]> rtime.felk.cvut.cz Git - linux-imx.git/blob - net/sunrpc/sched.c
SUNRPC: Add barriers to ensure read ordering in rpc_wake_up_task_queue_locked
[linux-imx.git] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #include "sunrpc.h"
26
27 #ifdef RPC_DEBUG
28 #define RPCDBG_FACILITY         RPCDBG_SCHED
29 #endif
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
33
34 /*
35  * RPC slabs and memory pools
36  */
37 #define RPC_BUFFER_MAXSIZE      (2048)
38 #define RPC_BUFFER_POOLSIZE     (8)
39 #define RPC_TASK_POOLSIZE       (8)
40 static struct kmem_cache        *rpc_task_slabp __read_mostly;
41 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
42 static mempool_t        *rpc_task_mempool __read_mostly;
43 static mempool_t        *rpc_buffer_mempool __read_mostly;
44
45 static void                     rpc_async_schedule(struct work_struct *);
46 static void                      rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(unsigned long ptr);
48
49 /*
50  * RPC tasks sit here while waiting for conditions to improve.
51  */
52 static struct rpc_wait_queue delay_queue;
53
54 /*
55  * rpciod-related stuff
56  */
57 struct workqueue_struct *rpciod_workqueue;
58
59 /*
60  * Disable the timer for a given RPC task. Should be called with
61  * queue->lock and bh_disabled in order to avoid races within
62  * rpc_run_timer().
63  */
64 static void
65 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
66 {
67         if (task->tk_timeout == 0)
68                 return;
69         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
70         task->tk_timeout = 0;
71         list_del(&task->u.tk_wait.timer_list);
72         if (list_empty(&queue->timer_list.list))
73                 del_timer(&queue->timer_list.timer);
74 }
75
76 static void
77 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
78 {
79         queue->timer_list.expires = expires;
80         mod_timer(&queue->timer_list.timer, expires);
81 }
82
83 /*
84  * Set up a timer for the current task.
85  */
86 static void
87 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
88 {
89         if (!task->tk_timeout)
90                 return;
91
92         dprintk("RPC: %5u setting alarm for %lu ms\n",
93                         task->tk_pid, task->tk_timeout * 1000 / HZ);
94
95         task->u.tk_wait.expires = jiffies + task->tk_timeout;
96         if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
97                 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
98         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
99 }
100
101 static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue)
102 {
103         struct list_head *q = &queue->tasks[queue->priority];
104         struct rpc_task *task;
105
106         if (!list_empty(q)) {
107                 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
108                 if (task->tk_owner == queue->owner)
109                         list_move_tail(&task->u.tk_wait.list, q);
110         }
111 }
112
113 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
114 {
115         if (queue->priority != priority) {
116                 /* Fairness: rotate the list when changing priority */
117                 rpc_rotate_queue_owner(queue);
118                 queue->priority = priority;
119         }
120 }
121
122 static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
123 {
124         queue->owner = pid;
125         queue->nr = RPC_BATCH_COUNT;
126 }
127
128 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
129 {
130         rpc_set_waitqueue_priority(queue, queue->maxpriority);
131         rpc_set_waitqueue_owner(queue, 0);
132 }
133
134 /*
135  * Add new request to a priority queue.
136  */
137 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
138                 struct rpc_task *task,
139                 unsigned char queue_priority)
140 {
141         struct list_head *q;
142         struct rpc_task *t;
143
144         INIT_LIST_HEAD(&task->u.tk_wait.links);
145         if (unlikely(queue_priority > queue->maxpriority))
146                 queue_priority = queue->maxpriority;
147         if (queue_priority > queue->priority)
148                 rpc_set_waitqueue_priority(queue, queue_priority);
149         q = &queue->tasks[queue_priority];
150         list_for_each_entry(t, q, u.tk_wait.list) {
151                 if (t->tk_owner == task->tk_owner) {
152                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
153                         return;
154                 }
155         }
156         list_add_tail(&task->u.tk_wait.list, q);
157 }
158
159 /*
160  * Add new request to wait queue.
161  *
162  * Swapper tasks always get inserted at the head of the queue.
163  * This should avoid many nasty memory deadlocks and hopefully
164  * improve overall performance.
165  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
166  */
167 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
168                 struct rpc_task *task,
169                 unsigned char queue_priority)
170 {
171         WARN_ON_ONCE(RPC_IS_QUEUED(task));
172         if (RPC_IS_QUEUED(task))
173                 return;
174
175         if (RPC_IS_PRIORITY(queue))
176                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
177         else if (RPC_IS_SWAPPER(task))
178                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
179         else
180                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
181         task->tk_waitqueue = queue;
182         queue->qlen++;
183         /* barrier matches the read in rpc_wake_up_task_queue_locked() */
184         smp_wmb();
185         rpc_set_queued(task);
186
187         dprintk("RPC: %5u added to queue %p \"%s\"\n",
188                         task->tk_pid, queue, rpc_qname(queue));
189 }
190
191 /*
192  * Remove request from a priority queue.
193  */
194 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
195 {
196         struct rpc_task *t;
197
198         if (!list_empty(&task->u.tk_wait.links)) {
199                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
200                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
201                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
202         }
203 }
204
205 /*
206  * Remove request from queue.
207  * Note: must be called with spin lock held.
208  */
209 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
210 {
211         __rpc_disable_timer(queue, task);
212         if (RPC_IS_PRIORITY(queue))
213                 __rpc_remove_wait_queue_priority(task);
214         list_del(&task->u.tk_wait.list);
215         queue->qlen--;
216         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
217                         task->tk_pid, queue, rpc_qname(queue));
218 }
219
220 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
221 {
222         int i;
223
224         spin_lock_init(&queue->lock);
225         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
226                 INIT_LIST_HEAD(&queue->tasks[i]);
227         queue->maxpriority = nr_queues - 1;
228         rpc_reset_waitqueue_priority(queue);
229         queue->qlen = 0;
230         setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
231         INIT_LIST_HEAD(&queue->timer_list.list);
232         rpc_assign_waitqueue_name(queue, qname);
233 }
234
235 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
236 {
237         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
238 }
239 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
240
241 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
242 {
243         __rpc_init_priority_wait_queue(queue, qname, 1);
244 }
245 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
246
247 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
248 {
249         del_timer_sync(&queue->timer_list.timer);
250 }
251 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
252
253 static int rpc_wait_bit_killable(void *word)
254 {
255         if (fatal_signal_pending(current))
256                 return -ERESTARTSYS;
257         freezable_schedule();
258         return 0;
259 }
260
261 #ifdef RPC_DEBUG
262 static void rpc_task_set_debuginfo(struct rpc_task *task)
263 {
264         static atomic_t rpc_pid;
265
266         task->tk_pid = atomic_inc_return(&rpc_pid);
267 }
268 #else
269 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
270 {
271 }
272 #endif
273
274 static void rpc_set_active(struct rpc_task *task)
275 {
276         trace_rpc_task_begin(task->tk_client, task, NULL);
277
278         rpc_task_set_debuginfo(task);
279         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
280 }
281
282 /*
283  * Mark an RPC call as having completed by clearing the 'active' bit
284  * and then waking up all tasks that were sleeping.
285  */
286 static int rpc_complete_task(struct rpc_task *task)
287 {
288         void *m = &task->tk_runstate;
289         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
290         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
291         unsigned long flags;
292         int ret;
293
294         trace_rpc_task_complete(task->tk_client, task, NULL);
295
296         spin_lock_irqsave(&wq->lock, flags);
297         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
298         ret = atomic_dec_and_test(&task->tk_count);
299         if (waitqueue_active(wq))
300                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
301         spin_unlock_irqrestore(&wq->lock, flags);
302         return ret;
303 }
304
305 /*
306  * Allow callers to wait for completion of an RPC call
307  *
308  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
309  * to enforce taking of the wq->lock and hence avoid races with
310  * rpc_complete_task().
311  */
312 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
313 {
314         if (action == NULL)
315                 action = rpc_wait_bit_killable;
316         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
317                         action, TASK_KILLABLE);
318 }
319 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
320
321 /*
322  * Make an RPC task runnable.
323  *
324  * Note: If the task is ASYNC, and is being made runnable after sitting on an
325  * rpc_wait_queue, this must be called with the queue spinlock held to protect
326  * the wait queue operation.
327  */
328 static void rpc_make_runnable(struct rpc_task *task)
329 {
330         rpc_clear_queued(task);
331         if (rpc_test_and_set_running(task))
332                 return;
333         if (RPC_IS_ASYNC(task)) {
334                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
335                 queue_work(rpciod_workqueue, &task->u.tk_work);
336         } else
337                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
338 }
339
340 /*
341  * Prepare for sleeping on a wait queue.
342  * By always appending tasks to the list we ensure FIFO behavior.
343  * NB: An RPC task will only receive interrupt-driven events as long
344  * as it's on a wait queue.
345  */
346 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
347                 struct rpc_task *task,
348                 rpc_action action,
349                 unsigned char queue_priority)
350 {
351         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
352                         task->tk_pid, rpc_qname(q), jiffies);
353
354         trace_rpc_task_sleep(task->tk_client, task, q);
355
356         __rpc_add_wait_queue(q, task, queue_priority);
357
358         WARN_ON_ONCE(task->tk_callback != NULL);
359         task->tk_callback = action;
360         __rpc_add_timer(q, task);
361 }
362
363 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
364                                 rpc_action action)
365 {
366         /* We shouldn't ever put an inactive task to sleep */
367         WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
368         if (!RPC_IS_ACTIVATED(task)) {
369                 task->tk_status = -EIO;
370                 rpc_put_task_async(task);
371                 return;
372         }
373
374         /*
375          * Protect the queue operations.
376          */
377         spin_lock_bh(&q->lock);
378         __rpc_sleep_on_priority(q, task, action, task->tk_priority);
379         spin_unlock_bh(&q->lock);
380 }
381 EXPORT_SYMBOL_GPL(rpc_sleep_on);
382
383 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
384                 rpc_action action, int priority)
385 {
386         /* We shouldn't ever put an inactive task to sleep */
387         WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
388         if (!RPC_IS_ACTIVATED(task)) {
389                 task->tk_status = -EIO;
390                 rpc_put_task_async(task);
391                 return;
392         }
393
394         /*
395          * Protect the queue operations.
396          */
397         spin_lock_bh(&q->lock);
398         __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
399         spin_unlock_bh(&q->lock);
400 }
401 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
402
403 /**
404  * __rpc_do_wake_up_task - wake up a single rpc_task
405  * @queue: wait queue
406  * @task: task to be woken up
407  *
408  * Caller must hold queue->lock, and have cleared the task queued flag.
409  */
410 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
411 {
412         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
413                         task->tk_pid, jiffies);
414
415         /* Has the task been executed yet? If not, we cannot wake it up! */
416         if (!RPC_IS_ACTIVATED(task)) {
417                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
418                 return;
419         }
420
421         trace_rpc_task_wakeup(task->tk_client, task, queue);
422
423         __rpc_remove_wait_queue(queue, task);
424
425         rpc_make_runnable(task);
426
427         dprintk("RPC:       __rpc_wake_up_task done\n");
428 }
429
430 /*
431  * Wake up a queued task while the queue lock is being held
432  */
433 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
434 {
435         if (RPC_IS_QUEUED(task)) {
436                 smp_rmb();
437                 if (task->tk_waitqueue == queue)
438                         __rpc_do_wake_up_task(queue, task);
439         }
440 }
441
442 /*
443  * Tests whether rpc queue is empty
444  */
445 int rpc_queue_empty(struct rpc_wait_queue *queue)
446 {
447         int res;
448
449         spin_lock_bh(&queue->lock);
450         res = queue->qlen;
451         spin_unlock_bh(&queue->lock);
452         return res == 0;
453 }
454 EXPORT_SYMBOL_GPL(rpc_queue_empty);
455
456 /*
457  * Wake up a task on a specific queue
458  */
459 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
460 {
461         spin_lock_bh(&queue->lock);
462         rpc_wake_up_task_queue_locked(queue, task);
463         spin_unlock_bh(&queue->lock);
464 }
465 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
466
467 /*
468  * Wake up the next task on a priority queue.
469  */
470 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
471 {
472         struct list_head *q;
473         struct rpc_task *task;
474
475         /*
476          * Service a batch of tasks from a single owner.
477          */
478         q = &queue->tasks[queue->priority];
479         if (!list_empty(q)) {
480                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
481                 if (queue->owner == task->tk_owner) {
482                         if (--queue->nr)
483                                 goto out;
484                         list_move_tail(&task->u.tk_wait.list, q);
485                 }
486                 /*
487                  * Check if we need to switch queues.
488                  */
489                 goto new_owner;
490         }
491
492         /*
493          * Service the next queue.
494          */
495         do {
496                 if (q == &queue->tasks[0])
497                         q = &queue->tasks[queue->maxpriority];
498                 else
499                         q = q - 1;
500                 if (!list_empty(q)) {
501                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
502                         goto new_queue;
503                 }
504         } while (q != &queue->tasks[queue->priority]);
505
506         rpc_reset_waitqueue_priority(queue);
507         return NULL;
508
509 new_queue:
510         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
511 new_owner:
512         rpc_set_waitqueue_owner(queue, task->tk_owner);
513 out:
514         return task;
515 }
516
517 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
518 {
519         if (RPC_IS_PRIORITY(queue))
520                 return __rpc_find_next_queued_priority(queue);
521         if (!list_empty(&queue->tasks[0]))
522                 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
523         return NULL;
524 }
525
526 /*
527  * Wake up the first task on the wait queue.
528  */
529 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
530                 bool (*func)(struct rpc_task *, void *), void *data)
531 {
532         struct rpc_task *task = NULL;
533
534         dprintk("RPC:       wake_up_first(%p \"%s\")\n",
535                         queue, rpc_qname(queue));
536         spin_lock_bh(&queue->lock);
537         task = __rpc_find_next_queued(queue);
538         if (task != NULL) {
539                 if (func(task, data))
540                         rpc_wake_up_task_queue_locked(queue, task);
541                 else
542                         task = NULL;
543         }
544         spin_unlock_bh(&queue->lock);
545
546         return task;
547 }
548 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
549
550 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
551 {
552         return true;
553 }
554
555 /*
556  * Wake up the next task on the wait queue.
557 */
558 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
559 {
560         return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
561 }
562 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
563
564 /**
565  * rpc_wake_up - wake up all rpc_tasks
566  * @queue: rpc_wait_queue on which the tasks are sleeping
567  *
568  * Grabs queue->lock
569  */
570 void rpc_wake_up(struct rpc_wait_queue *queue)
571 {
572         struct list_head *head;
573
574         spin_lock_bh(&queue->lock);
575         head = &queue->tasks[queue->maxpriority];
576         for (;;) {
577                 while (!list_empty(head)) {
578                         struct rpc_task *task;
579                         task = list_first_entry(head,
580                                         struct rpc_task,
581                                         u.tk_wait.list);
582                         rpc_wake_up_task_queue_locked(queue, task);
583                 }
584                 if (head == &queue->tasks[0])
585                         break;
586                 head--;
587         }
588         spin_unlock_bh(&queue->lock);
589 }
590 EXPORT_SYMBOL_GPL(rpc_wake_up);
591
592 /**
593  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
594  * @queue: rpc_wait_queue on which the tasks are sleeping
595  * @status: status value to set
596  *
597  * Grabs queue->lock
598  */
599 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
600 {
601         struct list_head *head;
602
603         spin_lock_bh(&queue->lock);
604         head = &queue->tasks[queue->maxpriority];
605         for (;;) {
606                 while (!list_empty(head)) {
607                         struct rpc_task *task;
608                         task = list_first_entry(head,
609                                         struct rpc_task,
610                                         u.tk_wait.list);
611                         task->tk_status = status;
612                         rpc_wake_up_task_queue_locked(queue, task);
613                 }
614                 if (head == &queue->tasks[0])
615                         break;
616                 head--;
617         }
618         spin_unlock_bh(&queue->lock);
619 }
620 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
621
622 static void __rpc_queue_timer_fn(unsigned long ptr)
623 {
624         struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
625         struct rpc_task *task, *n;
626         unsigned long expires, now, timeo;
627
628         spin_lock(&queue->lock);
629         expires = now = jiffies;
630         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
631                 timeo = task->u.tk_wait.expires;
632                 if (time_after_eq(now, timeo)) {
633                         dprintk("RPC: %5u timeout\n", task->tk_pid);
634                         task->tk_status = -ETIMEDOUT;
635                         rpc_wake_up_task_queue_locked(queue, task);
636                         continue;
637                 }
638                 if (expires == now || time_after(expires, timeo))
639                         expires = timeo;
640         }
641         if (!list_empty(&queue->timer_list.list))
642                 rpc_set_queue_timer(queue, expires);
643         spin_unlock(&queue->lock);
644 }
645
646 static void __rpc_atrun(struct rpc_task *task)
647 {
648         task->tk_status = 0;
649 }
650
651 /*
652  * Run a task at a later time
653  */
654 void rpc_delay(struct rpc_task *task, unsigned long delay)
655 {
656         task->tk_timeout = delay;
657         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
658 }
659 EXPORT_SYMBOL_GPL(rpc_delay);
660
661 /*
662  * Helper to call task->tk_ops->rpc_call_prepare
663  */
664 void rpc_prepare_task(struct rpc_task *task)
665 {
666         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
667 }
668
669 static void
670 rpc_init_task_statistics(struct rpc_task *task)
671 {
672         /* Initialize retry counters */
673         task->tk_garb_retry = 2;
674         task->tk_cred_retry = 2;
675         task->tk_rebind_retry = 2;
676
677         /* starting timestamp */
678         task->tk_start = ktime_get();
679 }
680
681 static void
682 rpc_reset_task_statistics(struct rpc_task *task)
683 {
684         task->tk_timeouts = 0;
685         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
686
687         rpc_init_task_statistics(task);
688 }
689
690 /*
691  * Helper that calls task->tk_ops->rpc_call_done if it exists
692  */
693 void rpc_exit_task(struct rpc_task *task)
694 {
695         task->tk_action = NULL;
696         if (task->tk_ops->rpc_call_done != NULL) {
697                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
698                 if (task->tk_action != NULL) {
699                         WARN_ON(RPC_ASSASSINATED(task));
700                         /* Always release the RPC slot and buffer memory */
701                         xprt_release(task);
702                         rpc_reset_task_statistics(task);
703                 }
704         }
705 }
706
707 void rpc_exit(struct rpc_task *task, int status)
708 {
709         task->tk_status = status;
710         task->tk_action = rpc_exit_task;
711         if (RPC_IS_QUEUED(task))
712                 rpc_wake_up_queued_task(task->tk_waitqueue, task);
713 }
714 EXPORT_SYMBOL_GPL(rpc_exit);
715
716 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
717 {
718         if (ops->rpc_release != NULL)
719                 ops->rpc_release(calldata);
720 }
721
722 /*
723  * This is the RPC `scheduler' (or rather, the finite state machine).
724  */
725 static void __rpc_execute(struct rpc_task *task)
726 {
727         struct rpc_wait_queue *queue;
728         int task_is_async = RPC_IS_ASYNC(task);
729         int status = 0;
730
731         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
732                         task->tk_pid, task->tk_flags);
733
734         WARN_ON_ONCE(RPC_IS_QUEUED(task));
735         if (RPC_IS_QUEUED(task))
736                 return;
737
738         for (;;) {
739                 void (*do_action)(struct rpc_task *);
740
741                 /*
742                  * Execute any pending callback first.
743                  */
744                 do_action = task->tk_callback;
745                 task->tk_callback = NULL;
746                 if (do_action == NULL) {
747                         /*
748                          * Perform the next FSM step.
749                          * tk_action may be NULL if the task has been killed.
750                          * In particular, note that rpc_killall_tasks may
751                          * do this at any time, so beware when dereferencing.
752                          */
753                         do_action = task->tk_action;
754                         if (do_action == NULL)
755                                 break;
756                 }
757                 trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
758                 do_action(task);
759
760                 /*
761                  * Lockless check for whether task is sleeping or not.
762                  */
763                 if (!RPC_IS_QUEUED(task))
764                         continue;
765                 /*
766                  * The queue->lock protects against races with
767                  * rpc_make_runnable().
768                  *
769                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
770                  * rpc_task, rpc_make_runnable() can assign it to a
771                  * different workqueue. We therefore cannot assume that the
772                  * rpc_task pointer may still be dereferenced.
773                  */
774                 queue = task->tk_waitqueue;
775                 spin_lock_bh(&queue->lock);
776                 if (!RPC_IS_QUEUED(task)) {
777                         spin_unlock_bh(&queue->lock);
778                         continue;
779                 }
780                 rpc_clear_running(task);
781                 spin_unlock_bh(&queue->lock);
782                 if (task_is_async)
783                         return;
784
785                 /* sync task: sleep here */
786                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
787                 status = out_of_line_wait_on_bit(&task->tk_runstate,
788                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
789                                 TASK_KILLABLE);
790                 if (status == -ERESTARTSYS) {
791                         /*
792                          * When a sync task receives a signal, it exits with
793                          * -ERESTARTSYS. In order to catch any callbacks that
794                          * clean up after sleeping on some queue, we don't
795                          * break the loop here, but go around once more.
796                          */
797                         dprintk("RPC: %5u got signal\n", task->tk_pid);
798                         task->tk_flags |= RPC_TASK_KILLED;
799                         rpc_exit(task, -ERESTARTSYS);
800                 }
801                 rpc_set_running(task);
802                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
803         }
804
805         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
806                         task->tk_status);
807         /* Release all resources associated with the task */
808         rpc_release_task(task);
809 }
810
811 /*
812  * User-visible entry point to the scheduler.
813  *
814  * This may be called recursively if e.g. an async NFS task updates
815  * the attributes and finds that dirty pages must be flushed.
816  * NOTE: Upon exit of this function the task is guaranteed to be
817  *       released. In particular note that tk_release() will have
818  *       been called, so your task memory may have been freed.
819  */
820 void rpc_execute(struct rpc_task *task)
821 {
822         rpc_set_active(task);
823         rpc_make_runnable(task);
824         if (!RPC_IS_ASYNC(task))
825                 __rpc_execute(task);
826 }
827
828 static void rpc_async_schedule(struct work_struct *work)
829 {
830         current->flags |= PF_FSTRANS;
831         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
832         current->flags &= ~PF_FSTRANS;
833 }
834
835 /**
836  * rpc_malloc - allocate an RPC buffer
837  * @task: RPC task that will use this buffer
838  * @size: requested byte size
839  *
840  * To prevent rpciod from hanging, this allocator never sleeps,
841  * returning NULL if the request cannot be serviced immediately.
842  * The caller can arrange to sleep in a way that is safe for rpciod.
843  *
844  * Most requests are 'small' (under 2KiB) and can be serviced from a
845  * mempool, ensuring that NFS reads and writes can always proceed,
846  * and that there is good locality of reference for these buffers.
847  *
848  * In order to avoid memory starvation triggering more writebacks of
849  * NFS requests, we avoid using GFP_KERNEL.
850  */
851 void *rpc_malloc(struct rpc_task *task, size_t size)
852 {
853         struct rpc_buffer *buf;
854         gfp_t gfp = GFP_NOWAIT;
855
856         if (RPC_IS_SWAPPER(task))
857                 gfp |= __GFP_MEMALLOC;
858
859         size += sizeof(struct rpc_buffer);
860         if (size <= RPC_BUFFER_MAXSIZE)
861                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
862         else
863                 buf = kmalloc(size, gfp);
864
865         if (!buf)
866                 return NULL;
867
868         buf->len = size;
869         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
870                         task->tk_pid, size, buf);
871         return &buf->data;
872 }
873 EXPORT_SYMBOL_GPL(rpc_malloc);
874
875 /**
876  * rpc_free - free buffer allocated via rpc_malloc
877  * @buffer: buffer to free
878  *
879  */
880 void rpc_free(void *buffer)
881 {
882         size_t size;
883         struct rpc_buffer *buf;
884
885         if (!buffer)
886                 return;
887
888         buf = container_of(buffer, struct rpc_buffer, data);
889         size = buf->len;
890
891         dprintk("RPC:       freeing buffer of size %zu at %p\n",
892                         size, buf);
893
894         if (size <= RPC_BUFFER_MAXSIZE)
895                 mempool_free(buf, rpc_buffer_mempool);
896         else
897                 kfree(buf);
898 }
899 EXPORT_SYMBOL_GPL(rpc_free);
900
901 /*
902  * Creation and deletion of RPC task structures
903  */
904 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
905 {
906         memset(task, 0, sizeof(*task));
907         atomic_set(&task->tk_count, 1);
908         task->tk_flags  = task_setup_data->flags;
909         task->tk_ops = task_setup_data->callback_ops;
910         task->tk_calldata = task_setup_data->callback_data;
911         INIT_LIST_HEAD(&task->tk_task);
912
913         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
914         task->tk_owner = current->tgid;
915
916         /* Initialize workqueue for async tasks */
917         task->tk_workqueue = task_setup_data->workqueue;
918
919         if (task->tk_ops->rpc_call_prepare != NULL)
920                 task->tk_action = rpc_prepare_task;
921
922         rpc_init_task_statistics(task);
923
924         dprintk("RPC:       new task initialized, procpid %u\n",
925                                 task_pid_nr(current));
926 }
927
928 static struct rpc_task *
929 rpc_alloc_task(void)
930 {
931         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
932 }
933
934 /*
935  * Create a new task for the specified client.
936  */
937 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
938 {
939         struct rpc_task *task = setup_data->task;
940         unsigned short flags = 0;
941
942         if (task == NULL) {
943                 task = rpc_alloc_task();
944                 if (task == NULL) {
945                         rpc_release_calldata(setup_data->callback_ops,
946                                         setup_data->callback_data);
947                         return ERR_PTR(-ENOMEM);
948                 }
949                 flags = RPC_TASK_DYNAMIC;
950         }
951
952         rpc_init_task(task, setup_data);
953         task->tk_flags |= flags;
954         dprintk("RPC:       allocated task %p\n", task);
955         return task;
956 }
957
958 /*
959  * rpc_free_task - release rpc task and perform cleanups
960  *
961  * Note that we free up the rpc_task _after_ rpc_release_calldata()
962  * in order to work around a workqueue dependency issue.
963  *
964  * Tejun Heo states:
965  * "Workqueue currently considers two work items to be the same if they're
966  * on the same address and won't execute them concurrently - ie. it
967  * makes a work item which is queued again while being executed wait
968  * for the previous execution to complete.
969  *
970  * If a work function frees the work item, and then waits for an event
971  * which should be performed by another work item and *that* work item
972  * recycles the freed work item, it can create a false dependency loop.
973  * There really is no reliable way to detect this short of verifying
974  * every memory free."
975  *
976  */
977 static void rpc_free_task(struct rpc_task *task)
978 {
979         unsigned short tk_flags = task->tk_flags;
980
981         rpc_release_calldata(task->tk_ops, task->tk_calldata);
982
983         if (tk_flags & RPC_TASK_DYNAMIC) {
984                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
985                 mempool_free(task, rpc_task_mempool);
986         }
987 }
988
989 static void rpc_async_release(struct work_struct *work)
990 {
991         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
992 }
993
994 static void rpc_release_resources_task(struct rpc_task *task)
995 {
996         xprt_release(task);
997         if (task->tk_msg.rpc_cred) {
998                 put_rpccred(task->tk_msg.rpc_cred);
999                 task->tk_msg.rpc_cred = NULL;
1000         }
1001         rpc_task_release_client(task);
1002 }
1003
1004 static void rpc_final_put_task(struct rpc_task *task,
1005                 struct workqueue_struct *q)
1006 {
1007         if (q != NULL) {
1008                 INIT_WORK(&task->u.tk_work, rpc_async_release);
1009                 queue_work(q, &task->u.tk_work);
1010         } else
1011                 rpc_free_task(task);
1012 }
1013
1014 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1015 {
1016         if (atomic_dec_and_test(&task->tk_count)) {
1017                 rpc_release_resources_task(task);
1018                 rpc_final_put_task(task, q);
1019         }
1020 }
1021
1022 void rpc_put_task(struct rpc_task *task)
1023 {
1024         rpc_do_put_task(task, NULL);
1025 }
1026 EXPORT_SYMBOL_GPL(rpc_put_task);
1027
1028 void rpc_put_task_async(struct rpc_task *task)
1029 {
1030         rpc_do_put_task(task, task->tk_workqueue);
1031 }
1032 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1033
1034 static void rpc_release_task(struct rpc_task *task)
1035 {
1036         dprintk("RPC: %5u release task\n", task->tk_pid);
1037
1038         WARN_ON_ONCE(RPC_IS_QUEUED(task));
1039
1040         rpc_release_resources_task(task);
1041
1042         /*
1043          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1044          * so it should be safe to use task->tk_count as a test for whether
1045          * or not any other processes still hold references to our rpc_task.
1046          */
1047         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1048                 /* Wake up anyone who may be waiting for task completion */
1049                 if (!rpc_complete_task(task))
1050                         return;
1051         } else {
1052                 if (!atomic_dec_and_test(&task->tk_count))
1053                         return;
1054         }
1055         rpc_final_put_task(task, task->tk_workqueue);
1056 }
1057
1058 int rpciod_up(void)
1059 {
1060         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1061 }
1062
1063 void rpciod_down(void)
1064 {
1065         module_put(THIS_MODULE);
1066 }
1067
1068 /*
1069  * Start up the rpciod workqueue.
1070  */
1071 static int rpciod_start(void)
1072 {
1073         struct workqueue_struct *wq;
1074
1075         /*
1076          * Create the rpciod thread and wait for it to start.
1077          */
1078         dprintk("RPC:       creating workqueue rpciod\n");
1079         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 1);
1080         rpciod_workqueue = wq;
1081         return rpciod_workqueue != NULL;
1082 }
1083
1084 static void rpciod_stop(void)
1085 {
1086         struct workqueue_struct *wq = NULL;
1087
1088         if (rpciod_workqueue == NULL)
1089                 return;
1090         dprintk("RPC:       destroying workqueue rpciod\n");
1091
1092         wq = rpciod_workqueue;
1093         rpciod_workqueue = NULL;
1094         destroy_workqueue(wq);
1095 }
1096
1097 void
1098 rpc_destroy_mempool(void)
1099 {
1100         rpciod_stop();
1101         if (rpc_buffer_mempool)
1102                 mempool_destroy(rpc_buffer_mempool);
1103         if (rpc_task_mempool)
1104                 mempool_destroy(rpc_task_mempool);
1105         if (rpc_task_slabp)
1106                 kmem_cache_destroy(rpc_task_slabp);
1107         if (rpc_buffer_slabp)
1108                 kmem_cache_destroy(rpc_buffer_slabp);
1109         rpc_destroy_wait_queue(&delay_queue);
1110 }
1111
1112 int
1113 rpc_init_mempool(void)
1114 {
1115         /*
1116          * The following is not strictly a mempool initialisation,
1117          * but there is no harm in doing it here
1118          */
1119         rpc_init_wait_queue(&delay_queue, "delayq");
1120         if (!rpciod_start())
1121                 goto err_nomem;
1122
1123         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1124                                              sizeof(struct rpc_task),
1125                                              0, SLAB_HWCACHE_ALIGN,
1126                                              NULL);
1127         if (!rpc_task_slabp)
1128                 goto err_nomem;
1129         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1130                                              RPC_BUFFER_MAXSIZE,
1131                                              0, SLAB_HWCACHE_ALIGN,
1132                                              NULL);
1133         if (!rpc_buffer_slabp)
1134                 goto err_nomem;
1135         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1136                                                     rpc_task_slabp);
1137         if (!rpc_task_mempool)
1138                 goto err_nomem;
1139         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1140                                                       rpc_buffer_slabp);
1141         if (!rpc_buffer_mempool)
1142                 goto err_nomem;
1143         return 0;
1144 err_nomem:
1145         rpc_destroy_mempool();
1146         return -ENOMEM;
1147 }