]> rtime.felk.cvut.cz Git - linux-imx.git/blob - drivers/cpufreq/cpufreq_ondemand.c
af_unix: use freezable blocking calls in read
[linux-imx.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpufreq.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/kobject.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/percpu-defs.h>
23 #include <linux/slab.h>
24 #include <linux/sysfs.h>
25 #include <linux/tick.h>
26 #include <linux/types.h>
27 #include <linux/cpu.h>
28
29 #include "cpufreq_governor.h"
30
31 /* On-demand governor macros */
32 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL         (10)
33 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
34 #define DEF_SAMPLING_DOWN_FACTOR                (1)
35 #define MAX_SAMPLING_DOWN_FACTOR                (100000)
36 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL       (3)
37 #define MICRO_FREQUENCY_UP_THRESHOLD            (95)
38 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE         (10000)
39 #define MIN_FREQUENCY_UP_THRESHOLD              (11)
40 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
41
42 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
43
44 static struct od_ops od_ops;
45
46 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
47 static struct cpufreq_governor cpufreq_gov_ondemand;
48 #endif
49
50 static void ondemand_powersave_bias_init_cpu(int cpu)
51 {
52         struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
53
54         dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
55         dbs_info->freq_lo = 0;
56 }
57
58 /*
59  * Not all CPUs want IO time to be accounted as busy; this depends on how
60  * efficient idling at a higher frequency/voltage is.
61  * Pavel Machek says this is not so for various generations of AMD and old
62  * Intel systems.
63  * Mike Chan (android.com) claims this is also not true for ARM.
64  * Because of this, whitelist specific known (series) of CPUs by default, and
65  * leave all others up to the user.
66  */
67 static int should_io_be_busy(void)
68 {
69 #if defined(CONFIG_X86)
70         /*
71          * For Intel, Core 2 (model 15) and later have an efficient idle.
72          */
73         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
74                         boot_cpu_data.x86 == 6 &&
75                         boot_cpu_data.x86_model >= 15)
76                 return 1;
77 #endif
78         return 0;
79 }
80
81 /*
82  * Find right freq to be set now with powersave_bias on.
83  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
84  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
85  */
86 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
87                 unsigned int freq_next, unsigned int relation)
88 {
89         unsigned int freq_req, freq_reduc, freq_avg;
90         unsigned int freq_hi, freq_lo;
91         unsigned int index = 0;
92         unsigned int jiffies_total, jiffies_hi, jiffies_lo;
93         struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
94                                                    policy->cpu);
95         struct dbs_data *dbs_data = policy->governor_data;
96         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
97
98         if (!dbs_info->freq_table) {
99                 dbs_info->freq_lo = 0;
100                 dbs_info->freq_lo_jiffies = 0;
101                 return freq_next;
102         }
103
104         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
105                         relation, &index);
106         freq_req = dbs_info->freq_table[index].frequency;
107         freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
108         freq_avg = freq_req - freq_reduc;
109
110         /* Find freq bounds for freq_avg in freq_table */
111         index = 0;
112         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
113                         CPUFREQ_RELATION_H, &index);
114         freq_lo = dbs_info->freq_table[index].frequency;
115         index = 0;
116         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
117                         CPUFREQ_RELATION_L, &index);
118         freq_hi = dbs_info->freq_table[index].frequency;
119
120         /* Find out how long we have to be in hi and lo freqs */
121         if (freq_hi == freq_lo) {
122                 dbs_info->freq_lo = 0;
123                 dbs_info->freq_lo_jiffies = 0;
124                 return freq_lo;
125         }
126         jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
127         jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
128         jiffies_hi += ((freq_hi - freq_lo) / 2);
129         jiffies_hi /= (freq_hi - freq_lo);
130         jiffies_lo = jiffies_total - jiffies_hi;
131         dbs_info->freq_lo = freq_lo;
132         dbs_info->freq_lo_jiffies = jiffies_lo;
133         dbs_info->freq_hi_jiffies = jiffies_hi;
134         return freq_hi;
135 }
136
137 static void ondemand_powersave_bias_init(void)
138 {
139         int i;
140         for_each_online_cpu(i) {
141                 ondemand_powersave_bias_init_cpu(i);
142         }
143 }
144
145 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
146 {
147         struct dbs_data *dbs_data = p->governor_data;
148         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
149
150         if (od_tuners->powersave_bias)
151                 freq = od_ops.powersave_bias_target(p, freq,
152                                 CPUFREQ_RELATION_H);
153         else if (p->cur == p->max)
154                 return;
155
156         __cpufreq_driver_target(p, freq, od_tuners->powersave_bias ?
157                         CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
158 }
159
160 /*
161  * Every sampling_rate, we check, if current idle time is less than 20%
162  * (default), then we try to increase frequency. Every sampling_rate, we look
163  * for the lowest frequency which can sustain the load while keeping idle time
164  * over 30%. If such a frequency exist, we try to decrease to this frequency.
165  *
166  * Any frequency increase takes it to the maximum frequency. Frequency reduction
167  * happens at minimum steps of 5% (default) of current frequency
168  */
169 static void od_check_cpu(int cpu, unsigned int load_freq)
170 {
171         struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
172         struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
173         struct dbs_data *dbs_data = policy->governor_data;
174         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
175
176         dbs_info->freq_lo = 0;
177
178         /* Check for frequency increase */
179         if (load_freq > od_tuners->up_threshold * policy->cur) {
180                 /* If switching to max speed, apply sampling_down_factor */
181                 if (policy->cur < policy->max)
182                         dbs_info->rate_mult =
183                                 od_tuners->sampling_down_factor;
184                 dbs_freq_increase(policy, policy->max);
185                 return;
186         }
187
188         /* Check for frequency decrease */
189         /* if we cannot reduce the frequency anymore, break out early */
190         if (policy->cur == policy->min)
191                 return;
192
193         /*
194          * The optimal frequency is the frequency that is the lowest that can
195          * support the current CPU usage without triggering the up policy. To be
196          * safe, we focus 10 points under the threshold.
197          */
198         if (load_freq < od_tuners->adj_up_threshold
199                         * policy->cur) {
200                 unsigned int freq_next;
201                 freq_next = load_freq / od_tuners->adj_up_threshold;
202
203                 /* No longer fully busy, reset rate_mult */
204                 dbs_info->rate_mult = 1;
205
206                 if (freq_next < policy->min)
207                         freq_next = policy->min;
208
209                 if (!od_tuners->powersave_bias) {
210                         __cpufreq_driver_target(policy, freq_next,
211                                         CPUFREQ_RELATION_L);
212                         return;
213                 }
214
215                 freq_next = od_ops.powersave_bias_target(policy, freq_next,
216                                         CPUFREQ_RELATION_L);
217                 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
218         }
219 }
220
221 static void od_dbs_timer(struct work_struct *work)
222 {
223         struct od_cpu_dbs_info_s *dbs_info =
224                 container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
225         unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
226         struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info,
227                         cpu);
228         struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
229         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
230         int delay = 0, sample_type = core_dbs_info->sample_type;
231         bool modify_all = true;
232
233         mutex_lock(&core_dbs_info->cdbs.timer_mutex);
234         if (!need_load_eval(&core_dbs_info->cdbs, od_tuners->sampling_rate)) {
235                 modify_all = false;
236                 goto max_delay;
237         }
238
239         /* Common NORMAL_SAMPLE setup */
240         core_dbs_info->sample_type = OD_NORMAL_SAMPLE;
241         if (sample_type == OD_SUB_SAMPLE) {
242                 delay = core_dbs_info->freq_lo_jiffies;
243                 __cpufreq_driver_target(core_dbs_info->cdbs.cur_policy,
244                                 core_dbs_info->freq_lo, CPUFREQ_RELATION_H);
245         } else {
246                 dbs_check_cpu(dbs_data, cpu);
247                 if (core_dbs_info->freq_lo) {
248                         /* Setup timer for SUB_SAMPLE */
249                         core_dbs_info->sample_type = OD_SUB_SAMPLE;
250                         delay = core_dbs_info->freq_hi_jiffies;
251                 }
252         }
253
254 max_delay:
255         if (!delay)
256                 delay = delay_for_sampling_rate(od_tuners->sampling_rate
257                                 * core_dbs_info->rate_mult);
258
259         gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
260         mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
261 }
262
263 /************************** sysfs interface ************************/
264 static struct common_dbs_data od_dbs_cdata;
265
266 /**
267  * update_sampling_rate - update sampling rate effective immediately if needed.
268  * @new_rate: new sampling rate
269  *
270  * If new rate is smaller than the old, simply updating
271  * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
272  * original sampling_rate was 1 second and the requested new sampling rate is 10
273  * ms because the user needs immediate reaction from ondemand governor, but not
274  * sure if higher frequency will be required or not, then, the governor may
275  * change the sampling rate too late; up to 1 second later. Thus, if we are
276  * reducing the sampling rate, we need to make the new value effective
277  * immediately.
278  */
279 static void update_sampling_rate(struct dbs_data *dbs_data,
280                 unsigned int new_rate)
281 {
282         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
283         int cpu;
284
285         od_tuners->sampling_rate = new_rate = max(new_rate,
286                         dbs_data->min_sampling_rate);
287
288         for_each_online_cpu(cpu) {
289                 struct cpufreq_policy *policy;
290                 struct od_cpu_dbs_info_s *dbs_info;
291                 unsigned long next_sampling, appointed_at;
292
293                 policy = cpufreq_cpu_get(cpu);
294                 if (!policy)
295                         continue;
296                 if (policy->governor != &cpufreq_gov_ondemand) {
297                         cpufreq_cpu_put(policy);
298                         continue;
299                 }
300                 dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
301                 cpufreq_cpu_put(policy);
302
303                 mutex_lock(&dbs_info->cdbs.timer_mutex);
304
305                 if (!delayed_work_pending(&dbs_info->cdbs.work)) {
306                         mutex_unlock(&dbs_info->cdbs.timer_mutex);
307                         continue;
308                 }
309
310                 next_sampling = jiffies + usecs_to_jiffies(new_rate);
311                 appointed_at = dbs_info->cdbs.work.timer.expires;
312
313                 if (time_before(next_sampling, appointed_at)) {
314
315                         mutex_unlock(&dbs_info->cdbs.timer_mutex);
316                         cancel_delayed_work_sync(&dbs_info->cdbs.work);
317                         mutex_lock(&dbs_info->cdbs.timer_mutex);
318
319                         gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy,
320                                         usecs_to_jiffies(new_rate), true);
321
322                 }
323                 mutex_unlock(&dbs_info->cdbs.timer_mutex);
324         }
325 }
326
327 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
328                 size_t count)
329 {
330         unsigned int input;
331         int ret;
332         ret = sscanf(buf, "%u", &input);
333         if (ret != 1)
334                 return -EINVAL;
335
336         update_sampling_rate(dbs_data, input);
337         return count;
338 }
339
340 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
341                 size_t count)
342 {
343         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
344         unsigned int input;
345         int ret;
346         unsigned int j;
347
348         ret = sscanf(buf, "%u", &input);
349         if (ret != 1)
350                 return -EINVAL;
351         od_tuners->io_is_busy = !!input;
352
353         /* we need to re-evaluate prev_cpu_idle */
354         for_each_online_cpu(j) {
355                 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
356                                                                         j);
357                 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
358                         &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
359         }
360         return count;
361 }
362
363 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
364                 size_t count)
365 {
366         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
367         unsigned int input;
368         int ret;
369         ret = sscanf(buf, "%u", &input);
370
371         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
372                         input < MIN_FREQUENCY_UP_THRESHOLD) {
373                 return -EINVAL;
374         }
375         /* Calculate the new adj_up_threshold */
376         od_tuners->adj_up_threshold += input;
377         od_tuners->adj_up_threshold -= od_tuners->up_threshold;
378
379         od_tuners->up_threshold = input;
380         return count;
381 }
382
383 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
384                 const char *buf, size_t count)
385 {
386         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
387         unsigned int input, j;
388         int ret;
389         ret = sscanf(buf, "%u", &input);
390
391         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
392                 return -EINVAL;
393         od_tuners->sampling_down_factor = input;
394
395         /* Reset down sampling multiplier in case it was active */
396         for_each_online_cpu(j) {
397                 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
398                                 j);
399                 dbs_info->rate_mult = 1;
400         }
401         return count;
402 }
403
404 static ssize_t store_ignore_nice(struct dbs_data *dbs_data, const char *buf,
405                 size_t count)
406 {
407         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
408         unsigned int input;
409         int ret;
410
411         unsigned int j;
412
413         ret = sscanf(buf, "%u", &input);
414         if (ret != 1)
415                 return -EINVAL;
416
417         if (input > 1)
418                 input = 1;
419
420         if (input == od_tuners->ignore_nice) { /* nothing to do */
421                 return count;
422         }
423         od_tuners->ignore_nice = input;
424
425         /* we need to re-evaluate prev_cpu_idle */
426         for_each_online_cpu(j) {
427                 struct od_cpu_dbs_info_s *dbs_info;
428                 dbs_info = &per_cpu(od_cpu_dbs_info, j);
429                 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
430                         &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
431                 if (od_tuners->ignore_nice)
432                         dbs_info->cdbs.prev_cpu_nice =
433                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
434
435         }
436         return count;
437 }
438
439 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
440                 size_t count)
441 {
442         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
443         unsigned int input;
444         int ret;
445         ret = sscanf(buf, "%u", &input);
446
447         if (ret != 1)
448                 return -EINVAL;
449
450         if (input > 1000)
451                 input = 1000;
452
453         od_tuners->powersave_bias = input;
454         ondemand_powersave_bias_init();
455         return count;
456 }
457
458 show_store_one(od, sampling_rate);
459 show_store_one(od, io_is_busy);
460 show_store_one(od, up_threshold);
461 show_store_one(od, sampling_down_factor);
462 show_store_one(od, ignore_nice);
463 show_store_one(od, powersave_bias);
464 declare_show_sampling_rate_min(od);
465
466 gov_sys_pol_attr_rw(sampling_rate);
467 gov_sys_pol_attr_rw(io_is_busy);
468 gov_sys_pol_attr_rw(up_threshold);
469 gov_sys_pol_attr_rw(sampling_down_factor);
470 gov_sys_pol_attr_rw(ignore_nice);
471 gov_sys_pol_attr_rw(powersave_bias);
472 gov_sys_pol_attr_ro(sampling_rate_min);
473
474 static struct attribute *dbs_attributes_gov_sys[] = {
475         &sampling_rate_min_gov_sys.attr,
476         &sampling_rate_gov_sys.attr,
477         &up_threshold_gov_sys.attr,
478         &sampling_down_factor_gov_sys.attr,
479         &ignore_nice_gov_sys.attr,
480         &powersave_bias_gov_sys.attr,
481         &io_is_busy_gov_sys.attr,
482         NULL
483 };
484
485 static struct attribute_group od_attr_group_gov_sys = {
486         .attrs = dbs_attributes_gov_sys,
487         .name = "ondemand",
488 };
489
490 static struct attribute *dbs_attributes_gov_pol[] = {
491         &sampling_rate_min_gov_pol.attr,
492         &sampling_rate_gov_pol.attr,
493         &up_threshold_gov_pol.attr,
494         &sampling_down_factor_gov_pol.attr,
495         &ignore_nice_gov_pol.attr,
496         &powersave_bias_gov_pol.attr,
497         &io_is_busy_gov_pol.attr,
498         NULL
499 };
500
501 static struct attribute_group od_attr_group_gov_pol = {
502         .attrs = dbs_attributes_gov_pol,
503         .name = "ondemand",
504 };
505
506 /************************** sysfs end ************************/
507
508 static int od_init(struct dbs_data *dbs_data)
509 {
510         struct od_dbs_tuners *tuners;
511         u64 idle_time;
512         int cpu;
513
514         tuners = kzalloc(sizeof(struct od_dbs_tuners), GFP_KERNEL);
515         if (!tuners) {
516                 pr_err("%s: kzalloc failed\n", __func__);
517                 return -ENOMEM;
518         }
519
520         cpu = get_cpu();
521         idle_time = get_cpu_idle_time_us(cpu, NULL);
522         put_cpu();
523         if (idle_time != -1ULL) {
524                 /* Idle micro accounting is supported. Use finer thresholds */
525                 tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
526                 tuners->adj_up_threshold = MICRO_FREQUENCY_UP_THRESHOLD -
527                         MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
528                 /*
529                  * In nohz/micro accounting case we set the minimum frequency
530                  * not depending on HZ, but fixed (very low). The deferred
531                  * timer might skip some samples if idle/sleeping as needed.
532                 */
533                 dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
534         } else {
535                 tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
536                 tuners->adj_up_threshold = DEF_FREQUENCY_UP_THRESHOLD -
537                         DEF_FREQUENCY_DOWN_DIFFERENTIAL;
538
539                 /* For correct statistics, we need 10 ticks for each measure */
540                 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
541                         jiffies_to_usecs(10);
542         }
543
544         tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
545         tuners->ignore_nice = 0;
546         tuners->powersave_bias = 0;
547         tuners->io_is_busy = should_io_be_busy();
548
549         dbs_data->tuners = tuners;
550         pr_info("%s: tuners %p\n", __func__, tuners);
551         mutex_init(&dbs_data->mutex);
552         return 0;
553 }
554
555 static void od_exit(struct dbs_data *dbs_data)
556 {
557         kfree(dbs_data->tuners);
558 }
559
560 define_get_cpu_dbs_routines(od_cpu_dbs_info);
561
562 static struct od_ops od_ops = {
563         .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
564         .powersave_bias_target = generic_powersave_bias_target,
565         .freq_increase = dbs_freq_increase,
566 };
567
568 static struct common_dbs_data od_dbs_cdata = {
569         .governor = GOV_ONDEMAND,
570         .attr_group_gov_sys = &od_attr_group_gov_sys,
571         .attr_group_gov_pol = &od_attr_group_gov_pol,
572         .get_cpu_cdbs = get_cpu_cdbs,
573         .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
574         .gov_dbs_timer = od_dbs_timer,
575         .gov_check_cpu = od_check_cpu,
576         .gov_ops = &od_ops,
577         .init = od_init,
578         .exit = od_exit,
579 };
580
581 static void od_set_powersave_bias(unsigned int powersave_bias)
582 {
583         struct cpufreq_policy *policy;
584         struct dbs_data *dbs_data;
585         struct od_dbs_tuners *od_tuners;
586         unsigned int cpu;
587         cpumask_t done;
588
589         cpumask_clear(&done);
590
591         get_online_cpus();
592         for_each_online_cpu(cpu) {
593                 if (cpumask_test_cpu(cpu, &done))
594                         continue;
595
596                 policy = per_cpu(od_cpu_dbs_info, cpu).cdbs.cur_policy;
597                 dbs_data = policy->governor_data;
598                 od_tuners = dbs_data->tuners;
599                 od_tuners->powersave_bias = powersave_bias;
600
601                 cpumask_or(&done, &done, policy->cpus);
602         }
603         put_online_cpus();
604 }
605
606 void od_register_powersave_bias_handler(unsigned int (*f)
607                 (struct cpufreq_policy *, unsigned int, unsigned int),
608                 unsigned int powersave_bias)
609 {
610         od_ops.powersave_bias_target = f;
611         od_set_powersave_bias(powersave_bias);
612 }
613 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
614
615 void od_unregister_powersave_bias_handler(void)
616 {
617         od_ops.powersave_bias_target = generic_powersave_bias_target;
618         od_set_powersave_bias(0);
619 }
620 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
621
622 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
623                 unsigned int event)
624 {
625         return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
626 }
627
628 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
629 static
630 #endif
631 struct cpufreq_governor cpufreq_gov_ondemand = {
632         .name                   = "ondemand",
633         .governor               = od_cpufreq_governor_dbs,
634         .max_transition_latency = TRANSITION_LATENCY_LIMIT,
635         .owner                  = THIS_MODULE,
636 };
637
638 static int __init cpufreq_gov_dbs_init(void)
639 {
640         return cpufreq_register_governor(&cpufreq_gov_ondemand);
641 }
642
643 static void __exit cpufreq_gov_dbs_exit(void)
644 {
645         cpufreq_unregister_governor(&cpufreq_gov_ondemand);
646 }
647
648 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
649 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
650 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
651         "Low Latency Frequency Transition capable processors");
652 MODULE_LICENSE("GPL");
653
654 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
655 fs_initcall(cpufreq_gov_dbs_init);
656 #else
657 module_init(cpufreq_gov_dbs_init);
658 #endif
659 module_exit(cpufreq_gov_dbs_exit);