]> rtime.felk.cvut.cz Git - linux-imx.git/blob - fs/btrfs/disk-io.c
Btrfs: fix all callers of read_tree_block
[linux-imx.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50
51 #ifdef CONFIG_X86
52 #include <asm/cpufeature.h>
53 #endif
54
55 static struct extent_io_ops btree_extent_io_ops;
56 static void end_workqueue_fn(struct btrfs_work *work);
57 static void free_fs_root(struct btrfs_root *root);
58 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
59                                     int read_only);
60 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
61                                              struct btrfs_root *root);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64                                       struct btrfs_root *root);
65 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
67 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
68                                         struct extent_io_tree *dirty_pages,
69                                         int mark);
70 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
71                                        struct extent_io_tree *pinned_extents);
72
73 /*
74  * end_io_wq structs are used to do processing in task context when an IO is
75  * complete.  This is used during reads to verify checksums, and it is used
76  * by writes to insert metadata for new file extents after IO is complete.
77  */
78 struct end_io_wq {
79         struct bio *bio;
80         bio_end_io_t *end_io;
81         void *private;
82         struct btrfs_fs_info *info;
83         int error;
84         int metadata;
85         struct list_head list;
86         struct btrfs_work work;
87 };
88
89 /*
90  * async submit bios are used to offload expensive checksumming
91  * onto the worker threads.  They checksum file and metadata bios
92  * just before they are sent down the IO stack.
93  */
94 struct async_submit_bio {
95         struct inode *inode;
96         struct bio *bio;
97         struct list_head list;
98         extent_submit_bio_hook_t *submit_bio_start;
99         extent_submit_bio_hook_t *submit_bio_done;
100         int rw;
101         int mirror_num;
102         unsigned long bio_flags;
103         /*
104          * bio_offset is optional, can be used if the pages in the bio
105          * can't tell us where in the file the bio should go
106          */
107         u64 bio_offset;
108         struct btrfs_work work;
109         int error;
110 };
111
112 /*
113  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
114  * eb, the lockdep key is determined by the btrfs_root it belongs to and
115  * the level the eb occupies in the tree.
116  *
117  * Different roots are used for different purposes and may nest inside each
118  * other and they require separate keysets.  As lockdep keys should be
119  * static, assign keysets according to the purpose of the root as indicated
120  * by btrfs_root->objectid.  This ensures that all special purpose roots
121  * have separate keysets.
122  *
123  * Lock-nesting across peer nodes is always done with the immediate parent
124  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
125  * subclass to avoid triggering lockdep warning in such cases.
126  *
127  * The key is set by the readpage_end_io_hook after the buffer has passed
128  * csum validation but before the pages are unlocked.  It is also set by
129  * btrfs_init_new_buffer on freshly allocated blocks.
130  *
131  * We also add a check to make sure the highest level of the tree is the
132  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
133  * needs update as well.
134  */
135 #ifdef CONFIG_DEBUG_LOCK_ALLOC
136 # if BTRFS_MAX_LEVEL != 8
137 #  error
138 # endif
139
140 static struct btrfs_lockdep_keyset {
141         u64                     id;             /* root objectid */
142         const char              *name_stem;     /* lock name stem */
143         char                    names[BTRFS_MAX_LEVEL + 1][20];
144         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
145 } btrfs_lockdep_keysets[] = {
146         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
147         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
148         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
149         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
150         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
151         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
152         { .id = BTRFS_ORPHAN_OBJECTID,          .name_stem = "orphan"   },
153         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
154         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
155         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
156         { .id = 0,                              .name_stem = "tree"     },
157 };
158
159 void __init btrfs_init_lockdep(void)
160 {
161         int i, j;
162
163         /* initialize lockdep class names */
164         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
165                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
166
167                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
168                         snprintf(ks->names[j], sizeof(ks->names[j]),
169                                  "btrfs-%s-%02d", ks->name_stem, j);
170         }
171 }
172
173 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
174                                     int level)
175 {
176         struct btrfs_lockdep_keyset *ks;
177
178         BUG_ON(level >= ARRAY_SIZE(ks->keys));
179
180         /* find the matching keyset, id 0 is the default entry */
181         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
182                 if (ks->id == objectid)
183                         break;
184
185         lockdep_set_class_and_name(&eb->lock,
186                                    &ks->keys[level], ks->names[level]);
187 }
188
189 #endif
190
191 /*
192  * extents on the btree inode are pretty simple, there's one extent
193  * that covers the entire device
194  */
195 static struct extent_map *btree_get_extent(struct inode *inode,
196                 struct page *page, size_t pg_offset, u64 start, u64 len,
197                 int create)
198 {
199         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
200         struct extent_map *em;
201         int ret;
202
203         read_lock(&em_tree->lock);
204         em = lookup_extent_mapping(em_tree, start, len);
205         if (em) {
206                 em->bdev =
207                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
208                 read_unlock(&em_tree->lock);
209                 goto out;
210         }
211         read_unlock(&em_tree->lock);
212
213         em = alloc_extent_map();
214         if (!em) {
215                 em = ERR_PTR(-ENOMEM);
216                 goto out;
217         }
218         em->start = 0;
219         em->len = (u64)-1;
220         em->block_len = (u64)-1;
221         em->block_start = 0;
222         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
223
224         write_lock(&em_tree->lock);
225         ret = add_extent_mapping(em_tree, em, 0);
226         if (ret == -EEXIST) {
227                 free_extent_map(em);
228                 em = lookup_extent_mapping(em_tree, start, len);
229                 if (!em)
230                         em = ERR_PTR(-EIO);
231         } else if (ret) {
232                 free_extent_map(em);
233                 em = ERR_PTR(ret);
234         }
235         write_unlock(&em_tree->lock);
236
237 out:
238         return em;
239 }
240
241 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
242 {
243         return crc32c(seed, data, len);
244 }
245
246 void btrfs_csum_final(u32 crc, char *result)
247 {
248         put_unaligned_le32(~crc, result);
249 }
250
251 /*
252  * compute the csum for a btree block, and either verify it or write it
253  * into the csum field of the block.
254  */
255 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
256                            int verify)
257 {
258         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
259         char *result = NULL;
260         unsigned long len;
261         unsigned long cur_len;
262         unsigned long offset = BTRFS_CSUM_SIZE;
263         char *kaddr;
264         unsigned long map_start;
265         unsigned long map_len;
266         int err;
267         u32 crc = ~(u32)0;
268         unsigned long inline_result;
269
270         len = buf->len - offset;
271         while (len > 0) {
272                 err = map_private_extent_buffer(buf, offset, 32,
273                                         &kaddr, &map_start, &map_len);
274                 if (err)
275                         return 1;
276                 cur_len = min(len, map_len - (offset - map_start));
277                 crc = btrfs_csum_data(kaddr + offset - map_start,
278                                       crc, cur_len);
279                 len -= cur_len;
280                 offset += cur_len;
281         }
282         if (csum_size > sizeof(inline_result)) {
283                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
284                 if (!result)
285                         return 1;
286         } else {
287                 result = (char *)&inline_result;
288         }
289
290         btrfs_csum_final(crc, result);
291
292         if (verify) {
293                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
294                         u32 val;
295                         u32 found = 0;
296                         memcpy(&found, result, csum_size);
297
298                         read_extent_buffer(buf, &val, 0, csum_size);
299                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
300                                        "failed on %llu wanted %X found %X "
301                                        "level %d\n",
302                                        root->fs_info->sb->s_id,
303                                        (unsigned long long)buf->start, val, found,
304                                        btrfs_header_level(buf));
305                         if (result != (char *)&inline_result)
306                                 kfree(result);
307                         return 1;
308                 }
309         } else {
310                 write_extent_buffer(buf, result, 0, csum_size);
311         }
312         if (result != (char *)&inline_result)
313                 kfree(result);
314         return 0;
315 }
316
317 /*
318  * we can't consider a given block up to date unless the transid of the
319  * block matches the transid in the parent node's pointer.  This is how we
320  * detect blocks that either didn't get written at all or got written
321  * in the wrong place.
322  */
323 static int verify_parent_transid(struct extent_io_tree *io_tree,
324                                  struct extent_buffer *eb, u64 parent_transid,
325                                  int atomic)
326 {
327         struct extent_state *cached_state = NULL;
328         int ret;
329
330         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331                 return 0;
332
333         if (atomic)
334                 return -EAGAIN;
335
336         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
337                          0, &cached_state);
338         if (extent_buffer_uptodate(eb) &&
339             btrfs_header_generation(eb) == parent_transid) {
340                 ret = 0;
341                 goto out;
342         }
343         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
344                        "found %llu\n",
345                        (unsigned long long)eb->start,
346                        (unsigned long long)parent_transid,
347                        (unsigned long long)btrfs_header_generation(eb));
348         ret = 1;
349         clear_extent_buffer_uptodate(eb);
350 out:
351         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
352                              &cached_state, GFP_NOFS);
353         return ret;
354 }
355
356 /*
357  * helper to read a given tree block, doing retries as required when
358  * the checksums don't match and we have alternate mirrors to try.
359  */
360 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
361                                           struct extent_buffer *eb,
362                                           u64 start, u64 parent_transid)
363 {
364         struct extent_io_tree *io_tree;
365         int failed = 0;
366         int ret;
367         int num_copies = 0;
368         int mirror_num = 0;
369         int failed_mirror = 0;
370
371         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
372         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
373         while (1) {
374                 ret = read_extent_buffer_pages(io_tree, eb, start,
375                                                WAIT_COMPLETE,
376                                                btree_get_extent, mirror_num);
377                 if (!ret) {
378                         if (!verify_parent_transid(io_tree, eb,
379                                                    parent_transid, 0))
380                                 break;
381                         else
382                                 ret = -EIO;
383                 }
384
385                 /*
386                  * This buffer's crc is fine, but its contents are corrupted, so
387                  * there is no reason to read the other copies, they won't be
388                  * any less wrong.
389                  */
390                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
391                         break;
392
393                 num_copies = btrfs_num_copies(root->fs_info,
394                                               eb->start, eb->len);
395                 if (num_copies == 1)
396                         break;
397
398                 if (!failed_mirror) {
399                         failed = 1;
400                         failed_mirror = eb->read_mirror;
401                 }
402
403                 mirror_num++;
404                 if (mirror_num == failed_mirror)
405                         mirror_num++;
406
407                 if (mirror_num > num_copies)
408                         break;
409         }
410
411         if (failed && !ret && failed_mirror)
412                 repair_eb_io_failure(root, eb, failed_mirror);
413
414         return ret;
415 }
416
417 /*
418  * checksum a dirty tree block before IO.  This has extra checks to make sure
419  * we only fill in the checksum field in the first page of a multi-page block
420  */
421
422 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
423 {
424         struct extent_io_tree *tree;
425         u64 start = page_offset(page);
426         u64 found_start;
427         struct extent_buffer *eb;
428
429         tree = &BTRFS_I(page->mapping->host)->io_tree;
430
431         eb = (struct extent_buffer *)page->private;
432         if (page != eb->pages[0])
433                 return 0;
434         found_start = btrfs_header_bytenr(eb);
435         if (found_start != start) {
436                 WARN_ON(1);
437                 return 0;
438         }
439         if (!PageUptodate(page)) {
440                 WARN_ON(1);
441                 return 0;
442         }
443         csum_tree_block(root, eb, 0);
444         return 0;
445 }
446
447 static int check_tree_block_fsid(struct btrfs_root *root,
448                                  struct extent_buffer *eb)
449 {
450         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
451         u8 fsid[BTRFS_UUID_SIZE];
452         int ret = 1;
453
454         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
455                            BTRFS_FSID_SIZE);
456         while (fs_devices) {
457                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
458                         ret = 0;
459                         break;
460                 }
461                 fs_devices = fs_devices->seed;
462         }
463         return ret;
464 }
465
466 #define CORRUPT(reason, eb, root, slot)                         \
467         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
468                "root=%llu, slot=%d\n", reason,                  \
469                (unsigned long long)btrfs_header_bytenr(eb),     \
470                (unsigned long long)root->objectid, slot)
471
472 static noinline int check_leaf(struct btrfs_root *root,
473                                struct extent_buffer *leaf)
474 {
475         struct btrfs_key key;
476         struct btrfs_key leaf_key;
477         u32 nritems = btrfs_header_nritems(leaf);
478         int slot;
479
480         if (nritems == 0)
481                 return 0;
482
483         /* Check the 0 item */
484         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
485             BTRFS_LEAF_DATA_SIZE(root)) {
486                 CORRUPT("invalid item offset size pair", leaf, root, 0);
487                 return -EIO;
488         }
489
490         /*
491          * Check to make sure each items keys are in the correct order and their
492          * offsets make sense.  We only have to loop through nritems-1 because
493          * we check the current slot against the next slot, which verifies the
494          * next slot's offset+size makes sense and that the current's slot
495          * offset is correct.
496          */
497         for (slot = 0; slot < nritems - 1; slot++) {
498                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
499                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
500
501                 /* Make sure the keys are in the right order */
502                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
503                         CORRUPT("bad key order", leaf, root, slot);
504                         return -EIO;
505                 }
506
507                 /*
508                  * Make sure the offset and ends are right, remember that the
509                  * item data starts at the end of the leaf and grows towards the
510                  * front.
511                  */
512                 if (btrfs_item_offset_nr(leaf, slot) !=
513                         btrfs_item_end_nr(leaf, slot + 1)) {
514                         CORRUPT("slot offset bad", leaf, root, slot);
515                         return -EIO;
516                 }
517
518                 /*
519                  * Check to make sure that we don't point outside of the leaf,
520                  * just incase all the items are consistent to eachother, but
521                  * all point outside of the leaf.
522                  */
523                 if (btrfs_item_end_nr(leaf, slot) >
524                     BTRFS_LEAF_DATA_SIZE(root)) {
525                         CORRUPT("slot end outside of leaf", leaf, root, slot);
526                         return -EIO;
527                 }
528         }
529
530         return 0;
531 }
532
533 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
534                                        struct page *page, int max_walk)
535 {
536         struct extent_buffer *eb;
537         u64 start = page_offset(page);
538         u64 target = start;
539         u64 min_start;
540
541         if (start < max_walk)
542                 min_start = 0;
543         else
544                 min_start = start - max_walk;
545
546         while (start >= min_start) {
547                 eb = find_extent_buffer(tree, start, 0);
548                 if (eb) {
549                         /*
550                          * we found an extent buffer and it contains our page
551                          * horray!
552                          */
553                         if (eb->start <= target &&
554                             eb->start + eb->len > target)
555                                 return eb;
556
557                         /* we found an extent buffer that wasn't for us */
558                         free_extent_buffer(eb);
559                         return NULL;
560                 }
561                 if (start == 0)
562                         break;
563                 start -= PAGE_CACHE_SIZE;
564         }
565         return NULL;
566 }
567
568 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
569                                struct extent_state *state, int mirror)
570 {
571         struct extent_io_tree *tree;
572         u64 found_start;
573         int found_level;
574         struct extent_buffer *eb;
575         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
576         int ret = 0;
577         int reads_done;
578
579         if (!page->private)
580                 goto out;
581
582         tree = &BTRFS_I(page->mapping->host)->io_tree;
583         eb = (struct extent_buffer *)page->private;
584
585         /* the pending IO might have been the only thing that kept this buffer
586          * in memory.  Make sure we have a ref for all this other checks
587          */
588         extent_buffer_get(eb);
589
590         reads_done = atomic_dec_and_test(&eb->io_pages);
591         if (!reads_done)
592                 goto err;
593
594         eb->read_mirror = mirror;
595         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
596                 ret = -EIO;
597                 goto err;
598         }
599
600         found_start = btrfs_header_bytenr(eb);
601         if (found_start != eb->start) {
602                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
603                                "%llu %llu\n",
604                                (unsigned long long)found_start,
605                                (unsigned long long)eb->start);
606                 ret = -EIO;
607                 goto err;
608         }
609         if (check_tree_block_fsid(root, eb)) {
610                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
611                                (unsigned long long)eb->start);
612                 ret = -EIO;
613                 goto err;
614         }
615         found_level = btrfs_header_level(eb);
616         if (found_level >= BTRFS_MAX_LEVEL) {
617                 btrfs_info(root->fs_info, "bad tree block level %d\n",
618                            (int)btrfs_header_level(eb));
619                 ret = -EIO;
620                 goto err;
621         }
622
623         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
624                                        eb, found_level);
625
626         ret = csum_tree_block(root, eb, 1);
627         if (ret) {
628                 ret = -EIO;
629                 goto err;
630         }
631
632         /*
633          * If this is a leaf block and it is corrupt, set the corrupt bit so
634          * that we don't try and read the other copies of this block, just
635          * return -EIO.
636          */
637         if (found_level == 0 && check_leaf(root, eb)) {
638                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
639                 ret = -EIO;
640         }
641
642         if (!ret)
643                 set_extent_buffer_uptodate(eb);
644 err:
645         if (reads_done &&
646             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
647                 btree_readahead_hook(root, eb, eb->start, ret);
648
649         if (ret) {
650                 /*
651                  * our io error hook is going to dec the io pages
652                  * again, we have to make sure it has something
653                  * to decrement
654                  */
655                 atomic_inc(&eb->io_pages);
656                 clear_extent_buffer_uptodate(eb);
657         }
658         free_extent_buffer(eb);
659 out:
660         return ret;
661 }
662
663 static int btree_io_failed_hook(struct page *page, int failed_mirror)
664 {
665         struct extent_buffer *eb;
666         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
667
668         eb = (struct extent_buffer *)page->private;
669         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
670         eb->read_mirror = failed_mirror;
671         atomic_dec(&eb->io_pages);
672         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
673                 btree_readahead_hook(root, eb, eb->start, -EIO);
674         return -EIO;    /* we fixed nothing */
675 }
676
677 static void end_workqueue_bio(struct bio *bio, int err)
678 {
679         struct end_io_wq *end_io_wq = bio->bi_private;
680         struct btrfs_fs_info *fs_info;
681
682         fs_info = end_io_wq->info;
683         end_io_wq->error = err;
684         end_io_wq->work.func = end_workqueue_fn;
685         end_io_wq->work.flags = 0;
686
687         if (bio->bi_rw & REQ_WRITE) {
688                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
689                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
690                                            &end_io_wq->work);
691                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
692                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
693                                            &end_io_wq->work);
694                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
695                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
696                                            &end_io_wq->work);
697                 else
698                         btrfs_queue_worker(&fs_info->endio_write_workers,
699                                            &end_io_wq->work);
700         } else {
701                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
702                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
703                                            &end_io_wq->work);
704                 else if (end_io_wq->metadata)
705                         btrfs_queue_worker(&fs_info->endio_meta_workers,
706                                            &end_io_wq->work);
707                 else
708                         btrfs_queue_worker(&fs_info->endio_workers,
709                                            &end_io_wq->work);
710         }
711 }
712
713 /*
714  * For the metadata arg you want
715  *
716  * 0 - if data
717  * 1 - if normal metadta
718  * 2 - if writing to the free space cache area
719  * 3 - raid parity work
720  */
721 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
722                         int metadata)
723 {
724         struct end_io_wq *end_io_wq;
725         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
726         if (!end_io_wq)
727                 return -ENOMEM;
728
729         end_io_wq->private = bio->bi_private;
730         end_io_wq->end_io = bio->bi_end_io;
731         end_io_wq->info = info;
732         end_io_wq->error = 0;
733         end_io_wq->bio = bio;
734         end_io_wq->metadata = metadata;
735
736         bio->bi_private = end_io_wq;
737         bio->bi_end_io = end_workqueue_bio;
738         return 0;
739 }
740
741 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
742 {
743         unsigned long limit = min_t(unsigned long,
744                                     info->workers.max_workers,
745                                     info->fs_devices->open_devices);
746         return 256 * limit;
747 }
748
749 static void run_one_async_start(struct btrfs_work *work)
750 {
751         struct async_submit_bio *async;
752         int ret;
753
754         async = container_of(work, struct  async_submit_bio, work);
755         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
756                                       async->mirror_num, async->bio_flags,
757                                       async->bio_offset);
758         if (ret)
759                 async->error = ret;
760 }
761
762 static void run_one_async_done(struct btrfs_work *work)
763 {
764         struct btrfs_fs_info *fs_info;
765         struct async_submit_bio *async;
766         int limit;
767
768         async = container_of(work, struct  async_submit_bio, work);
769         fs_info = BTRFS_I(async->inode)->root->fs_info;
770
771         limit = btrfs_async_submit_limit(fs_info);
772         limit = limit * 2 / 3;
773
774         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
775             waitqueue_active(&fs_info->async_submit_wait))
776                 wake_up(&fs_info->async_submit_wait);
777
778         /* If an error occured we just want to clean up the bio and move on */
779         if (async->error) {
780                 bio_endio(async->bio, async->error);
781                 return;
782         }
783
784         async->submit_bio_done(async->inode, async->rw, async->bio,
785                                async->mirror_num, async->bio_flags,
786                                async->bio_offset);
787 }
788
789 static void run_one_async_free(struct btrfs_work *work)
790 {
791         struct async_submit_bio *async;
792
793         async = container_of(work, struct  async_submit_bio, work);
794         kfree(async);
795 }
796
797 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
798                         int rw, struct bio *bio, int mirror_num,
799                         unsigned long bio_flags,
800                         u64 bio_offset,
801                         extent_submit_bio_hook_t *submit_bio_start,
802                         extent_submit_bio_hook_t *submit_bio_done)
803 {
804         struct async_submit_bio *async;
805
806         async = kmalloc(sizeof(*async), GFP_NOFS);
807         if (!async)
808                 return -ENOMEM;
809
810         async->inode = inode;
811         async->rw = rw;
812         async->bio = bio;
813         async->mirror_num = mirror_num;
814         async->submit_bio_start = submit_bio_start;
815         async->submit_bio_done = submit_bio_done;
816
817         async->work.func = run_one_async_start;
818         async->work.ordered_func = run_one_async_done;
819         async->work.ordered_free = run_one_async_free;
820
821         async->work.flags = 0;
822         async->bio_flags = bio_flags;
823         async->bio_offset = bio_offset;
824
825         async->error = 0;
826
827         atomic_inc(&fs_info->nr_async_submits);
828
829         if (rw & REQ_SYNC)
830                 btrfs_set_work_high_prio(&async->work);
831
832         btrfs_queue_worker(&fs_info->workers, &async->work);
833
834         while (atomic_read(&fs_info->async_submit_draining) &&
835               atomic_read(&fs_info->nr_async_submits)) {
836                 wait_event(fs_info->async_submit_wait,
837                            (atomic_read(&fs_info->nr_async_submits) == 0));
838         }
839
840         return 0;
841 }
842
843 static int btree_csum_one_bio(struct bio *bio)
844 {
845         struct bio_vec *bvec = bio->bi_io_vec;
846         int bio_index = 0;
847         struct btrfs_root *root;
848         int ret = 0;
849
850         WARN_ON(bio->bi_vcnt <= 0);
851         while (bio_index < bio->bi_vcnt) {
852                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
853                 ret = csum_dirty_buffer(root, bvec->bv_page);
854                 if (ret)
855                         break;
856                 bio_index++;
857                 bvec++;
858         }
859         return ret;
860 }
861
862 static int __btree_submit_bio_start(struct inode *inode, int rw,
863                                     struct bio *bio, int mirror_num,
864                                     unsigned long bio_flags,
865                                     u64 bio_offset)
866 {
867         /*
868          * when we're called for a write, we're already in the async
869          * submission context.  Just jump into btrfs_map_bio
870          */
871         return btree_csum_one_bio(bio);
872 }
873
874 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
875                                  int mirror_num, unsigned long bio_flags,
876                                  u64 bio_offset)
877 {
878         int ret;
879
880         /*
881          * when we're called for a write, we're already in the async
882          * submission context.  Just jump into btrfs_map_bio
883          */
884         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
885         if (ret)
886                 bio_endio(bio, ret);
887         return ret;
888 }
889
890 static int check_async_write(struct inode *inode, unsigned long bio_flags)
891 {
892         if (bio_flags & EXTENT_BIO_TREE_LOG)
893                 return 0;
894 #ifdef CONFIG_X86
895         if (cpu_has_xmm4_2)
896                 return 0;
897 #endif
898         return 1;
899 }
900
901 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
902                                  int mirror_num, unsigned long bio_flags,
903                                  u64 bio_offset)
904 {
905         int async = check_async_write(inode, bio_flags);
906         int ret;
907
908         if (!(rw & REQ_WRITE)) {
909                 /*
910                  * called for a read, do the setup so that checksum validation
911                  * can happen in the async kernel threads
912                  */
913                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
914                                           bio, 1);
915                 if (ret)
916                         goto out_w_error;
917                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
918                                     mirror_num, 0);
919         } else if (!async) {
920                 ret = btree_csum_one_bio(bio);
921                 if (ret)
922                         goto out_w_error;
923                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
924                                     mirror_num, 0);
925         } else {
926                 /*
927                  * kthread helpers are used to submit writes so that
928                  * checksumming can happen in parallel across all CPUs
929                  */
930                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
931                                           inode, rw, bio, mirror_num, 0,
932                                           bio_offset,
933                                           __btree_submit_bio_start,
934                                           __btree_submit_bio_done);
935         }
936
937         if (ret) {
938 out_w_error:
939                 bio_endio(bio, ret);
940         }
941         return ret;
942 }
943
944 #ifdef CONFIG_MIGRATION
945 static int btree_migratepage(struct address_space *mapping,
946                         struct page *newpage, struct page *page,
947                         enum migrate_mode mode)
948 {
949         /*
950          * we can't safely write a btree page from here,
951          * we haven't done the locking hook
952          */
953         if (PageDirty(page))
954                 return -EAGAIN;
955         /*
956          * Buffers may be managed in a filesystem specific way.
957          * We must have no buffers or drop them.
958          */
959         if (page_has_private(page) &&
960             !try_to_release_page(page, GFP_KERNEL))
961                 return -EAGAIN;
962         return migrate_page(mapping, newpage, page, mode);
963 }
964 #endif
965
966
967 static int btree_writepages(struct address_space *mapping,
968                             struct writeback_control *wbc)
969 {
970         struct extent_io_tree *tree;
971         struct btrfs_fs_info *fs_info;
972         int ret;
973
974         tree = &BTRFS_I(mapping->host)->io_tree;
975         if (wbc->sync_mode == WB_SYNC_NONE) {
976
977                 if (wbc->for_kupdate)
978                         return 0;
979
980                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
981                 /* this is a bit racy, but that's ok */
982                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
983                                              BTRFS_DIRTY_METADATA_THRESH);
984                 if (ret < 0)
985                         return 0;
986         }
987         return btree_write_cache_pages(mapping, wbc);
988 }
989
990 static int btree_readpage(struct file *file, struct page *page)
991 {
992         struct extent_io_tree *tree;
993         tree = &BTRFS_I(page->mapping->host)->io_tree;
994         return extent_read_full_page(tree, page, btree_get_extent, 0);
995 }
996
997 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
998 {
999         if (PageWriteback(page) || PageDirty(page))
1000                 return 0;
1001         /*
1002          * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
1003          * slab allocation from alloc_extent_state down the callchain where
1004          * it'd hit a BUG_ON as those flags are not allowed.
1005          */
1006         gfp_flags &= ~GFP_SLAB_BUG_MASK;
1007
1008         return try_release_extent_buffer(page, gfp_flags);
1009 }
1010
1011 static void btree_invalidatepage(struct page *page, unsigned long offset)
1012 {
1013         struct extent_io_tree *tree;
1014         tree = &BTRFS_I(page->mapping->host)->io_tree;
1015         extent_invalidatepage(tree, page, offset);
1016         btree_releasepage(page, GFP_NOFS);
1017         if (PagePrivate(page)) {
1018                 printk(KERN_WARNING "btrfs warning page private not zero "
1019                        "on page %llu\n", (unsigned long long)page_offset(page));
1020                 ClearPagePrivate(page);
1021                 set_page_private(page, 0);
1022                 page_cache_release(page);
1023         }
1024 }
1025
1026 static int btree_set_page_dirty(struct page *page)
1027 {
1028 #ifdef DEBUG
1029         struct extent_buffer *eb;
1030
1031         BUG_ON(!PagePrivate(page));
1032         eb = (struct extent_buffer *)page->private;
1033         BUG_ON(!eb);
1034         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1035         BUG_ON(!atomic_read(&eb->refs));
1036         btrfs_assert_tree_locked(eb);
1037 #endif
1038         return __set_page_dirty_nobuffers(page);
1039 }
1040
1041 static const struct address_space_operations btree_aops = {
1042         .readpage       = btree_readpage,
1043         .writepages     = btree_writepages,
1044         .releasepage    = btree_releasepage,
1045         .invalidatepage = btree_invalidatepage,
1046 #ifdef CONFIG_MIGRATION
1047         .migratepage    = btree_migratepage,
1048 #endif
1049         .set_page_dirty = btree_set_page_dirty,
1050 };
1051
1052 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1053                          u64 parent_transid)
1054 {
1055         struct extent_buffer *buf = NULL;
1056         struct inode *btree_inode = root->fs_info->btree_inode;
1057         int ret = 0;
1058
1059         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1060         if (!buf)
1061                 return 0;
1062         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1063                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1064         free_extent_buffer(buf);
1065         return ret;
1066 }
1067
1068 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1069                          int mirror_num, struct extent_buffer **eb)
1070 {
1071         struct extent_buffer *buf = NULL;
1072         struct inode *btree_inode = root->fs_info->btree_inode;
1073         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1074         int ret;
1075
1076         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1077         if (!buf)
1078                 return 0;
1079
1080         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1081
1082         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1083                                        btree_get_extent, mirror_num);
1084         if (ret) {
1085                 free_extent_buffer(buf);
1086                 return ret;
1087         }
1088
1089         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1090                 free_extent_buffer(buf);
1091                 return -EIO;
1092         } else if (extent_buffer_uptodate(buf)) {
1093                 *eb = buf;
1094         } else {
1095                 free_extent_buffer(buf);
1096         }
1097         return 0;
1098 }
1099
1100 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1101                                             u64 bytenr, u32 blocksize)
1102 {
1103         struct inode *btree_inode = root->fs_info->btree_inode;
1104         struct extent_buffer *eb;
1105         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1106                                 bytenr, blocksize);
1107         return eb;
1108 }
1109
1110 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1111                                                  u64 bytenr, u32 blocksize)
1112 {
1113         struct inode *btree_inode = root->fs_info->btree_inode;
1114         struct extent_buffer *eb;
1115
1116         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1117                                  bytenr, blocksize);
1118         return eb;
1119 }
1120
1121
1122 int btrfs_write_tree_block(struct extent_buffer *buf)
1123 {
1124         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1125                                         buf->start + buf->len - 1);
1126 }
1127
1128 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1129 {
1130         return filemap_fdatawait_range(buf->pages[0]->mapping,
1131                                        buf->start, buf->start + buf->len - 1);
1132 }
1133
1134 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1135                                       u32 blocksize, u64 parent_transid)
1136 {
1137         struct extent_buffer *buf = NULL;
1138         int ret;
1139
1140         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1141         if (!buf)
1142                 return NULL;
1143
1144         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1145         return buf;
1146
1147 }
1148
1149 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1150                       struct extent_buffer *buf)
1151 {
1152         struct btrfs_fs_info *fs_info = root->fs_info;
1153
1154         if (btrfs_header_generation(buf) ==
1155             fs_info->running_transaction->transid) {
1156                 btrfs_assert_tree_locked(buf);
1157
1158                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1159                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1160                                              -buf->len,
1161                                              fs_info->dirty_metadata_batch);
1162                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1163                         btrfs_set_lock_blocking(buf);
1164                         clear_extent_buffer_dirty(buf);
1165                 }
1166         }
1167 }
1168
1169 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1170                          u32 stripesize, struct btrfs_root *root,
1171                          struct btrfs_fs_info *fs_info,
1172                          u64 objectid)
1173 {
1174         root->node = NULL;
1175         root->commit_root = NULL;
1176         root->sectorsize = sectorsize;
1177         root->nodesize = nodesize;
1178         root->leafsize = leafsize;
1179         root->stripesize = stripesize;
1180         root->ref_cows = 0;
1181         root->track_dirty = 0;
1182         root->in_radix = 0;
1183         root->orphan_item_inserted = 0;
1184         root->orphan_cleanup_state = 0;
1185
1186         root->objectid = objectid;
1187         root->last_trans = 0;
1188         root->highest_objectid = 0;
1189         root->name = NULL;
1190         root->inode_tree = RB_ROOT;
1191         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1192         root->block_rsv = NULL;
1193         root->orphan_block_rsv = NULL;
1194
1195         INIT_LIST_HEAD(&root->dirty_list);
1196         INIT_LIST_HEAD(&root->root_list);
1197         INIT_LIST_HEAD(&root->logged_list[0]);
1198         INIT_LIST_HEAD(&root->logged_list[1]);
1199         spin_lock_init(&root->orphan_lock);
1200         spin_lock_init(&root->inode_lock);
1201         spin_lock_init(&root->accounting_lock);
1202         spin_lock_init(&root->log_extents_lock[0]);
1203         spin_lock_init(&root->log_extents_lock[1]);
1204         mutex_init(&root->objectid_mutex);
1205         mutex_init(&root->log_mutex);
1206         init_waitqueue_head(&root->log_writer_wait);
1207         init_waitqueue_head(&root->log_commit_wait[0]);
1208         init_waitqueue_head(&root->log_commit_wait[1]);
1209         atomic_set(&root->log_commit[0], 0);
1210         atomic_set(&root->log_commit[1], 0);
1211         atomic_set(&root->log_writers, 0);
1212         atomic_set(&root->log_batch, 0);
1213         atomic_set(&root->orphan_inodes, 0);
1214         root->log_transid = 0;
1215         root->last_log_commit = 0;
1216         extent_io_tree_init(&root->dirty_log_pages,
1217                              fs_info->btree_inode->i_mapping);
1218
1219         memset(&root->root_key, 0, sizeof(root->root_key));
1220         memset(&root->root_item, 0, sizeof(root->root_item));
1221         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1222         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1223         root->defrag_trans_start = fs_info->generation;
1224         init_completion(&root->kobj_unregister);
1225         root->defrag_running = 0;
1226         root->root_key.objectid = objectid;
1227         root->anon_dev = 0;
1228
1229         spin_lock_init(&root->root_item_lock);
1230 }
1231
1232 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1233                                             struct btrfs_fs_info *fs_info,
1234                                             u64 objectid,
1235                                             struct btrfs_root *root)
1236 {
1237         int ret;
1238         u32 blocksize;
1239         u64 generation;
1240
1241         __setup_root(tree_root->nodesize, tree_root->leafsize,
1242                      tree_root->sectorsize, tree_root->stripesize,
1243                      root, fs_info, objectid);
1244         ret = btrfs_find_last_root(tree_root, objectid,
1245                                    &root->root_item, &root->root_key);
1246         if (ret > 0)
1247                 return -ENOENT;
1248         else if (ret < 0)
1249                 return ret;
1250
1251         generation = btrfs_root_generation(&root->root_item);
1252         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1253         root->commit_root = NULL;
1254         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1255                                      blocksize, generation);
1256         if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1257                 free_extent_buffer(root->node);
1258                 root->node = NULL;
1259                 return -EIO;
1260         }
1261         root->commit_root = btrfs_root_node(root);
1262         return 0;
1263 }
1264
1265 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1266 {
1267         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1268         if (root)
1269                 root->fs_info = fs_info;
1270         return root;
1271 }
1272
1273 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1274                                      struct btrfs_fs_info *fs_info,
1275                                      u64 objectid)
1276 {
1277         struct extent_buffer *leaf;
1278         struct btrfs_root *tree_root = fs_info->tree_root;
1279         struct btrfs_root *root;
1280         struct btrfs_key key;
1281         int ret = 0;
1282         u64 bytenr;
1283
1284         root = btrfs_alloc_root(fs_info);
1285         if (!root)
1286                 return ERR_PTR(-ENOMEM);
1287
1288         __setup_root(tree_root->nodesize, tree_root->leafsize,
1289                      tree_root->sectorsize, tree_root->stripesize,
1290                      root, fs_info, objectid);
1291         root->root_key.objectid = objectid;
1292         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1293         root->root_key.offset = 0;
1294
1295         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1296                                       0, objectid, NULL, 0, 0, 0);
1297         if (IS_ERR(leaf)) {
1298                 ret = PTR_ERR(leaf);
1299                 leaf = NULL;
1300                 goto fail;
1301         }
1302
1303         bytenr = leaf->start;
1304         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1305         btrfs_set_header_bytenr(leaf, leaf->start);
1306         btrfs_set_header_generation(leaf, trans->transid);
1307         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1308         btrfs_set_header_owner(leaf, objectid);
1309         root->node = leaf;
1310
1311         write_extent_buffer(leaf, fs_info->fsid,
1312                             (unsigned long)btrfs_header_fsid(leaf),
1313                             BTRFS_FSID_SIZE);
1314         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1315                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1316                             BTRFS_UUID_SIZE);
1317         btrfs_mark_buffer_dirty(leaf);
1318
1319         root->commit_root = btrfs_root_node(root);
1320         root->track_dirty = 1;
1321
1322
1323         root->root_item.flags = 0;
1324         root->root_item.byte_limit = 0;
1325         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1326         btrfs_set_root_generation(&root->root_item, trans->transid);
1327         btrfs_set_root_level(&root->root_item, 0);
1328         btrfs_set_root_refs(&root->root_item, 1);
1329         btrfs_set_root_used(&root->root_item, leaf->len);
1330         btrfs_set_root_last_snapshot(&root->root_item, 0);
1331         btrfs_set_root_dirid(&root->root_item, 0);
1332         root->root_item.drop_level = 0;
1333
1334         key.objectid = objectid;
1335         key.type = BTRFS_ROOT_ITEM_KEY;
1336         key.offset = 0;
1337         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1338         if (ret)
1339                 goto fail;
1340
1341         btrfs_tree_unlock(leaf);
1342
1343         return root;
1344
1345 fail:
1346         if (leaf) {
1347                 btrfs_tree_unlock(leaf);
1348                 free_extent_buffer(leaf);
1349         }
1350         kfree(root);
1351
1352         return ERR_PTR(ret);
1353 }
1354
1355 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1356                                          struct btrfs_fs_info *fs_info)
1357 {
1358         struct btrfs_root *root;
1359         struct btrfs_root *tree_root = fs_info->tree_root;
1360         struct extent_buffer *leaf;
1361
1362         root = btrfs_alloc_root(fs_info);
1363         if (!root)
1364                 return ERR_PTR(-ENOMEM);
1365
1366         __setup_root(tree_root->nodesize, tree_root->leafsize,
1367                      tree_root->sectorsize, tree_root->stripesize,
1368                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1369
1370         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1371         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1372         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1373         /*
1374          * log trees do not get reference counted because they go away
1375          * before a real commit is actually done.  They do store pointers
1376          * to file data extents, and those reference counts still get
1377          * updated (along with back refs to the log tree).
1378          */
1379         root->ref_cows = 0;
1380
1381         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1382                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1383                                       0, 0, 0);
1384         if (IS_ERR(leaf)) {
1385                 kfree(root);
1386                 return ERR_CAST(leaf);
1387         }
1388
1389         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1390         btrfs_set_header_bytenr(leaf, leaf->start);
1391         btrfs_set_header_generation(leaf, trans->transid);
1392         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1393         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1394         root->node = leaf;
1395
1396         write_extent_buffer(root->node, root->fs_info->fsid,
1397                             (unsigned long)btrfs_header_fsid(root->node),
1398                             BTRFS_FSID_SIZE);
1399         btrfs_mark_buffer_dirty(root->node);
1400         btrfs_tree_unlock(root->node);
1401         return root;
1402 }
1403
1404 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1405                              struct btrfs_fs_info *fs_info)
1406 {
1407         struct btrfs_root *log_root;
1408
1409         log_root = alloc_log_tree(trans, fs_info);
1410         if (IS_ERR(log_root))
1411                 return PTR_ERR(log_root);
1412         WARN_ON(fs_info->log_root_tree);
1413         fs_info->log_root_tree = log_root;
1414         return 0;
1415 }
1416
1417 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1418                        struct btrfs_root *root)
1419 {
1420         struct btrfs_root *log_root;
1421         struct btrfs_inode_item *inode_item;
1422
1423         log_root = alloc_log_tree(trans, root->fs_info);
1424         if (IS_ERR(log_root))
1425                 return PTR_ERR(log_root);
1426
1427         log_root->last_trans = trans->transid;
1428         log_root->root_key.offset = root->root_key.objectid;
1429
1430         inode_item = &log_root->root_item.inode;
1431         inode_item->generation = cpu_to_le64(1);
1432         inode_item->size = cpu_to_le64(3);
1433         inode_item->nlink = cpu_to_le32(1);
1434         inode_item->nbytes = cpu_to_le64(root->leafsize);
1435         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1436
1437         btrfs_set_root_node(&log_root->root_item, log_root->node);
1438
1439         WARN_ON(root->log_root);
1440         root->log_root = log_root;
1441         root->log_transid = 0;
1442         root->last_log_commit = 0;
1443         return 0;
1444 }
1445
1446 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1447                                                struct btrfs_key *location)
1448 {
1449         struct btrfs_root *root;
1450         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1451         struct btrfs_path *path;
1452         struct extent_buffer *l;
1453         u64 generation;
1454         u32 blocksize;
1455         int ret = 0;
1456         int slot;
1457
1458         root = btrfs_alloc_root(fs_info);
1459         if (!root)
1460                 return ERR_PTR(-ENOMEM);
1461         if (location->offset == (u64)-1) {
1462                 ret = find_and_setup_root(tree_root, fs_info,
1463                                           location->objectid, root);
1464                 if (ret) {
1465                         kfree(root);
1466                         return ERR_PTR(ret);
1467                 }
1468                 goto out;
1469         }
1470
1471         __setup_root(tree_root->nodesize, tree_root->leafsize,
1472                      tree_root->sectorsize, tree_root->stripesize,
1473                      root, fs_info, location->objectid);
1474
1475         path = btrfs_alloc_path();
1476         if (!path) {
1477                 kfree(root);
1478                 return ERR_PTR(-ENOMEM);
1479         }
1480         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1481         if (ret == 0) {
1482                 l = path->nodes[0];
1483                 slot = path->slots[0];
1484                 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1485                 memcpy(&root->root_key, location, sizeof(*location));
1486         }
1487         btrfs_free_path(path);
1488         if (ret) {
1489                 kfree(root);
1490                 if (ret > 0)
1491                         ret = -ENOENT;
1492                 return ERR_PTR(ret);
1493         }
1494
1495         generation = btrfs_root_generation(&root->root_item);
1496         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1497         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1498                                      blocksize, generation);
1499         if (!root->node || !extent_buffer_uptodate(root->node)) {
1500                 ret = (!root->node) ? -ENOMEM : -EIO;
1501
1502                 free_extent_buffer(root->node);
1503                 kfree(root);
1504                 return ERR_PTR(ret);
1505         }
1506
1507         root->commit_root = btrfs_root_node(root);
1508         BUG_ON(!root->node); /* -ENOMEM */
1509 out:
1510         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1511                 root->ref_cows = 1;
1512                 btrfs_check_and_init_root_item(&root->root_item);
1513         }
1514
1515         return root;
1516 }
1517
1518 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1519                                               struct btrfs_key *location)
1520 {
1521         struct btrfs_root *root;
1522         int ret;
1523
1524         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1525                 return fs_info->tree_root;
1526         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1527                 return fs_info->extent_root;
1528         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1529                 return fs_info->chunk_root;
1530         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1531                 return fs_info->dev_root;
1532         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1533                 return fs_info->csum_root;
1534         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1535                 return fs_info->quota_root ? fs_info->quota_root :
1536                                              ERR_PTR(-ENOENT);
1537 again:
1538         spin_lock(&fs_info->fs_roots_radix_lock);
1539         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1540                                  (unsigned long)location->objectid);
1541         spin_unlock(&fs_info->fs_roots_radix_lock);
1542         if (root)
1543                 return root;
1544
1545         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1546         if (IS_ERR(root))
1547                 return root;
1548
1549         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1550         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1551                                         GFP_NOFS);
1552         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1553                 ret = -ENOMEM;
1554                 goto fail;
1555         }
1556
1557         btrfs_init_free_ino_ctl(root);
1558         mutex_init(&root->fs_commit_mutex);
1559         spin_lock_init(&root->cache_lock);
1560         init_waitqueue_head(&root->cache_wait);
1561
1562         ret = get_anon_bdev(&root->anon_dev);
1563         if (ret)
1564                 goto fail;
1565
1566         if (btrfs_root_refs(&root->root_item) == 0) {
1567                 ret = -ENOENT;
1568                 goto fail;
1569         }
1570
1571         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1572         if (ret < 0)
1573                 goto fail;
1574         if (ret == 0)
1575                 root->orphan_item_inserted = 1;
1576
1577         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1578         if (ret)
1579                 goto fail;
1580
1581         spin_lock(&fs_info->fs_roots_radix_lock);
1582         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1583                                 (unsigned long)root->root_key.objectid,
1584                                 root);
1585         if (ret == 0)
1586                 root->in_radix = 1;
1587
1588         spin_unlock(&fs_info->fs_roots_radix_lock);
1589         radix_tree_preload_end();
1590         if (ret) {
1591                 if (ret == -EEXIST) {
1592                         free_fs_root(root);
1593                         goto again;
1594                 }
1595                 goto fail;
1596         }
1597
1598         ret = btrfs_find_dead_roots(fs_info->tree_root,
1599                                     root->root_key.objectid);
1600         WARN_ON(ret);
1601         return root;
1602 fail:
1603         free_fs_root(root);
1604         return ERR_PTR(ret);
1605 }
1606
1607 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1608 {
1609         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1610         int ret = 0;
1611         struct btrfs_device *device;
1612         struct backing_dev_info *bdi;
1613
1614         rcu_read_lock();
1615         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1616                 if (!device->bdev)
1617                         continue;
1618                 bdi = blk_get_backing_dev_info(device->bdev);
1619                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1620                         ret = 1;
1621                         break;
1622                 }
1623         }
1624         rcu_read_unlock();
1625         return ret;
1626 }
1627
1628 /*
1629  * If this fails, caller must call bdi_destroy() to get rid of the
1630  * bdi again.
1631  */
1632 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1633 {
1634         int err;
1635
1636         bdi->capabilities = BDI_CAP_MAP_COPY;
1637         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1638         if (err)
1639                 return err;
1640
1641         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1642         bdi->congested_fn       = btrfs_congested_fn;
1643         bdi->congested_data     = info;
1644         return 0;
1645 }
1646
1647 /*
1648  * called by the kthread helper functions to finally call the bio end_io
1649  * functions.  This is where read checksum verification actually happens
1650  */
1651 static void end_workqueue_fn(struct btrfs_work *work)
1652 {
1653         struct bio *bio;
1654         struct end_io_wq *end_io_wq;
1655         struct btrfs_fs_info *fs_info;
1656         int error;
1657
1658         end_io_wq = container_of(work, struct end_io_wq, work);
1659         bio = end_io_wq->bio;
1660         fs_info = end_io_wq->info;
1661
1662         error = end_io_wq->error;
1663         bio->bi_private = end_io_wq->private;
1664         bio->bi_end_io = end_io_wq->end_io;
1665         kfree(end_io_wq);
1666         bio_endio(bio, error);
1667 }
1668
1669 static int cleaner_kthread(void *arg)
1670 {
1671         struct btrfs_root *root = arg;
1672
1673         do {
1674                 int again = 0;
1675
1676                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1677                     down_read_trylock(&root->fs_info->sb->s_umount)) {
1678                         if (mutex_trylock(&root->fs_info->cleaner_mutex)) {
1679                                 btrfs_run_delayed_iputs(root);
1680                                 again = btrfs_clean_one_deleted_snapshot(root);
1681                                 mutex_unlock(&root->fs_info->cleaner_mutex);
1682                         }
1683                         btrfs_run_defrag_inodes(root->fs_info);
1684                         up_read(&root->fs_info->sb->s_umount);
1685                 }
1686
1687                 if (!try_to_freeze() && !again) {
1688                         set_current_state(TASK_INTERRUPTIBLE);
1689                         if (!kthread_should_stop())
1690                                 schedule();
1691                         __set_current_state(TASK_RUNNING);
1692                 }
1693         } while (!kthread_should_stop());
1694         return 0;
1695 }
1696
1697 static int transaction_kthread(void *arg)
1698 {
1699         struct btrfs_root *root = arg;
1700         struct btrfs_trans_handle *trans;
1701         struct btrfs_transaction *cur;
1702         u64 transid;
1703         unsigned long now;
1704         unsigned long delay;
1705         bool cannot_commit;
1706
1707         do {
1708                 cannot_commit = false;
1709                 delay = HZ * 30;
1710                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1711
1712                 spin_lock(&root->fs_info->trans_lock);
1713                 cur = root->fs_info->running_transaction;
1714                 if (!cur) {
1715                         spin_unlock(&root->fs_info->trans_lock);
1716                         goto sleep;
1717                 }
1718
1719                 now = get_seconds();
1720                 if (!cur->blocked &&
1721                     (now < cur->start_time || now - cur->start_time < 30)) {
1722                         spin_unlock(&root->fs_info->trans_lock);
1723                         delay = HZ * 5;
1724                         goto sleep;
1725                 }
1726                 transid = cur->transid;
1727                 spin_unlock(&root->fs_info->trans_lock);
1728
1729                 /* If the file system is aborted, this will always fail. */
1730                 trans = btrfs_attach_transaction(root);
1731                 if (IS_ERR(trans)) {
1732                         if (PTR_ERR(trans) != -ENOENT)
1733                                 cannot_commit = true;
1734                         goto sleep;
1735                 }
1736                 if (transid == trans->transid) {
1737                         btrfs_commit_transaction(trans, root);
1738                 } else {
1739                         btrfs_end_transaction(trans, root);
1740                 }
1741 sleep:
1742                 wake_up_process(root->fs_info->cleaner_kthread);
1743                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1744
1745                 if (!try_to_freeze()) {
1746                         set_current_state(TASK_INTERRUPTIBLE);
1747                         if (!kthread_should_stop() &&
1748                             (!btrfs_transaction_blocked(root->fs_info) ||
1749                              cannot_commit))
1750                                 schedule_timeout(delay);
1751                         __set_current_state(TASK_RUNNING);
1752                 }
1753         } while (!kthread_should_stop());
1754         return 0;
1755 }
1756
1757 /*
1758  * this will find the highest generation in the array of
1759  * root backups.  The index of the highest array is returned,
1760  * or -1 if we can't find anything.
1761  *
1762  * We check to make sure the array is valid by comparing the
1763  * generation of the latest  root in the array with the generation
1764  * in the super block.  If they don't match we pitch it.
1765  */
1766 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1767 {
1768         u64 cur;
1769         int newest_index = -1;
1770         struct btrfs_root_backup *root_backup;
1771         int i;
1772
1773         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1774                 root_backup = info->super_copy->super_roots + i;
1775                 cur = btrfs_backup_tree_root_gen(root_backup);
1776                 if (cur == newest_gen)
1777                         newest_index = i;
1778         }
1779
1780         /* check to see if we actually wrapped around */
1781         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1782                 root_backup = info->super_copy->super_roots;
1783                 cur = btrfs_backup_tree_root_gen(root_backup);
1784                 if (cur == newest_gen)
1785                         newest_index = 0;
1786         }
1787         return newest_index;
1788 }
1789
1790
1791 /*
1792  * find the oldest backup so we know where to store new entries
1793  * in the backup array.  This will set the backup_root_index
1794  * field in the fs_info struct
1795  */
1796 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1797                                      u64 newest_gen)
1798 {
1799         int newest_index = -1;
1800
1801         newest_index = find_newest_super_backup(info, newest_gen);
1802         /* if there was garbage in there, just move along */
1803         if (newest_index == -1) {
1804                 info->backup_root_index = 0;
1805         } else {
1806                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1807         }
1808 }
1809
1810 /*
1811  * copy all the root pointers into the super backup array.
1812  * this will bump the backup pointer by one when it is
1813  * done
1814  */
1815 static void backup_super_roots(struct btrfs_fs_info *info)
1816 {
1817         int next_backup;
1818         struct btrfs_root_backup *root_backup;
1819         int last_backup;
1820
1821         next_backup = info->backup_root_index;
1822         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1823                 BTRFS_NUM_BACKUP_ROOTS;
1824
1825         /*
1826          * just overwrite the last backup if we're at the same generation
1827          * this happens only at umount
1828          */
1829         root_backup = info->super_for_commit->super_roots + last_backup;
1830         if (btrfs_backup_tree_root_gen(root_backup) ==
1831             btrfs_header_generation(info->tree_root->node))
1832                 next_backup = last_backup;
1833
1834         root_backup = info->super_for_commit->super_roots + next_backup;
1835
1836         /*
1837          * make sure all of our padding and empty slots get zero filled
1838          * regardless of which ones we use today
1839          */
1840         memset(root_backup, 0, sizeof(*root_backup));
1841
1842         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1843
1844         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1845         btrfs_set_backup_tree_root_gen(root_backup,
1846                                btrfs_header_generation(info->tree_root->node));
1847
1848         btrfs_set_backup_tree_root_level(root_backup,
1849                                btrfs_header_level(info->tree_root->node));
1850
1851         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1852         btrfs_set_backup_chunk_root_gen(root_backup,
1853                                btrfs_header_generation(info->chunk_root->node));
1854         btrfs_set_backup_chunk_root_level(root_backup,
1855                                btrfs_header_level(info->chunk_root->node));
1856
1857         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1858         btrfs_set_backup_extent_root_gen(root_backup,
1859                                btrfs_header_generation(info->extent_root->node));
1860         btrfs_set_backup_extent_root_level(root_backup,
1861                                btrfs_header_level(info->extent_root->node));
1862
1863         /*
1864          * we might commit during log recovery, which happens before we set
1865          * the fs_root.  Make sure it is valid before we fill it in.
1866          */
1867         if (info->fs_root && info->fs_root->node) {
1868                 btrfs_set_backup_fs_root(root_backup,
1869                                          info->fs_root->node->start);
1870                 btrfs_set_backup_fs_root_gen(root_backup,
1871                                btrfs_header_generation(info->fs_root->node));
1872                 btrfs_set_backup_fs_root_level(root_backup,
1873                                btrfs_header_level(info->fs_root->node));
1874         }
1875
1876         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1877         btrfs_set_backup_dev_root_gen(root_backup,
1878                                btrfs_header_generation(info->dev_root->node));
1879         btrfs_set_backup_dev_root_level(root_backup,
1880                                        btrfs_header_level(info->dev_root->node));
1881
1882         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1883         btrfs_set_backup_csum_root_gen(root_backup,
1884                                btrfs_header_generation(info->csum_root->node));
1885         btrfs_set_backup_csum_root_level(root_backup,
1886                                btrfs_header_level(info->csum_root->node));
1887
1888         btrfs_set_backup_total_bytes(root_backup,
1889                              btrfs_super_total_bytes(info->super_copy));
1890         btrfs_set_backup_bytes_used(root_backup,
1891                              btrfs_super_bytes_used(info->super_copy));
1892         btrfs_set_backup_num_devices(root_backup,
1893                              btrfs_super_num_devices(info->super_copy));
1894
1895         /*
1896          * if we don't copy this out to the super_copy, it won't get remembered
1897          * for the next commit
1898          */
1899         memcpy(&info->super_copy->super_roots,
1900                &info->super_for_commit->super_roots,
1901                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1902 }
1903
1904 /*
1905  * this copies info out of the root backup array and back into
1906  * the in-memory super block.  It is meant to help iterate through
1907  * the array, so you send it the number of backups you've already
1908  * tried and the last backup index you used.
1909  *
1910  * this returns -1 when it has tried all the backups
1911  */
1912 static noinline int next_root_backup(struct btrfs_fs_info *info,
1913                                      struct btrfs_super_block *super,
1914                                      int *num_backups_tried, int *backup_index)
1915 {
1916         struct btrfs_root_backup *root_backup;
1917         int newest = *backup_index;
1918
1919         if (*num_backups_tried == 0) {
1920                 u64 gen = btrfs_super_generation(super);
1921
1922                 newest = find_newest_super_backup(info, gen);
1923                 if (newest == -1)
1924                         return -1;
1925
1926                 *backup_index = newest;
1927                 *num_backups_tried = 1;
1928         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1929                 /* we've tried all the backups, all done */
1930                 return -1;
1931         } else {
1932                 /* jump to the next oldest backup */
1933                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1934                         BTRFS_NUM_BACKUP_ROOTS;
1935                 *backup_index = newest;
1936                 *num_backups_tried += 1;
1937         }
1938         root_backup = super->super_roots + newest;
1939
1940         btrfs_set_super_generation(super,
1941                                    btrfs_backup_tree_root_gen(root_backup));
1942         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1943         btrfs_set_super_root_level(super,
1944                                    btrfs_backup_tree_root_level(root_backup));
1945         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1946
1947         /*
1948          * fixme: the total bytes and num_devices need to match or we should
1949          * need a fsck
1950          */
1951         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1952         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1953         return 0;
1954 }
1955
1956 /* helper to cleanup workers */
1957 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1958 {
1959         btrfs_stop_workers(&fs_info->generic_worker);
1960         btrfs_stop_workers(&fs_info->fixup_workers);
1961         btrfs_stop_workers(&fs_info->delalloc_workers);
1962         btrfs_stop_workers(&fs_info->workers);
1963         btrfs_stop_workers(&fs_info->endio_workers);
1964         btrfs_stop_workers(&fs_info->endio_meta_workers);
1965         btrfs_stop_workers(&fs_info->endio_raid56_workers);
1966         btrfs_stop_workers(&fs_info->rmw_workers);
1967         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1968         btrfs_stop_workers(&fs_info->endio_write_workers);
1969         btrfs_stop_workers(&fs_info->endio_freespace_worker);
1970         btrfs_stop_workers(&fs_info->submit_workers);
1971         btrfs_stop_workers(&fs_info->delayed_workers);
1972         btrfs_stop_workers(&fs_info->caching_workers);
1973         btrfs_stop_workers(&fs_info->readahead_workers);
1974         btrfs_stop_workers(&fs_info->flush_workers);
1975 }
1976
1977 /* helper to cleanup tree roots */
1978 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1979 {
1980         free_extent_buffer(info->tree_root->node);
1981         free_extent_buffer(info->tree_root->commit_root);
1982         free_extent_buffer(info->dev_root->node);
1983         free_extent_buffer(info->dev_root->commit_root);
1984         free_extent_buffer(info->extent_root->node);
1985         free_extent_buffer(info->extent_root->commit_root);
1986         free_extent_buffer(info->csum_root->node);
1987         free_extent_buffer(info->csum_root->commit_root);
1988         if (info->quota_root) {
1989                 free_extent_buffer(info->quota_root->node);
1990                 free_extent_buffer(info->quota_root->commit_root);
1991         }
1992
1993         info->tree_root->node = NULL;
1994         info->tree_root->commit_root = NULL;
1995         info->dev_root->node = NULL;
1996         info->dev_root->commit_root = NULL;
1997         info->extent_root->node = NULL;
1998         info->extent_root->commit_root = NULL;
1999         info->csum_root->node = NULL;
2000         info->csum_root->commit_root = NULL;
2001         if (info->quota_root) {
2002                 info->quota_root->node = NULL;
2003                 info->quota_root->commit_root = NULL;
2004         }
2005
2006         if (chunk_root) {
2007                 free_extent_buffer(info->chunk_root->node);
2008                 free_extent_buffer(info->chunk_root->commit_root);
2009                 info->chunk_root->node = NULL;
2010                 info->chunk_root->commit_root = NULL;
2011         }
2012 }
2013
2014
2015 int open_ctree(struct super_block *sb,
2016                struct btrfs_fs_devices *fs_devices,
2017                char *options)
2018 {
2019         u32 sectorsize;
2020         u32 nodesize;
2021         u32 leafsize;
2022         u32 blocksize;
2023         u32 stripesize;
2024         u64 generation;
2025         u64 features;
2026         struct btrfs_key location;
2027         struct buffer_head *bh;
2028         struct btrfs_super_block *disk_super;
2029         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2030         struct btrfs_root *tree_root;
2031         struct btrfs_root *extent_root;
2032         struct btrfs_root *csum_root;
2033         struct btrfs_root *chunk_root;
2034         struct btrfs_root *dev_root;
2035         struct btrfs_root *quota_root;
2036         struct btrfs_root *log_tree_root;
2037         int ret;
2038         int err = -EINVAL;
2039         int num_backups_tried = 0;
2040         int backup_index = 0;
2041
2042         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2043         extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
2044         csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2045         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2046         dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
2047         quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
2048
2049         if (!tree_root || !extent_root || !csum_root ||
2050             !chunk_root || !dev_root || !quota_root) {
2051                 err = -ENOMEM;
2052                 goto fail;
2053         }
2054
2055         ret = init_srcu_struct(&fs_info->subvol_srcu);
2056         if (ret) {
2057                 err = ret;
2058                 goto fail;
2059         }
2060
2061         ret = setup_bdi(fs_info, &fs_info->bdi);
2062         if (ret) {
2063                 err = ret;
2064                 goto fail_srcu;
2065         }
2066
2067         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2068         if (ret) {
2069                 err = ret;
2070                 goto fail_bdi;
2071         }
2072         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2073                                         (1 + ilog2(nr_cpu_ids));
2074
2075         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2076         if (ret) {
2077                 err = ret;
2078                 goto fail_dirty_metadata_bytes;
2079         }
2080
2081         fs_info->btree_inode = new_inode(sb);
2082         if (!fs_info->btree_inode) {
2083                 err = -ENOMEM;
2084                 goto fail_delalloc_bytes;
2085         }
2086
2087         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2088
2089         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2090         INIT_LIST_HEAD(&fs_info->trans_list);
2091         INIT_LIST_HEAD(&fs_info->dead_roots);
2092         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2093         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2094         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2095         spin_lock_init(&fs_info->delalloc_lock);
2096         spin_lock_init(&fs_info->trans_lock);
2097         spin_lock_init(&fs_info->fs_roots_radix_lock);
2098         spin_lock_init(&fs_info->delayed_iput_lock);
2099         spin_lock_init(&fs_info->defrag_inodes_lock);
2100         spin_lock_init(&fs_info->free_chunk_lock);
2101         spin_lock_init(&fs_info->tree_mod_seq_lock);
2102         spin_lock_init(&fs_info->super_lock);
2103         rwlock_init(&fs_info->tree_mod_log_lock);
2104         mutex_init(&fs_info->reloc_mutex);
2105         seqlock_init(&fs_info->profiles_lock);
2106
2107         init_completion(&fs_info->kobj_unregister);
2108         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2109         INIT_LIST_HEAD(&fs_info->space_info);
2110         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2111         btrfs_mapping_init(&fs_info->mapping_tree);
2112         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2113                              BTRFS_BLOCK_RSV_GLOBAL);
2114         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2115                              BTRFS_BLOCK_RSV_DELALLOC);
2116         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2117         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2118         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2119         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2120                              BTRFS_BLOCK_RSV_DELOPS);
2121         atomic_set(&fs_info->nr_async_submits, 0);
2122         atomic_set(&fs_info->async_delalloc_pages, 0);
2123         atomic_set(&fs_info->async_submit_draining, 0);
2124         atomic_set(&fs_info->nr_async_bios, 0);
2125         atomic_set(&fs_info->defrag_running, 0);
2126         atomic_set(&fs_info->tree_mod_seq, 0);
2127         fs_info->sb = sb;
2128         fs_info->max_inline = 8192 * 1024;
2129         fs_info->metadata_ratio = 0;
2130         fs_info->defrag_inodes = RB_ROOT;
2131         fs_info->trans_no_join = 0;
2132         fs_info->free_chunk_space = 0;
2133         fs_info->tree_mod_log = RB_ROOT;
2134
2135         /* readahead state */
2136         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2137         spin_lock_init(&fs_info->reada_lock);
2138
2139         fs_info->thread_pool_size = min_t(unsigned long,
2140                                           num_online_cpus() + 2, 8);
2141
2142         INIT_LIST_HEAD(&fs_info->ordered_extents);
2143         spin_lock_init(&fs_info->ordered_extent_lock);
2144         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2145                                         GFP_NOFS);
2146         if (!fs_info->delayed_root) {
2147                 err = -ENOMEM;
2148                 goto fail_iput;
2149         }
2150         btrfs_init_delayed_root(fs_info->delayed_root);
2151
2152         mutex_init(&fs_info->scrub_lock);
2153         atomic_set(&fs_info->scrubs_running, 0);
2154         atomic_set(&fs_info->scrub_pause_req, 0);
2155         atomic_set(&fs_info->scrubs_paused, 0);
2156         atomic_set(&fs_info->scrub_cancel_req, 0);
2157         init_waitqueue_head(&fs_info->scrub_pause_wait);
2158         init_rwsem(&fs_info->scrub_super_lock);
2159         fs_info->scrub_workers_refcnt = 0;
2160 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2161         fs_info->check_integrity_print_mask = 0;
2162 #endif
2163
2164         spin_lock_init(&fs_info->balance_lock);
2165         mutex_init(&fs_info->balance_mutex);
2166         atomic_set(&fs_info->balance_running, 0);
2167         atomic_set(&fs_info->balance_pause_req, 0);
2168         atomic_set(&fs_info->balance_cancel_req, 0);
2169         fs_info->balance_ctl = NULL;
2170         init_waitqueue_head(&fs_info->balance_wait_q);
2171
2172         sb->s_blocksize = 4096;
2173         sb->s_blocksize_bits = blksize_bits(4096);
2174         sb->s_bdi = &fs_info->bdi;
2175
2176         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2177         set_nlink(fs_info->btree_inode, 1);
2178         /*
2179          * we set the i_size on the btree inode to the max possible int.
2180          * the real end of the address space is determined by all of
2181          * the devices in the system
2182          */
2183         fs_info->btree_inode->i_size = OFFSET_MAX;
2184         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2185         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2186
2187         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2188         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2189                              fs_info->btree_inode->i_mapping);
2190         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2191         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2192
2193         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2194
2195         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2196         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2197                sizeof(struct btrfs_key));
2198         set_bit(BTRFS_INODE_DUMMY,
2199                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2200         insert_inode_hash(fs_info->btree_inode);
2201
2202         spin_lock_init(&fs_info->block_group_cache_lock);
2203         fs_info->block_group_cache_tree = RB_ROOT;
2204         fs_info->first_logical_byte = (u64)-1;
2205
2206         extent_io_tree_init(&fs_info->freed_extents[0],
2207                              fs_info->btree_inode->i_mapping);
2208         extent_io_tree_init(&fs_info->freed_extents[1],
2209                              fs_info->btree_inode->i_mapping);
2210         fs_info->pinned_extents = &fs_info->freed_extents[0];
2211         fs_info->do_barriers = 1;
2212
2213
2214         mutex_init(&fs_info->ordered_operations_mutex);
2215         mutex_init(&fs_info->tree_log_mutex);
2216         mutex_init(&fs_info->chunk_mutex);
2217         mutex_init(&fs_info->transaction_kthread_mutex);
2218         mutex_init(&fs_info->cleaner_mutex);
2219         mutex_init(&fs_info->volume_mutex);
2220         init_rwsem(&fs_info->extent_commit_sem);
2221         init_rwsem(&fs_info->cleanup_work_sem);
2222         init_rwsem(&fs_info->subvol_sem);
2223         fs_info->dev_replace.lock_owner = 0;
2224         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2225         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2226         mutex_init(&fs_info->dev_replace.lock_management_lock);
2227         mutex_init(&fs_info->dev_replace.lock);
2228
2229         spin_lock_init(&fs_info->qgroup_lock);
2230         mutex_init(&fs_info->qgroup_ioctl_lock);
2231         fs_info->qgroup_tree = RB_ROOT;
2232         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2233         fs_info->qgroup_seq = 1;
2234         fs_info->quota_enabled = 0;
2235         fs_info->pending_quota_state = 0;
2236
2237         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2238         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2239
2240         init_waitqueue_head(&fs_info->transaction_throttle);
2241         init_waitqueue_head(&fs_info->transaction_wait);
2242         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2243         init_waitqueue_head(&fs_info->async_submit_wait);
2244
2245         ret = btrfs_alloc_stripe_hash_table(fs_info);
2246         if (ret) {
2247                 err = ret;
2248                 goto fail_alloc;
2249         }
2250
2251         __setup_root(4096, 4096, 4096, 4096, tree_root,
2252                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2253
2254         invalidate_bdev(fs_devices->latest_bdev);
2255         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2256         if (!bh) {
2257                 err = -EINVAL;
2258                 goto fail_alloc;
2259         }
2260
2261         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2262         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2263                sizeof(*fs_info->super_for_commit));
2264         brelse(bh);
2265
2266         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2267
2268         disk_super = fs_info->super_copy;
2269         if (!btrfs_super_root(disk_super))
2270                 goto fail_alloc;
2271
2272         /* check FS state, whether FS is broken. */
2273         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2274                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2275
2276         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2277         if (ret) {
2278                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2279                 err = ret;
2280                 goto fail_alloc;
2281         }
2282
2283         /*
2284          * run through our array of backup supers and setup
2285          * our ring pointer to the oldest one
2286          */
2287         generation = btrfs_super_generation(disk_super);
2288         find_oldest_super_backup(fs_info, generation);
2289
2290         /*
2291          * In the long term, we'll store the compression type in the super
2292          * block, and it'll be used for per file compression control.
2293          */
2294         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2295
2296         ret = btrfs_parse_options(tree_root, options);
2297         if (ret) {
2298                 err = ret;
2299                 goto fail_alloc;
2300         }
2301
2302         features = btrfs_super_incompat_flags(disk_super) &
2303                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2304         if (features) {
2305                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2306                        "unsupported optional features (%Lx).\n",
2307                        (unsigned long long)features);
2308                 err = -EINVAL;
2309                 goto fail_alloc;
2310         }
2311
2312         if (btrfs_super_leafsize(disk_super) !=
2313             btrfs_super_nodesize(disk_super)) {
2314                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2315                        "blocksizes don't match.  node %d leaf %d\n",
2316                        btrfs_super_nodesize(disk_super),
2317                        btrfs_super_leafsize(disk_super));
2318                 err = -EINVAL;
2319                 goto fail_alloc;
2320         }
2321         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2322                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2323                        "blocksize (%d) was too large\n",
2324                        btrfs_super_leafsize(disk_super));
2325                 err = -EINVAL;
2326                 goto fail_alloc;
2327         }
2328
2329         features = btrfs_super_incompat_flags(disk_super);
2330         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2331         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2332                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2333
2334         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2335                 printk(KERN_ERR "btrfs: has skinny extents\n");
2336
2337         /*
2338          * flag our filesystem as having big metadata blocks if
2339          * they are bigger than the page size
2340          */
2341         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2342                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2343                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2344                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2345         }
2346
2347         nodesize = btrfs_super_nodesize(disk_super);
2348         leafsize = btrfs_super_leafsize(disk_super);
2349         sectorsize = btrfs_super_sectorsize(disk_super);
2350         stripesize = btrfs_super_stripesize(disk_super);
2351         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2352         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2353
2354         /*
2355          * mixed block groups end up with duplicate but slightly offset
2356          * extent buffers for the same range.  It leads to corruptions
2357          */
2358         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2359             (sectorsize != leafsize)) {
2360                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2361                                 "are not allowed for mixed block groups on %s\n",
2362                                 sb->s_id);
2363                 goto fail_alloc;
2364         }
2365
2366         /*
2367          * Needn't use the lock because there is no other task which will
2368          * update the flag.
2369          */
2370         btrfs_set_super_incompat_flags(disk_super, features);
2371
2372         features = btrfs_super_compat_ro_flags(disk_super) &
2373                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2374         if (!(sb->s_flags & MS_RDONLY) && features) {
2375                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2376                        "unsupported option features (%Lx).\n",
2377                        (unsigned long long)features);
2378                 err = -EINVAL;
2379                 goto fail_alloc;
2380         }
2381
2382         btrfs_init_workers(&fs_info->generic_worker,
2383                            "genwork", 1, NULL);
2384
2385         btrfs_init_workers(&fs_info->workers, "worker",
2386                            fs_info->thread_pool_size,
2387                            &fs_info->generic_worker);
2388
2389         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2390                            fs_info->thread_pool_size,
2391                            &fs_info->generic_worker);
2392
2393         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2394                            fs_info->thread_pool_size,
2395                            &fs_info->generic_worker);
2396
2397         btrfs_init_workers(&fs_info->submit_workers, "submit",
2398                            min_t(u64, fs_devices->num_devices,
2399                            fs_info->thread_pool_size),
2400                            &fs_info->generic_worker);
2401
2402         btrfs_init_workers(&fs_info->caching_workers, "cache",
2403                            2, &fs_info->generic_worker);
2404
2405         /* a higher idle thresh on the submit workers makes it much more
2406          * likely that bios will be send down in a sane order to the
2407          * devices
2408          */
2409         fs_info->submit_workers.idle_thresh = 64;
2410
2411         fs_info->workers.idle_thresh = 16;
2412         fs_info->workers.ordered = 1;
2413
2414         fs_info->delalloc_workers.idle_thresh = 2;
2415         fs_info->delalloc_workers.ordered = 1;
2416
2417         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2418                            &fs_info->generic_worker);
2419         btrfs_init_workers(&fs_info->endio_workers, "endio",
2420                            fs_info->thread_pool_size,
2421                            &fs_info->generic_worker);
2422         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2423                            fs_info->thread_pool_size,
2424                            &fs_info->generic_worker);
2425         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2426                            "endio-meta-write", fs_info->thread_pool_size,
2427                            &fs_info->generic_worker);
2428         btrfs_init_workers(&fs_info->endio_raid56_workers,
2429                            "endio-raid56", fs_info->thread_pool_size,
2430                            &fs_info->generic_worker);
2431         btrfs_init_workers(&fs_info->rmw_workers,
2432                            "rmw", fs_info->thread_pool_size,
2433                            &fs_info->generic_worker);
2434         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2435                            fs_info->thread_pool_size,
2436                            &fs_info->generic_worker);
2437         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2438                            1, &fs_info->generic_worker);
2439         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2440                            fs_info->thread_pool_size,
2441                            &fs_info->generic_worker);
2442         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2443                            fs_info->thread_pool_size,
2444                            &fs_info->generic_worker);
2445
2446         /*
2447          * endios are largely parallel and should have a very
2448          * low idle thresh
2449          */
2450         fs_info->endio_workers.idle_thresh = 4;
2451         fs_info->endio_meta_workers.idle_thresh = 4;
2452         fs_info->endio_raid56_workers.idle_thresh = 4;
2453         fs_info->rmw_workers.idle_thresh = 2;
2454
2455         fs_info->endio_write_workers.idle_thresh = 2;
2456         fs_info->endio_meta_write_workers.idle_thresh = 2;
2457         fs_info->readahead_workers.idle_thresh = 2;
2458
2459         /*
2460          * btrfs_start_workers can really only fail because of ENOMEM so just
2461          * return -ENOMEM if any of these fail.
2462          */
2463         ret = btrfs_start_workers(&fs_info->workers);
2464         ret |= btrfs_start_workers(&fs_info->generic_worker);
2465         ret |= btrfs_start_workers(&fs_info->submit_workers);
2466         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2467         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2468         ret |= btrfs_start_workers(&fs_info->endio_workers);
2469         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2470         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2471         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2472         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2473         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2474         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2475         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2476         ret |= btrfs_start_workers(&fs_info->caching_workers);
2477         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2478         ret |= btrfs_start_workers(&fs_info->flush_workers);
2479         if (ret) {
2480                 err = -ENOMEM;
2481                 goto fail_sb_buffer;
2482         }
2483
2484         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2485         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2486                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2487
2488         tree_root->nodesize = nodesize;
2489         tree_root->leafsize = leafsize;
2490         tree_root->sectorsize = sectorsize;
2491         tree_root->stripesize = stripesize;
2492
2493         sb->s_blocksize = sectorsize;
2494         sb->s_blocksize_bits = blksize_bits(sectorsize);
2495
2496         if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2497                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2498                 goto fail_sb_buffer;
2499         }
2500
2501         if (sectorsize != PAGE_SIZE) {
2502                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2503                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2504                 goto fail_sb_buffer;
2505         }
2506
2507         mutex_lock(&fs_info->chunk_mutex);
2508         ret = btrfs_read_sys_array(tree_root);
2509         mutex_unlock(&fs_info->chunk_mutex);
2510         if (ret) {
2511                 printk(KERN_WARNING "btrfs: failed to read the system "
2512                        "array on %s\n", sb->s_id);
2513                 goto fail_sb_buffer;
2514         }
2515
2516         blocksize = btrfs_level_size(tree_root,
2517                                      btrfs_super_chunk_root_level(disk_super));
2518         generation = btrfs_super_chunk_root_generation(disk_super);
2519
2520         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2521                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2522
2523         chunk_root->node = read_tree_block(chunk_root,
2524                                            btrfs_super_chunk_root(disk_super),
2525                                            blocksize, generation);
2526         if (!chunk_root->node ||
2527             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2528                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2529                        sb->s_id);
2530                 goto fail_tree_roots;
2531         }
2532         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2533         chunk_root->commit_root = btrfs_root_node(chunk_root);
2534
2535         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2536            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2537            BTRFS_UUID_SIZE);
2538
2539         ret = btrfs_read_chunk_tree(chunk_root);
2540         if (ret) {
2541                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2542                        sb->s_id);
2543                 goto fail_tree_roots;
2544         }
2545
2546         /*
2547          * keep the device that is marked to be the target device for the
2548          * dev_replace procedure
2549          */
2550         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2551
2552         if (!fs_devices->latest_bdev) {
2553                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2554                        sb->s_id);
2555                 goto fail_tree_roots;
2556         }
2557
2558 retry_root_backup:
2559         blocksize = btrfs_level_size(tree_root,
2560                                      btrfs_super_root_level(disk_super));
2561         generation = btrfs_super_generation(disk_super);
2562
2563         tree_root->node = read_tree_block(tree_root,
2564                                           btrfs_super_root(disk_super),
2565                                           blocksize, generation);
2566         if (!tree_root->node ||
2567             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2568                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2569                        sb->s_id);
2570
2571                 goto recovery_tree_root;
2572         }
2573
2574         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2575         tree_root->commit_root = btrfs_root_node(tree_root);
2576
2577         ret = find_and_setup_root(tree_root, fs_info,
2578                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2579         if (ret)
2580                 goto recovery_tree_root;
2581         extent_root->track_dirty = 1;
2582
2583         ret = find_and_setup_root(tree_root, fs_info,
2584                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
2585         if (ret)
2586                 goto recovery_tree_root;
2587         dev_root->track_dirty = 1;
2588
2589         ret = find_and_setup_root(tree_root, fs_info,
2590                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
2591         if (ret)
2592                 goto recovery_tree_root;
2593         csum_root->track_dirty = 1;
2594
2595         ret = find_and_setup_root(tree_root, fs_info,
2596                                   BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2597         if (ret) {
2598                 kfree(quota_root);
2599                 quota_root = fs_info->quota_root = NULL;
2600         } else {
2601                 quota_root->track_dirty = 1;
2602                 fs_info->quota_enabled = 1;
2603                 fs_info->pending_quota_state = 1;
2604         }
2605
2606         fs_info->generation = generation;
2607         fs_info->last_trans_committed = generation;
2608
2609         ret = btrfs_recover_balance(fs_info);
2610         if (ret) {
2611                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2612                 goto fail_block_groups;
2613         }
2614
2615         ret = btrfs_init_dev_stats(fs_info);
2616         if (ret) {
2617                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2618                        ret);
2619                 goto fail_block_groups;
2620         }
2621
2622         ret = btrfs_init_dev_replace(fs_info);
2623         if (ret) {
2624                 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2625                 goto fail_block_groups;
2626         }
2627
2628         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2629
2630         ret = btrfs_init_space_info(fs_info);
2631         if (ret) {
2632                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2633                 goto fail_block_groups;
2634         }
2635
2636         ret = btrfs_read_block_groups(extent_root);
2637         if (ret) {
2638                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2639                 goto fail_block_groups;
2640         }
2641         fs_info->num_tolerated_disk_barrier_failures =
2642                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2643         if (fs_info->fs_devices->missing_devices >
2644              fs_info->num_tolerated_disk_barrier_failures &&
2645             !(sb->s_flags & MS_RDONLY)) {
2646                 printk(KERN_WARNING
2647                        "Btrfs: too many missing devices, writeable mount is not allowed\n");
2648                 goto fail_block_groups;
2649         }
2650
2651         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2652                                                "btrfs-cleaner");
2653         if (IS_ERR(fs_info->cleaner_kthread))
2654                 goto fail_block_groups;
2655
2656         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2657                                                    tree_root,
2658                                                    "btrfs-transaction");
2659         if (IS_ERR(fs_info->transaction_kthread))
2660                 goto fail_cleaner;
2661
2662         if (!btrfs_test_opt(tree_root, SSD) &&
2663             !btrfs_test_opt(tree_root, NOSSD) &&
2664             !fs_info->fs_devices->rotating) {
2665                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2666                        "mode\n");
2667                 btrfs_set_opt(fs_info->mount_opt, SSD);
2668         }
2669
2670 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2671         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2672                 ret = btrfsic_mount(tree_root, fs_devices,
2673                                     btrfs_test_opt(tree_root,
2674                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2675                                     1 : 0,
2676                                     fs_info->check_integrity_print_mask);
2677                 if (ret)
2678                         printk(KERN_WARNING "btrfs: failed to initialize"
2679                                " integrity check module %s\n", sb->s_id);
2680         }
2681 #endif
2682         ret = btrfs_read_qgroup_config(fs_info);
2683         if (ret)
2684                 goto fail_trans_kthread;
2685
2686         /* do not make disk changes in broken FS */
2687         if (btrfs_super_log_root(disk_super) != 0) {
2688                 u64 bytenr = btrfs_super_log_root(disk_super);
2689
2690                 if (fs_devices->rw_devices == 0) {
2691                         printk(KERN_WARNING "Btrfs log replay required "
2692                                "on RO media\n");
2693                         err = -EIO;
2694                         goto fail_qgroup;
2695                 }
2696                 blocksize =
2697                      btrfs_level_size(tree_root,
2698                                       btrfs_super_log_root_level(disk_super));
2699
2700                 log_tree_root = btrfs_alloc_root(fs_info);
2701                 if (!log_tree_root) {
2702                         err = -ENOMEM;
2703                         goto fail_qgroup;
2704                 }
2705
2706                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2707                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2708
2709                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2710                                                       blocksize,
2711                                                       generation + 1);
2712                 if (!log_tree_root->node ||
2713                     !extent_buffer_uptodate(log_tree_root->node)) {
2714                         printk(KERN_ERR "btrfs: failed to read log tree\n");
2715                         free_extent_buffer(log_tree_root->node);
2716                         kfree(log_tree_root);
2717                         goto fail_trans_kthread;
2718                 }
2719                 /* returns with log_tree_root freed on success */
2720                 ret = btrfs_recover_log_trees(log_tree_root);
2721                 if (ret) {
2722                         btrfs_error(tree_root->fs_info, ret,
2723                                     "Failed to recover log tree");
2724                         free_extent_buffer(log_tree_root->node);
2725                         kfree(log_tree_root);
2726                         goto fail_trans_kthread;
2727                 }
2728
2729                 if (sb->s_flags & MS_RDONLY) {
2730                         ret = btrfs_commit_super(tree_root);
2731                         if (ret)
2732                                 goto fail_trans_kthread;
2733                 }
2734         }
2735
2736         ret = btrfs_find_orphan_roots(tree_root);
2737         if (ret)
2738                 goto fail_trans_kthread;
2739
2740         if (!(sb->s_flags & MS_RDONLY)) {
2741                 ret = btrfs_cleanup_fs_roots(fs_info);
2742                 if (ret)
2743                         goto fail_trans_kthread;
2744
2745                 ret = btrfs_recover_relocation(tree_root);
2746                 if (ret < 0) {
2747                         printk(KERN_WARNING
2748                                "btrfs: failed to recover relocation\n");
2749                         err = -EINVAL;
2750                         goto fail_qgroup;
2751                 }
2752         }
2753
2754         location.objectid = BTRFS_FS_TREE_OBJECTID;
2755         location.type = BTRFS_ROOT_ITEM_KEY;
2756         location.offset = (u64)-1;
2757
2758         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2759         if (!fs_info->fs_root)
2760                 goto fail_qgroup;
2761         if (IS_ERR(fs_info->fs_root)) {
2762                 err = PTR_ERR(fs_info->fs_root);
2763                 goto fail_qgroup;
2764         }
2765
2766         if (sb->s_flags & MS_RDONLY)
2767                 return 0;
2768
2769         down_read(&fs_info->cleanup_work_sem);
2770         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2771             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2772                 up_read(&fs_info->cleanup_work_sem);
2773                 close_ctree(tree_root);
2774                 return ret;
2775         }
2776         up_read(&fs_info->cleanup_work_sem);
2777
2778         ret = btrfs_resume_balance_async(fs_info);
2779         if (ret) {
2780                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2781                 close_ctree(tree_root);
2782                 return ret;
2783         }
2784
2785         ret = btrfs_resume_dev_replace_async(fs_info);
2786         if (ret) {
2787                 pr_warn("btrfs: failed to resume dev_replace\n");
2788                 close_ctree(tree_root);
2789                 return ret;
2790         }
2791
2792         return 0;
2793
2794 fail_qgroup:
2795         btrfs_free_qgroup_config(fs_info);
2796 fail_trans_kthread:
2797         kthread_stop(fs_info->transaction_kthread);
2798 fail_cleaner:
2799         kthread_stop(fs_info->cleaner_kthread);
2800
2801         /*
2802          * make sure we're done with the btree inode before we stop our
2803          * kthreads
2804          */
2805         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2806
2807 fail_block_groups:
2808         btrfs_free_block_groups(fs_info);
2809
2810 fail_tree_roots:
2811         free_root_pointers(fs_info, 1);
2812         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2813
2814 fail_sb_buffer:
2815         btrfs_stop_all_workers(fs_info);
2816 fail_alloc:
2817 fail_iput:
2818         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2819
2820         iput(fs_info->btree_inode);
2821 fail_delalloc_bytes:
2822         percpu_counter_destroy(&fs_info->delalloc_bytes);
2823 fail_dirty_metadata_bytes:
2824         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2825 fail_bdi:
2826         bdi_destroy(&fs_info->bdi);
2827 fail_srcu:
2828         cleanup_srcu_struct(&fs_info->subvol_srcu);
2829 fail:
2830         btrfs_free_stripe_hash_table(fs_info);
2831         btrfs_close_devices(fs_info->fs_devices);
2832         return err;
2833
2834 recovery_tree_root:
2835         if (!btrfs_test_opt(tree_root, RECOVERY))
2836                 goto fail_tree_roots;
2837
2838         free_root_pointers(fs_info, 0);
2839
2840         /* don't use the log in recovery mode, it won't be valid */
2841         btrfs_set_super_log_root(disk_super, 0);
2842
2843         /* we can't trust the free space cache either */
2844         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2845
2846         ret = next_root_backup(fs_info, fs_info->super_copy,
2847                                &num_backups_tried, &backup_index);
2848         if (ret == -1)
2849                 goto fail_block_groups;
2850         goto retry_root_backup;
2851 }
2852
2853 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2854 {
2855         if (uptodate) {
2856                 set_buffer_uptodate(bh);
2857         } else {
2858                 struct btrfs_device *device = (struct btrfs_device *)
2859                         bh->b_private;
2860
2861                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2862                                           "I/O error on %s\n",
2863                                           rcu_str_deref(device->name));
2864                 /* note, we dont' set_buffer_write_io_error because we have
2865                  * our own ways of dealing with the IO errors
2866                  */
2867                 clear_buffer_uptodate(bh);
2868                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2869         }
2870         unlock_buffer(bh);
2871         put_bh(bh);
2872 }
2873
2874 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2875 {
2876         struct buffer_head *bh;
2877         struct buffer_head *latest = NULL;
2878         struct btrfs_super_block *super;
2879         int i;
2880         u64 transid = 0;
2881         u64 bytenr;
2882
2883         /* we would like to check all the supers, but that would make
2884          * a btrfs mount succeed after a mkfs from a different FS.
2885          * So, we need to add a special mount option to scan for
2886          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2887          */
2888         for (i = 0; i < 1; i++) {
2889                 bytenr = btrfs_sb_offset(i);
2890                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2891                         break;
2892                 bh = __bread(bdev, bytenr / 4096, 4096);
2893                 if (!bh)
2894                         continue;
2895
2896                 super = (struct btrfs_super_block *)bh->b_data;
2897                 if (btrfs_super_bytenr(super) != bytenr ||
2898                     super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2899                         brelse(bh);
2900                         continue;
2901                 }
2902
2903                 if (!latest || btrfs_super_generation(super) > transid) {
2904                         brelse(latest);
2905                         latest = bh;
2906                         transid = btrfs_super_generation(super);
2907                 } else {
2908                         brelse(bh);
2909                 }
2910         }
2911         return latest;
2912 }
2913
2914 /*
2915  * this should be called twice, once with wait == 0 and
2916  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2917  * we write are pinned.
2918  *
2919  * They are released when wait == 1 is done.
2920  * max_mirrors must be the same for both runs, and it indicates how
2921  * many supers on this one device should be written.
2922  *
2923  * max_mirrors == 0 means to write them all.
2924  */
2925 static int write_dev_supers(struct btrfs_device *device,
2926                             struct btrfs_super_block *sb,
2927                             int do_barriers, int wait, int max_mirrors)
2928 {
2929         struct buffer_head *bh;
2930         int i;
2931         int ret;
2932         int errors = 0;
2933         u32 crc;
2934         u64 bytenr;
2935
2936         if (max_mirrors == 0)
2937                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2938
2939         for (i = 0; i < max_mirrors; i++) {
2940                 bytenr = btrfs_sb_offset(i);
2941                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2942                         break;
2943
2944                 if (wait) {
2945                         bh = __find_get_block(device->bdev, bytenr / 4096,
2946                                               BTRFS_SUPER_INFO_SIZE);
2947                         BUG_ON(!bh);
2948                         wait_on_buffer(bh);
2949                         if (!buffer_uptodate(bh))
2950                                 errors++;
2951
2952                         /* drop our reference */
2953                         brelse(bh);
2954
2955                         /* drop the reference from the wait == 0 run */
2956                         brelse(bh);
2957                         continue;
2958                 } else {
2959                         btrfs_set_super_bytenr(sb, bytenr);
2960
2961                         crc = ~(u32)0;
2962                         crc = btrfs_csum_data((char *)sb +
2963                                               BTRFS_CSUM_SIZE, crc,
2964                                               BTRFS_SUPER_INFO_SIZE -
2965                                               BTRFS_CSUM_SIZE);
2966                         btrfs_csum_final(crc, sb->csum);
2967
2968                         /*
2969                          * one reference for us, and we leave it for the
2970                          * caller
2971                          */
2972                         bh = __getblk(device->bdev, bytenr / 4096,
2973                                       BTRFS_SUPER_INFO_SIZE);
2974                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2975
2976                         /* one reference for submit_bh */
2977                         get_bh(bh);
2978
2979                         set_buffer_uptodate(bh);
2980                         lock_buffer(bh);
2981                         bh->b_end_io = btrfs_end_buffer_write_sync;
2982                         bh->b_private = device;
2983                 }
2984
2985                 /*
2986                  * we fua the first super.  The others we allow
2987                  * to go down lazy.
2988                  */
2989                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2990                 if (ret)
2991                         errors++;
2992         }
2993         return errors < i ? 0 : -1;
2994 }
2995
2996 /*
2997  * endio for the write_dev_flush, this will wake anyone waiting
2998  * for the barrier when it is done
2999  */
3000 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3001 {
3002         if (err) {
3003                 if (err == -EOPNOTSUPP)
3004                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3005                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3006         }
3007         if (bio->bi_private)
3008                 complete(bio->bi_private);
3009         bio_put(bio);
3010 }
3011
3012 /*
3013  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3014  * sent down.  With wait == 1, it waits for the previous flush.
3015  *
3016  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3017  * capable
3018  */
3019 static int write_dev_flush(struct btrfs_device *device, int wait)
3020 {
3021         struct bio *bio;
3022         int ret = 0;
3023
3024         if (device->nobarriers)
3025                 return 0;
3026
3027         if (wait) {
3028                 bio = device->flush_bio;
3029                 if (!bio)
3030                         return 0;
3031
3032                 wait_for_completion(&device->flush_wait);
3033
3034                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3035                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3036                                       rcu_str_deref(device->name));
3037                         device->nobarriers = 1;
3038                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3039                         ret = -EIO;
3040                         btrfs_dev_stat_inc_and_print(device,
3041                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3042                 }
3043
3044                 /* drop the reference from the wait == 0 run */
3045                 bio_put(bio);
3046                 device->flush_bio = NULL;
3047
3048                 return ret;
3049         }
3050
3051         /*
3052          * one reference for us, and we leave it for the
3053          * caller
3054          */
3055         device->flush_bio = NULL;
3056         bio = bio_alloc(GFP_NOFS, 0);
3057         if (!bio)
3058                 return -ENOMEM;
3059
3060         bio->bi_end_io = btrfs_end_empty_barrier;
3061         bio->bi_bdev = device->bdev;
3062         init_completion(&device->flush_wait);
3063         bio->bi_private = &device->flush_wait;
3064         device->flush_bio = bio;
3065
3066         bio_get(bio);
3067         btrfsic_submit_bio(WRITE_FLUSH, bio);
3068
3069         return 0;
3070 }
3071
3072 /*
3073  * send an empty flush down to each device in parallel,
3074  * then wait for them
3075  */
3076 static int barrier_all_devices(struct btrfs_fs_info *info)
3077 {
3078         struct list_head *head;
3079         struct btrfs_device *dev;
3080         int errors_send = 0;
3081         int errors_wait = 0;
3082         int ret;
3083
3084         /* send down all the barriers */
3085         head = &info->fs_devices->devices;
3086         list_for_each_entry_rcu(dev, head, dev_list) {
3087                 if (!dev->bdev) {
3088                         errors_send++;
3089                         continue;
3090                 }
3091                 if (!dev->in_fs_metadata || !dev->writeable)
3092                         continue;
3093
3094                 ret = write_dev_flush(dev, 0);
3095                 if (ret)
3096                         errors_send++;
3097         }
3098
3099         /* wait for all the barriers */
3100         list_for_each_entry_rcu(dev, head, dev_list) {
3101                 if (!dev->bdev) {
3102                         errors_wait++;
3103                         continue;
3104                 }
3105                 if (!dev->in_fs_metadata || !dev->writeable)
3106                         continue;
3107
3108                 ret = write_dev_flush(dev, 1);
3109                 if (ret)
3110                         errors_wait++;
3111         }
3112         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3113             errors_wait > info->num_tolerated_disk_barrier_failures)
3114                 return -EIO;
3115         return 0;
3116 }
3117
3118 int btrfs_calc_num_tolerated_disk_barrier_failures(
3119         struct btrfs_fs_info *fs_info)
3120 {
3121         struct btrfs_ioctl_space_info space;
3122         struct btrfs_space_info *sinfo;
3123         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3124                        BTRFS_BLOCK_GROUP_SYSTEM,
3125                        BTRFS_BLOCK_GROUP_METADATA,
3126                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3127         int num_types = 4;
3128         int i;
3129         int c;
3130         int num_tolerated_disk_barrier_failures =
3131                 (int)fs_info->fs_devices->num_devices;
3132
3133         for (i = 0; i < num_types; i++) {
3134                 struct btrfs_space_info *tmp;
3135
3136                 sinfo = NULL;
3137                 rcu_read_lock();
3138                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3139                         if (tmp->flags == types[i]) {
3140                                 sinfo = tmp;
3141                                 break;
3142                         }
3143                 }
3144                 rcu_read_unlock();
3145
3146                 if (!sinfo)
3147                         continue;
3148
3149                 down_read(&sinfo->groups_sem);
3150                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3151                         if (!list_empty(&sinfo->block_groups[c])) {
3152                                 u64 flags;
3153
3154                                 btrfs_get_block_group_info(
3155                                         &sinfo->block_groups[c], &space);
3156                                 if (space.total_bytes == 0 ||
3157                                     space.used_bytes == 0)
3158                                         continue;
3159                                 flags = space.flags;
3160                                 /*
3161                                  * return
3162                                  * 0: if dup, single or RAID0 is configured for
3163                                  *    any of metadata, system or data, else
3164                                  * 1: if RAID5 is configured, or if RAID1 or
3165                                  *    RAID10 is configured and only two mirrors
3166                                  *    are used, else
3167                                  * 2: if RAID6 is configured, else
3168                                  * num_mirrors - 1: if RAID1 or RAID10 is
3169                                  *                  configured and more than
3170                                  *                  2 mirrors are used.
3171                                  */
3172                                 if (num_tolerated_disk_barrier_failures > 0 &&
3173                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3174                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3175                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3176                                       == 0)))
3177                                         num_tolerated_disk_barrier_failures = 0;
3178                                 else if (num_tolerated_disk_barrier_failures > 1) {
3179                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3180                                             BTRFS_BLOCK_GROUP_RAID5 |
3181                                             BTRFS_BLOCK_GROUP_RAID10)) {
3182                                                 num_tolerated_disk_barrier_failures = 1;
3183                                         } else if (flags &
3184                                                    BTRFS_BLOCK_GROUP_RAID5) {
3185                                                 num_tolerated_disk_barrier_failures = 2;
3186                                         }
3187                                 }
3188                         }
3189                 }
3190                 up_read(&sinfo->groups_sem);
3191         }
3192
3193         return num_tolerated_disk_barrier_failures;
3194 }
3195
3196 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3197 {
3198         struct list_head *head;
3199         struct btrfs_device *dev;
3200         struct btrfs_super_block *sb;
3201         struct btrfs_dev_item *dev_item;
3202         int ret;
3203         int do_barriers;
3204         int max_errors;
3205         int total_errors = 0;
3206         u64 flags;
3207
3208         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3209         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3210         backup_super_roots(root->fs_info);
3211
3212         sb = root->fs_info->super_for_commit;
3213         dev_item = &sb->dev_item;
3214
3215         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3216         head = &root->fs_info->fs_devices->devices;
3217
3218         if (do_barriers) {
3219                 ret = barrier_all_devices(root->fs_info);
3220                 if (ret) {
3221                         mutex_unlock(
3222                                 &root->fs_info->fs_devices->device_list_mutex);
3223                         btrfs_error(root->fs_info, ret,
3224                                     "errors while submitting device barriers.");
3225                         return ret;
3226                 }
3227         }
3228
3229         list_for_each_entry_rcu(dev, head, dev_list) {
3230                 if (!dev->bdev) {
3231                         total_errors++;
3232                         continue;
3233                 }
3234                 if (!dev->in_fs_metadata || !dev->writeable)
3235                         continue;
3236
3237                 btrfs_set_stack_device_generation(dev_item, 0);
3238                 btrfs_set_stack_device_type(dev_item, dev->type);
3239                 btrfs_set_stack_device_id(dev_item, dev->devid);
3240                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3241                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3242                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3243                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3244                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3245                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3246                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3247
3248                 flags = btrfs_super_flags(sb);
3249                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3250
3251                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3252                 if (ret)
3253                         total_errors++;
3254         }
3255         if (total_errors > max_errors) {
3256                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3257                        total_errors);
3258
3259                 /* This shouldn't happen. FUA is masked off if unsupported */
3260                 BUG();
3261         }
3262
3263         total_errors = 0;
3264         list_for_each_entry_rcu(dev, head, dev_list) {
3265                 if (!dev->bdev)
3266                         continue;
3267                 if (!dev->in_fs_metadata || !dev->writeable)
3268                         continue;
3269
3270                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3271                 if (ret)
3272                         total_errors++;
3273         }
3274         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3275         if (total_errors > max_errors) {
3276                 btrfs_error(root->fs_info, -EIO,
3277                             "%d errors while writing supers", total_errors);
3278                 return -EIO;
3279         }
3280         return 0;
3281 }
3282
3283 int write_ctree_super(struct btrfs_trans_handle *trans,
3284                       struct btrfs_root *root, int max_mirrors)
3285 {
3286         int ret;
3287
3288         ret = write_all_supers(root, max_mirrors);
3289         return ret;
3290 }
3291
3292 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3293 {
3294         spin_lock(&fs_info->fs_roots_radix_lock);
3295         radix_tree_delete(&fs_info->fs_roots_radix,
3296                           (unsigned long)root->root_key.objectid);
3297         spin_unlock(&fs_info->fs_roots_radix_lock);
3298
3299         if (btrfs_root_refs(&root->root_item) == 0)
3300                 synchronize_srcu(&fs_info->subvol_srcu);
3301
3302         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3303                 btrfs_free_log(NULL, root);
3304                 btrfs_free_log_root_tree(NULL, fs_info);
3305         }
3306
3307         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3308         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3309         free_fs_root(root);
3310 }
3311
3312 static void free_fs_root(struct btrfs_root *root)
3313 {
3314         iput(root->cache_inode);
3315         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3316         if (root->anon_dev)
3317                 free_anon_bdev(root->anon_dev);
3318         free_extent_buffer(root->node);
3319         free_extent_buffer(root->commit_root);
3320         kfree(root->free_ino_ctl);
3321         kfree(root->free_ino_pinned);
3322         kfree(root->name);
3323         kfree(root);
3324 }
3325
3326 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3327 {
3328         int ret;
3329         struct btrfs_root *gang[8];
3330         int i;
3331
3332         while (!list_empty(&fs_info->dead_roots)) {
3333                 gang[0] = list_entry(fs_info->dead_roots.next,
3334                                      struct btrfs_root, root_list);
3335                 list_del(&gang[0]->root_list);
3336
3337                 if (gang[0]->in_radix) {
3338                         btrfs_free_fs_root(fs_info, gang[0]);
3339                 } else {
3340                         free_extent_buffer(gang[0]->node);
3341                         free_extent_buffer(gang[0]->commit_root);
3342                         kfree(gang[0]);
3343                 }
3344         }
3345
3346         while (1) {
3347                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3348                                              (void **)gang, 0,
3349                                              ARRAY_SIZE(gang));
3350                 if (!ret)
3351                         break;
3352                 for (i = 0; i < ret; i++)
3353                         btrfs_free_fs_root(fs_info, gang[i]);
3354         }
3355 }
3356
3357 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3358 {
3359         u64 root_objectid = 0;
3360         struct btrfs_root *gang[8];
3361         int i;
3362         int ret;
3363
3364         while (1) {
3365                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3366                                              (void **)gang, root_objectid,
3367                                              ARRAY_SIZE(gang));
3368                 if (!ret)
3369                         break;
3370
3371                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3372                 for (i = 0; i < ret; i++) {
3373                         int err;
3374
3375                         root_objectid = gang[i]->root_key.objectid;
3376                         err = btrfs_orphan_cleanup(gang[i]);
3377                         if (err)
3378                                 return err;
3379                 }
3380                 root_objectid++;
3381         }
3382         return 0;
3383 }
3384
3385 int btrfs_commit_super(struct btrfs_root *root)
3386 {
3387         struct btrfs_trans_handle *trans;
3388         int ret;
3389
3390         mutex_lock(&root->fs_info->cleaner_mutex);
3391         btrfs_run_delayed_iputs(root);
3392         mutex_unlock(&root->fs_info->cleaner_mutex);
3393         wake_up_process(root->fs_info->cleaner_kthread);
3394
3395         /* wait until ongoing cleanup work done */
3396         down_write(&root->fs_info->cleanup_work_sem);
3397         up_write(&root->fs_info->cleanup_work_sem);
3398
3399         trans = btrfs_join_transaction(root);
3400         if (IS_ERR(trans))
3401                 return PTR_ERR(trans);
3402         ret = btrfs_commit_transaction(trans, root);
3403         if (ret)
3404                 return ret;
3405         /* run commit again to drop the original snapshot */
3406         trans = btrfs_join_transaction(root);
3407         if (IS_ERR(trans))
3408                 return PTR_ERR(trans);
3409         ret = btrfs_commit_transaction(trans, root);
3410         if (ret)
3411                 return ret;
3412         ret = btrfs_write_and_wait_transaction(NULL, root);
3413         if (ret) {
3414                 btrfs_error(root->fs_info, ret,
3415                             "Failed to sync btree inode to disk.");
3416                 return ret;
3417         }
3418
3419         ret = write_ctree_super(NULL, root, 0);
3420         return ret;
3421 }
3422
3423 int close_ctree(struct btrfs_root *root)
3424 {
3425         struct btrfs_fs_info *fs_info = root->fs_info;
3426         int ret;
3427
3428         fs_info->closing = 1;
3429         smp_mb();
3430
3431         /* pause restriper - we want to resume on mount */
3432         btrfs_pause_balance(fs_info);
3433
3434         btrfs_dev_replace_suspend_for_unmount(fs_info);
3435
3436         btrfs_scrub_cancel(fs_info);
3437
3438         /* wait for any defraggers to finish */
3439         wait_event(fs_info->transaction_wait,
3440                    (atomic_read(&fs_info->defrag_running) == 0));
3441
3442         /* clear out the rbtree of defraggable inodes */
3443         btrfs_cleanup_defrag_inodes(fs_info);
3444
3445         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3446                 ret = btrfs_commit_super(root);
3447                 if (ret)
3448                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3449         }
3450
3451         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3452                 btrfs_error_commit_super(root);
3453
3454         btrfs_put_block_group_cache(fs_info);
3455
3456         kthread_stop(fs_info->transaction_kthread);
3457         kthread_stop(fs_info->cleaner_kthread);
3458
3459         fs_info->closing = 2;
3460         smp_mb();
3461
3462         btrfs_free_qgroup_config(root->fs_info);
3463
3464         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3465                 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3466                        percpu_counter_sum(&fs_info->delalloc_bytes));
3467         }
3468
3469         free_root_pointers(fs_info, 1);
3470
3471         btrfs_free_block_groups(fs_info);
3472
3473         del_fs_roots(fs_info);
3474
3475         iput(fs_info->btree_inode);
3476
3477         btrfs_stop_all_workers(fs_info);
3478
3479 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3480         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3481                 btrfsic_unmount(root, fs_info->fs_devices);
3482 #endif
3483
3484         btrfs_close_devices(fs_info->fs_devices);
3485         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3486
3487         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3488         percpu_counter_destroy(&fs_info->delalloc_bytes);
3489         bdi_destroy(&fs_info->bdi);
3490         cleanup_srcu_struct(&fs_info->subvol_srcu);
3491
3492         btrfs_free_stripe_hash_table(fs_info);
3493
3494         return 0;
3495 }
3496
3497 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3498                           int atomic)
3499 {
3500         int ret;
3501         struct inode *btree_inode = buf->pages[0]->mapping->host;
3502
3503         ret = extent_buffer_uptodate(buf);
3504         if (!ret)
3505                 return ret;
3506
3507         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3508                                     parent_transid, atomic);
3509         if (ret == -EAGAIN)
3510                 return ret;
3511         return !ret;
3512 }
3513
3514 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3515 {
3516         return set_extent_buffer_uptodate(buf);
3517 }
3518
3519 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3520 {
3521         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3522         u64 transid = btrfs_header_generation(buf);
3523         int was_dirty;
3524
3525         btrfs_assert_tree_locked(buf);
3526         if (transid != root->fs_info->generation)
3527                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3528                        "found %llu running %llu\n",
3529                         (unsigned long long)buf->start,
3530                         (unsigned long long)transid,
3531                         (unsigned long long)root->fs_info->generation);
3532         was_dirty = set_extent_buffer_dirty(buf);
3533         if (!was_dirty)
3534                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3535                                      buf->len,
3536                                      root->fs_info->dirty_metadata_batch);
3537 }
3538
3539 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3540                                         int flush_delayed)
3541 {
3542         /*
3543          * looks as though older kernels can get into trouble with
3544          * this code, they end up stuck in balance_dirty_pages forever
3545          */
3546         int ret;
3547
3548         if (current->flags & PF_MEMALLOC)
3549                 return;
3550
3551         if (flush_delayed)
3552                 btrfs_balance_delayed_items(root);
3553
3554         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3555                                      BTRFS_DIRTY_METADATA_THRESH);
3556         if (ret > 0) {
3557                 balance_dirty_pages_ratelimited(
3558                                    root->fs_info->btree_inode->i_mapping);
3559         }
3560         return;
3561 }
3562
3563 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3564 {
3565         __btrfs_btree_balance_dirty(root, 1);
3566 }
3567
3568 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3569 {
3570         __btrfs_btree_balance_dirty(root, 0);
3571 }
3572
3573 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3574 {
3575         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3576         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3577 }
3578
3579 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3580                               int read_only)
3581 {
3582         if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3583                 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3584                 return -EINVAL;
3585         }
3586
3587         if (read_only)
3588                 return 0;
3589
3590         return 0;
3591 }
3592
3593 void btrfs_error_commit_super(struct btrfs_root *root)
3594 {
3595         mutex_lock(&root->fs_info->cleaner_mutex);
3596         btrfs_run_delayed_iputs(root);
3597         mutex_unlock(&root->fs_info->cleaner_mutex);
3598
3599         down_write(&root->fs_info->cleanup_work_sem);
3600         up_write(&root->fs_info->cleanup_work_sem);
3601
3602         /* cleanup FS via transaction */
3603         btrfs_cleanup_transaction(root);
3604 }
3605
3606 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3607                                              struct btrfs_root *root)
3608 {
3609         struct btrfs_inode *btrfs_inode;
3610         struct list_head splice;
3611
3612         INIT_LIST_HEAD(&splice);
3613
3614         mutex_lock(&root->fs_info->ordered_operations_mutex);
3615         spin_lock(&root->fs_info->ordered_extent_lock);
3616
3617         list_splice_init(&t->ordered_operations, &splice);
3618         while (!list_empty(&splice)) {
3619                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3620                                          ordered_operations);
3621
3622                 list_del_init(&btrfs_inode->ordered_operations);
3623
3624                 btrfs_invalidate_inodes(btrfs_inode->root);
3625         }
3626
3627         spin_unlock(&root->fs_info->ordered_extent_lock);
3628         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3629 }
3630
3631 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3632 {
3633         struct btrfs_ordered_extent *ordered;
3634
3635         spin_lock(&root->fs_info->ordered_extent_lock);
3636         /*
3637          * This will just short circuit the ordered completion stuff which will
3638          * make sure the ordered extent gets properly cleaned up.
3639          */
3640         list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3641                             root_extent_list)
3642                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3643         spin_unlock(&root->fs_info->ordered_extent_lock);
3644 }
3645
3646 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3647                                struct btrfs_root *root)
3648 {
3649         struct rb_node *node;
3650         struct btrfs_delayed_ref_root *delayed_refs;
3651         struct btrfs_delayed_ref_node *ref;
3652         int ret = 0;
3653
3654         delayed_refs = &trans->delayed_refs;
3655
3656         spin_lock(&delayed_refs->lock);
3657         if (delayed_refs->num_entries == 0) {
3658                 spin_unlock(&delayed_refs->lock);
3659                 printk(KERN_INFO "delayed_refs has NO entry\n");
3660                 return ret;
3661         }
3662
3663         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3664                 struct btrfs_delayed_ref_head *head = NULL;
3665
3666                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3667                 atomic_set(&ref->refs, 1);
3668                 if (btrfs_delayed_ref_is_head(ref)) {
3669
3670                         head = btrfs_delayed_node_to_head(ref);
3671                         if (!mutex_trylock(&head->mutex)) {
3672                                 atomic_inc(&ref->refs);
3673                                 spin_unlock(&delayed_refs->lock);
3674
3675                                 /* Need to wait for the delayed ref to run */
3676                                 mutex_lock(&head->mutex);
3677                                 mutex_unlock(&head->mutex);
3678                                 btrfs_put_delayed_ref(ref);
3679
3680                                 spin_lock(&delayed_refs->lock);
3681                                 continue;
3682                         }
3683
3684                         btrfs_free_delayed_extent_op(head->extent_op);
3685                         delayed_refs->num_heads--;
3686                         if (list_empty(&head->cluster))
3687                                 delayed_refs->num_heads_ready--;
3688                         list_del_init(&head->cluster);
3689                 }
3690
3691                 ref->in_tree = 0;
3692                 rb_erase(&ref->rb_node, &delayed_refs->root);
3693                 delayed_refs->num_entries--;
3694                 if (head)
3695                         mutex_unlock(&head->mutex);
3696                 spin_unlock(&delayed_refs->lock);
3697                 btrfs_put_delayed_ref(ref);
3698
3699                 cond_resched();
3700                 spin_lock(&delayed_refs->lock);
3701         }
3702
3703         spin_unlock(&delayed_refs->lock);
3704
3705         return ret;
3706 }
3707
3708 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3709 {
3710         struct btrfs_pending_snapshot *snapshot;
3711         struct list_head splice;
3712
3713         INIT_LIST_HEAD(&splice);
3714
3715         list_splice_init(&t->pending_snapshots, &splice);
3716
3717         while (!list_empty(&splice)) {
3718                 snapshot = list_entry(splice.next,
3719                                       struct btrfs_pending_snapshot,
3720                                       list);
3721                 snapshot->error = -ECANCELED;
3722                 list_del_init(&snapshot->list);
3723         }
3724 }
3725
3726 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3727 {
3728         struct btrfs_inode *btrfs_inode;
3729         struct list_head splice;
3730
3731         INIT_LIST_HEAD(&splice);
3732
3733         spin_lock(&root->fs_info->delalloc_lock);
3734         list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3735
3736         while (!list_empty(&splice)) {
3737                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3738                                     delalloc_inodes);
3739
3740                 list_del_init(&btrfs_inode->delalloc_inodes);
3741                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3742                           &btrfs_inode->runtime_flags);
3743
3744                 btrfs_invalidate_inodes(btrfs_inode->root);
3745         }
3746
3747         spin_unlock(&root->fs_info->delalloc_lock);
3748 }
3749
3750 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3751                                         struct extent_io_tree *dirty_pages,
3752                                         int mark)
3753 {
3754         int ret;
3755         struct page *page;
3756         struct inode *btree_inode = root->fs_info->btree_inode;
3757         struct extent_buffer *eb;
3758         u64 start = 0;
3759         u64 end;
3760         u64 offset;
3761         unsigned long index;
3762
3763         while (1) {
3764                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3765                                             mark, NULL);
3766                 if (ret)
3767                         break;
3768
3769                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3770                 while (start <= end) {
3771                         index = start >> PAGE_CACHE_SHIFT;
3772                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3773                         page = find_get_page(btree_inode->i_mapping, index);
3774                         if (!page)
3775                                 continue;
3776                         offset = page_offset(page);
3777
3778                         spin_lock(&dirty_pages->buffer_lock);
3779                         eb = radix_tree_lookup(
3780                              &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3781                                                offset >> PAGE_CACHE_SHIFT);
3782                         spin_unlock(&dirty_pages->buffer_lock);
3783                         if (eb)
3784                                 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3785                                                          &eb->bflags);
3786                         lock_page(page);
3787
3788                         wait_on_page_writeback(page);
3789                         if (PageDirty(page)) {
3790                                 clear_page_dirty_for_io(page);
3791                                 spin_lock_irq(&page->mapping->tree_lock);
3792                                 radix_tree_tag_clear(&page->mapping->page_tree,
3793                                                         page_index(page),
3794                                                         PAGECACHE_TAG_DIRTY);
3795                                 spin_unlock_irq(&page->mapping->tree_lock);
3796                         }
3797
3798                         unlock_page(page);
3799                         page_cache_release(page);
3800                 }
3801         }
3802
3803         return ret;
3804 }
3805
3806 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3807                                        struct extent_io_tree *pinned_extents)
3808 {
3809         struct extent_io_tree *unpin;
3810         u64 start;
3811         u64 end;
3812         int ret;
3813         bool loop = true;
3814
3815         unpin = pinned_extents;
3816 again:
3817         while (1) {
3818                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3819                                             EXTENT_DIRTY, NULL);
3820                 if (ret)
3821                         break;
3822
3823                 /* opt_discard */
3824                 if (btrfs_test_opt(root, DISCARD))
3825                         ret = btrfs_error_discard_extent(root, start,
3826                                                          end + 1 - start,
3827                                                          NULL);
3828
3829                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3830                 btrfs_error_unpin_extent_range(root, start, end);
3831                 cond_resched();
3832         }
3833
3834         if (loop) {
3835                 if (unpin == &root->fs_info->freed_extents[0])
3836                         unpin = &root->fs_info->freed_extents[1];
3837                 else
3838                         unpin = &root->fs_info->freed_extents[0];
3839                 loop = false;
3840                 goto again;
3841         }
3842
3843         return 0;
3844 }
3845
3846 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3847                                    struct btrfs_root *root)
3848 {
3849         btrfs_destroy_delayed_refs(cur_trans, root);
3850         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3851                                 cur_trans->dirty_pages.dirty_bytes);
3852
3853         /* FIXME: cleanup wait for commit */
3854         cur_trans->in_commit = 1;
3855         cur_trans->blocked = 1;
3856         wake_up(&root->fs_info->transaction_blocked_wait);
3857
3858         btrfs_evict_pending_snapshots(cur_trans);
3859
3860         cur_trans->blocked = 0;
3861         wake_up(&root->fs_info->transaction_wait);
3862
3863         cur_trans->commit_done = 1;
3864         wake_up(&cur_trans->commit_wait);
3865
3866         btrfs_destroy_delayed_inodes(root);
3867         btrfs_assert_delayed_root_empty(root);
3868
3869         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3870                                      EXTENT_DIRTY);
3871         btrfs_destroy_pinned_extent(root,
3872                                     root->fs_info->pinned_extents);
3873
3874         /*
3875         memset(cur_trans, 0, sizeof(*cur_trans));
3876         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3877         */
3878 }
3879
3880 int btrfs_cleanup_transaction(struct btrfs_root *root)
3881 {
3882         struct btrfs_transaction *t;
3883         LIST_HEAD(list);
3884
3885         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3886
3887         spin_lock(&root->fs_info->trans_lock);
3888         list_splice_init(&root->fs_info->trans_list, &list);
3889         root->fs_info->trans_no_join = 1;
3890         spin_unlock(&root->fs_info->trans_lock);
3891
3892         while (!list_empty(&list)) {
3893                 t = list_entry(list.next, struct btrfs_transaction, list);
3894
3895                 btrfs_destroy_ordered_operations(t, root);
3896
3897                 btrfs_destroy_ordered_extents(root);
3898
3899                 btrfs_destroy_delayed_refs(t, root);
3900
3901                 btrfs_block_rsv_release(root,
3902                                         &root->fs_info->trans_block_rsv,
3903                                         t->dirty_pages.dirty_bytes);
3904
3905                 /* FIXME: cleanup wait for commit */
3906                 t->in_commit = 1;
3907                 t->blocked = 1;
3908                 smp_mb();
3909                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3910                         wake_up(&root->fs_info->transaction_blocked_wait);
3911
3912                 btrfs_evict_pending_snapshots(t);
3913
3914                 t->blocked = 0;
3915                 smp_mb();
3916                 if (waitqueue_active(&root->fs_info->transaction_wait))
3917                         wake_up(&root->fs_info->transaction_wait);
3918
3919                 t->commit_done = 1;
3920                 smp_mb();
3921                 if (waitqueue_active(&t->commit_wait))
3922                         wake_up(&t->commit_wait);
3923
3924                 btrfs_destroy_delayed_inodes(root);
3925                 btrfs_assert_delayed_root_empty(root);
3926
3927                 btrfs_destroy_delalloc_inodes(root);
3928
3929                 spin_lock(&root->fs_info->trans_lock);
3930                 root->fs_info->running_transaction = NULL;
3931                 spin_unlock(&root->fs_info->trans_lock);
3932
3933                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3934                                              EXTENT_DIRTY);
3935
3936                 btrfs_destroy_pinned_extent(root,
3937                                             root->fs_info->pinned_extents);
3938
3939                 atomic_set(&t->use_count, 0);
3940                 list_del_init(&t->list);
3941                 memset(t, 0, sizeof(*t));
3942                 kmem_cache_free(btrfs_transaction_cachep, t);
3943         }
3944
3945         spin_lock(&root->fs_info->trans_lock);
3946         root->fs_info->trans_no_join = 0;
3947         spin_unlock(&root->fs_info->trans_lock);
3948         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3949
3950         return 0;
3951 }
3952
3953 static struct extent_io_ops btree_extent_io_ops = {
3954         .readpage_end_io_hook = btree_readpage_end_io_hook,
3955         .readpage_io_failed_hook = btree_io_failed_hook,
3956         .submit_bio_hook = btree_submit_bio_hook,
3957         /* note we're sharing with inode.c for the merge bio hook */
3958         .merge_bio_hook = btrfs_merge_bio_hook,
3959 };