB+ */
1839         }
1840
1841         reg = PIPECONF(cpu_transcoder);
1842         val = I915_READ(reg);
1843         if (val & PIPECONF_ENABLE)
1844                 return;
1845
1846         I915_WRITE(reg, val | PIPECONF_ENABLE);
1847         intel_wait_for_vblank(dev_priv->dev, pipe);
1848 }
1849
1850 /**
1851  * intel_disable_pipe - disable a pipe, asserting requirements
1852  * @dev_priv: i915 private structure
1853  * @pipe: pipe to disable
1854  *
1855  * Disable @pipe, making sure that various hardware specific requirements
1856  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1857  *
1858  * @pipe should be %PIPE_A or %PIPE_B.
1859  *
1860  * Will wait until the pipe has shut down before returning.
1861  */
1862 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1863                                enum pipe pipe)
1864 {
1865         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1866                                                                       pipe);
1867         int reg;
1868         u32 val;
1869
1870         /*
1871          * Make sure planes won't keep trying to pump pixels to us,
1872          * or we might hang the display.
1873          */
1874         assert_planes_disabled(dev_priv, pipe);
1875
1876         /* Don't disable pipe A or pipe A PLLs if needed */
1877         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1878                 return;
1879
1880         reg = PIPECONF(cpu_transcoder);
1881         val = I915_READ(reg);
1882         if ((val & PIPECONF_ENABLE) == 0)
1883                 return;
1884
1885         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1886         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1887 }
1888
1889 /*
1890  * Plane regs are double buffered, going from enabled->disabled needs a
1891  * trigger in order to latch.  The display address reg provides this.
1892  */
1893 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1894                                       enum plane plane)
1895 {
1896         if (dev_priv->info->gen >= 4)
1897                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1898         else
1899                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1900 }
1901
1902 /**
1903  * intel_enable_plane - enable a display plane on a given pipe
1904  * @dev_priv: i915 private structure
1905  * @plane: plane to enable
1906  * @pipe: pipe being fed
1907  *
1908  * Enable @plane on @pipe, making sure that @pipe is running first.
1909  */
1910 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1911                                enum plane plane, enum pipe pipe)
1912 {
1913         int reg;
1914         u32 val;
1915
1916         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1917         assert_pipe_enabled(dev_priv, pipe);
1918
1919         reg = DSPCNTR(plane);
1920         val = I915_READ(reg);
1921         if (val & DISPLAY_PLANE_ENABLE)
1922                 return;
1923
1924         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1925         intel_flush_display_plane(dev_priv, plane);
1926         intel_wait_for_vblank(dev_priv->dev, pipe);
1927 }
1928
1929 /**
1930  * intel_disable_plane - disable a display plane
1931  * @dev_priv: i915 private structure
1932  * @plane: plane to disable
1933  * @pipe: pipe consuming the data
1934  *
1935  * Disable @plane; should be an independent operation.
1936  */
1937 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1938                                 enum plane plane, enum pipe pipe)
1939 {
1940         int reg;
1941         u32 val;
1942
1943         reg = DSPCNTR(plane);
1944         val = I915_READ(reg);
1945         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1946                 return;
1947
1948         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1949         intel_flush_display_plane(dev_priv, plane);
1950         intel_wait_for_vblank(dev_priv->dev, pipe);
1951 }
1952
1953 static bool need_vtd_wa(struct drm_device *dev)
1954 {
1955 #ifdef CONFIG_INTEL_IOMMU
1956         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1957                 return true;
1958 #endif
1959         return false;
1960 }
1961
1962 int
1963 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1964                            struct drm_i915_gem_object *obj,
1965                            struct intel_ring_buffer *pipelined)
1966 {
1967         struct drm_i915_private *dev_priv = dev->dev_private;
1968         u32 alignment;
1969         int ret;
1970
1971         switch (obj->tiling_mode) {
1972         case I915_TILING_NONE:
1973                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1974                         alignment = 128 * 1024;
1975                 else if (INTEL_INFO(dev)->gen >= 4)
1976                         alignment = 4 * 1024;
1977                 else
1978                         alignment = 64 * 1024;
1979                 break;
1980         case I915_TILING_X:
1981                 /* pin() will align the object as required by fence */
1982                 alignment = 0;
1983                 break;
1984         case I915_TILING_Y:
1985                 /* FIXME: Is this true? */
1986                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1987                 return -EINVAL;
1988         default:
1989                 BUG();
1990         }
1991
1992         /* Note that the w/a also requires 64 PTE of padding following the
1993          * bo. We currently fill all unused PTE with the shadow page and so
1994          * we should always have valid PTE following the scanout preventing
1995          * the VT-d warning.
1996          */
1997         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1998                 alignment = 256 * 1024;
1999
2000         dev_priv->mm.interruptible = false;
2001         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2002         if (ret)
2003                 goto err_interruptible;
2004
2005         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2006          * fence, whereas 965+ only requires a fence if using
2007          * framebuffer compression.  For simplicity, we always install
2008          * a fence as the cost is not that onerous.
2009          */
2010         ret = i915_gem_object_get_fence(obj);
2011         if (ret)
2012                 goto err_unpin;
2013
2014         i915_gem_object_pin_fence(obj);
2015
2016         dev_priv->mm.interruptible = true;
2017         return 0;
2018
2019 err_unpin:
2020         i915_gem_object_unpin(obj);
2021 err_interruptible:
2022         dev_priv->mm.interruptible = true;
2023         return ret;
2024 }
2025
2026 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2027 {
2028         i915_gem_object_unpin_fence(obj);
2029         i915_gem_object_unpin(obj);
2030 }
2031
2032 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2033  * is assumed to be a power-of-two. */
2034 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2035                                              unsigned int tiling_mode,
2036                                              unsigned int cpp,
2037                                              unsigned int pitch)
2038 {
2039         if (tiling_mode != I915_TILING_NONE) {
2040                 unsigned int tile_rows, tiles;
2041
2042                 tile_rows = *y / 8;
2043                 *y %= 8;
2044
2045                 tiles = *x / (512/cpp);
2046                 *x %= 512/cpp;
2047
2048                 return tile_rows * pitch * 8 + tiles * 4096;
2049         } else {
2050                 unsigned int offset;
2051
2052                 offset = *y * pitch + *x * cpp;
2053                 *y = 0;
2054                 *x = (offset & 4095) / cpp;
2055                 return offset & -4096;
2056         }
2057 }
2058
2059 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2060                              int x, int y)
2061 {
2062         struct drm_device *dev = crtc->dev;
2063         struct drm_i915_private *dev_priv = dev->dev_private;
2064         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2065         struct intel_framebuffer *intel_fb;
2066         struct drm_i915_gem_object *obj;
2067         int plane = intel_crtc->plane;
2068         unsigned long linear_offset;
2069         u32 dspcntr;
2070         u32 reg;
2071
2072         switch (plane) {
2073         case 0:
2074         case 1:
2075                 break;
2076         default:
2077                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2078                 return -EINVAL;
2079         }
2080
2081         intel_fb = to_intel_framebuffer(fb);
2082         obj = intel_fb->obj;
2083
2084         reg = DSPCNTR(plane);
2085         dspcntr = I915_READ(reg);
2086         /* Mask out pixel format bits in case we change it */
2087         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2088         switch (fb->pixel_format) {
2089         case DRM_FORMAT_C8:
2090                 dspcntr |= DISPPLANE_8BPP;
2091                 break;
2092         case DRM_FORMAT_XRGB1555:
2093         case DRM_FORMAT_ARGB1555:
2094                 dspcntr |= DISPPLANE_BGRX555;
2095                 break;
2096         case DRM_FORMAT_RGB565:
2097                 dspcntr |= DISPPLANE_BGRX565;
2098                 break;
2099         case DRM_FORMAT_XRGB8888:
2100         case DRM_FORMAT_ARGB8888:
2101                 dspcntr |= DISPPLANE_BGRX888;
2102                 break;
2103         case DRM_FORMAT_XBGR8888:
2104         case DRM_FORMAT_ABGR8888:
2105                 dspcntr |= DISPPLANE_RGBX888;
2106                 break;
2107         case DRM_FORMAT_XRGB2101010:
2108         case DRM_FORMAT_ARGB2101010:
2109                 dspcntr |= DISPPLANE_BGRX101010;
2110                 break;
2111         case DRM_FORMAT_XBGR2101010:
2112         case DRM_FORMAT_ABGR2101010:
2113                 dspcntr |= DISPPLANE_RGBX101010;
2114                 break;
2115         default:
2116                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2117                 return -EINVAL;
2118         }
2119
2120         if (INTEL_INFO(dev)->gen >= 4) {
2121                 if (obj->tiling_mode != I915_TILING_NONE)
2122                         dspcntr |= DISPPLANE_TILED;
2123                 else
2124                         dspcntr &= ~DISPPLANE_TILED;
2125         }
2126
2127         I915_WRITE(reg, dspcntr);
2128
2129         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2130
2131         if (INTEL_INFO(dev)->gen >= 4) {
2132                 intel_crtc->dspaddr_offset =
2133                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2134                                                        fb->bits_per_pixel / 8,
2135                                                        fb->pitches[0]);
2136                 linear_offset -= intel_crtc->dspaddr_offset;
2137         } else {
2138                 intel_crtc->dspaddr_offset = linear_offset;
2139         }
2140
2141         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2142                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2143         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2144         if (INTEL_INFO(dev)->gen >= 4) {
2145                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2146                                      obj->gtt_offset + intel_crtc->dspaddr_offset);
2147                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2148                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2149         } else
2150                 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2151         POSTING_READ(reg);
2152
2153         return 0;
2154 }
2155
2156 static int ironlake_update_plane(struct drm_crtc *crtc,
2157                                  struct drm_framebuffer *fb, int x, int y)
2158 {
2159         struct drm_device *dev = crtc->dev;
2160         struct drm_i915_private *dev_priv = dev->dev_private;
2161         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2162         struct intel_framebuffer *intel_fb;
2163         struct drm_i915_gem_object *obj;
2164         int plane = intel_crtc->plane;
2165         unsigned long linear_offset;
2166         u32 dspcntr;
2167         u32 reg;
2168
2169         switch (plane) {
2170         case 0:
2171         case 1:
2172         case 2:
2173                 break;
2174         default:
2175                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2176                 return -EINVAL;
2177         }
2178
2179         intel_fb = to_intel_framebuffer(fb);
2180         obj = intel_fb->obj;
2181
2182         reg = DSPCNTR(plane);
2183         dspcntr = I915_READ(reg);
2184         /* Mask out pixel format bits in case we change it */
2185         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2186         switch (fb->pixel_format) {
2187         case DRM_FORMAT_C8:
2188                 dspcntr |= DISPPLANE_8BPP;
2189                 break;
2190         case DRM_FORMAT_RGB565:
2191                 dspcntr |= DISPPLANE_BGRX565;
2192                 break;
2193         case DRM_FORMAT_XRGB8888:
2194         case DRM_FORMAT_ARGB8888:
2195                 dspcntr |= DISPPLANE_BGRX888;
2196                 break;
2197         case DRM_FORMAT_XBGR8888:
2198         case DRM_FORMAT_ABGR8888:
2199                 dspcntr |= DISPPLANE_RGBX888;
2200                 break;
2201         case DRM_FORMAT_XRGB2101010:
2202         case DRM_FORMAT_ARGB2101010:
2203                 dspcntr |= DISPPLANE_BGRX101010;
2204                 break;
2205         case DRM_FORMAT_XBGR2101010:
2206         case DRM_FORMAT_ABGR2101010:
2207                 dspcntr |= DISPPLANE_RGBX101010;
2208                 break;
2209         default:
2210                 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2211                 return -EINVAL;
2212         }
2213
2214         if (obj->tiling_mode != I915_TILING_NONE)
2215                 dspcntr |= DISPPLANE_TILED;
2216         else
2217                 dspcntr &= ~DISPPLANE_TILED;
2218
2219         /* must disable */
2220         dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2221
2222         I915_WRITE(reg, dspcntr);
2223
2224         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2225         intel_crtc->dspaddr_offset =
2226                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2227                                                fb->bits_per_pixel / 8,
2228                                                fb->pitches[0]);
2229         linear_offset -= intel_crtc->dspaddr_offset;
2230
2231         DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2232                       obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2233         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2234         I915_MODIFY_DISPBASE(DSPSURF(plane),
2235                              obj->gtt_offset + intel_crtc->dspaddr_offset);
2236         if (IS_HASWELL(dev)) {
2237                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2238         } else {
2239                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2240                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2241         }
2242         POSTING_READ(reg);
2243
2244         return 0;
2245 }
2246
2247 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2248 static int
2249 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2250                            int x, int y, enum mode_set_atomic state)
2251 {
2252         struct drm_device *dev = crtc->dev;
2253         struct drm_i915_private *dev_priv = dev->dev_private;
2254
2255         if (dev_priv->display.disable_fbc)
2256                 dev_priv->display.disable_fbc(dev);
2257         intel_increase_pllclock(crtc);
2258
2259         return dev_priv->display.update_plane(crtc, fb, x, y);
2260 }
2261
2262 void intel_display_handle_reset(struct drm_device *dev)
2263 {
2264         struct drm_i915_private *dev_priv = dev->dev_private;
2265         struct drm_crtc *crtc;
2266
2267         /*
2268          * Flips in the rings have been nuked by the reset,
2269          * so complete all pending flips so that user space
2270          * will get its events and not get stuck.
2271          *
2272          * Also update the base address of all primary
2273          * planes to the the last fb to make sure we're
2274          * showing the correct fb after a reset.
2275          *
2276          * Need to make two loops over the crtcs so that we
2277          * don't try to grab a crtc mutex before the
2278          * pending_flip_queue really got woken up.
2279          */
2280
2281         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2282                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2283                 enum plane plane = intel_crtc->plane;
2284
2285                 intel_prepare_page_flip(dev, plane);
2286                 intel_finish_page_flip_plane(dev, plane);
2287         }
2288
2289         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2290                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2291
2292                 mutex_lock(&crtc->mutex);
2293                 if (intel_crtc->active)
2294                         dev_priv->display.update_plane(crtc, crtc->fb,
2295                                                        crtc->x, crtc->y);
2296                 mutex_unlock(&crtc->mutex);
2297         }
2298 }
2299
2300 static int
2301 intel_finish_fb(struct drm_framebuffer *old_fb)
2302 {
2303         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2304         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2305         bool was_interruptible = dev_priv->mm.interruptible;
2306         int ret;
2307
2308         /* Big Hammer, we also need to ensure that any pending
2309          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2310          * current scanout is retired before unpinning the old
2311          * framebuffer.
2312          *
2313          * This should only fail upon a hung GPU, in which case we
2314          * can safely continue.
2315          */
2316         dev_priv->mm.interruptible = false;
2317         ret = i915_gem_object_finish_gpu(obj);
2318         dev_priv->mm.interruptible = was_interruptible;
2319
2320         return ret;
2321 }
2322
2323 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2324 {
2325         struct drm_device *dev = crtc->dev;
2326         struct drm_i915_master_private *master_priv;
2327         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2328
2329         if (!dev->primary->master)
2330                 return;
2331
2332         master_priv = dev->primary->master->driver_priv;
2333         if (!master_priv->sarea_priv)
2334                 return;
2335
2336         switch (intel_crtc->pipe) {
2337         case 0:
2338                 master_priv->sarea_priv->pipeA_x = x;
2339                 master_priv->sarea_priv->pipeA_y = y;
2340                 break;
2341         case 1:
2342                 master_priv->sarea_priv->pipeB_x = x;
2343                 master_priv->sarea_priv->pipeB_y = y;
2344                 break;
2345         default:
2346                 break;
2347         }
2348 }
2349
2350 static int
2351 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2352                     struct drm_framebuffer *fb)
2353 {
2354         struct drm_device *dev = crtc->dev;
2355         struct drm_i915_private *dev_priv = dev->dev_private;
2356         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2357         struct drm_framebuffer *old_fb;
2358         int ret;
2359
2360         /* no fb bound */
2361         if (!fb) {
2362                 DRM_ERROR("No FB bound\n");
2363                 return 0;
2364         }
2365
2366         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2367                 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2368                                 intel_crtc->plane,
2369                                 INTEL_INFO(dev)->num_pipes);
2370                 return -EINVAL;
2371         }
2372
2373         mutex_lock(&dev->struct_mutex);
2374         ret = intel_pin_and_fence_fb_obj(dev,
2375                                          to_intel_framebuffer(fb)->obj,
2376                                          NULL);
2377         if (ret != 0) {
2378                 mutex_unlock(&dev->struct_mutex);
2379                 DRM_ERROR("pin & fence failed\n");
2380                 return ret;
2381         }
2382
2383         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2384         if (ret) {
2385                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2386                 mutex_unlock(&dev->struct_mutex);
2387                 DRM_ERROR("failed to update base address\n");
2388                 return ret;
2389         }
2390
2391         old_fb = crtc->fb;
2392         crtc->fb = fb;
2393         crtc->x = x;
2394         crtc->y = y;
2395
2396         if (old_fb) {
2397                 intel_wait_for_vblank(dev, intel_crtc->pipe);
2398                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2399         }
2400
2401         intel_update_fbc(dev);
2402         mutex_unlock(&dev->struct_mutex);
2403
2404         intel_crtc_update_sarea_pos(crtc, x, y);
2405
2406         return 0;
2407 }
2408
2409 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2410 {
2411         struct drm_device *dev = crtc->dev;
2412         struct drm_i915_private *dev_priv = dev->dev_private;
2413         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2414         int pipe = intel_crtc->pipe;
2415         u32 reg, temp;
2416
2417         /* enable normal train */
2418         reg = FDI_TX_CTL(pipe);
2419         temp = I915_READ(reg);
2420         if (IS_IVYBRIDGE(dev)) {
2421                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2422                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2423         } else {
2424                 temp &= ~FDI_LINK_TRAIN_NONE;
2425                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2426         }
2427         I915_WRITE(reg, temp);
2428
2429         reg = FDI_RX_CTL(pipe);
2430         temp = I915_READ(reg);
2431         if (HAS_PCH_CPT(dev)) {
2432                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2433                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2434         } else {
2435                 temp &= ~FDI_LINK_TRAIN_NONE;
2436                 temp |= FDI_LINK_TRAIN_NONE;
2437         }
2438         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2439
2440         /* wait one idle pattern time */
2441         POSTING_READ(reg);
2442         udelay(1000);
2443
2444         /* IVB wants error correction enabled */
2445         if (IS_IVYBRIDGE(dev))
2446                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2447                            FDI_FE_ERRC_ENABLE);
2448 }
2449
2450 static void ivb_modeset_global_resources(struct drm_device *dev)
2451 {
2452         struct drm_i915_private *dev_priv = dev->dev_private;
2453         struct intel_crtc *pipe_B_crtc =
2454                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2455         struct intel_crtc *pipe_C_crtc =
2456                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2457         uint32_t temp;
2458
2459         /* When everything is off disable fdi C so that we could enable fdi B
2460          * with all lanes. XXX: This misses the case where a pipe is not using
2461          * any pch resources and so doesn't need any fdi lanes. */
2462         if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2463                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2464                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2465
2466                 temp = I915_READ(SOUTH_CHICKEN1);
2467                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2468                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2469                 I915_WRITE(SOUTH_CHICKEN1, temp);
2470         }
2471 }
2472
2473 /* The FDI link training functions for ILK/Ibexpeak. */
2474 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2475 {
2476         struct drm_device *dev = crtc->dev;
2477         struct drm_i915_private *dev_priv = dev->dev_private;
2478         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2479         int pipe = intel_crtc->pipe;
2480         int plane = intel_crtc->plane;
2481         u32 reg, temp, tries;
2482
2483         /* FDI needs bits from pipe & plane first */
2484         assert_pipe_enabled(dev_priv, pipe);
2485         assert_plane_enabled(dev_priv, plane);
2486
2487         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2488            for train result */
2489         reg = FDI_RX_IMR(pipe);
2490         temp = I915_READ(reg);
2491         temp &= ~FDI_RX_SYMBOL_LOCK;
2492         temp &= ~FDI_RX_BIT_LOCK;
2493         I915_WRITE(reg, temp);
2494         I915_READ(reg);
2495         udelay(150);
2496
2497         /* enable CPU FDI TX and PCH FDI RX */
2498         reg = FDI_TX_CTL(pipe);
2499         temp = I915_READ(reg);
2500         temp &= ~(7 << 19);
2501         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2502         temp &= ~FDI_LINK_TRAIN_NONE;
2503         temp |= FDI_LINK_TRAIN_PATTERN_1;
2504         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2505
2506         reg = FDI_RX_CTL(pipe);
2507         temp = I915_READ(reg);
2508         temp &= ~FDI_LINK_TRAIN_NONE;
2509         temp |= FDI_LINK_TRAIN_PATTERN_1;
2510         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2511
2512         POSTING_READ(reg);
2513         udelay(150);
2514
2515         /* Ironlake workaround, enable clock pointer after FDI enable*/
2516         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2517         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2518                    FDI_RX_PHASE_SYNC_POINTER_EN);
2519
2520         reg = FDI_RX_IIR(pipe);
2521         for (tries = 0; tries < 5; tries++) {
2522                 temp = I915_READ(reg);
2523                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2524
2525                 if ((temp & FDI_RX_BIT_LOCK)) {
2526                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2527                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2528                         break;
2529                 }
2530         }
2531         if (tries == 5)
2532                 DRM_ERROR("FDI train 1 fail!\n");
2533
2534         /* Train 2 */
2535         reg = FDI_TX_CTL(pipe);
2536         temp = I915_READ(reg);
2537         temp &= ~FDI_LINK_TRAIN_NONE;
2538         temp |= FDI_LINK_TRAIN_PATTERN_2;
2539         I915_WRITE(reg, temp);
2540
2541         reg = FDI_RX_CTL(pipe);
2542         temp = I915_READ(reg);
2543         temp &= ~FDI_LINK_TRAIN_NONE;
2544         temp |= FDI_LINK_TRAIN_PATTERN_2;
2545         I915_WRITE(reg, temp);
2546
2547         POSTING_READ(reg);
2548         udelay(150);
2549
2550         reg = FDI_RX_IIR(pipe);
2551         for (tries = 0; tries < 5; tries++) {
2552                 temp = I915_READ(reg);
2553                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2554
2555                 if (temp & FDI_RX_SYMBOL_LOCK) {
2556                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2557                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2558                         break;
2559                 }
2560         }
2561         if (tries == 5)
2562                 DRM_ERROR("FDI train 2 fail!\n");
2563
2564         DRM_DEBUG_KMS("FDI train done\n");
2565
2566 }
2567
2568 static const int snb_b_fdi_train_param[] = {
2569         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2570         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2571         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2572         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2573 };
2574
2575 /* The FDI link training functions for SNB/Cougarpoint. */
2576 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2577 {
2578         struct drm_device *dev = crtc->dev;
2579         struct drm_i915_private *dev_priv = dev->dev_private;
2580         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2581         int pipe = intel_crtc->pipe;
2582         u32 reg, temp, i, retry;
2583
2584         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2585            for train result */
2586         reg = FDI_RX_IMR(pipe);
2587         temp = I915_READ(reg);
2588         temp &= ~FDI_RX_SYMBOL_LOCK;
2589         temp &= ~FDI_RX_BIT_LOCK;
2590         I915_WRITE(reg, temp);
2591
2592         POSTING_READ(reg);
2593         udelay(150);
2594
2595         /* enable CPU FDI TX and PCH FDI RX */
2596         reg = FDI_TX_CTL(pipe);
2597         temp = I915_READ(reg);
2598         temp &= ~(7 << 19);
2599         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2600         temp &= ~FDI_LINK_TRAIN_NONE;
2601         temp |= FDI_LINK_TRAIN_PATTERN_1;
2602         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2603         /* SNB-B */
2604         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2605         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2606
2607         I915_WRITE(FDI_RX_MISC(pipe),
2608                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2609
2610         reg = FDI_RX_CTL(pipe);
2611         temp = I915_READ(reg);
2612         if (HAS_PCH_CPT(dev)) {
2613                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2614                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2615         } else {
2616                 temp &= ~FDI_LINK_TRAIN_NONE;
2617                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2618         }
2619         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2620
2621         POSTING_READ(reg);
2622         udelay(150);
2623
2624         for (i = 0; i < 4; i++) {
2625                 reg = FDI_TX_CTL(pipe);
2626                 temp = I915_READ(reg);
2627                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2628                 temp |= snb_b_fdi_train_param[i];
2629                 I915_WRITE(reg, temp);
2630
2631                 POSTING_READ(reg);
2632                 udelay(500);
2633
2634                 for (retry = 0; retry < 5; retry++) {
2635                         reg = FDI_RX_IIR(pipe);
2636                         temp = I915_READ(reg);
2637                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2638                         if (temp & FDI_RX_BIT_LOCK) {
2639                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2640                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2641                                 break;
2642                         }
2643                         udelay(50);
2644                 }
2645                 if (retry < 5)
2646                         break;
2647         }
2648         if (i == 4)
2649                 DRM_ERROR("FDI train 1 fail!\n");
2650
2651         /* Train 2 */
2652         reg = FDI_TX_CTL(pipe);
2653         temp = I915_READ(reg);
2654         temp &= ~FDI_LINK_TRAIN_NONE;
2655         temp |= FDI_LINK_TRAIN_PATTERN_2;
2656         if (IS_GEN6(dev)) {
2657                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2658                 /* SNB-B */
2659                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2660         }
2661         I915_WRITE(reg, temp);
2662
2663         reg = FDI_RX_CTL(pipe);
2664         temp = I915_READ(reg);
2665         if (HAS_PCH_CPT(dev)) {
2666                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2667                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2668         } else {
2669                 temp &= ~FDI_LINK_TRAIN_NONE;
2670                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2671         }
2672         I915_WRITE(reg, temp);
2673
2674         POSTING_READ(reg);
2675         udelay(150);
2676
2677         for (i = 0; i < 4; i++) {
2678                 reg = FDI_TX_CTL(pipe);
2679                 temp = I915_READ(reg);
2680                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2681                 temp |= snb_b_fdi_train_param[i];
2682                 I915_WRITE(reg, temp);
2683
2684                 POSTING_READ(reg);
2685                 udelay(500);
2686
2687                 for (retry = 0; retry < 5; retry++) {
2688                         reg = FDI_RX_IIR(pipe);
2689                         temp = I915_READ(reg);
2690                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2691                         if (temp & FDI_RX_SYMBOL_LOCK) {
2692                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2693                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2694                                 break;
2695                         }
2696                         udelay(50);
2697                 }
2698                 if (retry < 5)
2699                         break;
2700         }
2701         if (i == 4)
2702                 DRM_ERROR("FDI train 2 fail!\n");
2703
2704         DRM_DEBUG_KMS("FDI train done.\n");
2705 }
2706
2707 /* Manual link training for Ivy Bridge A0 parts */
2708 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2709 {
2710         struct drm_device *dev = crtc->dev;
2711         struct drm_i915_private *dev_priv = dev->dev_private;
2712         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2713         int pipe = intel_crtc->pipe;
2714         u32 reg, temp, i;
2715
2716         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2717            for train result */
2718         reg = FDI_RX_IMR(pipe);
2719         temp = I915_READ(reg);
2720         temp &= ~FDI_RX_SYMBOL_LOCK;
2721         temp &= ~FDI_RX_BIT_LOCK;
2722         I915_WRITE(reg, temp);
2723
2724         POSTING_READ(reg);
2725         udelay(150);
2726
2727         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2728                       I915_READ(FDI_RX_IIR(pipe)));
2729
2730         /* enable CPU FDI TX and PCH FDI RX */
2731         reg = FDI_TX_CTL(pipe);
2732         temp = I915_READ(reg);
2733         temp &= ~(7 << 19);
2734         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2735         temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2736         temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2737         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2738         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2739         temp |= FDI_COMPOSITE_SYNC;
2740         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2741
2742         I915_WRITE(FDI_RX_MISC(pipe),
2743                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2744
2745         reg = FDI_RX_CTL(pipe);
2746         temp = I915_READ(reg);
2747         temp &= ~FDI_LINK_TRAIN_AUTO;
2748         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2749         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2750         temp |= FDI_COMPOSITE_SYNC;
2751         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2752
2753         POSTING_READ(reg);
2754         udelay(150);
2755
2756         for (i = 0; i < 4; i++) {
2757                 reg = FDI_TX_CTL(pipe);
2758                 temp = I915_READ(reg);
2759                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2760                 temp |= snb_b_fdi_train_param[i];
2761                 I915_WRITE(reg, temp);
2762
2763                 POSTING_READ(reg);
2764                 udelay(500);
2765
2766                 reg = FDI_RX_IIR(pipe);
2767                 temp = I915_READ(reg);
2768                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2769
2770                 if (temp & FDI_RX_BIT_LOCK ||
2771                     (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2772                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2773                         DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2774                         break;
2775                 }
2776         }
2777         if (i == 4)
2778                 DRM_ERROR("FDI train 1 fail!\n");
2779
2780         /* Train 2 */
2781         reg = FDI_TX_CTL(pipe);
2782         temp = I915_READ(reg);
2783         temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2784         temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2785         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2786         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2787         I915_WRITE(reg, temp);
2788
2789         reg = FDI_RX_CTL(pipe);
2790         temp = I915_READ(reg);
2791         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2792         temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2793         I915_WRITE(reg, temp);
2794
2795         POSTING_READ(reg);
2796         udelay(150);
2797
2798         for (i = 0; i < 4; i++) {
2799                 reg = FDI_TX_CTL(pipe);
2800                 temp = I915_READ(reg);
2801                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2802                 temp |= snb_b_fdi_train_param[i];
2803                 I915_WRITE(reg, temp);
2804
2805                 POSTING_READ(reg);
2806                 udelay(500);
2807
2808                 reg = FDI_RX_IIR(pipe);
2809                 temp = I915_READ(reg);
2810                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2811
2812                 if (temp & FDI_RX_SYMBOL_LOCK) {
2813                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2814                         DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2815                         break;
2816                 }
2817         }
2818         if (i == 4)
2819                 DRM_ERROR("FDI train 2 fail!\n");
2820
2821         DRM_DEBUG_KMS("FDI train done.\n");
2822 }
2823
2824 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2825 {
2826         struct drm_device *dev = intel_crtc->base.dev;
2827         struct drm_i915_private *dev_priv = dev->dev_private;
2828         int pipe = intel_crtc->pipe;
2829         u32 reg, temp;
2830
2831
2832         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2833         reg = FDI_RX_CTL(pipe);
2834         temp = I915_READ(reg);
2835         temp &= ~((0x7 << 19) | (0x7 << 16));
2836         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2837         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2838         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2839
2840         POSTING_READ(reg);
2841         udelay(200);
2842
2843         /* Switch from Rawclk to PCDclk */
2844         temp = I915_READ(reg);
2845         I915_WRITE(reg, temp | FDI_PCDCLK);
2846
2847         POSTING_READ(reg);
2848         udelay(200);
2849
2850         /* Enable CPU FDI TX PLL, always on for Ironlake */
2851         reg = FDI_TX_CTL(pipe);
2852         temp = I915_READ(reg);
2853         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2854                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2855
2856                 POSTING_READ(reg);
2857                 udelay(100);
2858         }
2859 }
2860
2861 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2862 {
2863         struct drm_device *dev = intel_crtc->base.dev;
2864         struct drm_i915_private *dev_priv = dev->dev_private;
2865         int pipe = intel_crtc->pipe;
2866         u32 reg, temp;
2867
2868         /* Switch from PCDclk to Rawclk */
2869         reg = FDI_RX_CTL(pipe);
2870         temp = I915_READ(reg);
2871         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2872
2873         /* Disable CPU FDI TX PLL */
2874         reg = FDI_TX_CTL(pipe);
2875         temp = I915_READ(reg);
2876         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2877
2878         POSTING_READ(reg);
2879         udelay(100);
2880
2881         reg = FDI_RX_CTL(pipe);
2882         temp = I915_READ(reg);
2883         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2884
2885         /* Wait for the clocks to turn off. */
2886         POSTING_READ(reg);
2887         udelay(100);
2888 }
2889
2890 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2891 {
2892         struct drm_device *dev = crtc->dev;
2893         struct drm_i915_private *dev_priv = dev->dev_private;
2894         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2895         int pipe = intel_crtc->pipe;
2896         u32 reg, temp;
2897
2898         /* disable CPU FDI tx and PCH FDI rx */
2899         reg = FDI_TX_CTL(pipe);
2900         temp = I915_READ(reg);
2901         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2902         POSTING_READ(reg);
2903
2904         reg = FDI_RX_CTL(pipe);
2905         temp = I915_READ(reg);
2906         temp &= ~(0x7 << 16);
2907         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2908         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2909
2910         POSTING_READ(reg);
2911         udelay(100);
2912
2913         /* Ironlake workaround, disable clock pointer after downing FDI */
2914         if (HAS_PCH_IBX(dev)) {
2915                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2916         }
2917
2918         /* still set train pattern 1 */
2919         reg = FDI_TX_CTL(pipe);
2920         temp = I915_READ(reg);
2921         temp &= ~FDI_LINK_TRAIN_NONE;
2922         temp |= FDI_LINK_TRAIN_PATTERN_1;
2923         I915_WRITE(reg, temp);
2924
2925         reg = FDI_RX_CTL(pipe);
2926         temp = I915_READ(reg);
2927         if (HAS_PCH_CPT(dev)) {
2928                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2929                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2930         } else {
2931                 temp &= ~FDI_LINK_TRAIN_NONE;
2932                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2933         }
2934         /* BPC in FDI rx is consistent with that in PIPECONF */
2935         temp &= ~(0x07 << 16);
2936         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2937         I915_WRITE(reg, temp);
2938
2939         POSTING_READ(reg);
2940         udelay(100);
2941 }
2942
2943 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2944 {
2945         struct drm_device *dev = crtc->dev;
2946         struct drm_i915_private *dev_priv = dev->dev_private;
2947         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2948         unsigned long flags;
2949         bool pending;
2950
2951         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2952             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2953                 return false;
2954
2955         spin_lock_irqsave(&dev->event_lock, flags);
2956         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2957         spin_unlock_irqrestore(&dev->event_lock, flags);
2958
2959         return pending;
2960 }
2961
2962 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2963 {
2964         struct drm_device *dev = crtc->dev;
2965         struct drm_i915_private *dev_priv = dev->dev_private;
2966
2967         if (crtc->fb == NULL)
2968                 return;
2969
2970         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2971
2972         wait_event(dev_priv->pending_flip_queue,
2973                    !intel_crtc_has_pending_flip(crtc));
2974
2975         mutex_lock(&dev->struct_mutex);
2976         intel_finish_fb(crtc->fb);
2977         mutex_unlock(&dev->struct_mutex);
2978 }
2979
2980 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2981 {
2982         return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2983 }
2984
2985 /* Program iCLKIP clock to the desired frequency */
2986 static void lpt_program_iclkip(struct drm_crtc *crtc)
2987 {
2988         struct drm_device *dev = crtc->dev;
2989         struct drm_i915_private *dev_priv = dev->dev_private;
2990         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2991         u32 temp;
2992
2993         mutex_lock(&dev_priv->dpio_lock);
2994
2995         /* It is necessary to ungate the pixclk gate prior to programming
2996          * the divisors, and gate it back when it is done.
2997          */
2998         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2999
3000         /* Disable SSCCTL */
3001         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3002                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3003                                 SBI_SSCCTL_DISABLE,
3004                         SBI_ICLK);
3005
3006         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3007         if (crtc->mode.clock == 20000) {
3008                 auxdiv = 1;
3009                 divsel = 0x41;
3010                 phaseinc = 0x20;
3011         } else {
3012                 /* The iCLK virtual clock root frequency is in MHz,
3013                  * but the crtc->mode.clock in in KHz. To get the divisors,
3014                  * it is necessary to divide one by another, so we
3015                  * convert the virtual clock precision to KHz here for higher
3016                  * precision.
3017                  */
3018                 u32 iclk_virtual_root_freq = 172800 * 1000;
3019                 u32 iclk_pi_range = 64;
3020                 u32 desired_divisor, msb_divisor_value, pi_value;
3021
3022                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3023                 msb_divisor_value = desired_divisor / iclk_pi_range;
3024                 pi_value = desired_divisor % iclk_pi_range;
3025
3026                 auxdiv = 0;
3027                 divsel = msb_divisor_value - 2;
3028                 phaseinc = pi_value;
3029         }
3030
3031         /* This should not happen with any sane values */
3032         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3033                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3034         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3035                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3036
3037         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3038                         crtc->mode.clock,
3039                         auxdiv,
3040                         divsel,
3041                         phasedir,
3042                         phaseinc);
3043
3044         /* Program SSCDIVINTPHASE6 */
3045         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3046         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3047         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3048         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3049         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3050         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3051         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3052         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3053
3054         /* Program SSCAUXDIV */
3055         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3056         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3057         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3058         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3059
3060         /* Enable modulator and associated divider */
3061         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3062         temp &= ~SBI_SSCCTL_DISABLE;
3063         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3064
3065         /* Wait for initialization time */
3066         udelay(24);
3067
3068         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3069
3070         mutex_unlock(&dev_priv->dpio_lock);
3071 }
3072
3073 /*
3074  * Enable PCH resources required for PCH ports:
3075  *   - PCH PLLs
3076  *   - FDI training & RX/TX
3077  *   - update transcoder timings
3078  *   - DP transcoding bits
3079  *   - transcoder
3080  */
3081 static void ironlake_pch_enable(struct drm_crtc *crtc)
3082 {
3083         struct drm_device *dev = crtc->dev;
3084         struct drm_i915_private *dev_priv = dev->dev_private;
3085         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3086         int pipe = intel_crtc->pipe;
3087         u32 reg, temp;
3088
3089         assert_transcoder_disabled(dev_priv, pipe);
3090
3091         /* Write the TU size bits before fdi link training, so that error
3092          * detection works. */
3093         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3094                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3095
3096         /* For PCH output, training FDI link */
3097         dev_priv->display.fdi_link_train(crtc);
3098
3099         /* XXX: pch pll's can be enabled any time before we enable the PCH
3100          * transcoder, and we actually should do this to not upset any PCH
3101          * transcoder that already use the clock when we share it.
3102          *
3103          * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3104          * unconditionally resets the pll - we need that to have the right LVDS
3105          * enable sequence. */
3106         ironlake_enable_pch_pll(intel_crtc);
3107
3108         if (HAS_PCH_CPT(dev)) {
3109                 u32 sel;
3110
3111                 temp = I915_READ(PCH_DPLL_SEL);
3112                 switch (pipe) {
3113                 default:
3114                 case 0:
3115                         temp |= TRANSA_DPLL_ENABLE;
3116                         sel = TRANSA_DPLLB_SEL;
3117                         break;
3118                 case 1:
3119                         temp |= TRANSB_DPLL_ENABLE;
3120                         sel = TRANSB_DPLLB_SEL;
3121                         break;
3122                 case 2:
3123                         temp |= TRANSC_DPLL_ENABLE;
3124                         sel = TRANSC_DPLLB_SEL;
3125                         break;
3126                 }
3127                 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3128                         temp |= sel;
3129                 else
3130                         temp &= ~sel;
3131                 I915_WRITE(PCH_DPLL_SEL, temp);
3132         }
3133
3134         /* set transcoder timing, panel must allow it */
3135         assert_panel_unlocked(dev_priv, pipe);
3136         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3137         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3138         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3139
3140         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3141         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3142         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3143         I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3144
3145         intel_fdi_normal_train(crtc);
3146
3147         /* For PCH DP, enable TRANS_DP_CTL */
3148         if (HAS_PCH_CPT(dev) &&
3149             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3150              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3151                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3152                 reg = TRANS_DP_CTL(pipe);
3153                 temp = I915_READ(reg);
3154                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3155                           TRANS_DP_SYNC_MASK |
3156                           TRANS_DP_BPC_MASK);
3157                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3158                          TRANS_DP_ENH_FRAMING);
3159                 temp |= bpc << 9; /* same format but at 11:9 */
3160
3161                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3162                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3163                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3164                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3165
3166                 switch (intel_trans_dp_port_sel(crtc)) {
3167                 case PCH_DP_B:
3168                         temp |= TRANS_DP_PORT_SEL_B;
3169                         break;
3170                 case PCH_DP_C:
3171                         temp |= TRANS_DP_PORT_SEL_C;
3172                         break;
3173                 case PCH_DP_D:
3174                         temp |= TRANS_DP_PORT_SEL_D;
3175                         break;
3176                 default:
3177                         BUG();
3178                 }
3179
3180                 I915_WRITE(reg, temp);
3181         }
3182
3183         ironlake_enable_pch_transcoder(dev_priv, pipe);
3184 }
3185
3186 static void lpt_pch_enable(struct drm_crtc *crtc)
3187 {
3188         struct drm_device *dev = crtc->dev;
3189         struct drm_i915_private *dev_priv = dev->dev_private;
3190         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3191         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3192
3193         assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3194
3195         lpt_program_iclkip(crtc);
3196
3197         /* Set transcoder timing. */
3198         I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3199         I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3200         I915_WRITE(_TRANS_HSYNC_A,  I915_READ(HSYNC(cpu_transcoder)));
3201
3202         I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3203         I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3204         I915_WRITE(_TRANS_VSYNC_A,  I915_READ(VSYNC(cpu_transcoder)));
3205         I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3206
3207         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3208 }
3209
3210 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3211 {
3212         struct intel_pch_pll *pll = intel_crtc->pch_pll;
3213
3214         if (pll == NULL)
3215                 return;
3216
3217         if (pll->refcount == 0) {
3218                 WARN(1, "bad PCH PLL refcount\n");
3219                 return;
3220         }
3221
3222         --pll->refcount;
3223         intel_crtc->pch_pll = NULL;
3224 }
3225
3226 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3227 {
3228         struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3229         struct intel_pch_pll *pll;
3230         int i;
3231
3232         pll = intel_crtc->pch_pll;
3233         if (pll) {
3234                 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3235                               intel_crtc->base.base.id, pll->pll_reg);
3236                 goto prepare;
3237         }
3238
3239         if (HAS_PCH_IBX(dev_priv->dev)) {
3240                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3241                 i = intel_crtc->pipe;
3242                 pll = &dev_priv->pch_plls[i];
3243
3244                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3245                               intel_crtc->base.base.id, pll->pll_reg);
3246
3247                 goto found;
3248         }
3249
3250         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3251                 pll = &dev_priv->pch_plls[i];
3252
3253                 /* Only want to check enabled timings first */
3254                 if (pll->refcount == 0)
3255                         continue;
3256
3257                 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3258                     fp == I915_READ(pll->fp0_reg)) {
3259                         DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3260                                       intel_crtc->base.base.id,
3261                                       pll->pll_reg, pll->refcount, pll->active);
3262
3263                         goto found;
3264                 }
3265         }
3266
3267         /* Ok no matching timings, maybe there's a free one? */
3268         for (i = 0; i < dev_priv->num_pch_pll; i++) {
3269                 pll = &dev_priv->pch_plls[i];
3270                 if (pll->refcount == 0) {
3271                         DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3272                                       intel_crtc->base.base.id, pll->pll_reg);
3273                         goto found;
3274                 }
3275         }
3276
3277         return NULL;
3278
3279 found:
3280         intel_crtc->pch_pll = pll;
3281         pll->refcount++;
3282         DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3283 prepare: /* separate function? */
3284         DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3285
3286         /* Wait for the clocks to stabilize before rewriting the regs */
3287         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3288         POSTING_READ(pll->pll_reg);
3289         udelay(150);
3290
3291         I915_WRITE(pll->fp0_reg, fp);
3292         I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3293         pll->on = false;
3294         return pll;
3295 }
3296
3297 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3298 {
3299         struct drm_i915_private *dev_priv = dev->dev_private;
3300         int dslreg = PIPEDSL(pipe);
3301         u32 temp;
3302
3303         temp = I915_READ(dslreg);
3304         udelay(500);
3305         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3306                 if (wait_for(I915_READ(dslreg) != temp, 5))
3307                         DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3308         }
3309 }
3310
3311 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3312 {
3313         struct drm_device *dev = crtc->dev;
3314         struct drm_i915_private *dev_priv = dev->dev_private;
3315         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3316         struct intel_encoder *encoder;
3317         int pipe = intel_crtc->pipe;
3318         int plane = intel_crtc->plane;
3319         u32 temp;
3320
3321         WARN_ON(!crtc->enabled);
3322
3323         if (intel_crtc->active)
3324                 return;
3325
3326         intel_crtc->active = true;
3327         intel_update_watermarks(dev);
3328
3329         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3330                 temp = I915_READ(PCH_LVDS);
3331                 if ((temp & LVDS_PORT_EN) == 0)
3332                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3333         }
3334
3335
3336         if (intel_crtc->config.has_pch_encoder) {
3337                 /* Note: FDI PLL enabling _must_ be done before we enable the
3338                  * cpu pipes, hence this is separate from all the other fdi/pch
3339                  * enabling. */
3340                 ironlake_fdi_pll_enable(intel_crtc);
3341         } else {
3342                 assert_fdi_tx_disabled(dev_priv, pipe);
3343                 assert_fdi_rx_disabled(dev_priv, pipe);
3344         }
3345
3346         for_each_encoder_on_crtc(dev, crtc, encoder)
3347                 if (encoder->pre_enable)
3348                         encoder->pre_enable(encoder);
3349
3350         /* Enable panel fitting for LVDS */
3351         if (dev_priv->pch_pf_size &&
3352             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3353              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3354                 /* Force use of hard-coded filter coefficients
3355                  * as some pre-programmed values are broken,
3356                  * e.g. x201.
3357                  */
3358                 if (IS_IVYBRIDGE(dev))
3359                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3360                                                  PF_PIPE_SEL_IVB(pipe));
3361                 else
3362                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3363                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3364                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3365         }
3366
3367         /*
3368          * On ILK+ LUT must be loaded before the pipe is running but with
3369          * clocks enabled
3370          */
3371         intel_crtc_load_lut(crtc);
3372
3373         intel_enable_pipe(dev_priv, pipe,
3374                           intel_crtc->config.has_pch_encoder);
3375         intel_enable_plane(dev_priv, plane, pipe);
3376
3377         if (intel_crtc->config.has_pch_encoder)
3378                 ironlake_pch_enable(crtc);
3379
3380         mutex_lock(&dev->struct_mutex);
3381         intel_update_fbc(dev);
3382         mutex_unlock(&dev->struct_mutex);
3383
3384         intel_crtc_update_cursor(crtc, true);
3385
3386         for_each_encoder_on_crtc(dev, crtc, encoder)
3387                 encoder->enable(encoder);
3388
3389         if (HAS_PCH_CPT(dev))
3390                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3391
3392         /*
3393          * There seems to be a race in PCH platform hw (at least on some
3394          * outputs) where an enabled pipe still completes any pageflip right
3395          * away (as if the pipe is off) instead of waiting for vblank. As soon
3396          * as the first vblank happend, everything works as expected. Hence just
3397          * wait for one vblank before returning to avoid strange things
3398          * happening.
3399          */
3400         intel_wait_for_vblank(dev, intel_crtc->pipe);
3401 }
3402
3403 static void haswell_crtc_enable(struct drm_crtc *crtc)
3404 {
3405         struct drm_device *dev = crtc->dev;
3406         struct drm_i915_private *dev_priv = dev->dev_private;
3407         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3408         struct intel_encoder *encoder;
3409         int pipe = intel_crtc->pipe;
3410         int plane = intel_crtc->plane;
3411
3412         WARN_ON(!crtc->enabled);
3413
3414         if (intel_crtc->active)
3415                 return;
3416
3417         intel_crtc->active = true;
3418         intel_update_watermarks(dev);
3419
3420         if (intel_crtc->config.has_pch_encoder)
3421                 dev_priv->display.fdi_link_train(crtc);
3422
3423         for_each_encoder_on_crtc(dev, crtc, encoder)
3424                 if (encoder->pre_enable)
3425                         encoder->pre_enable(encoder);
3426
3427         intel_ddi_enable_pipe_clock(intel_crtc);
3428
3429         /* Enable panel fitting for eDP */
3430         if (dev_priv->pch_pf_size &&
3431             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3432                 /* Force use of hard-coded filter coefficients
3433                  * as some pre-programmed values are broken,
3434                  * e.g. x201.
3435                  */
3436                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3437                                          PF_PIPE_SEL_IVB(pipe));
3438                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3439                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3440         }
3441
3442         /*
3443          * On ILK+ LUT must be loaded before the pipe is running but with
3444          * clocks enabled
3445          */
3446         intel_crtc_load_lut(crtc);
3447
3448         intel_ddi_set_pipe_settings(crtc);
3449         intel_ddi_enable_transcoder_func(crtc);
3450
3451         intel_enable_pipe(dev_priv, pipe,
3452                           intel_crtc->config.has_pch_encoder);
3453         intel_enable_plane(dev_priv, plane, pipe);
3454
3455         if (intel_crtc->config.has_pch_encoder)
3456                 lpt_pch_enable(crtc);
3457
3458         mutex_lock(&dev->struct_mutex);
3459         intel_update_fbc(dev);
3460         mutex_unlock(&dev->struct_mutex);
3461
3462         intel_crtc_update_cursor(crtc, true);
3463
3464         for_each_encoder_on_crtc(dev, crtc, encoder)
3465                 encoder->enable(encoder);
3466
3467         /*
3468          * There seems to be a race in PCH platform hw (at least on some
3469          * outputs) where an enabled pipe still completes any pageflip right
3470          * away (as if the pipe is off) instead of waiting for vblank. As soon
3471          * as the first vblank happend, everything works as expected. Hence just
3472          * wait for one vblank before returning to avoid strange things
3473          * happening.
3474          */
3475         intel_wait_for_vblank(dev, intel_crtc->pipe);
3476 }
3477
3478 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3479 {
3480         struct drm_device *dev = crtc->dev;
3481         struct drm_i915_private *dev_priv = dev->dev_private;
3482         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3483         struct intel_encoder *encoder;
3484         int pipe = intel_crtc->pipe;
3485         int plane = intel_crtc->plane;
3486         u32 reg, temp;
3487
3488
3489         if (!intel_crtc->active)
3490                 return;
3491
3492         for_each_encoder_on_crtc(dev, crtc, encoder)
3493                 encoder->disable(encoder);
3494
3495         intel_crtc_wait_for_pending_flips(crtc);
3496         drm_vblank_off(dev, pipe);
3497         intel_crtc_update_cursor(crtc, false);
3498
3499         intel_disable_plane(dev_priv, plane, pipe);
3500
3501         if (dev_priv->cfb_plane == plane)
3502                 intel_disable_fbc(dev);
3503
3504         intel_disable_pipe(dev_priv, pipe);
3505
3506         /* Disable PF */
3507         I915_WRITE(PF_CTL(pipe), 0);
3508         I915_WRITE(PF_WIN_SZ(pipe), 0);
3509
3510         for_each_encoder_on_crtc(dev, crtc, encoder)
3511                 if (encoder->post_disable)
3512                         encoder->post_disable(encoder);
3513
3514         ironlake_fdi_disable(crtc);
3515
3516         ironlake_disable_pch_transcoder(dev_priv, pipe);
3517
3518         if (HAS_PCH_CPT(dev)) {
3519                 /* disable TRANS_DP_CTL */
3520                 reg = TRANS_DP_CTL(pipe);
3521                 temp = I915_READ(reg);
3522                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3523                 temp |= TRANS_DP_PORT_SEL_NONE;
3524                 I915_WRITE(reg, temp);
3525
3526                 /* disable DPLL_SEL */
3527                 temp = I915_READ(PCH_DPLL_SEL);
3528                 switch (pipe) {
3529                 case 0:
3530                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3531                         break;
3532                 case 1:
3533                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3534                         break;
3535                 case 2:
3536                         /* C shares PLL A or B */
3537                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3538                         break;
3539                 default:
3540                         BUG(); /* wtf */
3541                 }
3542                 I915_WRITE(PCH_DPLL_SEL, temp);
3543         }
3544
3545         /* disable PCH DPLL */
3546         intel_disable_pch_pll(intel_crtc);
3547
3548         ironlake_fdi_pll_disable(intel_crtc);
3549
3550         intel_crtc->active = false;
3551         intel_update_watermarks(dev);
3552
3553         mutex_lock(&dev->struct_mutex);
3554         intel_update_fbc(dev);
3555         mutex_unlock(&dev->struct_mutex);
3556 }
3557
3558 static void haswell_crtc_disable(struct drm_crtc *crtc)
3559 {
3560         struct drm_device *dev = crtc->dev;
3561         struct drm_i915_private *dev_priv = dev->dev_private;
3562         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3563         struct intel_encoder *encoder;
3564         int pipe = intel_crtc->pipe;
3565         int plane = intel_crtc->plane;
3566         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3567         bool is_pch_port;
3568
3569         if (!intel_crtc->active)
3570                 return;
3571
3572         is_pch_port = haswell_crtc_driving_pch(crtc);
3573
3574         for_each_encoder_on_crtc(dev, crtc, encoder)
3575                 encoder->disable(encoder);
3576
3577         intel_crtc_wait_for_pending_flips(crtc);
3578         drm_vblank_off(dev, pipe);
3579         intel_crtc_update_cursor(crtc, false);
3580
3581         intel_disable_plane(dev_priv, plane, pipe);
3582
3583         if (dev_priv->cfb_plane == plane)
3584                 intel_disable_fbc(dev);
3585
3586         intel_disable_pipe(dev_priv, pipe);
3587
3588         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3589
3590         /* Disable PF */
3591         I915_WRITE(PF_CTL(pipe), 0);
3592         I915_WRITE(PF_WIN_SZ(pipe), 0);
3593
3594         intel_ddi_disable_pipe_clock(intel_crtc);
3595
3596         for_each_encoder_on_crtc(dev, crtc, encoder)
3597                 if (encoder->post_disable)
3598                         encoder->post_disable(encoder);
3599
3600         if (is_pch_port) {
3601                 lpt_disable_pch_transcoder(dev_priv);
3602                 intel_ddi_fdi_disable(crtc);
3603         }
3604
3605         intel_crtc->active = false;
3606         intel_update_watermarks(dev);
3607
3608         mutex_lock(&dev->struct_mutex);
3609         intel_update_fbc(dev);
3610         mutex_unlock(&dev->struct_mutex);
3611 }
3612
3613 static void ironlake_crtc_off(struct drm_crtc *crtc)
3614 {
3615         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3616         intel_put_pch_pll(intel_crtc);
3617 }
3618
3619 static void haswell_crtc_off(struct drm_crtc *crtc)
3620 {
3621         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3622
3623         /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3624          * start using it. */
3625         intel_crtc->cpu_transcoder = (enum transcoder) intel_crtc->pipe;
3626
3627         intel_ddi_put_crtc_pll(crtc);
3628 }
3629
3630 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3631 {
3632         if (!enable && intel_crtc->overlay) {
3633                 struct drm_device *dev = intel_crtc->base.dev;
3634                 struct drm_i915_private *dev_priv = dev->dev_private;
3635
3636                 mutex_lock(&dev->struct_mutex);
3637                 dev_priv->mm.interruptible = false;
3638                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3639                 dev_priv->mm.interruptible = true;
3640                 mutex_unlock(&dev->struct_mutex);
3641         }
3642
3643         /* Let userspace switch the overlay on again. In most cases userspace
3644          * has to recompute where to put it anyway.
3645          */
3646 }
3647
3648 /**
3649  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3650  * cursor plane briefly if not already running after enabling the display
3651  * plane.
3652  * This workaround avoids occasional blank screens when self refresh is
3653  * enabled.
3654  */
3655 static void
3656 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3657 {
3658         u32 cntl = I915_READ(CURCNTR(pipe));
3659
3660         if ((cntl & CURSOR_MODE) == 0) {
3661                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3662
3663                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3664                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3665                 intel_wait_for_vblank(dev_priv->dev, pipe);
3666                 I915_WRITE(CURCNTR(pipe), cntl);
3667                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3668                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3669         }
3670 }
3671
3672 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3673 {
3674         struct drm_device *dev = crtc->dev;
3675         struct drm_i915_private *dev_priv = dev->dev_private;
3676         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3677         struct intel_encoder *encoder;
3678         int pipe = intel_crtc->pipe;
3679         int plane = intel_crtc->plane;
3680
3681         WARN_ON(!crtc->enabled);
3682
3683         if (intel_crtc->active)
3684                 return;
3685
3686         intel_crtc->active = true;
3687         intel_update_watermarks(dev);
3688
3689         intel_enable_pll(dev_priv, pipe);
3690
3691         for_each_encoder_on_crtc(dev, crtc, encoder)
3692                 if (encoder->pre_enable)
3693                         encoder->pre_enable(encoder);
3694
3695         intel_enable_pipe(dev_priv, pipe, false);
3696         intel_enable_plane(dev_priv, plane, pipe);
3697         if (IS_G4X(dev))
3698                 g4x_fixup_plane(dev_priv, pipe);
3699
3700         intel_crtc_load_lut(crtc);
3701         intel_update_fbc(dev);
3702
3703         /* Give the overlay scaler a chance to enable if it's on this pipe */
3704         intel_crtc_dpms_overlay(intel_crtc, true);
3705         intel_crtc_update_cursor(crtc, true);
3706
3707         for_each_encoder_on_crtc(dev, crtc, encoder)
3708                 encoder->enable(encoder);
3709 }
3710
3711 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3712 {
3713         struct drm_device *dev = crtc->dev;
3714         struct drm_i915_private *dev_priv = dev->dev_private;
3715         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3716         struct intel_encoder *encoder;
3717         int pipe = intel_crtc->pipe;
3718         int plane = intel_crtc->plane;
3719         u32 pctl;
3720
3721
3722         if (!intel_crtc->active)
3723                 return;
3724
3725         for_each_encoder_on_crtc(dev, crtc, encoder)
3726                 encoder->disable(encoder);
3727
3728         /* Give the overlay scaler a chance to disable if it's on this pipe */
3729         intel_crtc_wait_for_pending_flips(crtc);
3730         drm_vblank_off(dev, pipe);
3731         intel_crtc_dpms_overlay(intel_crtc, false);
3732         intel_crtc_update_cursor(crtc, false);
3733
3734         if (dev_priv->cfb_plane == plane)
3735                 intel_disable_fbc(dev);
3736
3737         intel_disable_plane(dev_priv, plane, pipe);
3738         intel_disable_pipe(dev_priv, pipe);
3739
3740         /* Disable pannel fitter if it is on this pipe. */
3741         pctl = I915_READ(PFIT_CONTROL);
3742         if ((pctl & PFIT_ENABLE) &&
3743             ((pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT) == pipe)
3744                 I915_WRITE(PFIT_CONTROL, 0);
3745
3746         intel_disable_pll(dev_priv, pipe);
3747
3748         intel_crtc->active = false;
3749         intel_update_fbc(dev);
3750         intel_update_watermarks(dev);
3751 }
3752
3753 static void i9xx_crtc_off(struct drm_crtc *crtc)
3754 {
3755 }
3756
3757 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3758                                     bool enabled)
3759 {
3760         struct drm_device *dev = crtc->dev;
3761         struct drm_i915_master_private *master_priv;
3762         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3763         int pipe = intel_crtc->pipe;
3764
3765         if (!dev->primary->master)
3766                 return;
3767
3768         master_priv = dev->primary->master->driver_priv;
3769         if (!master_priv->sarea_priv)
3770                 return;
3771
3772         switch (pipe) {
3773         case 0:
3774                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3775                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3776                 break;
3777         case 1:
3778                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3779                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3780                 break;
3781         default:
3782                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3783                 break;
3784         }
3785 }
3786
3787 /**
3788  * Sets the power management mode of the pipe and plane.
3789  */
3790 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3791 {
3792         struct drm_device *dev = crtc->dev;
3793         struct drm_i915_private *dev_priv = dev->dev_private;
3794         struct intel_encoder *intel_encoder;
3795         bool enable = false;
3796
3797         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3798                 enable |= intel_encoder->connectors_active;
3799
3800         if (enable)
3801                 dev_priv->display.crtc_enable(crtc);
3802         else
3803                 dev_priv->display.crtc_disable(crtc);
3804
3805         intel_crtc_update_sarea(crtc, enable);
3806 }
3807
3808 static void intel_crtc_disable(struct drm_crtc *crtc)
3809 {
3810         struct drm_device *dev = crtc->dev;
3811         struct drm_connector *connector;
3812         struct drm_i915_private *dev_priv = dev->dev_private;
3813         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3814
3815         /* crtc should still be enabled when we disable it. */
3816         WARN_ON(!crtc->enabled);
3817
3818         intel_crtc->eld_vld = false;
3819         dev_priv->display.crtc_disable(crtc);
3820         intel_crtc_update_sarea(crtc, false);
3821         dev_priv->display.off(crtc);
3822
3823         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3824         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3825
3826         if (crtc->fb) {
3827                 mutex_lock(&dev->struct_mutex);
3828                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3829                 mutex_unlock(&dev->struct_mutex);
3830                 crtc->fb = NULL;
3831         }
3832
3833         /* Update computed state. */
3834         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3835                 if (!connector->encoder || !connector->encoder->crtc)
3836                         continue;
3837
3838                 if (connector->encoder->crtc != crtc)
3839                         continue;
3840
3841                 connector->dpms = DRM_MODE_DPMS_OFF;
3842                 to_intel_encoder(connector->encoder)->connectors_active = false;
3843         }
3844 }
3845
3846 void intel_modeset_disable(struct drm_device *dev)
3847 {
3848         struct drm_crtc *crtc;
3849
3850         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3851                 if (crtc->enabled)
3852                         intel_crtc_disable(crtc);
3853         }
3854 }
3855
3856 void intel_encoder_destroy(struct drm_encoder *encoder)
3857 {
3858         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3859
3860         drm_encoder_cleanup(encoder);
3861         kfree(intel_encoder);
3862 }
3863
3864 /* Simple dpms helper for encodres with just one connector, no cloning and only
3865  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3866  * state of the entire output pipe. */
3867 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3868 {
3869         if (mode == DRM_MODE_DPMS_ON) {
3870                 encoder->connectors_active = true;
3871
3872                 intel_crtc_update_dpms(encoder->base.crtc);
3873         } else {
3874                 encoder->connectors_active = false;
3875
3876                 intel_crtc_update_dpms(encoder->base.crtc);
3877         }
3878 }
3879
3880 /* Cross check the actual hw state with our own modeset state tracking (and it's
3881  * internal consistency). */
3882 static void intel_connector_check_state(struct intel_connector *connector)
3883 {
3884         if (connector->get_hw_state(connector)) {
3885                 struct intel_encoder *encoder = connector->encoder;
3886                 struct drm_crtc *crtc;
3887                 bool encoder_enabled;
3888                 enum pipe pipe;
3889
3890                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3891                               connector->base.base.id,
3892                               drm_get_connector_name(&connector->base));
3893
3894                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3895                      "wrong connector dpms state\n");
3896                 WARN(connector->base.encoder != &encoder->base,
3897                      "active connector not linked to encoder\n");
3898                 WARN(!encoder->connectors_active,
3899                      "encoder->connectors_active not set\n");
3900
3901                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3902                 WARN(!encoder_enabled, "encoder not enabled\n");
3903                 if (WARN_ON(!encoder->base.crtc))
3904                         return;
3905
3906                 crtc = encoder->base.crtc;
3907
3908                 WARN(!crtc->enabled, "crtc not enabled\n");
3909                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3910                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3911                      "encoder active on the wrong pipe\n");
3912         }
3913 }
3914
3915 /* Even simpler default implementation, if there's really no special case to
3916  * consider. */
3917 void intel_connector_dpms(struct drm_connector *connector, int mode)
3918 {
3919         struct intel_encoder *encoder = intel_attached_encoder(connector);
3920
3921         /* All the simple cases only support two dpms states. */
3922         if (mode != DRM_MODE_DPMS_ON)
3923                 mode = DRM_MODE_DPMS_OFF;
3924
3925         if (mode == connector->dpms)
3926                 return;
3927
3928         connector->dpms = mode;
3929
3930         /* Only need to change hw state when actually enabled */
3931         if (encoder->base.crtc)
3932                 intel_encoder_dpms(encoder, mode);
3933         else
3934                 WARN_ON(encoder->connectors_active != false);
3935
3936         intel_modeset_check_state(connector->dev);
3937 }
3938
3939 /* Simple connector->get_hw_state implementation for encoders that support only
3940  * one connector and no cloning and hence the encoder state determines the state
3941  * of the connector. */
3942 bool intel_connector_get_hw_state(struct intel_connector *connector)
3943 {
3944         enum pipe pipe = 0;
3945         struct intel_encoder *encoder = connector->encoder;
3946
3947         return encoder->get_hw_state(encoder, &pipe);
3948 }
3949
3950 static bool intel_crtc_compute_config(struct drm_crtc *crtc,
3951                                       struct intel_crtc_config *pipe_config)
3952 {
3953         struct drm_device *dev = crtc->dev;
3954         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
3955
3956         if (HAS_PCH_SPLIT(dev)) {
3957                 /* FDI link clock is fixed at 2.7G */
3958                 if (pipe_config->requested_mode.clock * 3
3959                     > IRONLAKE_FDI_FREQ * 4)
3960                         return false;
3961         }
3962
3963         /* All interlaced capable intel hw wants timings in frames. Note though
3964          * that intel_lvds_mode_fixup does some funny tricks with the crtc
3965          * timings, so we need to be careful not to clobber these.*/
3966         if (!pipe_config->timings_set)
3967                 drm_mode_set_crtcinfo(adjusted_mode, 0);
3968
3969         /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3970          * with a hsync front porch of 0.
3971          */
3972         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3973                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3974                 return false;
3975
3976         return true;
3977 }
3978
3979 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3980 {
3981         return 400000; /* FIXME */
3982 }
3983
3984 static int i945_get_display_clock_speed(struct drm_device *dev)
3985 {
3986         return 400000;
3987 }
3988
3989 static int i915_get_display_clock_speed(struct drm_device *dev)
3990 {
3991         return 333000;
3992 }
3993
3994 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3995 {
3996         return 200000;
3997 }
3998
3999 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4000 {
4001         u16 gcfgc = 0;
4002
4003         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4004
4005         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4006                 return 133000;
4007         else {
4008                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4009                 case GC_DISPLAY_CLOCK_333_MHZ:
4010                         return 333000;
4011                 default:
4012                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4013                         return 190000;
4014                 }
4015         }
4016 }
4017
4018 static int i865_get_display_clock_speed(struct drm_device *dev)
4019 {
4020         return 266000;
4021 }
4022
4023 static int i855_get_display_clock_speed(struct drm_device *dev)
4024 {
4025         u16 hpllcc = 0;
4026         /* Assume that the hardware is in the high speed state.  This
4027          * should be the default.
4028          */
4029         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4030         case GC_CLOCK_133_200:
4031         case GC_CLOCK_100_200:
4032                 return 200000;
4033         case GC_CLOCK_166_250:
4034                 return 250000;
4035         case GC_CLOCK_100_133:
4036                 return 133000;
4037         }
4038
4039         /* Shouldn't happen */
4040         return 0;
4041 }
4042
4043 static int i830_get_display_clock_speed(struct drm_device *dev)
4044 {
4045         return 133000;
4046 }
4047
4048 static void
4049 intel_reduce_ratio(uint32_t *num, uint32_t *den)
4050 {
4051         while (*num > 0xffffff || *den > 0xffffff) {
4052                 *num >>= 1;
4053                 *den >>= 1;
4054         }
4055 }
4056
4057 void
4058 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4059                        int pixel_clock, int link_clock,
4060                        struct intel_link_m_n *m_n)
4061 {
4062         m_n->tu = 64;
4063         m_n->gmch_m = bits_per_pixel * pixel_clock;
4064         m_n->gmch_n = link_clock * nlanes * 8;
4065         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4066         m_n->link_m = pixel_clock;
4067         m_n->link_n = link_clock;
4068         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
4069 }
4070
4071 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4072 {
4073         if (i915_panel_use_ssc >= 0)
4074                 return i915_panel_use_ssc != 0;
4075         return dev_priv->lvds_use_ssc
4076                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4077 }
4078
4079 static int vlv_get_refclk(struct drm_crtc *crtc)
4080 {
4081         struct drm_device *dev = crtc->dev;
4082         struct drm_i915_private *dev_priv = dev->dev_private;
4083         int refclk = 27000; /* for DP & HDMI */
4084
4085         return 100000; /* only one validated so far */
4086
4087         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4088                 refclk = 96000;
4089         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4090                 if (intel_panel_use_ssc(dev_priv))
4091                         refclk = 100000;
4092                 else
4093                         refclk = 96000;
4094         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4095                 refclk = 100000;
4096         }
4097
4098         return refclk;
4099 }
4100
4101 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4102 {
4103         struct drm_device *dev = crtc->dev;
4104         struct drm_i915_private *dev_priv = dev->dev_private;
4105         int refclk;
4106
4107         if (IS_VALLEYVIEW(dev)) {
4108                 refclk = vlv_get_refclk(crtc);
4109         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4110             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4111                 refclk = dev_priv->lvds_ssc_freq * 1000;
4112                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4113                               refclk / 1000);
4114         } else if (!IS_GEN2(dev)) {
4115                 refclk = 96000;
4116         } else {
4117                 refclk = 48000;
4118         }
4119
4120         return refclk;
4121 }
4122
4123 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4124                                       intel_clock_t *clock)
4125 {
4126         /* SDVO TV has fixed PLL values depend on its clock range,
4127            this mirrors vbios setting. */
4128         if (adjusted_mode->clock >= 100000
4129             && adjusted_mode->clock < 140500) {
4130                 clock->p1 = 2;
4131                 clock->p2 = 10;
4132                 clock->n = 3;
4133                 clock->m1 = 16;
4134                 clock->m2 = 8;
4135         } else if (adjusted_mode->clock >= 140500
4136                    && adjusted_mode->clock <= 200000) {
4137                 clock->p1 = 1;
4138                 clock->p2 = 10;
4139                 clock->n = 6;
4140                 clock->m1 = 12;
4141                 clock->m2 = 8;
4142         }
4143 }
4144
4145 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4146                                      intel_clock_t *clock,
4147                                      intel_clock_t *reduced_clock)
4148 {
4149         struct drm_device *dev = crtc->dev;
4150         struct drm_i915_private *dev_priv = dev->dev_private;
4151         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4152         int pipe = intel_crtc->pipe;
4153         u32 fp, fp2 = 0;
4154
4155         if (IS_PINEVIEW(dev)) {
4156                 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4157                 if (reduced_clock)
4158                         fp2 = (1 << reduced_clock->n) << 16 |
4159                                 reduced_clock->m1 << 8 | reduced_clock->m2;
4160         } else {
4161                 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4162                 if (reduced_clock)
4163                         fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4164                                 reduced_clock->m2;
4165         }
4166
4167         I915_WRITE(FP0(pipe), fp);
4168
4169         intel_crtc->lowfreq_avail = false;
4170         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4171             reduced_clock && i915_powersave) {
4172                 I915_WRITE(FP1(pipe), fp2);
4173                 intel_crtc->lowfreq_avail = true;
4174         } else {
4175                 I915_WRITE(FP1(pipe), fp);
4176         }
4177 }
4178
4179 static void vlv_update_pll(struct drm_crtc *crtc,
4180                            intel_clock_t *clock, intel_clock_t *reduced_clock,
4181                            int num_connectors)
4182 {
4183         struct drm_device *dev = crtc->dev;
4184         struct drm_i915_private *dev_priv = dev->dev_private;
4185         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4186         struct drm_display_mode *adjusted_mode =
4187                 &intel_crtc->config.adjusted_mode;
4188         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4189         int pipe = intel_crtc->pipe;
4190         u32 dpll, mdiv, pdiv;
4191         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4192         bool is_sdvo;
4193         u32 temp;
4194
4195         mutex_lock(&dev_priv->dpio_lock);
4196
4197         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4198                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4199
4200         dpll = DPLL_VGA_MODE_DIS;
4201         dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4202         dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4203         dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4204
4205         I915_WRITE(DPLL(pipe), dpll);
4206         POSTING_READ(DPLL(pipe));
4207
4208         bestn = clock->n;
4209         bestm1 = clock->m1;
4210         bestm2 = clock->m2;
4211         bestp1 = clock->p1;
4212         bestp2 = clock->p2;
4213
4214         /*
4215          * In Valleyview PLL and program lane counter registers are exposed
4216          * through DPIO interface
4217          */
4218         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4219         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4220         mdiv |= ((bestn << DPIO_N_SHIFT));
4221         mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4222         mdiv |= (1 << DPIO_K_SHIFT);
4223         mdiv |= DPIO_ENABLE_CALIBRATION;
4224         intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4225
4226         intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4227
4228         pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4229                 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4230                 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4231                 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4232         intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4233
4234         intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4235
4236         dpll |= DPLL_VCO_ENABLE;
4237         I915_WRITE(DPLL(pipe), dpll);
4238         POSTING_READ(DPLL(pipe));
4239         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4240                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4241
4242         intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4243
4244         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4245                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4246
4247         I915_WRITE(DPLL(pipe), dpll);
4248
4249         /* Wait for the clocks to stabilize. */
4250         POSTING_READ(DPLL(pipe));
4251         udelay(150);
4252
4253         temp = 0;
4254         if (is_sdvo) {
4255                 temp = 0;
4256                 if (intel_crtc->config.pixel_multiplier > 1) {
4257                         temp = (intel_crtc->config.pixel_multiplier - 1)
4258                                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4259                 }
4260         }
4261         I915_WRITE(DPLL_MD(pipe), temp);
4262         POSTING_READ(DPLL_MD(pipe));
4263
4264         /* Now program lane control registers */
4265         if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4266                         || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4267         {
4268                 temp = 0x1000C4;
4269                 if(pipe == 1)
4270                         temp |= (1 << 21);
4271                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4272         }
4273         if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4274         {
4275                 temp = 0x1000C4;
4276                 if(pipe == 1)
4277                         temp |= (1 << 21);
4278                 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4279         }
4280
4281         mutex_unlock(&dev_priv->dpio_lock);
4282 }
4283
4284 static void i9xx_update_pll(struct drm_crtc *crtc,
4285                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4286                             int num_connectors)
4287 {
4288         struct drm_device *dev = crtc->dev;
4289         struct drm_i915_private *dev_priv = dev->dev_private;
4290         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4291         struct drm_display_mode *adjusted_mode =
4292                 &intel_crtc->config.adjusted_mode;
4293         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4294         struct intel_encoder *encoder;
4295         int pipe = intel_crtc->pipe;
4296         u32 dpll;
4297         bool is_sdvo;
4298
4299         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4300
4301         is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4302                 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4303
4304         dpll = DPLL_VGA_MODE_DIS;
4305
4306         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4307                 dpll |= DPLLB_MODE_LVDS;
4308         else
4309                 dpll |= DPLLB_MODE_DAC_SERIAL;
4310
4311         if (is_sdvo) {
4312                 if ((intel_crtc->config.pixel_multiplier > 1) &&
4313                     (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
4314                         dpll |= (intel_crtc->config.pixel_multiplier - 1)
4315                                 << SDVO_MULTIPLIER_SHIFT_HIRES;
4316                 }
4317                 dpll |= DPLL_DVO_HIGH_SPEED;
4318         }
4319         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4320                 dpll |= DPLL_DVO_HIGH_SPEED;
4321
4322         /* compute bitmask from p1 value */
4323         if (IS_PINEVIEW(dev))
4324                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4325         else {
4326                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4327                 if (IS_G4X(dev) && reduced_clock)
4328                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4329         }
4330         switch (clock->p2) {
4331         case 5:
4332                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4333                 break;
4334         case 7:
4335                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4336                 break;
4337         case 10:
4338                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4339                 break;
4340         case 14:
4341                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4342                 break;
4343         }
4344         if (INTEL_INFO(dev)->gen >= 4)
4345                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4346
4347         if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4348                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4349         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4350                 /* XXX: just matching BIOS for now */
4351                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4352                 dpll |= 3;
4353         else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4354                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4355                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4356         else
4357                 dpll |= PLL_REF_INPUT_DREFCLK;
4358
4359         dpll |= DPLL_VCO_ENABLE;
4360         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4361         POSTING_READ(DPLL(pipe));
4362         udelay(150);
4363
4364         for_each_encoder_on_crtc(dev, crtc, encoder)
4365                 if (encoder->pre_pll_enable)
4366                         encoder->pre_pll_enable(encoder);
4367
4368         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4369                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4370
4371         I915_WRITE(DPLL(pipe), dpll);
4372
4373         /* Wait for the clocks to stabilize. */
4374         POSTING_READ(DPLL(pipe));
4375         udelay(150);
4376
4377         if (INTEL_INFO(dev)->gen >= 4) {
4378                 u32 temp = 0;
4379                 if (is_sdvo) {
4380                         temp = 0;
4381                         if (intel_crtc->config.pixel_multiplier > 1) {
4382                                 temp = (intel_crtc->config.pixel_multiplier - 1)
4383                                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4384                         }
4385                 }
4386                 I915_WRITE(DPLL_MD(pipe), temp);
4387         } else {
4388                 /* The pixel multiplier can only be updated once the
4389                  * DPLL is enabled and the clocks are stable.
4390                  *
4391                  * So write it again.
4392                  */
4393                 I915_WRITE(DPLL(pipe), dpll);
4394         }
4395 }
4396
4397 static void i8xx_update_pll(struct drm_crtc *crtc,
4398                             struct drm_display_mode *adjusted_mode,
4399                             intel_clock_t *clock, intel_clock_t *reduced_clock,
4400                             int num_connectors)
4401 {
4402         struct drm_device *dev = crtc->dev;
4403         struct drm_i915_private *dev_priv = dev->dev_private;
4404         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4405         struct intel_encoder *encoder;
4406         int pipe = intel_crtc->pipe;
4407         u32 dpll;
4408
4409         i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4410
4411         dpll = DPLL_VGA_MODE_DIS;
4412
4413         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4414                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4415         } else {
4416                 if (clock->p1 == 2)
4417                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4418                 else
4419                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4420                 if (clock->p2 == 4)
4421                         dpll |= PLL_P2_DIVIDE_BY_4;
4422         }
4423
4424         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4425                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4426                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4427         else
4428                 dpll |= PLL_REF_INPUT_DREFCLK;
4429
4430         dpll |= DPLL_VCO_ENABLE;
4431         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4432         POSTING_READ(DPLL(pipe));
4433         udelay(150);
4434
4435         for_each_encoder_on_crtc(dev, crtc, encoder)
4436                 if (encoder->pre_pll_enable)
4437                         encoder->pre_pll_enable(encoder);
4438
4439         I915_WRITE(DPLL(pipe), dpll);
4440
4441         /* Wait for the clocks to stabilize. */
4442         POSTING_READ(DPLL(pipe));
4443         udelay(150);
4444
4445         /* The pixel multiplier can only be updated once the
4446          * DPLL is enabled and the clocks are stable.
4447          *
4448          * So write it again.
4449          */
4450         I915_WRITE(DPLL(pipe), dpll);
4451 }
4452
4453 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4454                                    struct drm_display_mode *mode,
4455                                    struct drm_display_mode *adjusted_mode)
4456 {
4457         struct drm_device *dev = intel_crtc->base.dev;
4458         struct drm_i915_private *dev_priv = dev->dev_private;
4459         enum pipe pipe = intel_crtc->pipe;
4460         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4461         uint32_t vsyncshift;
4462
4463         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4464                 /* the chip adds 2 halflines automatically */
4465                 adjusted_mode->crtc_vtotal -= 1;
4466                 adjusted_mode->crtc_vblank_end -= 1;
4467                 vsyncshift = adjusted_mode->crtc_hsync_start
4468                              - adjusted_mode->crtc_htotal / 2;
4469         } else {
4470                 vsyncshift = 0;
4471         }
4472
4473         if (INTEL_INFO(dev)->gen > 3)
4474                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4475
4476         I915_WRITE(HTOTAL(cpu_transcoder),
4477                    (adjusted_mode->crtc_hdisplay - 1) |
4478                    ((adjusted_mode->crtc_htotal - 1) << 16));
4479         I915_WRITE(HBLANK(cpu_transcoder),
4480                    (adjusted_mode->crtc_hblank_start - 1) |
4481                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4482         I915_WRITE(HSYNC(cpu_transcoder),
4483                    (adjusted_mode->crtc_hsync_start - 1) |
4484                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4485
4486         I915_WRITE(VTOTAL(cpu_transcoder),
4487                    (adjusted_mode->crtc_vdisplay - 1) |
4488                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4489         I915_WRITE(VBLANK(cpu_transcoder),
4490                    (adjusted_mode->crtc_vblank_start - 1) |
4491                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4492         I915_WRITE(VSYNC(cpu_transcoder),
4493                    (adjusted_mode->crtc_vsync_start - 1) |
4494                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4495
4496         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4497          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4498          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4499          * bits. */
4500         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4501             (pipe == PIPE_B || pipe == PIPE_C))
4502                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4503
4504         /* pipesrc controls the size that is scaled from, which should
4505          * always be the user's requested size.
4506          */
4507         I915_WRITE(PIPESRC(pipe),
4508                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4509 }
4510
4511 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4512                               int x, int y,
4513                               struct drm_framebuffer *fb)
4514 {
4515         struct drm_device *dev = crtc->dev;
4516         struct drm_i915_private *dev_priv = dev->dev_private;
4517         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4518         struct drm_display_mode *adjusted_mode =
4519                 &intel_crtc->config.adjusted_mode;
4520         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4521         int pipe = intel_crtc->pipe;
4522         int plane = intel_crtc->plane;
4523         int refclk, num_connectors = 0;
4524         intel_clock_t clock, reduced_clock;
4525         u32 dspcntr, pipeconf;
4526         bool ok, has_reduced_clock = false, is_sdvo = false;
4527         bool is_lvds = false, is_tv = false, is_dp = false;
4528         struct intel_encoder *encoder;
4529         const intel_limit_t *limit;
4530         int ret;
4531
4532         for_each_encoder_on_crtc(dev, crtc, encoder) {
4533                 switch (encoder->type) {
4534                 case INTEL_OUTPUT_LVDS:
4535                         is_lvds = true;
4536                         break;
4537                 case INTEL_OUTPUT_SDVO:
4538                 case INTEL_OUTPUT_HDMI:
4539                         is_sdvo = true;
4540                         if (encoder->needs_tv_clock)
4541                                 is_tv = true;
4542                         break;
4543                 case INTEL_OUTPUT_TVOUT:
4544                         is_tv = true;
4545                         break;
4546                 case INTEL_OUTPUT_DISPLAYPORT:
4547                         is_dp = true;
4548                         break;
4549                 }
4550
4551                 num_connectors++;
4552         }
4553
4554         refclk = i9xx_get_refclk(crtc, num_connectors);
4555
4556         /*
4557          * Returns a set of divisors for the desired target clock with the given
4558          * refclk, or FALSE.  The returned values represent the clock equation:
4559          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4560          */
4561         limit = intel_limit(crtc, refclk);
4562         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4563                              &clock);
4564         if (!ok) {
4565                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4566                 return -EINVAL;
4567         }
4568
4569         /* Ensure that the cursor is valid for the new mode before changing... */
4570         intel_crtc_update_cursor(crtc, true);
4571
4572         if (is_lvds && dev_priv->lvds_downclock_avail) {
4573                 /*
4574                  * Ensure we match the reduced clock's P to the target clock.
4575                  * If the clocks don't match, we can't switch the display clock
4576                  * by using the FP0/FP1. In such case we will disable the LVDS
4577                  * downclock feature.
4578                 */
4579                 has_reduced_clock = limit->find_pll(limit, crtc,
4580                                                     dev_priv->lvds_downclock,
4581                                                     refclk,
4582                                                     &clock,
4583                                                     &reduced_clock);
4584         }
4585
4586         if (is_sdvo && is_tv)
4587                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4588
4589         if (IS_GEN2(dev))
4590                 i8xx_update_pll(crtc, adjusted_mode, &clock,
4591                                 has_reduced_clock ? &reduced_clock : NULL,
4592                                 num_connectors);
4593         else if (IS_VALLEYVIEW(dev))
4594                 vlv_update_pll(crtc, &clock,
4595                                 has_reduced_clock ? &reduced_clock : NULL,
4596                                 num_connectors);
4597         else
4598                 i9xx_update_pll(crtc, &clock,
4599                                 has_reduced_clock ? &reduced_clock : NULL,
4600                                 num_connectors);
4601
4602         /* setup pipeconf */
4603         pipeconf = I915_READ(PIPECONF(pipe));
4604
4605         /* Set up the display plane register */
4606         dspcntr = DISPPLANE_GAMMA_ENABLE;
4607
4608         if (!IS_VALLEYVIEW(dev)) {
4609                 if (pipe == 0)
4610                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4611                 else
4612                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4613         }
4614
4615         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4616                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4617                  * core speed.
4618                  *
4619                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4620                  * pipe == 0 check?
4621                  */
4622                 if (mode->clock >
4623                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4624                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4625                 else
4626                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4627         }
4628
4629         /* default to 8bpc */
4630         pipeconf &= ~(PIPECONF_BPC_MASK | PIPECONF_DITHER_EN);
4631         if (is_dp) {
4632                 if (intel_crtc->config.dither) {
4633                         pipeconf |= PIPECONF_6BPC |
4634                                     PIPECONF_DITHER_EN |
4635                                     PIPECONF_DITHER_TYPE_SP;
4636                 }
4637         }
4638
4639         if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4640                 if (intel_crtc->config.dither) {
4641                         pipeconf |= PIPECONF_6BPC |
4642                                         PIPECONF_ENABLE |
4643                                         I965_PIPECONF_ACTIVE;
4644                 }
4645         }
4646
4647         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4648         drm_mode_debug_printmodeline(mode);
4649
4650         if (HAS_PIPE_CXSR(dev)) {
4651                 if (intel_crtc->lowfreq_avail) {
4652                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4653                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4654                 } else {
4655                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4656                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4657                 }
4658         }
4659
4660         pipeconf &= ~PIPECONF_INTERLACE_MASK;
4661         if (!IS_GEN2(dev) &&
4662             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4663                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4664         else
4665                 pipeconf |= PIPECONF_PROGRESSIVE;
4666
4667         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4668
4669         /* pipesrc and dspsize control the size that is scaled from,
4670          * which should always be the user's requested size.
4671          */
4672         I915_WRITE(DSPSIZE(plane),
4673                    ((mode->vdisplay - 1) << 16) |
4674                    (mode->hdisplay - 1));
4675         I915_WRITE(DSPPOS(plane), 0);
4676
4677         I915_WRITE(PIPECONF(pipe), pipeconf);
4678         POSTING_READ(PIPECONF(pipe));
4679         intel_enable_pipe(dev_priv, pipe, false);
4680
4681         intel_wait_for_vblank(dev, pipe);
4682
4683         I915_WRITE(DSPCNTR(plane), dspcntr);
4684         POSTING_READ(DSPCNTR(plane));
4685
4686         ret = intel_pipe_set_base(crtc, x, y, fb);
4687
4688         intel_update_watermarks(dev);
4689
4690         return ret;
4691 }
4692
4693 static void ironlake_init_pch_refclk(struct drm_device *dev)
4694 {
4695         struct drm_i915_private *dev_priv = dev->dev_private;
4696         struct drm_mode_config *mode_config = &dev->mode_config;
4697         struct intel_encoder *encoder;
4698         u32 temp;
4699         bool has_lvds = false;
4700         bool has_cpu_edp = false;
4701         bool has_pch_edp = false;
4702         bool has_panel = false;
4703         bool has_ck505 = false;
4704         bool can_ssc = false;
4705
4706         /* We need to take the global config into account */
4707         list_for_each_entry(encoder, &mode_config->encoder_list,
4708                             base.head) {
4709                 switch (encoder->type) {
4710                 case INTEL_OUTPUT_LVDS:
4711                         has_panel = true;
4712                         has_lvds = true;
4713                         break;
4714                 case INTEL_OUTPUT_EDP:
4715                         has_panel = true;
4716                         if (intel_encoder_is_pch_edp(&encoder->base))
4717                                 has_pch_edp = true;
4718                         else
4719                                 has_cpu_edp = true;
4720                         break;
4721                 }
4722         }
4723
4724         if (HAS_PCH_IBX(dev)) {
4725                 has_ck505 = dev_priv->display_clock_mode;
4726                 can_ssc = has_ck505;
4727         } else {
4728                 has_ck505 = false;
4729                 can_ssc = true;
4730         }
4731
4732         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4733                       has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4734                       has_ck505);
4735
4736         /* Ironlake: try to setup display ref clock before DPLL
4737          * enabling. This is only under driver's control after
4738          * PCH B stepping, previous chipset stepping should be
4739          * ignoring this setting.
4740          */
4741         temp = I915_READ(PCH_DREF_CONTROL);
4742         /* Always enable nonspread source */
4743         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4744
4745         if (has_ck505)
4746                 temp |= DREF_NONSPREAD_CK505_ENABLE;
4747         else
4748                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4749
4750         if (has_panel) {
4751                 temp &= ~DREF_SSC_SOURCE_MASK;
4752                 temp |= DREF_SSC_SOURCE_ENABLE;
4753
4754                 /* SSC must be turned on before enabling the CPU output  */
4755                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4756                         DRM_DEBUG_KMS("Using SSC on panel\n");
4757                         temp |= DREF_SSC1_ENABLE;
4758                 } else
4759                         temp &= ~DREF_SSC1_ENABLE;
4760
4761                 /* Get SSC going before enabling the outputs */
4762                 I915_WRITE(PCH_DREF_CONTROL, temp);
4763                 POSTING_READ(PCH_DREF_CONTROL);
4764                 udelay(200);
4765
4766                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4767
4768                 /* Enable CPU source on CPU attached eDP */
4769                 if (has_cpu_edp) {
4770                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4771                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
4772                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4773                         }
4774                         else
4775                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4776                 } else
4777                         temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4778
4779                 I915_WRITE(PCH_DREF_CONTROL, temp);
4780                 POSTING_READ(PCH_DREF_CONTROL);
4781                 udelay(200);
4782         } else {
4783                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4784
4785                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4786
4787                 /* Turn off CPU output */
4788                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4789
4790                 I915_WRITE(PCH_DREF_CONTROL, temp);
4791                 POSTING_READ(PCH_DREF_CONTROL);
4792                 udelay(200);
4793
4794                 /* Turn off the SSC source */
4795                 temp &= ~DREF_SSC_SOURCE_MASK;
4796                 temp |= DREF_SSC_SOURCE_DISABLE;
4797
4798                 /* Turn off SSC1 */
4799                 temp &= ~ DREF_SSC1_ENABLE;
4800
4801                 I915_WRITE(PCH_DREF_CONTROL, temp);
4802                 POSTING_READ(PCH_DREF_CONTROL);
4803                 udelay(200);
4804         }
4805 }
4806
4807 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
4808 static void lpt_init_pch_refclk(struct drm_device *dev)
4809 {
4810         struct drm_i915_private *dev_priv = dev->dev_private;
4811         struct drm_mode_config *mode_config = &dev->mode_config;
4812         struct intel_encoder *encoder;
4813         bool has_vga = false;
4814         bool is_sdv = false;
4815         u32 tmp;
4816
4817         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4818                 switch (encoder->type) {
4819                 case INTEL_OUTPUT_ANALOG:
4820                         has_vga = true;
4821                         break;
4822                 }
4823         }
4824
4825         if (!has_vga)
4826                 return;
4827
4828         mutex_lock(&dev_priv->dpio_lock);
4829
4830         /* XXX: Rip out SDV support once Haswell ships for real. */
4831         if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
4832                 is_sdv = true;
4833
4834         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4835         tmp &= ~SBI_SSCCTL_DISABLE;
4836         tmp |= SBI_SSCCTL_PATHALT;
4837         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4838
4839         udelay(24);
4840
4841         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
4842         tmp &= ~SBI_SSCCTL_PATHALT;
4843         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
4844
4845         if (!is_sdv) {
4846                 tmp = I915_READ(SOUTH_CHICKEN2);
4847                 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
4848                 I915_WRITE(SOUTH_CHICKEN2, tmp);
4849
4850                 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
4851                                        FDI_MPHY_IOSFSB_RESET_STATUS, 100))
4852                         DRM_ERROR("FDI mPHY reset assert timeout\n");
4853
4854                 tmp = I915_READ(SOUTH_CHICKEN2);
4855                 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
4856                 I915_WRITE(SOUTH_CHICKEN2, tmp);
4857
4858                 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
4859                                         FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
4860                                        100))
4861                         DRM_ERROR("FDI mPHY reset de-assert timeout\n");
4862         }
4863
4864         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
4865         tmp &= ~(0xFF << 24);
4866         tmp |= (0x12 << 24);
4867         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
4868
4869         if (!is_sdv) {
4870                 tmp = intel_sbi_read(dev_priv, 0x808C, SBI_MPHY);
4871                 tmp &= ~(0x3 << 6);
4872                 tmp |= (1 << 6) | (1 << 0);
4873                 intel_sbi_write(dev_priv, 0x808C, tmp, SBI_MPHY);
4874         }
4875
4876         if (is_sdv) {
4877                 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
4878                 tmp |= 0x7FFF;
4879                 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
4880         }
4881
4882         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
4883         tmp |= (1 << 11);
4884         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
4885
4886         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
4887         tmp |= (1 << 11);
4888         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
4889
4890         if (is_sdv) {
4891                 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
4892                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
4893                 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
4894
4895                 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
4896                 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
4897                 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
4898
4899                 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
4900                 tmp |= (0x3F << 8);
4901                 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
4902
4903                 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
4904                 tmp |= (0x3F << 8);
4905                 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
4906         }
4907
4908         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
4909         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
4910         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
4911
4912         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
4913         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
4914         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
4915
4916         if (!is_sdv) {
4917                 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
4918                 tmp &= ~(7 << 13);
4919                 tmp |= (5 << 13);
4920                 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
4921
4922                 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
4923                 tmp &= ~(7 << 13);
4924                 tmp |= (5 << 13);
4925                 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
4926         }
4927
4928         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
4929         tmp &= ~0xFF;
4930         tmp |= 0x1C;
4931         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
4932
4933         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
4934         tmp &= ~0xFF;
4935         tmp |= 0x1C;
4936         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
4937
4938         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
4939         tmp &= ~(0xFF << 16);
4940         tmp |= (0x1C << 16);
4941         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
4942
4943         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
4944         tmp &= ~(0xFF << 16);
4945         tmp |= (0x1C << 16);
4946         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
4947
4948         if (!is_sdv) {
4949                 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
4950                 tmp |= (1 << 27);
4951                 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
4952
4953                 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
4954                 tmp |= (1 << 27);
4955                 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
4956
4957                 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
4958                 tmp &= ~(0xF << 28);
4959                 tmp |= (4 << 28);
4960                 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
4961
4962                 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
4963                 tmp &= ~(0xF << 28);
4964                 tmp |= (4 << 28);
4965                 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
4966         }
4967
4968         /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
4969         tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
4970         tmp |= SBI_DBUFF0_ENABLE;
4971         intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
4972
4973         mutex_unlock(&dev_priv->dpio_lock);
4974 }
4975
4976 /*
4977  * Initialize reference clocks when the driver loads
4978  */
4979 void intel_init_pch_refclk(struct drm_device *dev)
4980 {
4981         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4982                 ironlake_init_pch_refclk(dev);
4983         else if (HAS_PCH_LPT(dev))
4984                 lpt_init_pch_refclk(dev);
4985 }
4986
4987 static int ironlake_get_refclk(struct drm_crtc *crtc)
4988 {
4989         struct drm_device *dev = crtc->dev;
4990         struct drm_i915_private *dev_priv = dev->dev_private;
4991         struct intel_encoder *encoder;
4992         struct intel_encoder *edp_encoder = NULL;
4993         int num_connectors = 0;
4994         bool is_lvds = false;
4995
4996         for_each_encoder_on_crtc(dev, crtc, encoder) {
4997                 switch (encoder->type) {
4998                 case INTEL_OUTPUT_LVDS:
4999                         is_lvds = true;
5000                         break;
5001                 case INTEL_OUTPUT_EDP:
5002                         edp_encoder = encoder;
5003                         break;
5004                 }
5005                 num_connectors++;
5006         }
5007
5008         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5009                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5010                               dev_priv->lvds_ssc_freq);
5011                 return dev_priv->lvds_ssc_freq * 1000;
5012         }
5013
5014         return 120000;
5015 }
5016
5017 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5018                                   struct drm_display_mode *adjusted_mode,
5019                                   bool dither)
5020 {
5021         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5022         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5023         int pipe = intel_crtc->pipe;
5024         uint32_t val;
5025
5026         val = I915_READ(PIPECONF(pipe));
5027
5028         val &= ~PIPECONF_BPC_MASK;
5029         switch (intel_crtc->config.pipe_bpp) {
5030         case 18:
5031                 val |= PIPECONF_6BPC;
5032                 break;
5033         case 24:
5034                 val |= PIPECONF_8BPC;
5035                 break;
5036         case 30:
5037                 val |= PIPECONF_10BPC;
5038                 break;
5039         case 36:
5040                 val |= PIPECONF_12BPC;
5041                 break;
5042         default:
5043                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5044                 BUG();
5045         }
5046
5047         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5048         if (dither)
5049                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5050
5051         val &= ~PIPECONF_INTERLACE_MASK;
5052         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5053                 val |= PIPECONF_INTERLACED_ILK;
5054         else
5055                 val |= PIPECONF_PROGRESSIVE;
5056
5057         if (intel_crtc->config.limited_color_range)
5058                 val |= PIPECONF_COLOR_RANGE_SELECT;
5059         else
5060                 val &= ~PIPECONF_COLOR_RANGE_SELECT;
5061
5062         I915_WRITE(PIPECONF(pipe), val);
5063         POSTING_READ(PIPECONF(pipe));
5064 }
5065
5066 /*
5067  * Set up the pipe CSC unit.
5068  *
5069  * Currently only full range RGB to limited range RGB conversion
5070  * is supported, but eventually this should handle various
5071  * RGB<->YCbCr scenarios as well.
5072  */
5073 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5074 {
5075         struct drm_device *dev = crtc->dev;
5076         struct drm_i915_private *dev_priv = dev->dev_private;
5077         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5078         int pipe = intel_crtc->pipe;
5079         uint16_t coeff = 0x7800; /* 1.0 */
5080
5081         /*
5082          * TODO: Check what kind of values actually come out of the pipe
5083          * with these coeff/postoff values and adjust to get the best
5084          * accuracy. Perhaps we even need to take the bpc value into
5085          * consideration.
5086          */
5087
5088         if (intel_crtc->config.limited_color_range)
5089                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5090
5091         /*
5092          * GY/GU and RY/RU should be the other way around according
5093          * to BSpec, but reality doesn't agree. Just set them up in
5094          * a way that results in the correct picture.
5095          */
5096         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5097         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5098
5099         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5100         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5101
5102         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5103         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5104
5105         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5106         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5107         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5108
5109         if (INTEL_INFO(dev)->gen > 6) {
5110                 uint16_t postoff = 0;
5111
5112                 if (intel_crtc->config.limited_color_range)
5113                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5114
5115                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5116                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5117                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5118
5119                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5120         } else {
5121                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5122
5123                 if (intel_crtc->config.limited_color_range)
5124                         mode |= CSC_BLACK_SCREEN_OFFSET;
5125
5126                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5127         }
5128 }
5129
5130 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5131                                  struct drm_display_mode *adjusted_mode,
5132                                  bool dither)
5133 {
5134         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5135         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5136         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5137         uint32_t val;
5138
5139         val = I915_READ(PIPECONF(cpu_transcoder));
5140
5141         val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5142         if (dither)
5143                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5144
5145         val &= ~PIPECONF_INTERLACE_MASK_HSW;
5146         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5147                 val |= PIPECONF_INTERLACED_ILK;
5148         else
5149                 val |= PIPECONF_PROGRESSIVE;
5150
5151         I915_WRITE(PIPECONF(cpu_transcoder), val);
5152         POSTING_READ(PIPECONF(cpu_transcoder));
5153 }
5154
5155 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5156                                     struct drm_display_mode *adjusted_mode,
5157                                     intel_clock_t *clock,
5158                                     bool *has_reduced_clock,
5159                                     intel_clock_t *reduced_clock)
5160 {
5161         struct drm_device *dev = crtc->dev;
5162         struct drm_i915_private *dev_priv = dev->dev_private;
5163         struct intel_encoder *intel_encoder;
5164         int refclk;
5165         const intel_limit_t *limit;
5166         bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5167
5168         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5169                 switch (intel_encoder->type) {
5170                 case INTEL_OUTPUT_LVDS:
5171                         is_lvds = true;
5172                         break;
5173                 case INTEL_OUTPUT_SDVO:
5174                 case INTEL_OUTPUT_HDMI:
5175                         is_sdvo = true;
5176                         if (intel_encoder->needs_tv_clock)
5177                                 is_tv = true;
5178                         break;
5179                 case INTEL_OUTPUT_TVOUT:
5180                         is_tv = true;
5181                         break;
5182                 }
5183         }
5184
5185         refclk = ironlake_get_refclk(crtc);
5186
5187         /*
5188          * Returns a set of divisors for the desired target clock with the given
5189          * refclk, or FALSE.  The returned values represent the clock equation:
5190          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5191          */
5192         limit = intel_limit(crtc, refclk);
5193         ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5194                               clock);
5195         if (!ret)
5196                 return false;
5197
5198         if (is_lvds && dev_priv->lvds_downclock_avail) {
5199                 /*
5200                  * Ensure we match the reduced clock's P to the target clock.
5201                  * If the clocks don't match, we can't switch the display clock
5202                  * by using the FP0/FP1. In such case we will disable the LVDS
5203                  * downclock feature.
5204                 */
5205                 *has_reduced_clock = limit->find_pll(limit, crtc,
5206                                                      dev_priv->lvds_downclock,
5207                                                      refclk,
5208                                                      clock,
5209                                                      reduced_clock);
5210         }
5211
5212         if (is_sdvo && is_tv)
5213                 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5214
5215         return true;
5216 }
5217
5218 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5219 {
5220         struct drm_i915_private *dev_priv = dev->dev_private;
5221         uint32_t temp;
5222
5223         temp = I915_READ(SOUTH_CHICKEN1);
5224         if (temp & FDI_BC_BIFURCATION_SELECT)
5225                 return;
5226
5227         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5228         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5229
5230         temp |= FDI_BC_BIFURCATION_SELECT;
5231         DRM_DEBUG_KMS("enabling fdi C rx\n");
5232         I915_WRITE(SOUTH_CHICKEN1, temp);
5233         POSTING_READ(SOUTH_CHICKEN1);
5234 }
5235
5236 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5237 {
5238         struct drm_device *dev = intel_crtc->base.dev;
5239         struct drm_i915_private *dev_priv = dev->dev_private;
5240         struct intel_crtc *pipe_B_crtc =
5241                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5242
5243         DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5244                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5245         if (intel_crtc->fdi_lanes > 4) {
5246                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5247                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5248                 /* Clamp lanes to avoid programming the hw with bogus values. */
5249                 intel_crtc->fdi_lanes = 4;
5250
5251                 return false;
5252         }
5253
5254         if (INTEL_INFO(dev)->num_pipes == 2)
5255                 return true;
5256
5257         switch (intel_crtc->pipe) {
5258         case PIPE_A:
5259                 return true;
5260         case PIPE_B:
5261                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5262                     intel_crtc->fdi_lanes > 2) {
5263                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5264                                       intel_crtc->pipe, intel_crtc->fdi_lanes);
5265                         /* Clamp lanes to avoid programming the hw with bogus values. */
5266                         intel_crtc->fdi_lanes = 2;
5267
5268                         return false;
5269                 }
5270
5271                 if (intel_crtc->fdi_lanes > 2)
5272                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5273                 else
5274                         cpt_enable_fdi_bc_bifurcation(dev);
5275
5276                 return true;
5277         case PIPE_C:
5278                 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5279                         if (intel_crtc->fdi_lanes > 2) {
5280                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5281                                               intel_crtc->pipe, intel_crtc->fdi_lanes);
5282                                 /* Clamp lanes to avoid programming the hw with bogus values. */
5283                                 intel_crtc->fdi_lanes = 2;
5284
5285                                 return false;
5286                         }
5287                 } else {
5288                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5289                         return false;
5290                 }
5291
5292                 cpt_enable_fdi_bc_bifurcation(dev);
5293
5294                 return true;
5295         default:
5296                 BUG();
5297         }
5298 }
5299
5300 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5301 {
5302         /*
5303          * Account for spread spectrum to avoid
5304          * oversubscribing the link. Max center spread
5305          * is 2.5%; use 5% for safety's sake.
5306          */
5307         u32 bps = target_clock * bpp * 21 / 20;
5308         return bps / (link_bw * 8) + 1;
5309 }
5310
5311 static void ironlake_set_m_n(struct drm_crtc *crtc)
5312 {
5313         struct drm_device *dev = crtc->dev;
5314         struct drm_i915_private *dev_priv = dev->dev_private;
5315         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5316         struct drm_display_mode *adjusted_mode =
5317                 &intel_crtc->config.adjusted_mode;
5318         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5319         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5320         struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5321         struct intel_link_m_n m_n = {0};
5322         int target_clock, lane, link_bw;
5323         bool is_dp = false, is_cpu_edp = false;
5324
5325         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5326                 switch (intel_encoder->type) {
5327                 case INTEL_OUTPUT_DISPLAYPORT:
5328                         is_dp = true;
5329                         break;
5330                 case INTEL_OUTPUT_EDP:
5331                         is_dp = true;
5332                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5333                                 is_cpu_edp = true;
5334                         edp_encoder = intel_encoder;
5335                         break;
5336                 }
5337         }
5338
5339         /* FDI link */
5340         lane = 0;
5341         /* CPU eDP doesn't require FDI link, so just set DP M/N
5342            according to current link config */
5343         if (is_cpu_edp) {
5344                 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5345         } else {
5346                 /* FDI is a binary signal running at ~2.7GHz, encoding
5347                  * each output octet as 10 bits. The actual frequency
5348                  * is stored as a divider into a 100MHz clock, and the
5349                  * mode pixel clock is stored in units of 1KHz.
5350                  * Hence the bw of each lane in terms of the mode signal
5351                  * is:
5352                  */
5353                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5354         }
5355
5356         /* [e]DP over FDI requires target mode clock instead of link clock. */
5357         if (edp_encoder)
5358                 target_clock = intel_edp_target_clock(edp_encoder, mode);
5359         else if (is_dp)
5360                 target_clock = mode->clock;
5361         else
5362                 target_clock = adjusted_mode->clock;
5363
5364         if (!lane)
5365                 lane = ironlake_get_lanes_required(target_clock, link_bw,
5366                                                    intel_crtc->config.pipe_bpp);
5367
5368         intel_crtc->fdi_lanes = lane;
5369
5370         if (intel_crtc->config.pixel_multiplier > 1)
5371                 link_bw *= intel_crtc->config.pixel_multiplier;
5372         intel_link_compute_m_n(intel_crtc->config.pipe_bpp, lane, target_clock,
5373                                link_bw, &m_n);
5374
5375         I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5376         I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5377         I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5378         I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5379 }
5380
5381 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5382                                       intel_clock_t *clock, u32 fp)
5383 {
5384         struct drm_crtc *crtc = &intel_crtc->base;
5385         struct drm_device *dev = crtc->dev;
5386         struct drm_i915_private *dev_priv = dev->dev_private;
5387         struct intel_encoder *intel_encoder;
5388         uint32_t dpll;
5389         int factor, num_connectors = 0;
5390         bool is_lvds = false, is_sdvo = false, is_tv = false;
5391         bool is_dp = false, is_cpu_edp = false;
5392
5393         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5394                 switch (intel_encoder->type) {
5395                 case INTEL_OUTPUT_LVDS:
5396                         is_lvds = true;
5397                         break;
5398                 case INTEL_OUTPUT_SDVO:
5399                 case INTEL_OUTPUT_HDMI:
5400                         is_sdvo = true;
5401                         if (intel_encoder->needs_tv_clock)
5402                                 is_tv = true;
5403                         break;
5404                 case INTEL_OUTPUT_TVOUT:
5405                         is_tv = true;
5406                         break;
5407                 case INTEL_OUTPUT_DISPLAYPORT:
5408                         is_dp = true;
5409                         break;
5410                 case INTEL_OUTPUT_EDP:
5411                         is_dp = true;
5412                         if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5413                                 is_cpu_edp = true;
5414                         break;
5415                 }
5416
5417                 num_connectors++;
5418         }
5419
5420         /* Enable autotuning of the PLL clock (if permissible) */
5421         factor = 21;
5422         if (is_lvds) {
5423                 if ((intel_panel_use_ssc(dev_priv) &&
5424                      dev_priv->lvds_ssc_freq == 100) ||
5425                     intel_is_dual_link_lvds(dev))
5426                         factor = 25;
5427         } else if (is_sdvo && is_tv)
5428                 factor = 20;
5429
5430         if (clock->m < factor * clock->n)
5431                 fp |= FP_CB_TUNE;
5432
5433         dpll = 0;
5434
5435         if (is_lvds)
5436                 dpll |= DPLLB_MODE_LVDS;
5437         else
5438                 dpll |= DPLLB_MODE_DAC_SERIAL;
5439         if (is_sdvo) {
5440                 if (intel_crtc->config.pixel_multiplier > 1) {
5441                         dpll |= (intel_crtc->config.pixel_multiplier - 1)
5442                                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5443                 }
5444                 dpll |= DPLL_DVO_HIGH_SPEED;
5445         }
5446         if (is_dp && !is_cpu_edp)
5447                 dpll |= DPLL_DVO_HIGH_SPEED;
5448
5449         /* compute bitmask from p1 value */
5450         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5451         /* also FPA1 */
5452         dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5453
5454         switch (clock->p2) {
5455         case 5:
5456                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5457                 break;
5458         case 7:
5459                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5460                 break;
5461         case 10:
5462                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5463                 break;
5464         case 14:
5465                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5466                 break;
5467         }
5468
5469         if (is_sdvo && is_tv)
5470                 dpll |= PLL_REF_INPUT_TVCLKINBC;
5471         else if (is_tv)
5472                 /* XXX: just matching BIOS for now */
5473                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
5474                 dpll |= 3;
5475         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5476                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5477         else
5478                 dpll |= PLL_REF_INPUT_DREFCLK;
5479
5480         return dpll;
5481 }
5482
5483 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5484                                   int x, int y,
5485                                   struct drm_framebuffer *fb)
5486 {
5487         struct drm_device *dev = crtc->dev;
5488         struct drm_i915_private *dev_priv = dev->dev_private;
5489         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5490         struct drm_display_mode *adjusted_mode =
5491                 &intel_crtc->config.adjusted_mode;
5492         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5493         int pipe = intel_crtc->pipe;
5494         int plane = intel_crtc->plane;
5495         int num_connectors = 0;
5496         intel_clock_t clock, reduced_clock;
5497         u32 dpll, fp = 0, fp2 = 0;
5498         bool ok, has_reduced_clock = false;
5499         bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5500         struct intel_encoder *encoder;
5501         int ret;
5502         bool dither, fdi_config_ok;
5503
5504         for_each_encoder_on_crtc(dev, crtc, encoder) {
5505                 switch (encoder->type) {
5506                 case INTEL_OUTPUT_LVDS:
5507                         is_lvds = true;
5508                         break;
5509                 case INTEL_OUTPUT_DISPLAYPORT:
5510                         is_dp = true;
5511                         break;
5512                 case INTEL_OUTPUT_EDP:
5513                         is_dp = true;
5514                         if (!intel_encoder_is_pch_edp(&encoder->base))
5515                                 is_cpu_edp = true;
5516                         break;
5517                 }
5518
5519                 num_connectors++;
5520         }
5521
5522         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5523              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5524
5525         ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5526                                      &has_reduced_clock, &reduced_clock);
5527         if (!ok) {
5528                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5529                 return -EINVAL;
5530         }
5531
5532         /* Ensure that the cursor is valid for the new mode before changing... */
5533         intel_crtc_update_cursor(crtc, true);
5534
5535         /* determine panel color depth */
5536         dither = intel_crtc->config.dither;
5537         if (is_lvds && dev_priv->lvds_dither)
5538                 dither = true;
5539
5540         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5541         if (has_reduced_clock)
5542                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5543                         reduced_clock.m2;
5544
5545         dpll = ironlake_compute_dpll(intel_crtc, &clock, fp);
5546
5547         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5548         drm_mode_debug_printmodeline(mode);
5549
5550         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5551         if (!is_cpu_edp) {
5552                 struct intel_pch_pll *pll;
5553
5554                 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5555                 if (pll == NULL) {
5556                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5557                                          pipe);
5558                         return -EINVAL;
5559                 }
5560         } else
5561                 intel_put_pch_pll(intel_crtc);
5562
5563         if (is_dp && !is_cpu_edp)
5564                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5565
5566         for_each_encoder_on_crtc(dev, crtc, encoder)
5567                 if (encoder->pre_pll_enable)
5568                         encoder->pre_pll_enable(encoder);
5569
5570         if (intel_crtc->pch_pll) {
5571                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5572
5573                 /* Wait for the clocks to stabilize. */
5574                 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5575                 udelay(150);
5576
5577                 /* The pixel multiplier can only be updated once the
5578                  * DPLL is enabled and the clocks are stable.
5579                  *
5580                  * So write it again.
5581                  */
5582                 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5583         }
5584
5585         intel_crtc->lowfreq_avail = false;
5586         if (intel_crtc->pch_pll) {
5587                 if (is_lvds && has_reduced_clock && i915_powersave) {
5588                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5589                         intel_crtc->lowfreq_avail = true;
5590                 } else {
5591                         I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5592                 }
5593         }
5594
5595         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5596
5597         /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5598          * ironlake_check_fdi_lanes. */
5599         ironlake_set_m_n(crtc);
5600
5601         fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5602
5603         ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5604
5605         intel_wait_for_vblank(dev, pipe);
5606
5607         /* Set up the display plane register */
5608         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5609         POSTING_READ(DSPCNTR(plane));
5610
5611         ret = intel_pipe_set_base(crtc, x, y, fb);
5612
5613         intel_update_watermarks(dev);
5614
5615         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5616
5617         return fdi_config_ok ? ret : -EINVAL;
5618 }
5619
5620 static void haswell_modeset_global_resources(struct drm_device *dev)
5621 {
5622         struct drm_i915_private *dev_priv = dev->dev_private;
5623         bool enable = false;
5624         struct intel_crtc *crtc;
5625         struct intel_encoder *encoder;
5626
5627         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5628                 if (crtc->pipe != PIPE_A && crtc->base.enabled)
5629                         enable = true;
5630                 /* XXX: Should check for edp transcoder here, but thanks to init
5631                  * sequence that's not yet available. Just in case desktop eDP
5632                  * on PORT D is possible on haswell, too. */
5633         }
5634
5635         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
5636                             base.head) {
5637                 if (encoder->type != INTEL_OUTPUT_EDP &&
5638                     encoder->connectors_active)
5639                         enable = true;
5640         }
5641
5642         /* Even the eDP panel fitter is outside the always-on well. */
5643         if (dev_priv->pch_pf_size)
5644                 enable = true;
5645
5646         intel_set_power_well(dev, enable);
5647 }
5648
5649 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5650                                  int x, int y,
5651                                  struct drm_framebuffer *fb)
5652 {
5653         struct drm_device *dev = crtc->dev;
5654         struct drm_i915_private *dev_priv = dev->dev_private;
5655         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5656         struct drm_display_mode *adjusted_mode =
5657                 &intel_crtc->config.adjusted_mode;
5658         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5659         int pipe = intel_crtc->pipe;
5660         int plane = intel_crtc->plane;
5661         int num_connectors = 0;
5662         bool is_dp = false, is_cpu_edp = false;
5663         struct intel_encoder *encoder;
5664         int ret;
5665         bool dither;
5666
5667         for_each_encoder_on_crtc(dev, crtc, encoder) {
5668                 switch (encoder->type) {
5669                 case INTEL_OUTPUT_DISPLAYPORT:
5670                         is_dp = true;
5671                         break;
5672                 case INTEL_OUTPUT_EDP:
5673                         is_dp = true;
5674                         if (!intel_encoder_is_pch_edp(&encoder->base))
5675                                 is_cpu_edp = true;
5676                         break;
5677                 }
5678
5679                 num_connectors++;
5680         }
5681
5682         /* We are not sure yet this won't happen. */
5683         WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5684              INTEL_PCH_TYPE(dev));
5685
5686         WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5687              num_connectors, pipe_name(pipe));
5688
5689         WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5690                 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5691
5692         WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5693
5694         if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5695                 return -EINVAL;
5696
5697         /* Ensure that the cursor is valid for the new mode before changing... */
5698         intel_crtc_update_cursor(crtc, true);
5699
5700         /* determine panel color depth */
5701         dither = intel_crtc->config.dither;
5702
5703         DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5704         drm_mode_debug_printmodeline(mode);
5705
5706         if (is_dp && !is_cpu_edp)
5707                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5708
5709         intel_crtc->lowfreq_avail = false;
5710
5711         intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5712
5713         if (!is_dp || is_cpu_edp)
5714                 ironlake_set_m_n(crtc);
5715
5716         haswell_set_pipeconf(crtc, adjusted_mode, dither);
5717
5718         intel_set_pipe_csc(crtc);
5719
5720         /* Set up the display plane register */
5721         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5722         POSTING_READ(DSPCNTR(plane));
5723
5724         ret = intel_pipe_set_base(crtc, x, y, fb);
5725
5726         intel_update_watermarks(dev);
5727
5728         intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5729
5730         return ret;
5731 }
5732
5733 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5734                                int x, int y,
5735                                struct drm_framebuffer *fb)
5736 {
5737         struct drm_device *dev = crtc->dev;
5738         struct drm_i915_private *dev_priv = dev->dev_private;
5739         struct drm_encoder_helper_funcs *encoder_funcs;
5740         struct intel_encoder *encoder;
5741         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5742         struct drm_display_mode *adjusted_mode =
5743                 &intel_crtc->config.adjusted_mode;
5744         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5745         int pipe = intel_crtc->pipe;
5746         int ret;
5747
5748         if (IS_HASWELL(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
5749                 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5750         else
5751                 intel_crtc->cpu_transcoder = pipe;
5752
5753         drm_vblank_pre_modeset(dev, pipe);
5754
5755         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
5756
5757         drm_vblank_post_modeset(dev, pipe);
5758
5759         if (ret != 0)
5760                 return ret;
5761
5762         for_each_encoder_on_crtc(dev, crtc, encoder) {
5763                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5764                         encoder->base.base.id,
5765                         drm_get_encoder_name(&encoder->base),
5766                         mode->base.id, mode->name);
5767                 if (encoder->mode_set) {
5768                         encoder->mode_set(encoder);
5769                 } else {
5770                         encoder_funcs = encoder->base.helper_private;
5771                         encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5772                 }
5773         }
5774
5775         return 0;
5776 }
5777
5778 static bool intel_eld_uptodate(struct drm_connector *connector,
5779                                int reg_eldv, uint32_t bits_eldv,
5780                                int reg_elda, uint32_t bits_elda,
5781                                int reg_edid)
5782 {
5783         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5784         uint8_t *eld = connector->eld;
5785         uint32_t i;
5786
5787         i = I915_READ(reg_eldv);
5788         i &= bits_eldv;
5789
5790         if (!eld[0])
5791                 return !i;
5792
5793         if (!i)
5794                 return false;
5795
5796         i = I915_READ(reg_elda);
5797         i &= ~bits_elda;
5798         I915_WRITE(reg_elda, i);
5799
5800         for (i = 0; i < eld[2]; i++)
5801                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5802                         return false;
5803
5804         return true;
5805 }
5806
5807 static void g4x_write_eld(struct drm_connector *connector,
5808                           struct drm_crtc *crtc)
5809 {
5810         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5811         uint8_t *eld = connector->eld;
5812         uint32_t eldv;
5813         uint32_t len;
5814         uint32_t i;
5815
5816         i = I915_READ(G4X_AUD_VID_DID);
5817
5818         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5819                 eldv = G4X_ELDV_DEVCL_DEVBLC;
5820         else
5821                 eldv = G4X_ELDV_DEVCTG;
5822
5823         if (intel_eld_uptodate(connector,
5824                                G4X_AUD_CNTL_ST, eldv,
5825                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5826                                G4X_HDMIW_HDMIEDID))
5827                 return;
5828
5829         i = I915_READ(G4X_AUD_CNTL_ST);
5830         i &= ~(eldv | G4X_ELD_ADDR);
5831         len = (i >> 9) & 0x1f;          /* ELD buffer size */
5832         I915_WRITE(G4X_AUD_CNTL_ST, i);
5833
5834         if (!eld[0])
5835                 return;
5836
5837         len = min_t(uint8_t, eld[2], len);
5838         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5839         for (i = 0; i < len; i++)
5840                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5841
5842         i = I915_READ(G4X_AUD_CNTL_ST);
5843         i |= eldv;
5844         I915_WRITE(G4X_AUD_CNTL_ST, i);
5845 }
5846
5847 static void haswell_write_eld(struct drm_connector *connector,
5848                                      struct drm_crtc *crtc)
5849 {
5850         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5851         uint8_t *eld = connector->eld;
5852         struct drm_device *dev = crtc->dev;
5853         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5854         uint32_t eldv;
5855         uint32_t i;
5856         int len;
5857         int pipe = to_intel_crtc(crtc)->pipe;
5858         int tmp;
5859
5860         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5861         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5862         int aud_config = HSW_AUD_CFG(pipe);
5863         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5864
5865
5866         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5867
5868         /* Audio output enable */
5869         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5870         tmp = I915_READ(aud_cntrl_st2);
5871         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5872         I915_WRITE(aud_cntrl_st2, tmp);
5873
5874         /* Wait for 1 vertical blank */
5875         intel_wait_for_vblank(dev, pipe);
5876
5877         /* Set ELD valid state */
5878         tmp = I915_READ(aud_cntrl_st2);
5879         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5880         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5881         I915_WRITE(aud_cntrl_st2, tmp);
5882         tmp = I915_READ(aud_cntrl_st2);
5883         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5884
5885         /* Enable HDMI mode */
5886         tmp = I915_READ(aud_config);
5887         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5888         /* clear N_programing_enable and N_value_index */
5889         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5890         I915_WRITE(aud_config, tmp);
5891
5892         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5893
5894         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5895         intel_crtc->eld_vld = true;
5896
5897         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5898                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5899                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5900                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5901         } else
5902                 I915_WRITE(aud_config, 0);
5903
5904         if (intel_eld_uptodate(connector,
5905                                aud_cntrl_st2, eldv,
5906                                aud_cntl_st, IBX_ELD_ADDRESS,
5907                                hdmiw_hdmiedid))
5908                 return;
5909
5910         i = I915_READ(aud_cntrl_st2);
5911         i &= ~eldv;
5912         I915_WRITE(aud_cntrl_st2, i);
5913
5914         if (!eld[0])
5915                 return;
5916
5917         i = I915_READ(aud_cntl_st);
5918         i &= ~IBX_ELD_ADDRESS;
5919         I915_WRITE(aud_cntl_st, i);
5920         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5921         DRM_DEBUG_DRIVER("port num:%d\n", i);
5922
5923         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
5924         DRM_DEBUG_DRIVER("ELD size %d\n", len);
5925         for (i = 0; i < len; i++)
5926                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5927
5928         i = I915_READ(aud_cntrl_st2);
5929         i |= eldv;
5930         I915_WRITE(aud_cntrl_st2, i);
5931
5932 }
5933
5934 static void ironlake_write_eld(struct drm_connector *connector,
5935                                      struct drm_crtc *crtc)
5936 {
5937         struct drm_i915_private *dev_priv = connector->dev->dev_private;
5938         uint8_t *eld = connector->eld;
5939         uint32_t eldv;
5940         uint32_t i;
5941         int len;
5942         int hdmiw_hdmiedid;
5943         int aud_config;
5944         int aud_cntl_st;
5945         int aud_cntrl_st2;
5946         int pipe = to_intel_crtc(crtc)->pipe;
5947
5948         if (HAS_PCH_IBX(connector->dev)) {
5949                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5950                 aud_config = IBX_AUD_CFG(pipe);
5951                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
5952                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5953         } else {
5954                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5955                 aud_config = CPT_AUD_CFG(pipe);
5956                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
5957                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5958         }
5959
5960         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5961
5962         i = I915_READ(aud_cntl_st);
5963         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
5964         if (!i) {
5965                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5966                 /* operate blindly on all ports */
5967                 eldv = IBX_ELD_VALIDB;
5968                 eldv |= IBX_ELD_VALIDB << 4;
5969                 eldv |= IBX_ELD_VALIDB << 8;
5970         } else {
5971                 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5972                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5973         }
5974
5975         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5976                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5977                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
5978                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5979         } else
5980                 I915_WRITE(aud_config, 0);
5981
5982         if (intel_eld_uptodate(connector,
5983                                aud_cntrl_st2, eldv,
5984                                aud_cntl_st, IBX_ELD_ADDRESS,
5985                                hdmiw_hdmiedid))
5986                 return;
5987
5988         i = I915_READ(aud_cntrl_st2);
5989         i &= ~eldv;
5990         I915_WRITE(aud_cntrl_st2, i);
5991
5992         if (!eld[0])
5993                 return;
5994
5995         i = I915_READ(aud_cntl_st);
5996         i &= ~IBX_ELD_ADDRESS;
5997         I915_WRITE(aud_cntl_st, i);
5998
5999         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6000         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6001         for (i = 0; i < len; i++)
6002                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6003
6004         i = I915_READ(aud_cntrl_st2);
6005         i |= eldv;
6006         I915_WRITE(aud_cntrl_st2, i);
6007 }
6008
6009 void intel_write_eld(struct drm_encoder *encoder,
6010                      struct drm_display_mode *mode)
6011 {
6012         struct drm_crtc *crtc = encoder->crtc;
6013         struct drm_connector *connector;
6014         struct drm_device *dev = encoder->dev;
6015         struct drm_i915_private *dev_priv = dev->dev_private;
6016
6017         connector = drm_select_eld(encoder, mode);
6018         if (!connector)
6019                 return;
6020
6021         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6022                          connector->base.id,
6023                          drm_get_connector_name(connector),
6024                          connector->encoder->base.id,
6025                          drm_get_encoder_name(connector->encoder));
6026
6027         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6028
6029         if (dev_priv->display.write_eld)
6030                 dev_priv->display.write_eld(connector, crtc);
6031 }
6032
6033 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6034 void intel_crtc_load_lut(struct drm_crtc *crtc)
6035 {
6036         struct drm_device *dev = crtc->dev;
6037         struct drm_i915_private *dev_priv = dev->dev_private;
6038         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6039         int palreg = PALETTE(intel_crtc->pipe);
6040         int i;
6041
6042         /* The clocks have to be on to load the palette. */
6043         if (!crtc->enabled || !intel_crtc->active)
6044                 return;
6045
6046         /* use legacy palette for Ironlake */
6047         if (HAS_PCH_SPLIT(dev))
6048                 palreg = LGC_PALETTE(intel_crtc->pipe);
6049
6050         for (i = 0; i < 256; i++) {
6051                 I915_WRITE(palreg + 4 * i,
6052                            (intel_crtc->lut_r[i] << 16) |
6053                            (intel_crtc->lut_g[i] << 8) |
6054                            intel_crtc->lut_b[i]);
6055         }
6056 }
6057
6058 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6059 {
6060         struct drm_device *dev = crtc->dev;
6061         struct drm_i915_private *dev_priv = dev->dev_private;
6062         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6063         bool visible = base != 0;
6064         u32 cntl;
6065
6066         if (intel_crtc->cursor_visible == visible)
6067                 return;
6068
6069         cntl = I915_READ(_CURACNTR);
6070         if (visible) {
6071                 /* On these chipsets we can only modify the base whilst
6072                  * the cursor is disabled.
6073                  */
6074                 I915_WRITE(_CURABASE, base);
6075
6076                 cntl &= ~(CURSOR_FORMAT_MASK);
6077                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6078                 cntl |= CURSOR_ENABLE |
6079                         CURSOR_GAMMA_ENABLE |
6080                         CURSOR_FORMAT_ARGB;
6081         } else
6082                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6083         I915_WRITE(_CURACNTR, cntl);
6084
6085         intel_crtc->cursor_visible = visible;
6086 }
6087
6088 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6089 {
6090         struct drm_device *dev = crtc->dev;
6091         struct drm_i915_private *dev_priv = dev->dev_private;
6092         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6093         int pipe = intel_crtc->pipe;
6094         bool visible = base != 0;
6095
6096         if (intel_crtc->cursor_visible != visible) {
6097                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6098                 if (base) {
6099                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6100                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6101                         cntl |= pipe << 28; /* Connect to correct pipe */
6102                 } else {
6103                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6104                         cntl |= CURSOR_MODE_DISABLE;
6105                 }
6106                 I915_WRITE(CURCNTR(pipe), cntl);
6107
6108                 intel_crtc->cursor_visible = visible;
6109         }
6110         /* and commit changes on next vblank */
6111         I915_WRITE(CURBASE(pipe), base);
6112 }
6113
6114 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6115 {
6116         struct drm_device *dev = crtc->dev;
6117         struct drm_i915_private *dev_priv = dev->dev_private;
6118         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6119         int pipe = intel_crtc->pipe;
6120         bool visible = base != 0;
6121
6122         if (intel_crtc->cursor_visible != visible) {
6123                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6124                 if (base) {
6125                         cntl &= ~CURSOR_MODE;
6126                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6127                 } else {
6128                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6129                         cntl |= CURSOR_MODE_DISABLE;
6130                 }
6131                 if (IS_HASWELL(dev))
6132                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6133                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6134
6135                 intel_crtc->cursor_visible = visible;
6136         }
6137         /* and commit changes on next vblank */
6138         I915_WRITE(CURBASE_IVB(pipe), base);
6139 }
6140
6141 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6142 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6143                                      bool on)
6144 {
6145         struct drm_device *dev = crtc->dev;
6146         struct drm_i915_private *dev_priv = dev->dev_private;
6147         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6148         int pipe = intel_crtc->pipe;
6149         int x = intel_crtc->cursor_x;
6150         int y = intel_crtc->cursor_y;
6151         u32 base, pos;
6152         bool visible;
6153
6154         pos = 0;
6155
6156         if (on && crtc->enabled && crtc->fb) {
6157                 base = intel_crtc->cursor_addr;
6158                 if (x > (int) crtc->fb->width)
6159                         base = 0;
6160
6161                 if (y > (int) crtc->fb->height)
6162                         base = 0;
6163         } else
6164                 base = 0;
6165
6166         if (x < 0) {
6167                 if (x + intel_crtc->cursor_width < 0)
6168                         base = 0;
6169
6170                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6171                 x = -x;
6172         }
6173         pos |= x << CURSOR_X_SHIFT;
6174
6175         if (y < 0) {
6176                 if (y + intel_crtc->cursor_height < 0)
6177                         base = 0;
6178
6179                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6180                 y = -y;
6181         }
6182         pos |= y << CURSOR_Y_SHIFT;
6183
6184         visible = base != 0;
6185         if (!visible && !intel_crtc->cursor_visible)
6186                 return;
6187
6188         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6189                 I915_WRITE(CURPOS_IVB(pipe), pos);
6190                 ivb_update_cursor(crtc, base);
6191         } else {
6192                 I915_WRITE(CURPOS(pipe), pos);
6193                 if (IS_845G(dev) || IS_I865G(dev))
6194                         i845_update_cursor(crtc, base);
6195                 else
6196                         i9xx_update_cursor(crtc, base);
6197         }
6198 }
6199
6200 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6201                                  struct drm_file *file,
6202                                  uint32_t handle,
6203                                  uint32_t width, uint32_t height)
6204 {
6205         struct drm_device *dev = crtc->dev;
6206         struct drm_i915_private *dev_priv = dev->dev_private;
6207         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6208         struct drm_i915_gem_object *obj;
6209         uint32_t addr;
6210         int ret;
6211
6212         /* if we want to turn off the cursor ignore width and height */
6213         if (!handle) {
6214                 DRM_DEBUG_KMS("cursor off\n");
6215                 addr = 0;
6216                 obj = NULL;
6217                 mutex_lock(&dev->struct_mutex);
6218                 goto finish;
6219         }
6220
6221         /* Currently we only support 64x64 cursors */
6222         if (width != 64 || height != 64) {
6223                 DRM_ERROR("we currently only support 64x64 cursors\n");
6224                 return -EINVAL;
6225         }
6226
6227         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6228         if (&obj->base == NULL)
6229                 return -ENOENT;
6230
6231         if (obj->base.size < width * height * 4) {
6232                 DRM_ERROR("buffer is to small\n");
6233                 ret = -ENOMEM;
6234                 goto fail;
6235         }
6236
6237         /* we only need to pin inside GTT if cursor is non-phy */
6238         mutex_lock(&dev->struct_mutex);
6239         if (!dev_priv->info->cursor_needs_physical) {
6240                 unsigned alignment;
6241
6242                 if (obj->tiling_mode) {
6243                         DRM_ERROR("cursor cannot be tiled\n");
6244                         ret = -EINVAL;
6245                         goto fail_locked;
6246                 }
6247
6248                 /* Note that the w/a also requires 2 PTE of padding following
6249                  * the bo. We currently fill all unused PTE with the shadow
6250                  * page and so we should always have valid PTE following the
6251                  * cursor preventing the VT-d warning.
6252                  */
6253                 alignment = 0;
6254                 if (need_vtd_wa(dev))
6255                         alignment = 64*1024;
6256
6257                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6258                 if (ret) {
6259                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6260                         goto fail_locked;
6261                 }
6262
6263                 ret = i915_gem_object_put_fence(obj);
6264                 if (ret) {
6265                         DRM_ERROR("failed to release fence for cursor");
6266                         goto fail_unpin;
6267                 }
6268
6269                 addr = obj->gtt_offset;
6270         } else {
6271                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6272                 ret = i915_gem_attach_phys_object(dev, obj,
6273                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6274                                                   align);
6275                 if (ret) {
6276                         DRM_ERROR("failed to attach phys object\n");
6277                         goto fail_locked;
6278                 }
6279                 addr = obj->phys_obj->handle->busaddr;
6280         }
6281
6282         if (IS_GEN2(dev))
6283                 I915_WRITE(CURSIZE, (height << 12) | width);
6284
6285  finish:
6286         if (intel_crtc->cursor_bo) {
6287                 if (dev_priv->info->cursor_needs_physical) {
6288                         if (intel_crtc->cursor_bo != obj)
6289                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6290                 } else
6291                         i915_gem_object_unpin(intel_crtc->cursor_bo);
6292                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6293         }
6294
6295         mutex_unlock(&dev->struct_mutex);
6296
6297         intel_crtc->cursor_addr = addr;
6298         intel_crtc->cursor_bo = obj;
6299         intel_crtc->cursor_width = width;
6300         intel_crtc->cursor_height = height;
6301
6302         intel_crtc_update_cursor(crtc, true);
6303
6304         return 0;
6305 fail_unpin:
6306         i915_gem_object_unpin(obj);
6307 fail_locked:
6308         mutex_unlock(&dev->struct_mutex);
6309 fail:
6310         drm_gem_object_unreference_unlocked(&obj->base);
6311         return ret;
6312 }
6313
6314 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6315 {
6316         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6317
6318         intel_crtc->cursor_x = x;
6319         intel_crtc->cursor_y = y;
6320
6321         intel_crtc_update_cursor(crtc, true);
6322
6323         return 0;
6324 }
6325
6326 /** Sets the color ramps on behalf of RandR */
6327 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6328                                  u16 blue, int regno)
6329 {
6330         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6331
6332         intel_crtc->lut_r[regno] = red >> 8;
6333         intel_crtc->lut_g[regno] = green >> 8;
6334         intel_crtc->lut_b[regno] = blue >> 8;
6335 }
6336
6337 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6338                              u16 *blue, int regno)
6339 {
6340         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6341
6342         *red = intel_crtc->lut_r[regno] << 8;
6343         *green = intel_crtc->lut_g[regno] << 8;
6344         *blue = intel_crtc->lut_b[regno] << 8;
6345 }
6346
6347 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6348                                  u16 *blue, uint32_t start, uint32_t size)
6349 {
6350         int end = (start + size > 256) ? 256 : start + size, i;
6351         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6352
6353         for (i = start; i < end; i++) {
6354                 intel_crtc->lut_r[i] = red[i] >> 8;
6355                 intel_crtc->lut_g[i] = green[i] >> 8;
6356                 intel_crtc->lut_b[i] = blue[i] >> 8;
6357         }
6358
6359         intel_crtc_load_lut(crtc);
6360 }
6361
6362 /* VESA 640x480x72Hz mode to set on the pipe */
6363 static struct drm_display_mode load_detect_mode = {
6364         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6365                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6366 };
6367
6368 static struct drm_framebuffer *
6369 intel_framebuffer_create(struct drm_device *dev,
6370                          struct drm_mode_fb_cmd2 *mode_cmd,
6371                          struct drm_i915_gem_object *obj)
6372 {
6373         struct intel_framebuffer *intel_fb;
6374         int ret;
6375
6376         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6377         if (!intel_fb) {
6378                 drm_gem_object_unreference_unlocked(&obj->base);
6379                 return ERR_PTR(-ENOMEM);
6380         }
6381
6382         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6383         if (ret) {
6384                 drm_gem_object_unreference_unlocked(&obj->base);
6385                 kfree(intel_fb);
6386                 return ERR_PTR(ret);
6387         }
6388
6389         return &intel_fb->base;
6390 }
6391
6392 static u32
6393 intel_framebuffer_pitch_for_width(int width, int bpp)
6394 {
6395         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6396         return ALIGN(pitch, 64);
6397 }
6398
6399 static u32
6400 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6401 {
6402         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6403         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6404 }
6405
6406 static struct drm_framebuffer *
6407 intel_framebuffer_create_for_mode(struct drm_device *dev,
6408                                   struct drm_display_mode *mode,
6409                                   int depth, int bpp)
6410 {
6411         struct drm_i915_gem_object *obj;
6412         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6413
6414         obj = i915_gem_alloc_object(dev,
6415                                     intel_framebuffer_size_for_mode(mode, bpp));
6416         if (obj == NULL)
6417                 return ERR_PTR(-ENOMEM);
6418
6419         mode_cmd.width = mode->hdisplay;
6420         mode_cmd.height = mode->vdisplay;
6421         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6422                                                                 bpp);
6423         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6424
6425         return intel_framebuffer_create(dev, &mode_cmd, obj);
6426 }
6427
6428 static struct drm_framebuffer *
6429 mode_fits_in_fbdev(struct drm_device *dev,
6430                    struct drm_display_mode *mode)
6431 {
6432         struct drm_i915_private *dev_priv = dev->dev_private;
6433         struct drm_i915_gem_object *obj;
6434         struct drm_framebuffer *fb;
6435
6436         if (dev_priv->fbdev == NULL)
6437                 return NULL;
6438
6439         obj = dev_priv->fbdev->ifb.obj;
6440         if (obj == NULL)
6441                 return NULL;
6442
6443         fb = &dev_priv->fbdev->ifb.base;
6444         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6445                                                                fb->bits_per_pixel))
6446                 return NULL;
6447
6448         if (obj->base.size < mode->vdisplay * fb->pitches[0])
6449                 return NULL;
6450
6451         return fb;
6452 }
6453
6454 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6455                                 struct drm_display_mode *mode,
6456                                 struct intel_load_detect_pipe *old)
6457 {
6458         struct intel_crtc *intel_crtc;
6459         struct intel_encoder *intel_encoder =
6460                 intel_attached_encoder(connector);
6461         struct drm_crtc *possible_crtc;
6462         struct drm_encoder *encoder = &intel_encoder->base;
6463         struct drm_crtc *crtc = NULL;
6464         struct drm_device *dev = encoder->dev;
6465         struct drm_framebuffer *fb;
6466         int i = -1;
6467
6468         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6469                       connector->base.id, drm_get_connector_name(connector),
6470                       encoder->base.id, drm_get_encoder_name(encoder));
6471
6472         /*
6473          * Algorithm gets a little messy:
6474          *
6475          *   - if the connector already has an assigned crtc, use it (but make
6476          *     sure it's on first)
6477          *
6478          *   - try to find the first unused crtc that can drive this connector,
6479          *     and use that if we find one
6480          */
6481
6482         /* See if we already have a CRTC for this connector */
6483         if (encoder->crtc) {
6484                 crtc = encoder->crtc;
6485
6486                 mutex_lock(&crtc->mutex);
6487
6488                 old->dpms_mode = connector->dpms;
6489                 old->load_detect_temp = false;
6490
6491                 /* Make sure the crtc and connector are running */
6492                 if (connector->dpms != DRM_MODE_DPMS_ON)
6493                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6494
6495                 return true;
6496         }
6497
6498         /* Find an unused one (if possible) */
6499         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6500                 i++;
6501                 if (!(encoder->possible_crtcs & (1 << i)))
6502                         continue;
6503                 if (!possible_crtc->enabled) {
6504                         crtc = possible_crtc;
6505                         break;
6506                 }
6507         }
6508
6509         /*
6510          * If we didn't find an unused CRTC, don't use any.
6511          */
6512         if (!crtc) {
6513                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6514                 return false;
6515         }
6516
6517         mutex_lock(&crtc->mutex);
6518         intel_encoder->new_crtc = to_intel_crtc(crtc);
6519         to_intel_connector(connector)->new_encoder = intel_encoder;
6520
6521         intel_crtc = to_intel_crtc(crtc);
6522         old->dpms_mode = connector->dpms;
6523         old->load_detect_temp = true;
6524         old->release_fb = NULL;
6525
6526         if (!mode)
6527                 mode = &load_detect_mode;
6528
6529         /* We need a framebuffer large enough to accommodate all accesses
6530          * that the plane may generate whilst we perform load detection.
6531          * We can not rely on the fbcon either being present (we get called
6532          * during its initialisation to detect all boot displays, or it may
6533          * not even exist) or that it is large enough to satisfy the
6534          * requested mode.
6535          */
6536         fb = mode_fits_in_fbdev(dev, mode);
6537         if (fb == NULL) {
6538                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6539                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6540                 old->release_fb = fb;
6541         } else
6542                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6543         if (IS_ERR(fb)) {
6544                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6545                 mutex_unlock(&crtc->mutex);
6546                 return false;
6547         }
6548
6549         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6550                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6551                 if (old->release_fb)
6552                         old->release_fb->funcs->destroy(old->release_fb);
6553                 mutex_unlock(&crtc->mutex);
6554                 return false;
6555         }
6556
6557         /* let the connector get through one full cycle before testing */
6558         intel_wait_for_vblank(dev, intel_crtc->pipe);
6559         return true;
6560 }
6561
6562 void intel_release_load_detect_pipe(struct drm_connector *connector,
6563                                     struct intel_load_detect_pipe *old)
6564 {
6565         struct intel_encoder *intel_encoder =
6566                 intel_attached_encoder(connector);
6567         struct drm_encoder *encoder = &intel_encoder->base;
6568         struct drm_crtc *crtc = encoder->crtc;
6569
6570         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6571                       connector->base.id, drm_get_connector_name(connector),
6572                       encoder->base.id, drm_get_encoder_name(encoder));
6573
6574         if (old->load_detect_temp) {
6575                 to_intel_connector(connector)->new_encoder = NULL;
6576                 intel_encoder->new_crtc = NULL;
6577                 intel_set_mode(crtc, NULL, 0, 0, NULL);
6578
6579                 if (old->release_fb) {
6580                         drm_framebuffer_unregister_private(old->release_fb);
6581                         drm_framebuffer_unreference(old->release_fb);
6582                 }
6583
6584                 mutex_unlock(&crtc->mutex);
6585                 return;
6586         }
6587
6588         /* Switch crtc and encoder back off if necessary */
6589         if (old->dpms_mode != DRM_MODE_DPMS_ON)
6590                 connector->funcs->dpms(connector, old->dpms_mode);
6591
6592         mutex_unlock(&crtc->mutex);
6593 }
6594
6595 /* Returns the clock of the currently programmed mode of the given pipe. */
6596 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6597 {
6598         struct drm_i915_private *dev_priv = dev->dev_private;
6599         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6600         int pipe = intel_crtc->pipe;
6601         u32 dpll = I915_READ(DPLL(pipe));
6602         u32 fp;
6603         intel_clock_t clock;
6604
6605         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6606                 fp = I915_READ(FP0(pipe));
6607         else
6608                 fp = I915_READ(FP1(pipe));
6609
6610         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6611         if (IS_PINEVIEW(dev)) {
6612                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6613                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6614         } else {
6615                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6616                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6617         }
6618
6619         if (!IS_GEN2(dev)) {
6620                 if (IS_PINEVIEW(dev))
6621                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6622                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6623                 else
6624                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6625                                DPLL_FPA01_P1_POST_DIV_SHIFT);
6626
6627                 switch (dpll & DPLL_MODE_MASK) {
6628                 case DPLLB_MODE_DAC_SERIAL:
6629                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6630                                 5 : 10;
6631                         break;
6632                 case DPLLB_MODE_LVDS:
6633                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6634                                 7 : 14;
6635                         break;
6636                 default:
6637                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6638                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
6639                         return 0;
6640                 }
6641
6642                 /* XXX: Handle the 100Mhz refclk */
6643                 intel_clock(dev, 96000, &clock);
6644         } else {
6645                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6646
6647                 if (is_lvds) {
6648                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6649                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
6650                         clock.p2 = 14;
6651
6652                         if ((dpll & PLL_REF_INPUT_MASK) ==
6653                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6654                                 /* XXX: might not be 66MHz */
6655                                 intel_clock(dev, 66000, &clock);
6656                         } else
6657                                 intel_clock(dev, 48000, &clock);
6658                 } else {
6659                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
6660                                 clock.p1 = 2;
6661                         else {
6662                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6663                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6664                         }
6665                         if (dpll & PLL_P2_DIVIDE_BY_4)
6666                                 clock.p2 = 4;
6667                         else
6668                                 clock.p2 = 2;
6669
6670                         intel_clock(dev, 48000, &clock);
6671                 }
6672         }
6673
6674         /* XXX: It would be nice to validate the clocks, but we can't reuse
6675          * i830PllIsValid() because it relies on the xf86_config connector
6676          * configuration being accurate, which it isn't necessarily.
6677          */
6678
6679         return clock.dot;
6680 }
6681
6682 /** Returns the currently programmed mode of the given pipe. */
6683 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6684                                              struct drm_crtc *crtc)
6685 {
6686         struct drm_i915_private *dev_priv = dev->dev_private;
6687         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6688         enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6689         struct drm_display_mode *mode;
6690         int htot = I915_READ(HTOTAL(cpu_transcoder));
6691         int hsync = I915_READ(HSYNC(cpu_transcoder));
6692         int vtot = I915_READ(VTOTAL(cpu_transcoder));
6693         int vsync = I915_READ(VSYNC(cpu_transcoder));
6694
6695         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6696         if (!mode)
6697                 return NULL;
6698
6699         mode->clock = intel_crtc_clock_get(dev, crtc);
6700         mode->hdisplay = (htot & 0xffff) + 1;
6701         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6702         mode->hsync_start = (hsync & 0xffff) + 1;
6703         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6704         mode->vdisplay = (vtot & 0xffff) + 1;
6705         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6706         mode->vsync_start = (vsync & 0xffff) + 1;
6707         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6708
6709         drm_mode_set_name(mode);
6710
6711         return mode;
6712 }
6713
6714 static void intel_increase_pllclock(struct drm_crtc *crtc)
6715 {
6716         struct drm_device *dev = crtc->dev;
6717         drm_i915_private_t *dev_priv = dev->dev_private;
6718         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6719         int pipe = intel_crtc->pipe;
6720         int dpll_reg = DPLL(pipe);
6721         int dpll;
6722
6723         if (HAS_PCH_SPLIT(dev))
6724                 return;
6725
6726         if (!dev_priv->lvds_downclock_avail)
6727                 return;
6728
6729         dpll = I915_READ(dpll_reg);
6730         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6731                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6732
6733                 assert_panel_unlocked(dev_priv, pipe);
6734
6735                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6736                 I915_WRITE(dpll_reg, dpll);
6737                 intel_wait_for_vblank(dev, pipe);
6738
6739                 dpll = I915_READ(dpll_reg);
6740                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6741                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6742         }
6743 }
6744
6745 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6746 {
6747         struct drm_device *dev = crtc->dev;
6748         drm_i915_private_t *dev_priv = dev->dev_private;
6749         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6750
6751         if (HAS_PCH_SPLIT(dev))
6752                 return;
6753
6754         if (!dev_priv->lvds_downclock_avail)
6755                 return;
6756
6757         /*
6758          * Since this is called by a timer, we should never get here in
6759          * the manual case.
6760          */
6761         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6762                 int pipe = intel_crtc->pipe;
6763                 int dpll_reg = DPLL(pipe);
6764                 int dpll;
6765
6766                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6767
6768                 assert_panel_unlocked(dev_priv, pipe);
6769
6770                 dpll = I915_READ(dpll_reg);
6771                 dpll |= DISPLAY_RATE_SELECT_FPA1;
6772                 I915_WRITE(dpll_reg, dpll);
6773                 intel_wait_for_vblank(dev, pipe);
6774                 dpll = I915_READ(dpll_reg);
6775                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6776                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6777         }
6778
6779 }
6780
6781 void intel_mark_busy(struct drm_device *dev)
6782 {
6783         i915_update_gfx_val(dev->dev_private);
6784 }
6785
6786 void intel_mark_idle(struct drm_device *dev)
6787 {
6788         struct drm_crtc *crtc;
6789
6790         if (!i915_powersave)
6791                 return;
6792
6793         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6794                 if (!crtc->fb)
6795                         continue;
6796
6797                 intel_decrease_pllclock(crtc);
6798         }
6799 }
6800
6801 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6802 {
6803         struct drm_device *dev = obj->base.dev;
6804         struct drm_crtc *crtc;
6805
6806         if (!i915_powersave)
6807                 return;
6808
6809         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6810                 if (!crtc->fb)
6811                         continue;
6812
6813                 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6814                         intel_increase_pllclock(crtc);
6815         }
6816 }
6817
6818 static void intel_crtc_destroy(struct drm_crtc *crtc)
6819 {
6820         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6821         struct drm_device *dev = crtc->dev;
6822         struct intel_unpin_work *work;
6823         unsigned long flags;
6824
6825         spin_lock_irqsave(&dev->event_lock, flags);
6826         work = intel_crtc->unpin_work;
6827         intel_crtc->unpin_work = NULL;
6828         spin_unlock_irqrestore(&dev->event_lock, flags);
6829
6830         if (work) {
6831                 cancel_work_sync(&work->work);
6832                 kfree(work);
6833         }
6834
6835         drm_crtc_cleanup(crtc);
6836
6837         kfree(intel_crtc);
6838 }
6839
6840 static void intel_unpin_work_fn(struct work_struct *__work)
6841 {
6842         struct intel_unpin_work *work =
6843                 container_of(__work, struct intel_unpin_work, work);
6844         struct drm_device *dev = work->crtc->dev;
6845
6846         mutex_lock(&dev->struct_mutex);
6847         intel_unpin_fb_obj(work->old_fb_obj);
6848         drm_gem_object_unreference(&work->pending_flip_obj->base);
6849         drm_gem_object_unreference(&work->old_fb_obj->base);
6850
6851         intel_update_fbc(dev);
6852         mutex_unlock(&dev->struct_mutex);
6853
6854         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
6855         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
6856
6857         kfree(work);
6858 }
6859
6860 static void do_intel_finish_page_flip(struct drm_device *dev,
6861                                       struct drm_crtc *crtc)
6862 {
6863         drm_i915_private_t *dev_priv = dev->dev_private;
6864         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6865         struct intel_unpin_work *work;
6866         unsigned long flags;
6867
6868         /* Ignore early vblank irqs */
6869         if (intel_crtc == NULL)
6870                 return;
6871
6872         spin_lock_irqsave(&dev->event_lock, flags);
6873         work = intel_crtc->unpin_work;
6874
6875         /* Ensure we don't miss a work->pending update ... */
6876         smp_rmb();
6877
6878         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6879                 spin_unlock_irqrestore(&dev->event_lock, flags);
6880                 return;
6881         }
6882
6883         /* and that the unpin work is consistent wrt ->pending. */
6884         smp_rmb();
6885
6886         intel_crtc->unpin_work = NULL;
6887
6888         if (work->event)
6889                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6890
6891         drm_vblank_put(dev, intel_crtc->pipe);
6892
6893         spin_unlock_irqrestore(&dev->event_lock, flags);
6894
6895         wake_up_all(&dev_priv->pending_flip_queue);
6896
6897         queue_work(dev_priv->wq, &work->work);
6898
6899         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6900 }
6901
6902 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6903 {
6904         drm_i915_private_t *dev_priv = dev->dev_private;
6905         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6906
6907         do_intel_finish_page_flip(dev, crtc);
6908 }
6909
6910 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6911 {
6912         drm_i915_private_t *dev_priv = dev->dev_private;
6913         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6914
6915         do_intel_finish_page_flip(dev, crtc);
6916 }
6917
6918 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6919 {
6920         drm_i915_private_t *dev_priv = dev->dev_private;
6921         struct intel_crtc *intel_crtc =
6922                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6923         unsigned long flags;
6924
6925         /* NB: An MMIO update of the plane base pointer will also
6926          * generate a page-flip completion irq, i.e. every modeset
6927          * is also accompanied by a spurious intel_prepare_page_flip().
6928          */
6929         spin_lock_irqsave(&dev->event_lock, flags);
6930         if (intel_crtc->unpin_work)
6931                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6932         spin_unlock_irqrestore(&dev->event_lock, flags);
6933 }
6934
6935 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
6936 {
6937         /* Ensure that the work item is consistent when activating it ... */
6938         smp_wmb();
6939         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
6940         /* and that it is marked active as soon as the irq could fire. */
6941         smp_wmb();
6942 }
6943
6944 static int intel_gen2_queue_flip(struct drm_device *dev,
6945                                  struct drm_crtc *crtc,
6946                                  struct drm_framebuffer *fb,
6947                                  struct drm_i915_gem_object *obj)
6948 {
6949         struct drm_i915_private *dev_priv = dev->dev_private;
6950         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6951         u32 flip_mask;
6952         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6953         int ret;
6954
6955         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6956         if (ret)
6957                 goto err;
6958
6959         ret = intel_ring_begin(ring, 6);
6960         if (ret)
6961                 goto err_unpin;
6962
6963         /* Can't queue multiple flips, so wait for the previous
6964          * one to finish before executing the next.
6965          */
6966         if (intel_crtc->plane)
6967                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6968         else
6969                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6970         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6971         intel_ring_emit(ring, MI_NOOP);
6972         intel_ring_emit(ring, MI_DISPLAY_FLIP |
6973                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6974         intel_ring_emit(ring, fb->pitches[0]);
6975         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6976         intel_ring_emit(ring, 0); /* aux display base address, unused */
6977
6978         intel_mark_page_flip_active(intel_crtc);
6979         intel_ring_advance(ring);
6980         return 0;
6981
6982 err_unpin:
6983         intel_unpin_fb_obj(obj);
6984 err:
6985         return ret;
6986 }
6987
6988 static int intel_gen3_queue_flip(struct drm_device *dev,
6989                                  struct drm_crtc *crtc,
6990                                  struct drm_framebuffer *fb,
6991                                  struct drm_i915_gem_object *obj)
6992 {
6993         struct drm_i915_private *dev_priv = dev->dev_private;
6994         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6995         u32 flip_mask;
6996         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6997         int ret;
6998
6999         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7000         if (ret)
7001                 goto err;
7002
7003         ret = intel_ring_begin(ring, 6);
7004         if (ret)
7005                 goto err_unpin;
7006
7007         if (intel_crtc->plane)
7008                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7009         else
7010                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7011         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7012         intel_ring_emit(ring, MI_NOOP);
7013         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7014                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7015         intel_ring_emit(ring, fb->pitches[0]);
7016         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7017         intel_ring_emit(ring, MI_NOOP);
7018
7019         intel_mark_page_flip_active(intel_crtc);
7020         intel_ring_advance(ring);
7021         return 0;
7022
7023 err_unpin:
7024         intel_unpin_fb_obj(obj);
7025 err:
7026         return ret;
7027 }
7028
7029 static int intel_gen4_queue_flip(struct drm_device *dev,
7030                                  struct drm_crtc *crtc,
7031                                  struct drm_framebuffer *fb,
7032                                  struct drm_i915_gem_object *obj)
7033 {
7034         struct drm_i915_private *dev_priv = dev->dev_private;
7035         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7036         uint32_t pf, pipesrc;
7037         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7038         int ret;
7039
7040         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7041         if (ret)
7042                 goto err;
7043
7044         ret = intel_ring_begin(ring, 4);
7045         if (ret)
7046                 goto err_unpin;
7047
7048         /* i965+ uses the linear or tiled offsets from the
7049          * Display Registers (which do not change across a page-flip)
7050          * so we need only reprogram the base address.
7051          */
7052         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7053                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7054         intel_ring_emit(ring, fb->pitches[0]);
7055         intel_ring_emit(ring,
7056                         (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7057                         obj->tiling_mode);
7058
7059         /* XXX Enabling the panel-fitter across page-flip is so far
7060          * untested on non-native modes, so ignore it for now.
7061          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7062          */
7063         pf = 0;
7064         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7065         intel_ring_emit(ring, pf | pipesrc);
7066
7067         intel_mark_page_flip_active(intel_crtc);
7068         intel_ring_advance(ring);
7069         return 0;
7070
7071 err_unpin:
7072         intel_unpin_fb_obj(obj);
7073 err:
7074         return ret;
7075 }
7076
7077 static int intel_gen6_queue_flip(struct drm_device *dev,
7078                                  struct drm_crtc *crtc,
7079                                  struct drm_framebuffer *fb,
7080                                  struct drm_i915_gem_object *obj)
7081 {
7082         struct drm_i915_private *dev_priv = dev->dev_private;
7083         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7084         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7085         uint32_t pf, pipesrc;
7086         int ret;
7087
7088         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7089         if (ret)
7090                 goto err;
7091
7092         ret = intel_ring_begin(ring, 4);
7093         if (ret)
7094                 goto err_unpin;
7095
7096         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7097                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7098         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7099         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7100
7101         /* Contrary to the suggestions in the documentation,
7102          * "Enable Panel Fitter" does not seem to be required when page
7103          * flipping with a non-native mode, and worse causes a normal
7104          * modeset to fail.
7105          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7106          */
7107         pf = 0;
7108         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7109         intel_ring_emit(ring, pf | pipesrc);
7110
7111         intel_mark_page_flip_active(intel_crtc);
7112         intel_ring_advance(ring);
7113         return 0;
7114
7115 err_unpin:
7116         intel_unpin_fb_obj(obj);
7117 err:
7118         return ret;
7119 }
7120
7121 /*
7122  * On gen7 we currently use the blit ring because (in early silicon at least)
7123  * the render ring doesn't give us interrpts for page flip completion, which
7124  * means clients will hang after the first flip is queued.  Fortunately the
7125  * blit ring generates interrupts properly, so use it instead.
7126  */
7127 static int intel_gen7_queue_flip(struct drm_device *dev,
7128                                  struct drm_crtc *crtc,
7129                                  struct drm_framebuffer *fb,
7130                                  struct drm_i915_gem_object *obj)
7131 {
7132         struct drm_i915_private *dev_priv = dev->dev_private;
7133         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7134         struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7135         uint32_t plane_bit = 0;
7136         int ret;
7137
7138         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7139         if (ret)
7140                 goto err;
7141
7142         switch(intel_crtc->plane) {
7143         case PLANE_A:
7144                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7145                 break;
7146         case PLANE_B:
7147                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7148                 break;
7149         case PLANE_C:
7150                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7151                 break;
7152         default:
7153                 WARN_ONCE(1, "unknown plane in flip command\n");
7154                 ret = -ENODEV;
7155                 goto err_unpin;
7156         }
7157
7158         ret = intel_ring_begin(ring, 4);
7159         if (ret)
7160                 goto err_unpin;
7161
7162         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7163         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7164         intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7165         intel_ring_emit(ring, (MI_NOOP));
7166
7167         intel_mark_page_flip_active(intel_crtc);
7168         intel_ring_advance(ring);
7169         return 0;
7170
7171 err_unpin:
7172         intel_unpin_fb_obj(obj);
7173 err:
7174         return ret;
7175 }
7176
7177 static int intel_default_queue_flip(struct drm_device *dev,
7178                                     struct drm_crtc *crtc,
7179                                     struct drm_framebuffer *fb,
7180                                     struct drm_i915_gem_object *obj)
7181 {
7182         return -ENODEV;
7183 }
7184
7185 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7186                                 struct drm_framebuffer *fb,
7187                                 struct drm_pending_vblank_event *event)
7188 {
7189         struct drm_device *dev = crtc->dev;
7190         struct drm_i915_private *dev_priv = dev->dev_private;
7191         struct drm_framebuffer *old_fb = crtc->fb;
7192         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7193         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7194         struct intel_unpin_work *work;
7195         unsigned long flags;
7196         int ret;
7197
7198         /* Can't change pixel format via MI display flips. */
7199         if (fb->pixel_format != crtc->fb->pixel_format)
7200                 return -EINVAL;
7201
7202         /*
7203          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7204          * Note that pitch changes could also affect these register.
7205          */
7206         if (INTEL_INFO(dev)->gen > 3 &&
7207             (fb->offsets[0] != crtc->fb->offsets[0] ||
7208              fb->pitches[0] != crtc->fb->pitches[0]))
7209                 return -EINVAL;
7210
7211         work = kzalloc(sizeof *work, GFP_KERNEL);
7212         if (work == NULL)
7213                 return -ENOMEM;
7214
7215         work->event = event;
7216         work->crtc = crtc;
7217         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7218         INIT_WORK(&work->work, intel_unpin_work_fn);
7219
7220         ret = drm_vblank_get(dev, intel_crtc->pipe);
7221         if (ret)
7222                 goto free_work;
7223
7224         /* We borrow the event spin lock for protecting unpin_work */
7225         spin_lock_irqsave(&dev->event_lock, flags);
7226         if (intel_crtc->unpin_work) {
7227                 spin_unlock_irqrestore(&dev->event_lock, flags);
7228                 kfree(work);
7229                 drm_vblank_put(dev, intel_crtc->pipe);
7230
7231                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7232                 return -EBUSY;
7233         }
7234         intel_crtc->unpin_work = work;
7235         spin_unlock_irqrestore(&dev->event_lock, flags);
7236
7237         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7238                 flush_workqueue(dev_priv->wq);
7239
7240         ret = i915_mutex_lock_interruptible(dev);
7241         if (ret)
7242                 goto cleanup;
7243
7244         /* Reference the objects for the scheduled work. */
7245         drm_gem_object_reference(&work->old_fb_obj->base);
7246         drm_gem_object_reference(&obj->base);
7247
7248         crtc->fb = fb;
7249
7250         work->pending_flip_obj = obj;
7251
7252         work->enable_stall_check = true;
7253
7254         atomic_inc(&intel_crtc->unpin_work_count);
7255         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7256
7257         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7258         if (ret)
7259                 goto cleanup_pending;
7260
7261         intel_disable_fbc(dev);
7262         intel_mark_fb_busy(obj);
7263         mutex_unlock(&dev->struct_mutex);
7264
7265         trace_i915_flip_request(intel_crtc->plane, obj);
7266
7267         return 0;
7268
7269 cleanup_pending:
7270         atomic_dec(&intel_crtc->unpin_work_count);
7271         crtc->fb = old_fb;
7272         drm_gem_object_unreference(&work->old_fb_obj->base);
7273         drm_gem_object_unreference(&obj->base);
7274         mutex_unlock(&dev->struct_mutex);
7275
7276 cleanup:
7277         spin_lock_irqsave(&dev->event_lock, flags);
7278         intel_crtc->unpin_work = NULL;
7279         spin_unlock_irqrestore(&dev->event_lock, flags);
7280
7281         drm_vblank_put(dev, intel_crtc->pipe);
7282 free_work:
7283         kfree(work);
7284
7285         return ret;
7286 }
7287
7288 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7289         .mode_set_base_atomic = intel_pipe_set_base_atomic,
7290         .load_lut = intel_crtc_load_lut,
7291 };
7292
7293 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7294 {
7295         struct intel_encoder *other_encoder;
7296         struct drm_crtc *crtc = &encoder->new_crtc->base;
7297
7298         if (WARN_ON(!crtc))
7299                 return false;
7300
7301         list_for_each_entry(other_encoder,
7302                             &crtc->dev->mode_config.encoder_list,
7303                             base.head) {
7304
7305                 if (&other_encoder->new_crtc->base != crtc ||
7306                     encoder == other_encoder)
7307                         continue;
7308                 else
7309                         return true;
7310         }
7311
7312         return false;
7313 }
7314
7315 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7316                                   struct drm_crtc *crtc)
7317 {
7318         struct drm_device *dev;
7319         struct drm_crtc *tmp;
7320         int crtc_mask = 1;
7321
7322         WARN(!crtc, "checking null crtc?\n");
7323
7324         dev = crtc->dev;
7325
7326         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7327                 if (tmp == crtc)
7328                         break;
7329                 crtc_mask <<= 1;
7330         }
7331
7332         if (encoder->possible_crtcs & crtc_mask)
7333                 return true;
7334         return false;
7335 }
7336
7337 /**
7338  * intel_modeset_update_staged_output_state
7339  *
7340  * Updates the staged output configuration state, e.g. after we've read out the
7341  * current hw state.
7342  */
7343 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7344 {
7345         struct intel_encoder *encoder;
7346         struct intel_connector *connector;
7347
7348         list_for_each_entry(connector, &dev->mode_config.connector_list,
7349                             base.head) {
7350                 connector->new_encoder =
7351                         to_intel_encoder(connector->base.encoder);
7352         }
7353
7354         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7355                             base.head) {
7356                 encoder->new_crtc =
7357                         to_intel_crtc(encoder->base.crtc);
7358         }
7359 }
7360
7361 /**
7362  * intel_modeset_commit_output_state
7363  *
7364  * This function copies the stage display pipe configuration to the real one.
7365  */
7366 static void intel_modeset_commit_output_state(struct drm_device *dev)
7367 {
7368         struct intel_encoder *encoder;
7369         struct intel_connector *connector;
7370
7371         list_for_each_entry(connector, &dev->mode_config.connector_list,
7372                             base.head) {
7373                 connector->base.encoder = &connector->new_encoder->base;
7374         }
7375
7376         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7377                             base.head) {
7378                 encoder->base.crtc = &encoder->new_crtc->base;
7379         }
7380 }
7381
7382 static int
7383 pipe_config_set_bpp(struct drm_crtc *crtc,
7384                     struct drm_framebuffer *fb,
7385                     struct intel_crtc_config *pipe_config)
7386 {
7387         struct drm_device *dev = crtc->dev;
7388         struct drm_connector *connector;
7389         int bpp;
7390
7391         switch (fb->depth) {
7392         case 8:
7393                 bpp = 8*3; /* since we go through a colormap */
7394                 break;
7395         case 15:
7396         case 16:
7397                 bpp = 6*3; /* min is 18bpp */
7398                 break;
7399         case 24:
7400                 bpp = 8*3;
7401                 break;
7402         case 30:
7403                 bpp = 10*3;
7404                 break;
7405         case 48:
7406                 bpp = 12*3;
7407                 break;
7408         default:
7409                 DRM_DEBUG_KMS("unsupported depth\n");
7410                 return -EINVAL;
7411         }
7412
7413         if (fb->depth > 24 && !HAS_PCH_SPLIT(dev)) {
7414                 DRM_DEBUG_KMS("high depth not supported on gmch platforms\n");
7415                 return -EINVAL;
7416         }
7417
7418         pipe_config->pipe_bpp = bpp;
7419
7420         /* Clamp display bpp to EDID value */
7421         list_for_each_entry(connector, &dev->mode_config.connector_list,
7422                             head) {
7423                 if (connector->encoder && connector->encoder->crtc != crtc)
7424                         continue;
7425
7426                 /* Don't use an invalid EDID bpc value */
7427                 if (connector->display_info.bpc &&
7428                     connector->display_info.bpc * 3 < bpp) {
7429                         DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7430                                       bpp, connector->display_info.bpc*3);
7431                         pipe_config->pipe_bpp = connector->display_info.bpc*3;
7432                 }
7433         }
7434
7435         return bpp;
7436 }
7437
7438 static struct intel_crtc_config *
7439 intel_modeset_pipe_config(struct drm_crtc *crtc,
7440                           struct drm_framebuffer *fb,
7441                           struct drm_display_mode *mode)
7442 {
7443         struct drm_device *dev = crtc->dev;
7444         struct drm_encoder_helper_funcs *encoder_funcs;
7445         struct intel_encoder *encoder;
7446         struct intel_crtc_config *pipe_config;
7447         int plane_bpp;
7448
7449         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7450         if (!pipe_config)
7451                 return ERR_PTR(-ENOMEM);
7452
7453         drm_mode_copy(&pipe_config->adjusted_mode, mode);
7454         drm_mode_copy(&pipe_config->requested_mode, mode);
7455
7456         plane_bpp = pipe_config_set_bpp(crtc, fb, pipe_config);
7457         if (plane_bpp < 0)
7458                 goto fail;
7459
7460         /* Pass our mode to the connectors and the CRTC to give them a chance to
7461          * adjust it according to limitations or connector properties, and also
7462          * a chance to reject the mode entirely.
7463          */
7464         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7465                             base.head) {
7466
7467                 if (&encoder->new_crtc->base != crtc)
7468                         continue;
7469
7470                 if (encoder->compute_config) {
7471                         if (!(encoder->compute_config(encoder, pipe_config))) {
7472                                 DRM_DEBUG_KMS("Encoder config failure\n");
7473                                 goto fail;
7474                         }
7475
7476                         continue;
7477                 }
7478
7479                 encoder_funcs = encoder->base.helper_private;
7480                 if (!(encoder_funcs->mode_fixup(&encoder->base,
7481                                                 &pipe_config->requested_mode,
7482                                                 &pipe_config->adjusted_mode))) {
7483                         DRM_DEBUG_KMS("Encoder fixup failed\n");
7484                         goto fail;
7485                 }
7486         }
7487
7488         /* temporary hack until the DP code doesn't use the 6BPC flag any more */
7489         if (pipe_config->adjusted_mode.private_flags & INTEL_MODE_DP_FORCE_6BPC)
7490                 pipe_config->pipe_bpp = 6*8;
7491
7492         if (!(intel_crtc_compute_config(crtc, pipe_config))) {
7493                 DRM_DEBUG_KMS("CRTC fixup failed\n");
7494                 goto fail;
7495         }
7496         DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7497
7498         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
7499         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
7500                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
7501
7502         return pipe_config;
7503 fail:
7504         kfree(pipe_config);
7505         return ERR_PTR(-EINVAL);
7506 }
7507
7508 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7509  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7510 static void
7511 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7512                              unsigned *prepare_pipes, unsigned *disable_pipes)
7513 {
7514         struct intel_crtc *intel_crtc;
7515         struct drm_device *dev = crtc->dev;
7516         struct intel_encoder *encoder;
7517         struct intel_connector *connector;
7518         struct drm_crtc *tmp_crtc;
7519
7520         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7521
7522         /* Check which crtcs have changed outputs connected to them, these need
7523          * to be part of the prepare_pipes mask. We don't (yet) support global
7524          * modeset across multiple crtcs, so modeset_pipes will only have one
7525          * bit set at most. */
7526         list_for_each_entry(connector, &dev->mode_config.connector_list,
7527                             base.head) {
7528                 if (connector->base.encoder == &connector->new_encoder->base)
7529                         continue;
7530
7531                 if (connector->base.encoder) {
7532                         tmp_crtc = connector->base.encoder->crtc;
7533
7534                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7535                 }
7536
7537                 if (connector->new_encoder)
7538                         *prepare_pipes |=
7539                                 1 << connector->new_encoder->new_crtc->pipe;
7540         }
7541
7542         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7543                             base.head) {
7544                 if (encoder->base.crtc == &encoder->new_crtc->base)
7545                         continue;
7546
7547                 if (encoder->base.crtc) {
7548                         tmp_crtc = encoder->base.crtc;
7549
7550                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7551                 }
7552
7553                 if (encoder->new_crtc)
7554                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7555         }
7556
7557         /* Check for any pipes that will be fully disabled ... */
7558         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7559                             base.head) {
7560                 bool used = false;
7561
7562                 /* Don't try to disable disabled crtcs. */
7563                 if (!intel_crtc->base.enabled)
7564                         continue;
7565
7566                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7567                                     base.head) {
7568                         if (encoder->new_crtc == intel_crtc)
7569                                 used = true;
7570                 }
7571
7572                 if (!used)
7573                         *disable_pipes |= 1 << intel_crtc->pipe;
7574         }
7575
7576
7577         /* set_mode is also used to update properties on life display pipes. */
7578         intel_crtc = to_intel_crtc(crtc);
7579         if (crtc->enabled)
7580                 *prepare_pipes |= 1 << intel_crtc->pipe;
7581
7582         /* We only support modeset on one single crtc, hence we need to do that
7583          * only for the passed in crtc iff we change anything else than just
7584          * disable crtcs.
7585          *
7586          * This is actually not true, to be fully compatible with the old crtc
7587          * helper we automatically disable _any_ output (i.e. doesn't need to be
7588          * connected to the crtc we're modesetting on) if it's disconnected.
7589          * Which is a rather nutty api (since changed the output configuration
7590          * without userspace's explicit request can lead to confusion), but
7591          * alas. Hence we currently need to modeset on all pipes we prepare. */
7592         if (*prepare_pipes)
7593                 *modeset_pipes = *prepare_pipes;
7594
7595         /* ... and mask these out. */
7596         *modeset_pipes &= ~(*disable_pipes);
7597         *prepare_pipes &= ~(*disable_pipes);
7598 }
7599
7600 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7601 {
7602         struct drm_encoder *encoder;
7603         struct drm_device *dev = crtc->dev;
7604
7605         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7606                 if (encoder->crtc == crtc)
7607                         return true;
7608
7609         return false;
7610 }
7611
7612 static void
7613 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7614 {
7615         struct intel_encoder *intel_encoder;
7616         struct intel_crtc *intel_crtc;
7617         struct drm_connector *connector;
7618
7619         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7620                             base.head) {
7621                 if (!intel_encoder->base.crtc)
7622                         continue;
7623
7624                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7625
7626                 if (prepare_pipes & (1 << intel_crtc->pipe))
7627                         intel_encoder->connectors_active = false;
7628         }
7629
7630         intel_modeset_commit_output_state(dev);
7631
7632         /* Update computed state. */
7633         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7634                             base.head) {
7635                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7636         }
7637
7638         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7639                 if (!connector->encoder || !connector->encoder->crtc)
7640                         continue;
7641
7642                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7643
7644                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7645                         struct drm_property *dpms_property =
7646                                 dev->mode_config.dpms_property;
7647
7648                         connector->dpms = DRM_MODE_DPMS_ON;
7649                         drm_object_property_set_value(&connector->base,
7650                                                          dpms_property,
7651                                                          DRM_MODE_DPMS_ON);
7652
7653                         intel_encoder = to_intel_encoder(connector->encoder);
7654                         intel_encoder->connectors_active = true;
7655                 }
7656         }
7657
7658 }
7659
7660 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7661         list_for_each_entry((intel_crtc), \
7662                             &(dev)->mode_config.crtc_list, \
7663                             base.head) \
7664                 if (mask & (1 <<(intel_crtc)->pipe)) \
7665
7666 void
7667 intel_modeset_check_state(struct drm_device *dev)
7668 {
7669         struct intel_crtc *crtc;
7670         struct intel_encoder *encoder;
7671         struct intel_connector *connector;
7672
7673         list_for_each_entry(connector, &dev->mode_config.connector_list,
7674                             base.head) {
7675                 /* This also checks the encoder/connector hw state with the
7676                  * ->get_hw_state callbacks. */
7677                 intel_connector_check_state(connector);
7678
7679                 WARN(&connector->new_encoder->base != connector->base.encoder,
7680                      "connector's staged encoder doesn't match current encoder\n");
7681         }
7682
7683         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7684                             base.head) {
7685                 bool enabled = false;
7686                 bool active = false;
7687                 enum pipe pipe, tracked_pipe;
7688
7689                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7690                               encoder->base.base.id,
7691                               drm_get_encoder_name(&encoder->base));
7692
7693                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7694                      "encoder's stage crtc doesn't match current crtc\n");
7695                 WARN(encoder->connectors_active && !encoder->base.crtc,
7696                      "encoder's active_connectors set, but no crtc\n");
7697
7698                 list_for_each_entry(connector, &dev->mode_config.connector_list,
7699                                     base.head) {
7700                         if (connector->base.encoder != &encoder->base)
7701                                 continue;
7702                         enabled = true;
7703                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7704                                 active = true;
7705                 }
7706                 WARN(!!encoder->base.crtc != enabled,
7707                      "encoder's enabled state mismatch "
7708                      "(expected %i, found %i)\n",
7709                      !!encoder->base.crtc, enabled);
7710                 WARN(active && !encoder->base.crtc,
7711                      "active encoder with no crtc\n");
7712
7713                 WARN(encoder->connectors_active != active,
7714                      "encoder's computed active state doesn't match tracked active state "
7715                      "(expected %i, found %i)\n", active, encoder->connectors_active);
7716
7717                 active = encoder->get_hw_state(encoder, &pipe);
7718                 WARN(active != encoder->connectors_active,
7719                      "encoder's hw state doesn't match sw tracking "
7720                      "(expected %i, found %i)\n",
7721                      encoder->connectors_active, active);
7722
7723                 if (!encoder->base.crtc)
7724                         continue;
7725
7726                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7727                 WARN(active && pipe != tracked_pipe,
7728                      "active encoder's pipe doesn't match"
7729                      "(expected %i, found %i)\n",
7730                      tracked_pipe, pipe);
7731
7732         }
7733
7734         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7735                             base.head) {
7736                 bool enabled = false;
7737                 bool active = false;
7738
7739                 DRM_DEBUG_KMS("[CRTC:%d]\n",
7740                               crtc->base.base.id);
7741
7742                 WARN(crtc->active && !crtc->base.enabled,
7743                      "active crtc, but not enabled in sw tracking\n");
7744
7745                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7746                                     base.head) {
7747                         if (encoder->base.crtc != &crtc->base)
7748                                 continue;
7749                         enabled = true;
7750                         if (encoder->connectors_active)
7751                                 active = true;
7752                 }
7753                 WARN(active != crtc->active,
7754                      "crtc's computed active state doesn't match tracked active state "
7755                      "(expected %i, found %i)\n", active, crtc->active);
7756                 WARN(enabled != crtc->base.enabled,
7757                      "crtc's computed enabled state doesn't match tracked enabled state "
7758                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7759
7760                 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7761         }
7762 }
7763
7764 int intel_set_mode(struct drm_crtc *crtc,
7765                    struct drm_display_mode *mode,
7766                    int x, int y, struct drm_framebuffer *fb)
7767 {
7768         struct drm_device *dev = crtc->dev;
7769         drm_i915_private_t *dev_priv = dev->dev_private;
7770         struct drm_display_mode *saved_mode, *saved_hwmode;
7771         struct intel_crtc_config *pipe_config = NULL;
7772         struct intel_crtc *intel_crtc;
7773         unsigned disable_pipes, prepare_pipes, modeset_pipes;
7774         int ret = 0;
7775
7776         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
7777         if (!saved_mode)
7778                 return -ENOMEM;
7779         saved_hwmode = saved_mode + 1;
7780
7781         intel_modeset_affected_pipes(crtc, &modeset_pipes,
7782                                      &prepare_pipes, &disable_pipes);
7783
7784         *saved_hwmode = crtc->hwmode;
7785         *saved_mode = crtc->mode;
7786
7787         /* Hack: Because we don't (yet) support global modeset on multiple
7788          * crtcs, we don't keep track of the new mode for more than one crtc.
7789          * Hence simply check whether any bit is set in modeset_pipes in all the
7790          * pieces of code that are not yet converted to deal with mutliple crtcs
7791          * changing their mode at the same time. */
7792         if (modeset_pipes) {
7793                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
7794                 if (IS_ERR(pipe_config)) {
7795                         ret = PTR_ERR(pipe_config);
7796                         pipe_config = NULL;
7797
7798                         goto out;
7799                 }
7800         }
7801
7802         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7803                       modeset_pipes, prepare_pipes, disable_pipes);
7804
7805         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7806                 intel_crtc_disable(&intel_crtc->base);
7807
7808         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7809                 if (intel_crtc->base.enabled)
7810                         dev_priv->display.crtc_disable(&intel_crtc->base);
7811         }
7812
7813         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7814          * to set it here already despite that we pass it down the callchain.
7815          */
7816         if (modeset_pipes) {
7817                 crtc->mode = *mode;
7818                 /* mode_set/enable/disable functions rely on a correct pipe
7819                  * config. */
7820                 to_intel_crtc(crtc)->config = *pipe_config;
7821         }
7822
7823         /* Only after disabling all output pipelines that will be changed can we
7824          * update the the output configuration. */
7825         intel_modeset_update_state(dev, prepare_pipes);
7826
7827         if (dev_priv->display.modeset_global_resources)
7828                 dev_priv->display.modeset_global_resources(dev);
7829
7830         /* Set up the DPLL and any encoders state that needs to adjust or depend
7831          * on the DPLL.
7832          */
7833         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7834                 ret = intel_crtc_mode_set(&intel_crtc->base,
7835                                           x, y, fb);
7836                 if (ret)
7837                         goto done;
7838         }
7839
7840         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7841         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7842                 dev_priv->display.crtc_enable(&intel_crtc->base);
7843
7844         if (modeset_pipes) {
7845                 /* Store real post-adjustment hardware mode. */
7846                 crtc->hwmode = pipe_config->adjusted_mode;
7847
7848                 /* Calculate and store various constants which
7849                  * are later needed by vblank and swap-completion
7850                  * timestamping. They are derived from true hwmode.
7851                  */
7852                 drm_calc_timestamping_constants(crtc);
7853         }
7854
7855         /* FIXME: add subpixel order */
7856 done:
7857         if (ret && crtc->enabled) {
7858                 crtc->hwmode = *saved_hwmode;
7859                 crtc->mode = *saved_mode;
7860         } else {
7861                 intel_modeset_check_state(dev);
7862         }
7863
7864 out:
7865         kfree(pipe_config);
7866         kfree(saved_mode);
7867         return ret;
7868 }
7869
7870 void intel_crtc_restore_mode(struct drm_crtc *crtc)
7871 {
7872         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
7873 }
7874
7875 #undef for_each_intel_crtc_masked
7876
7877 static void intel_set_config_free(struct intel_set_config *config)
7878 {
7879         if (!config)
7880                 return;
7881
7882         kfree(config->save_connector_encoders);
7883         kfree(config->save_encoder_crtcs);
7884         kfree(config);
7885 }
7886
7887 static int intel_set_config_save_state(struct drm_device *dev,
7888                                        struct intel_set_config *config)
7889 {
7890         struct drm_encoder *encoder;
7891         struct drm_connector *connector;
7892         int count;
7893
7894         config->save_encoder_crtcs =
7895                 kcalloc(dev->mode_config.num_encoder,
7896                         sizeof(struct drm_crtc *), GFP_KERNEL);
7897         if (!config->save_encoder_crtcs)
7898                 return -ENOMEM;
7899
7900         config->save_connector_encoders =
7901                 kcalloc(dev->mode_config.num_connector,
7902                         sizeof(struct drm_encoder *), GFP_KERNEL);
7903         if (!config->save_connector_encoders)
7904                 return -ENOMEM;
7905
7906         /* Copy data. Note that driver private data is not affected.
7907          * Should anything bad happen only the expected state is
7908          * restored, not the drivers personal bookkeeping.
7909          */
7910         count = 0;
7911         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7912                 config->save_encoder_crtcs[count++] = encoder->crtc;
7913         }
7914
7915         count = 0;
7916         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7917                 config->save_connector_encoders[count++] = connector->encoder;
7918         }
7919
7920         return 0;
7921 }
7922
7923 static void intel_set_config_restore_state(struct drm_device *dev,
7924                                            struct intel_set_config *config)
7925 {
7926         struct intel_encoder *encoder;
7927         struct intel_connector *connector;
7928         int count;
7929
7930         count = 0;
7931         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7932                 encoder->new_crtc =
7933                         to_intel_crtc(config->save_encoder_crtcs[count++]);
7934         }
7935
7936         count = 0;
7937         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7938                 connector->new_encoder =
7939                         to_intel_encoder(config->save_connector_encoders[count++]);
7940         }
7941 }
7942
7943 static void
7944 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7945                                       struct intel_set_config *config)
7946 {
7947
7948         /* We should be able to check here if the fb has the same properties
7949          * and then just flip_or_move it */
7950         if (set->crtc->fb != set->fb) {
7951                 /* If we have no fb then treat it as a full mode set */
7952                 if (set->crtc->fb == NULL) {
7953                         DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7954                         config->mode_changed = true;
7955                 } else if (set->fb == NULL) {
7956                         config->mode_changed = true;
7957                 } else if (set->fb->depth != set->crtc->fb->depth) {
7958                         config->mode_changed = true;
7959                 } else if (set->fb->bits_per_pixel !=
7960                            set->crtc->fb->bits_per_pixel) {
7961                         config->mode_changed = true;
7962                 } else
7963                         config->fb_changed = true;
7964         }
7965
7966         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7967                 config->fb_changed = true;
7968
7969         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7970                 DRM_DEBUG_KMS("modes are different, full mode set\n");
7971                 drm_mode_debug_printmodeline(&set->crtc->mode);
7972                 drm_mode_debug_printmodeline(set->mode);
7973                 config->mode_changed = true;
7974         }
7975 }
7976
7977 static int
7978 intel_modeset_stage_output_state(struct drm_device *dev,
7979                                  struct drm_mode_set *set,
7980                                  struct intel_set_config *config)
7981 {
7982         struct drm_crtc *new_crtc;
7983         struct intel_connector *connector;
7984         struct intel_encoder *encoder;
7985         int count, ro;
7986
7987         /* The upper layers ensure that we either disable a crtc or have a list
7988          * of connectors. For paranoia, double-check this. */
7989         WARN_ON(!set->fb && (set->num_connectors != 0));
7990         WARN_ON(set->fb && (set->num_connectors == 0));
7991
7992         count = 0;
7993         list_for_each_entry(connector, &dev->mode_config.connector_list,
7994                             base.head) {
7995                 /* Otherwise traverse passed in connector list and get encoders
7996                  * for them. */
7997                 for (ro = 0; ro < set->num_connectors; ro++) {
7998                         if (set->connectors[ro] == &connector->base) {
7999                                 connector->new_encoder = connector->encoder;
8000                                 break;
8001                         }
8002                 }
8003
8004                 /* If we disable the crtc, disable all its connectors. Also, if
8005                  * the connector is on the changing crtc but not on the new
8006                  * connector list, disable it. */
8007                 if ((!set->fb || ro == set->num_connectors) &&
8008                     connector->base.encoder &&
8009                     connector->base.encoder->crtc == set->crtc) {
8010                         connector->new_encoder = NULL;
8011
8012                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8013                                 connector->base.base.id,
8014                                 drm_get_connector_name(&connector->base));
8015                 }
8016
8017
8018                 if (&connector->new_encoder->base != connector->base.encoder) {
8019                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8020                         config->mode_changed = true;
8021                 }
8022         }
8023         /* connector->new_encoder is now updated for all connectors. */
8024
8025         /* Update crtc of enabled connectors. */
8026         count = 0;
8027         list_for_each_entry(connector, &dev->mode_config.connector_list,
8028                             base.head) {
8029                 if (!connector->new_encoder)
8030                         continue;
8031
8032                 new_crtc = connector->new_encoder->base.crtc;
8033
8034                 for (ro = 0; ro < set->num_connectors; ro++) {
8035                         if (set->connectors[ro] == &connector->base)
8036                                 new_crtc = set->crtc;
8037                 }
8038
8039                 /* Make sure the new CRTC will work with the encoder */
8040                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8041                                            new_crtc)) {
8042                         return -EINVAL;
8043                 }
8044                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8045
8046                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8047                         connector->base.base.id,
8048                         drm_get_connector_name(&connector->base),
8049                         new_crtc->base.id);
8050         }
8051
8052         /* Check for any encoders that needs to be disabled. */
8053         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8054                             base.head) {
8055                 list_for_each_entry(connector,
8056                                     &dev->mode_config.connector_list,
8057                                     base.head) {
8058                         if (connector->new_encoder == encoder) {
8059                                 WARN_ON(!connector->new_encoder->new_crtc);
8060
8061                                 goto next_encoder;
8062                         }
8063                 }
8064                 encoder->new_crtc = NULL;
8065 next_encoder:
8066                 /* Only now check for crtc changes so we don't miss encoders
8067                  * that will be disabled. */
8068                 if (&encoder->new_crtc->base != encoder->base.crtc) {
8069                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8070                         config->mode_changed = true;
8071                 }
8072         }
8073         /* Now we've also updated encoder->new_crtc for all encoders. */
8074
8075         return 0;
8076 }
8077
8078 static int intel_crtc_set_config(struct drm_mode_set *set)
8079 {
8080         struct drm_device *dev;
8081         struct drm_mode_set save_set;
8082         struct intel_set_config *config;
8083         int ret;
8084
8085         BUG_ON(!set);
8086         BUG_ON(!set->crtc);
8087         BUG_ON(!set->crtc->helper_private);
8088
8089         /* Enforce sane interface api - has been abused by the fb helper. */
8090         BUG_ON(!set->mode && set->fb);
8091         BUG_ON(set->fb && set->num_connectors == 0);
8092
8093         if (set->fb) {
8094                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8095                                 set->crtc->base.id, set->fb->base.id,
8096                                 (int)set->num_connectors, set->x, set->y);
8097         } else {
8098                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8099         }
8100
8101         dev = set->crtc->dev;
8102
8103         ret = -ENOMEM;
8104         config = kzalloc(sizeof(*config), GFP_KERNEL);
8105         if (!config)
8106                 goto out_config;
8107
8108         ret = intel_set_config_save_state(dev, config);
8109         if (ret)
8110                 goto out_config;
8111
8112         save_set.crtc = set->crtc;
8113         save_set.mode = &set->crtc->mode;
8114         save_set.x = set->crtc->x;
8115         save_set.y = set->crtc->y;
8116         save_set.fb = set->crtc->fb;
8117
8118         /* Compute whether we need a full modeset, only an fb base update or no
8119          * change at all. In the future we might also check whether only the
8120          * mode changed, e.g. for LVDS where we only change the panel fitter in
8121          * such cases. */
8122         intel_set_config_compute_mode_changes(set, config);
8123
8124         ret = intel_modeset_stage_output_state(dev, set, config);
8125         if (ret)
8126                 goto fail;
8127
8128         if (config->mode_changed) {
8129                 if (set->mode) {
8130                         DRM_DEBUG_KMS("attempting to set mode from"
8131                                         " userspace\n");
8132                         drm_mode_debug_printmodeline(set->mode);
8133                 }
8134
8135                 ret = intel_set_mode(set->crtc, set->mode,
8136                                      set->x, set->y, set->fb);
8137                 if (ret) {
8138                         DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
8139                                   set->crtc->base.id, ret);
8140                         goto fail;
8141                 }
8142         } else if (config->fb_changed) {
8143                 intel_crtc_wait_for_pending_flips(set->crtc);
8144
8145                 ret = intel_pipe_set_base(set->crtc,
8146                                           set->x, set->y, set->fb);
8147         }
8148
8149         intel_set_config_free(config);
8150
8151         return 0;
8152
8153 fail:
8154         intel_set_config_restore_state(dev, config);
8155
8156         /* Try to restore the config */
8157         if (config->mode_changed &&
8158             intel_set_mode(save_set.crtc, save_set.mode,
8159                            save_set.x, save_set.y, save_set.fb))
8160                 DRM_ERROR("failed to restore config after modeset failure\n");
8161
8162 out_config:
8163         intel_set_config_free(config);
8164         return ret;
8165 }
8166
8167 static const struct drm_crtc_funcs intel_crtc_funcs = {
8168         .cursor_set = intel_crtc_cursor_set,
8169         .cursor_move = intel_crtc_cursor_move,
8170         .gamma_set = intel_crtc_gamma_set,
8171         .set_config = intel_crtc_set_config,
8172         .destroy = intel_crtc_destroy,
8173         .page_flip = intel_crtc_page_flip,
8174 };
8175
8176 static void intel_cpu_pll_init(struct drm_device *dev)
8177 {
8178         if (HAS_DDI(dev))
8179                 intel_ddi_pll_init(dev);
8180 }
8181
8182 static void intel_pch_pll_init(struct drm_device *dev)
8183 {
8184         drm_i915_private_t *dev_priv = dev->dev_private;
8185         int i;
8186
8187         if (dev_priv->num_pch_pll == 0) {
8188                 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8189                 return;
8190         }
8191
8192         for (i = 0; i < dev_priv->num_pch_pll; i++) {
8193                 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8194                 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8195                 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8196         }
8197 }
8198
8199 static void intel_crtc_init(struct drm_device *dev, int pipe)
8200 {
8201         drm_i915_private_t *dev_priv = dev->dev_private;
8202         struct intel_crtc *intel_crtc;
8203         int i;
8204
8205         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8206         if (intel_crtc == NULL)
8207                 return;
8208
8209         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8210
8211         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8212         for (i = 0; i < 256; i++) {
8213                 intel_crtc->lut_r[i] = i;
8214                 intel_crtc->lut_g[i] = i;
8215                 intel_crtc->lut_b[i] = i;
8216         }
8217
8218         /* Swap pipes & planes for FBC on pre-965 */
8219         intel_crtc->pipe = pipe;
8220         intel_crtc->plane = pipe;
8221         intel_crtc->cpu_transcoder = pipe;
8222         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8223                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8224                 intel_crtc->plane = !pipe;
8225         }
8226
8227         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8228                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8229         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8230         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8231
8232         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8233 }
8234
8235 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8236                                 struct drm_file *file)
8237 {
8238         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8239         struct drm_mode_object *drmmode_obj;
8240         struct intel_crtc *crtc;
8241
8242         if (!drm_core_check_feature(dev, DRIVER_MODESET))
8243                 return -ENODEV;
8244
8245         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8246                         DRM_MODE_OBJECT_CRTC);
8247
8248         if (!drmmode_obj) {
8249                 DRM_ERROR("no such CRTC id\n");
8250                 return -EINVAL;
8251         }
8252
8253         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8254         pipe_from_crtc_id->pipe = crtc->pipe;
8255
8256         return 0;
8257 }
8258
8259 static int intel_encoder_clones(struct intel_encoder *encoder)
8260 {
8261         struct drm_device *dev = encoder->base.dev;
8262         struct intel_encoder *source_encoder;
8263         int index_mask = 0;
8264         int entry = 0;
8265
8266         list_for_each_entry(source_encoder,
8267                             &dev->mode_config.encoder_list, base.head) {
8268
8269                 if (encoder == source_encoder)
8270                         index_mask |= (1 << entry);
8271
8272                 /* Intel hw has only one MUX where enocoders could be cloned. */
8273                 if (encoder->cloneable && source_encoder->cloneable)
8274                         index_mask |= (1 << entry);
8275
8276                 entry++;
8277         }
8278
8279         return index_mask;
8280 }
8281
8282 static bool has_edp_a(struct drm_device *dev)
8283 {
8284         struct drm_i915_private *dev_priv = dev->dev_private;
8285
8286         if (!IS_MOBILE(dev))
8287                 return false;
8288
8289         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8290                 return false;
8291
8292         if (IS_GEN5(dev) &&
8293             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8294                 return false;
8295
8296         return true;
8297 }
8298
8299 static void intel_setup_outputs(struct drm_device *dev)
8300 {
8301         struct drm_i915_private *dev_priv = dev->dev_private;
8302         struct intel_encoder *encoder;
8303         bool dpd_is_edp = false;
8304         bool has_lvds;
8305
8306         has_lvds = intel_lvds_init(dev);
8307         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8308                 /* disable the panel fitter on everything but LVDS */
8309                 I915_WRITE(PFIT_CONTROL, 0);
8310         }
8311
8312         if (!(HAS_DDI(dev) && (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
8313                 intel_crt_init(dev);
8314
8315         if (HAS_DDI(dev)) {
8316                 int found;
8317
8318                 /* Haswell uses DDI functions to detect digital outputs */
8319                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8320                 /* DDI A only supports eDP */
8321                 if (found)
8322                         intel_ddi_init(dev, PORT_A);
8323
8324                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8325                  * register */
8326                 found = I915_READ(SFUSE_STRAP);
8327
8328                 if (found & SFUSE_STRAP_DDIB_DETECTED)
8329                         intel_ddi_init(dev, PORT_B);
8330                 if (found & SFUSE_STRAP_DDIC_DETECTED)
8331                         intel_ddi_init(dev, PORT_C);
8332                 if (found & SFUSE_STRAP_DDID_DETECTED)
8333                         intel_ddi_init(dev, PORT_D);
8334         } else if (HAS_PCH_SPLIT(dev)) {
8335                 int found;
8336                 dpd_is_edp = intel_dpd_is_edp(dev);
8337
8338                 if (has_edp_a(dev))
8339                         intel_dp_init(dev, DP_A, PORT_A);
8340
8341                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
8342                         /* PCH SDVOB multiplex with HDMIB */
8343                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
8344                         if (!found)
8345                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
8346                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8347                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
8348                 }
8349
8350                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
8351                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
8352
8353                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
8354                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
8355
8356                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8357                         intel_dp_init(dev, PCH_DP_C, PORT_C);
8358
8359                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8360                         intel_dp_init(dev, PCH_DP_D, PORT_D);
8361         } else if (IS_VALLEYVIEW(dev)) {
8362                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8363                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
8364                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
8365
8366                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
8367                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
8368                                         PORT_B);
8369                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
8370                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
8371                 }
8372         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8373                 bool found = false;
8374
8375                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8376                         DRM_DEBUG_KMS("probing SDVOB\n");
8377                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
8378                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8379                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8380                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
8381                         }
8382
8383                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8384                                 DRM_DEBUG_KMS("probing DP_B\n");
8385                                 intel_dp_init(dev, DP_B, PORT_B);
8386                         }
8387                 }
8388
8389                 /* Before G4X SDVOC doesn't have its own detect register */
8390
8391                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8392                         DRM_DEBUG_KMS("probing SDVOC\n");
8393                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
8394                 }
8395
8396                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
8397
8398                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8399                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8400                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
8401                         }
8402                         if (SUPPORTS_INTEGRATED_DP(dev)) {
8403                                 DRM_DEBUG_KMS("probing DP_C\n");
8404                                 intel_dp_init(dev, DP_C, PORT_C);
8405                         }
8406                 }
8407
8408                 if (SUPPORTS_INTEGRATED_DP(dev) &&
8409                     (I915_READ(DP_D) & DP_DETECTED)) {
8410                         DRM_DEBUG_KMS("probing DP_D\n");
8411                         intel_dp_init(dev, DP_D, PORT_D);
8412                 }
8413         } else if (IS_GEN2(dev))
8414                 intel_dvo_init(dev);
8415
8416         if (SUPPORTS_TV(dev))
8417                 intel_tv_init(dev);
8418
8419         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8420                 encoder->base.possible_crtcs = encoder->crtc_mask;
8421                 encoder->base.possible_clones =
8422                         intel_encoder_clones(encoder);
8423         }
8424
8425         intel_init_pch_refclk(dev);
8426
8427         drm_helper_move_panel_connectors_to_head(dev);
8428 }
8429
8430 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8431 {
8432         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8433
8434         drm_framebuffer_cleanup(fb);
8435         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8436
8437         kfree(intel_fb);
8438 }
8439
8440 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8441                                                 struct drm_file *file,
8442                                                 unsigned int *handle)
8443 {
8444         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8445         struct drm_i915_gem_object *obj = intel_fb->obj;
8446
8447         return drm_gem_handle_create(file, &obj->base, handle);
8448 }
8449
8450 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8451         .destroy = intel_user_framebuffer_destroy,
8452         .create_handle = intel_user_framebuffer_create_handle,
8453 };
8454
8455 int intel_framebuffer_init(struct drm_device *dev,
8456                            struct intel_framebuffer *intel_fb,
8457                            struct drm_mode_fb_cmd2 *mode_cmd,
8458                            struct drm_i915_gem_object *obj)
8459 {
8460         int ret;
8461
8462         if (obj->tiling_mode == I915_TILING_Y) {
8463                 DRM_DEBUG("hardware does not support tiling Y\n");
8464                 return -EINVAL;
8465         }
8466
8467         if (mode_cmd->pitches[0] & 63) {
8468                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8469                           mode_cmd->pitches[0]);
8470                 return -EINVAL;
8471         }
8472
8473         /* FIXME <= Gen4 stride limits are bit unclear */
8474         if (mode_cmd->pitches[0] > 32768) {
8475                 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8476                           mode_cmd->pitches[0]);
8477                 return -EINVAL;
8478         }
8479
8480         if (obj->tiling_mode != I915_TILING_NONE &&
8481             mode_cmd->pitches[0] != obj->stride) {
8482                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8483                           mode_cmd->pitches[0], obj->stride);
8484                 return -EINVAL;
8485         }
8486
8487         /* Reject formats not supported by any plane early. */
8488         switch (mode_cmd->pixel_format) {
8489         case DRM_FORMAT_C8:
8490         case DRM_FORMAT_RGB565:
8491         case DRM_FORMAT_XRGB8888:
8492         case DRM_FORMAT_ARGB8888:
8493                 break;
8494         case DRM_FORMAT_XRGB1555:
8495         case DRM_FORMAT_ARGB1555:
8496                 if (INTEL_INFO(dev)->gen > 3) {
8497                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8498                         return -EINVAL;
8499                 }
8500                 break;
8501         case DRM_FORMAT_XBGR8888:
8502         case DRM_FORMAT_ABGR8888:
8503         case DRM_FORMAT_XRGB2101010:
8504         case DRM_FORMAT_ARGB2101010:
8505         case DRM_FORMAT_XBGR2101010:
8506         case DRM_FORMAT_ABGR2101010:
8507                 if (INTEL_INFO(dev)->gen < 4) {
8508                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8509                         return -EINVAL;
8510                 }
8511                 break;
8512         case DRM_FORMAT_YUYV:
8513         case DRM_FORMAT_UYVY:
8514         case DRM_FORMAT_YVYU:
8515         case DRM_FORMAT_VYUY:
8516                 if (INTEL_INFO(dev)->gen < 5) {
8517                         DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8518                         return -EINVAL;
8519                 }
8520                 break;
8521         default:
8522                 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8523                 return -EINVAL;
8524         }
8525
8526         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8527         if (mode_cmd->offsets[0] != 0)
8528                 return -EINVAL;
8529
8530         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8531         intel_fb->obj = obj;
8532
8533         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8534         if (ret) {
8535                 DRM_ERROR("framebuffer init failed %d\n", ret);
8536                 return ret;
8537         }
8538
8539         return 0;
8540 }
8541
8542 static struct drm_framebuffer *
8543 intel_user_framebuffer_create(struct drm_device *dev,
8544                               struct drm_file *filp,
8545                               struct drm_mode_fb_cmd2 *mode_cmd)
8546 {
8547         struct drm_i915_gem_object *obj;
8548
8549         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8550                                                 mode_cmd->handles[0]));
8551         if (&obj->base == NULL)
8552                 return ERR_PTR(-ENOENT);
8553
8554         return intel_framebuffer_create(dev, mode_cmd, obj);
8555 }
8556
8557 static const struct drm_mode_config_funcs intel_mode_funcs = {
8558         .fb_create = intel_user_framebuffer_create,
8559         .output_poll_changed = intel_fb_output_poll_changed,
8560 };
8561
8562 /* Set up chip specific display functions */
8563 static void intel_init_display(struct drm_device *dev)
8564 {
8565         struct drm_i915_private *dev_priv = dev->dev_private;
8566
8567         if (HAS_DDI(dev)) {
8568                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8569                 dev_priv->display.crtc_enable = haswell_crtc_enable;
8570                 dev_priv->display.crtc_disable = haswell_crtc_disable;
8571                 dev_priv->display.off = haswell_crtc_off;
8572                 dev_priv->display.update_plane = ironlake_update_plane;
8573         } else if (HAS_PCH_SPLIT(dev)) {
8574                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8575                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8576                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8577                 dev_priv->display.off = ironlake_crtc_off;
8578                 dev_priv->display.update_plane = ironlake_update_plane;
8579         } else {
8580                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8581                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8582                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8583                 dev_priv->display.off = i9xx_crtc_off;
8584                 dev_priv->display.update_plane = i9xx_update_plane;
8585         }
8586
8587         /* Returns the core display clock speed */
8588         if (IS_VALLEYVIEW(dev))
8589                 dev_priv->display.get_display_clock_speed =
8590                         valleyview_get_display_clock_speed;
8591         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8592                 dev_priv->display.get_display_clock_speed =
8593                         i945_get_display_clock_speed;
8594         else if (IS_I915G(dev))
8595                 dev_priv->display.get_display_clock_speed =
8596                         i915_get_display_clock_speed;
8597         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8598                 dev_priv->display.get_display_clock_speed =
8599                         i9xx_misc_get_display_clock_speed;
8600         else if (IS_I915GM(dev))
8601                 dev_priv->display.get_display_clock_speed =
8602                         i915gm_get_display_clock_speed;
8603         else if (IS_I865G(dev))
8604                 dev_priv->display.get_display_clock_speed =
8605                         i865_get_display_clock_speed;
8606         else if (IS_I85X(dev))
8607                 dev_priv->display.get_display_clock_speed =
8608                         i855_get_display_clock_speed;
8609         else /* 852, 830 */
8610                 dev_priv->display.get_display_clock_speed =
8611                         i830_get_display_clock_speed;
8612
8613         if (HAS_PCH_SPLIT(dev)) {
8614                 if (IS_GEN5(dev)) {
8615                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8616                         dev_priv->display.write_eld = ironlake_write_eld;
8617                 } else if (IS_GEN6(dev)) {
8618                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8619                         dev_priv->display.write_eld = ironlake_write_eld;
8620                 } else if (IS_IVYBRIDGE(dev)) {
8621                         /* FIXME: detect B0+ stepping and use auto training */
8622                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8623                         dev_priv->display.write_eld = ironlake_write_eld;
8624                         dev_priv->display.modeset_global_resources =
8625                                 ivb_modeset_global_resources;
8626                 } else if (IS_HASWELL(dev)) {
8627                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8628                         dev_priv->display.write_eld = haswell_write_eld;
8629                         dev_priv->display.modeset_global_resources =
8630                                 haswell_modeset_global_resources;
8631                 }
8632         } else if (IS_G4X(dev)) {
8633                 dev_priv->display.write_eld = g4x_write_eld;
8634         }
8635
8636         /* Default just returns -ENODEV to indicate unsupported */
8637         dev_priv->display.queue_flip = intel_default_queue_flip;
8638
8639         switch (INTEL_INFO(dev)->gen) {
8640         case 2:
8641                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8642                 break;
8643
8644         case 3:
8645                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8646                 break;
8647
8648         case 4:
8649         case 5:
8650                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8651                 break;
8652
8653         case 6:
8654                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8655                 break;
8656         case 7:
8657                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8658                 break;
8659         }
8660 }
8661
8662 /*
8663  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8664  * resume, or other times.  This quirk makes sure that's the case for
8665  * affected systems.
8666  */
8667 static void quirk_pipea_force(struct drm_device *dev)
8668 {
8669         struct drm_i915_private *dev_priv = dev->dev_private;
8670
8671         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8672         DRM_INFO("applying pipe a force quirk\n");
8673 }
8674
8675 /*
8676  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8677  */
8678 static void quirk_ssc_force_disable(struct drm_device *dev)
8679 {
8680         struct drm_i915_private *dev_priv = dev->dev_private;
8681         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8682         DRM_INFO("applying lvds SSC disable quirk\n");
8683 }
8684
8685 /*
8686  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8687  * brightness value
8688  */
8689 static void quirk_invert_brightness(struct drm_device *dev)
8690 {
8691         struct drm_i915_private *dev_priv = dev->dev_private;
8692         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8693         DRM_INFO("applying inverted panel brightness quirk\n");
8694 }
8695
8696 struct intel_quirk {
8697         int device;
8698         int subsystem_vendor;
8699         int subsystem_device;
8700         void (*hook)(struct drm_device *dev);
8701 };
8702
8703 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8704 struct intel_dmi_quirk {
8705         void (*hook)(struct drm_device *dev);
8706         const struct dmi_system_id (*dmi_id_list)[];
8707 };
8708
8709 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8710 {
8711         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8712         return 1;
8713 }
8714
8715 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8716         {
8717                 .dmi_id_list = &(const struct dmi_system_id[]) {
8718                         {
8719                                 .callback = intel_dmi_reverse_brightness,
8720                                 .ident = "NCR Corporation",
8721                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8722                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
8723                                 },
8724                         },
8725                         { }  /* terminating entry */
8726                 },
8727                 .hook = quirk_invert_brightness,
8728         },
8729 };
8730
8731 static struct intel_quirk intel_quirks[] = {
8732         /* HP Mini needs pipe A force quirk (LP: #322104) */
8733         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8734
8735         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8736         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8737
8738         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8739         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8740
8741         /* 830/845 need to leave pipe A & dpll A up */
8742         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8743         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8744
8745         /* Lenovo U160 cannot use SSC on LVDS */
8746         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8747
8748         /* Sony Vaio Y cannot use SSC on LVDS */
8749         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8750
8751         /* Acer Aspire 5734Z must invert backlight brightness */
8752         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8753
8754         /* Acer/eMachines G725 */
8755         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
8756
8757         /* Acer/eMachines e725 */
8758         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
8759
8760         /* Acer/Packard Bell NCL20 */
8761         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
8762
8763         /* Acer Aspire 4736Z */
8764         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
8765 };
8766
8767 static void intel_init_quirks(struct drm_device *dev)
8768 {
8769         struct pci_dev *d = dev->pdev;
8770         int i;
8771
8772         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8773                 struct intel_quirk *q = &intel_quirks[i];
8774
8775                 if (d->device == q->device &&
8776                     (d->subsystem_vendor == q->subsystem_vendor ||
8777                      q->subsystem_vendor == PCI_ANY_ID) &&
8778                     (d->subsystem_device == q->subsystem_device ||
8779                      q->subsystem_device == PCI_ANY_ID))
8780                         q->hook(dev);
8781         }
8782         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8783                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8784                         intel_dmi_quirks[i].hook(dev);
8785         }
8786 }
8787
8788 /* Disable the VGA plane that we never use */
8789 static void i915_disable_vga(struct drm_device *dev)
8790 {
8791         struct drm_i915_private *dev_priv = dev->dev_private;
8792         u8 sr1;
8793         u32 vga_reg = i915_vgacntrl_reg(dev);
8794
8795         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8796         outb(SR01, VGA_SR_INDEX);
8797         sr1 = inb(VGA_SR_DATA);
8798         outb(sr1 | 1<<5, VGA_SR_DATA);
8799         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8800         udelay(300);
8801
8802         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8803         POSTING_READ(vga_reg);
8804 }
8805
8806 void intel_modeset_init_hw(struct drm_device *dev)
8807 {
8808         intel_init_power_well(dev);
8809
8810         intel_prepare_ddi(dev);
8811
8812         intel_init_clock_gating(dev);
8813
8814         mutex_lock(&dev->struct_mutex);
8815         intel_enable_gt_powersave(dev);
8816         mutex_unlock(&dev->struct_mutex);
8817 }
8818
8819 void intel_modeset_init(struct drm_device *dev)
8820 {
8821         struct drm_i915_private *dev_priv = dev->dev_private;
8822         int i, ret;
8823
8824         drm_mode_config_init(dev);
8825
8826         dev->mode_config.min_width = 0;
8827         dev->mode_config.min_height = 0;
8828
8829         dev->mode_config.preferred_depth = 24;
8830         dev->mode_config.prefer_shadow = 1;
8831
8832         dev->mode_config.funcs = &intel_mode_funcs;
8833
8834         intel_init_quirks(dev);
8835
8836         intel_init_pm(dev);
8837
8838         intel_init_display(dev);
8839
8840         if (IS_GEN2(dev)) {
8841                 dev->mode_config.max_width = 2048;
8842                 dev->mode_config.max_height = 2048;
8843         } else if (IS_GEN3(dev)) {
8844                 dev->mode_config.max_width = 4096;
8845                 dev->mode_config.max_height = 4096;
8846         } else {
8847                 dev->mode_config.max_width = 8192;
8848                 dev->mode_config.max_height = 8192;
8849         }
8850         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
8851
8852         DRM_DEBUG_KMS("%d display pipe%s available.\n",
8853                       INTEL_INFO(dev)->num_pipes,
8854                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
8855
8856         for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
8857                 intel_crtc_init(dev, i);
8858                 ret = intel_plane_init(dev, i);
8859                 if (ret)
8860                         DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8861         }
8862
8863         intel_cpu_pll_init(dev);
8864         intel_pch_pll_init(dev);
8865
8866         /* Just disable it once at startup */
8867         i915_disable_vga(dev);
8868         intel_setup_outputs(dev);
8869
8870         /* Just in case the BIOS is doing something questionable. */
8871         intel_disable_fbc(dev);
8872 }
8873
8874 static void
8875 intel_connector_break_all_links(struct intel_connector *connector)
8876 {
8877         connector->base.dpms = DRM_MODE_DPMS_OFF;
8878         connector->base.encoder = NULL;
8879         connector->encoder->connectors_active = false;
8880         connector->encoder->base.crtc = NULL;
8881 }
8882
8883 static void intel_enable_pipe_a(struct drm_device *dev)
8884 {
8885         struct intel_connector *connector;
8886         struct drm_connector *crt = NULL;
8887         struct intel_load_detect_pipe load_detect_temp;
8888
8889         /* We can't just switch on the pipe A, we need to set things up with a
8890          * proper mode and output configuration. As a gross hack, enable pipe A
8891          * by enabling the load detect pipe once. */
8892         list_for_each_entry(connector,
8893                             &dev->mode_config.connector_list,
8894                             base.head) {
8895                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8896                         crt = &connector->base;
8897                         break;
8898                 }
8899         }
8900
8901         if (!crt)
8902                 return;
8903
8904         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8905                 intel_release_load_detect_pipe(crt, &load_detect_temp);
8906
8907
8908 }
8909
8910 static bool
8911 intel_check_plane_mapping(struct intel_crtc *crtc)
8912 {
8913         struct drm_device *dev = crtc->base.dev;
8914         struct drm_i915_private *dev_priv = dev->dev_private;
8915         u32 reg, val;
8916
8917         if (INTEL_INFO(dev)->num_pipes == 1)
8918                 return true;
8919
8920         reg = DSPCNTR(!crtc->plane);
8921         val = I915_READ(reg);
8922
8923         if ((val & DISPLAY_PLANE_ENABLE) &&
8924             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8925                 return false;
8926
8927         return true;
8928 }
8929
8930 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8931 {
8932         struct drm_device *dev = crtc->base.dev;
8933         struct drm_i915_private *dev_priv = dev->dev_private;
8934         u32 reg;
8935
8936         /* Clear any frame start delays used for debugging left by the BIOS */
8937         reg = PIPECONF(crtc->cpu_transcoder);
8938         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8939
8940         /* We need to sanitize the plane -> pipe mapping first because this will
8941          * disable the crtc (and hence change the state) if it is wrong. Note
8942          * that gen4+ has a fixed plane -> pipe mapping.  */
8943         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8944                 struct intel_connector *connector;
8945                 bool plane;
8946
8947                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8948                               crtc->base.base.id);
8949
8950                 /* Pipe has the wrong plane attached and the plane is active.
8951                  * Temporarily change the plane mapping and disable everything
8952                  * ...  */
8953                 plane = crtc->plane;
8954                 crtc->plane = !plane;
8955                 dev_priv->display.crtc_disable(&crtc->base);
8956                 crtc->plane = plane;
8957
8958                 /* ... and break all links. */
8959                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8960                                     base.head) {
8961                         if (connector->encoder->base.crtc != &crtc->base)
8962                                 continue;
8963
8964                         intel_connector_break_all_links(connector);
8965                 }
8966
8967                 WARN_ON(crtc->active);
8968                 crtc->base.enabled = false;
8969         }
8970
8971         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8972             crtc->pipe == PIPE_A && !crtc->active) {
8973                 /* BIOS forgot to enable pipe A, this mostly happens after
8974                  * resume. Force-enable the pipe to fix this, the update_dpms
8975                  * call below we restore the pipe to the right state, but leave
8976                  * the required bits on. */
8977                 intel_enable_pipe_a(dev);
8978         }
8979
8980         /* Adjust the state of the output pipe according to whether we
8981          * have active connectors/encoders. */
8982         intel_crtc_update_dpms(&crtc->base);
8983
8984         if (crtc->active != crtc->base.enabled) {
8985                 struct intel_encoder *encoder;
8986
8987                 /* This can happen either due to bugs in the get_hw_state
8988                  * functions or because the pipe is force-enabled due to the
8989                  * pipe A quirk. */
8990                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8991                               crtc->base.base.id,
8992                               crtc->base.enabled ? "enabled" : "disabled",
8993                               crtc->active ? "enabled" : "disabled");
8994
8995                 crtc->base.enabled = crtc->active;
8996
8997                 /* Because we only establish the connector -> encoder ->
8998                  * crtc links if something is active, this means the
8999                  * crtc is now deactivated. Break the links. connector
9000                  * -> encoder links are only establish when things are
9001                  *  actually up, hence no need to break them. */
9002                 WARN_ON(crtc->active);
9003
9004                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9005                         WARN_ON(encoder->connectors_active);
9006                         encoder->base.crtc = NULL;
9007                 }
9008         }
9009 }
9010
9011 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9012 {
9013         struct intel_connector *connector;
9014         struct drm_device *dev = encoder->base.dev;
9015
9016         /* We need to check both for a crtc link (meaning that the
9017          * encoder is active and trying to read from a pipe) and the
9018          * pipe itself being active. */
9019         bool has_active_crtc = encoder->base.crtc &&
9020                 to_intel_crtc(encoder->base.crtc)->active;
9021
9022         if (encoder->connectors_active && !has_active_crtc) {
9023                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9024                               encoder->base.base.id,
9025                               drm_get_encoder_name(&encoder->base));
9026
9027                 /* Connector is active, but has no active pipe. This is
9028                  * fallout from our resume register restoring. Disable
9029                  * the encoder manually again. */
9030                 if (encoder->base.crtc) {
9031                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9032                                       encoder->base.base.id,
9033                                       drm_get_encoder_name(&encoder->base));
9034                         encoder->disable(encoder);
9035                 }
9036
9037                 /* Inconsistent output/port/pipe state happens presumably due to
9038                  * a bug in one of the get_hw_state functions. Or someplace else
9039                  * in our code, like the register restore mess on resume. Clamp
9040                  * things to off as a safer default. */
9041                 list_for_each_entry(connector,
9042                                     &dev->mode_config.connector_list,
9043                                     base.head) {
9044                         if (connector->encoder != encoder)
9045                                 continue;
9046
9047                         intel_connector_break_all_links(connector);
9048                 }
9049         }
9050         /* Enabled encoders without active connectors will be fixed in
9051          * the crtc fixup. */
9052 }
9053
9054 void i915_redisable_vga(struct drm_device *dev)
9055 {
9056         struct drm_i915_private *dev_priv = dev->dev_private;
9057         u32 vga_reg = i915_vgacntrl_reg(dev);
9058
9059         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9060                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9061                 i915_disable_vga(dev);
9062         }
9063 }
9064
9065 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9066  * and i915 state tracking structures. */
9067 void intel_modeset_setup_hw_state(struct drm_device *dev,
9068                                   bool force_restore)
9069 {
9070         struct drm_i915_private *dev_priv = dev->dev_private;
9071         enum pipe pipe;
9072         u32 tmp;
9073         struct drm_plane *plane;
9074         struct intel_crtc *crtc;
9075         struct intel_encoder *encoder;
9076         struct intel_connector *connector;
9077
9078         if (HAS_DDI(dev)) {
9079                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9080
9081                 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9082                         switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9083                         case TRANS_DDI_EDP_INPUT_A_ON:
9084                         case TRANS_DDI_EDP_INPUT_A_ONOFF:
9085                                 pipe = PIPE_A;
9086                                 break;
9087                         case TRANS_DDI_EDP_INPUT_B_ONOFF:
9088                                 pipe = PIPE_B;
9089                                 break;
9090                         case TRANS_DDI_EDP_INPUT_C_ONOFF:
9091                                 pipe = PIPE_C;
9092                                 break;
9093                         default:
9094                                 /* A bogus value has been programmed, disable
9095                                  * the transcoder */
9096                                 WARN(1, "Bogus eDP source %08x\n", tmp);
9097                                 intel_ddi_disable_transcoder_func(dev_priv,
9098                                                 TRANSCODER_EDP);
9099                                 goto setup_pipes;
9100                         }
9101
9102                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9103                         crtc->cpu_transcoder = TRANSCODER_EDP;
9104
9105                         DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9106                                       pipe_name(pipe));
9107                 }
9108         }
9109
9110 setup_pipes:
9111         for_each_pipe(pipe) {
9112                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9113
9114                 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
9115                 if (tmp & PIPECONF_ENABLE)
9116                         crtc->active = true;
9117                 else
9118                         crtc->active = false;
9119
9120                 crtc->base.enabled = crtc->active;
9121
9122                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9123                               crtc->base.base.id,
9124                               crtc->active ? "enabled" : "disabled");
9125         }
9126
9127         if (HAS_DDI(dev))
9128                 intel_ddi_setup_hw_pll_state(dev);
9129
9130         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9131                             base.head) {
9132                 pipe = 0;
9133
9134                 if (encoder->get_hw_state(encoder, &pipe)) {
9135                         encoder->base.crtc =
9136                                 dev_priv->pipe_to_crtc_mapping[pipe];
9137                 } else {
9138                         encoder->base.crtc = NULL;
9139                 }
9140
9141                 encoder->connectors_active = false;
9142                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9143                               encoder->base.base.id,
9144                               drm_get_encoder_name(&encoder->base),
9145                               encoder->base.crtc ? "enabled" : "disabled",
9146                               pipe);
9147         }
9148
9149         list_for_each_entry(connector, &dev->mode_config.connector_list,
9150                             base.head) {
9151                 if (connector->get_hw_state(connector)) {
9152                         connector->base.dpms = DRM_MODE_DPMS_ON;
9153                         connector->encoder->connectors_active = true;
9154                         connector->base.encoder = &connector->encoder->base;
9155                 } else {
9156                         connector->base.dpms = DRM_MODE_DPMS_OFF;
9157                         connector->base.encoder = NULL;
9158                 }
9159                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9160                               connector->base.base.id,
9161                               drm_get_connector_name(&connector->base),
9162                               connector->base.encoder ? "enabled" : "disabled");
9163         }
9164
9165         /* HW state is read out, now we need to sanitize this mess. */
9166         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9167                             base.head) {
9168                 intel_sanitize_encoder(encoder);
9169         }
9170
9171         for_each_pipe(pipe) {
9172                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9173                 intel_sanitize_crtc(crtc);
9174         }
9175
9176         if (force_restore) {
9177                 for_each_pipe(pipe) {
9178                         struct drm_crtc *crtc =
9179                                 dev_priv->pipe_to_crtc_mapping[pipe];
9180                         intel_crtc_restore_mode(crtc);
9181                 }
9182                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
9183                         intel_plane_restore(plane);
9184
9185                 i915_redisable_vga(dev);
9186         } else {
9187                 intel_modeset_update_staged_output_state(dev);
9188         }
9189
9190         intel_modeset_check_state(dev);
9191
9192         drm_mode_config_reset(dev);
9193 }
9194
9195 void intel_modeset_gem_init(struct drm_device *dev)
9196 {
9197         intel_modeset_init_hw(dev);
9198
9199         intel_setup_overlay(dev);
9200
9201         intel_modeset_setup_hw_state(dev, false);
9202 }
9203
9204 void intel_modeset_cleanup(struct drm_device *dev)
9205 {
9206         struct drm_i915_private *dev_priv = dev->dev_private;
9207         struct drm_crtc *crtc;
9208         struct intel_crtc *intel_crtc;
9209
9210         drm_kms_helper_poll_fini(dev);
9211         mutex_lock(&dev->struct_mutex);
9212
9213         intel_unregister_dsm_handler();
9214
9215
9216         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9217                 /* Skip inactive CRTCs */
9218                 if (!crtc->fb)
9219                         continue;
9220
9221                 intel_crtc = to_intel_crtc(crtc);
9222                 intel_increase_pllclock(crtc);
9223         }
9224
9225         intel_disable_fbc(dev);
9226
9227         intel_disable_gt_powersave(dev);
9228
9229         ironlake_teardown_rc6(dev);
9230
9231         if (IS_VALLEYVIEW(dev))
9232                 vlv_init_dpio(dev);
9233
9234         mutex_unlock(&dev->struct_mutex);
9235
9236         /* Disable the irq before mode object teardown, for the irq might
9237          * enqueue unpin/hotplug work. */
9238         drm_irq_uninstall(dev);
9239         cancel_work_sync(&dev_priv->hotplug_work);
9240         cancel_work_sync(&dev_priv->rps.work);
9241
9242         /* flush any delayed tasks or pending work */
9243         flush_scheduled_work();
9244
9245         drm_mode_config_cleanup(dev);
9246
9247         intel_cleanup_overlay(dev);
9248 }
9249
9250 /*
9251  * Return which encoder is currently attached for connector.
9252  */
9253 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9254 {
9255         return &intel_attached_encoder(connector)->base;
9256 }
9257
9258 void intel_connector_attach_encoder(struct intel_connector *connector,
9259                                     struct intel_encoder *encoder)
9260 {
9261         connector->encoder = encoder;
9262         drm_mode_connector_attach_encoder(&connector->base,
9263                                           &encoder->base);
9264 }
9265
9266 /*
9267  * set vga decode state - true == enable VGA decode
9268  */
9269 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9270 {
9271         struct drm_i915_private *dev_priv = dev->dev_private;
9272         u16 gmch_ctrl;
9273
9274         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9275         if (state)
9276                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9277         else
9278                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9279         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9280         return 0;
9281 }
9282
9283 #ifdef CONFIG_DEBUG_FS
9284 #include <linux/seq_file.h>
9285
9286 struct intel_display_error_state {
9287         struct intel_cursor_error_state {
9288                 u32 control;
9289                 u32 position;
9290                 u32 base;
9291                 u32 size;
9292         } cursor[I915_MAX_PIPES];
9293
9294         struct intel_pipe_error_state {
9295                 u32 conf;
9296                 u32 source;
9297
9298                 u32 htotal;
9299                 u32 hblank;
9300                 u32 hsync;
9301                 u32 vtotal;
9302                 u32 vblank;
9303                 u32 vsync;
9304         } pipe[I915_MAX_PIPES];
9305
9306         struct intel_plane_error_state {
9307                 u32 control;
9308                 u32 stride;
9309                 u32 size;
9310                 u32 pos;
9311                 u32 addr;
9312                 u32 surface;
9313                 u32 tile_offset;
9314         } plane[I915_MAX_PIPES];
9315 };
9316
9317 struct intel_display_error_state *
9318 intel_display_capture_error_state(struct drm_device *dev)
9319 {
9320         drm_i915_private_t *dev_priv = dev->dev_private;
9321         struct intel_display_error_state *error;
9322         enum transcoder cpu_transcoder;
9323         int i;
9324
9325         error = kmalloc(sizeof(*error), GFP_ATOMIC);
9326         if (error == NULL)
9327                 return NULL;
9328
9329         for_each_pipe(i) {
9330                 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9331
9332                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
9333                         error->cursor[i].control = I915_READ(CURCNTR(i));
9334                         error->cursor[i].position = I915_READ(CURPOS(i));
9335                         error->cursor[i].base = I915_READ(CURBASE(i));
9336                 } else {
9337                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
9338                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
9339                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
9340                 }
9341
9342                 error->plane[i].control = I915_READ(DSPCNTR(i));
9343                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9344                 if (INTEL_INFO(dev)->gen <= 3) {
9345                         error->plane[i].size = I915_READ(DSPSIZE(i));
9346                         error->plane[i].pos = I915_READ(DSPPOS(i));
9347                 }
9348                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9349                         error->plane[i].addr = I915_READ(DSPADDR(i));
9350                 if (INTEL_INFO(dev)->gen >= 4) {
9351                         error->plane[i].surface = I915_READ(DSPSURF(i));
9352                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9353                 }
9354
9355                 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9356                 error->pipe[i].source = I915_READ(PIPESRC(i));
9357                 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9358                 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9359                 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9360                 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9361                 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9362                 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9363         }
9364
9365         return error;
9366 }
9367
9368 void
9369 intel_display_print_error_state(struct seq_file *m,
9370                                 struct drm_device *dev,
9371                                 struct intel_display_error_state *error)
9372 {
9373         int i;
9374
9375         seq_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
9376         for_each_pipe(i) {
9377                 seq_printf(m, "Pipe [%d]:\n", i);
9378                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9379                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9380                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9381                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9382                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9383                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9384                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9385                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9386
9387                 seq_printf(m, "Plane [%d]:\n", i);
9388                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9389                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9390                 if (INTEL_INFO(dev)->gen <= 3) {
9391                         seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9392                         seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
9393                 }
9394                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9395                         seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9396                 if (INTEL_INFO(dev)->gen >= 4) {
9397                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9398                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9399                 }
9400
9401                 seq_printf(m, "Cursor [%d]:\n", i);
9402                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9403                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
9404                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9405         }
9406 }
9407 #endif