]> rtime.felk.cvut.cz Git - linux-imx.git/blob - fs/f2fs/segment.c
MAINTAINERS: add TI Keystone ARM platform
[linux-imx.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/vmalloc.h>
17
18 #include "f2fs.h"
19 #include "segment.h"
20 #include "node.h"
21 #include <trace/events/f2fs.h>
22
23 /*
24  * This function balances dirty node and dentry pages.
25  * In addition, it controls garbage collection.
26  */
27 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
28 {
29         /*
30          * We should do GC or end up with checkpoint, if there are so many dirty
31          * dir/node pages without enough free segments.
32          */
33         if (has_not_enough_free_secs(sbi, 0)) {
34                 mutex_lock(&sbi->gc_mutex);
35                 f2fs_gc(sbi);
36         }
37 }
38
39 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
40                 enum dirty_type dirty_type)
41 {
42         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
43
44         /* need not be added */
45         if (IS_CURSEG(sbi, segno))
46                 return;
47
48         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
49                 dirty_i->nr_dirty[dirty_type]++;
50
51         if (dirty_type == DIRTY) {
52                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
53                 enum dirty_type t = DIRTY_HOT_DATA;
54
55                 dirty_type = sentry->type;
56
57                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
58                         dirty_i->nr_dirty[dirty_type]++;
59
60                 /* Only one bitmap should be set */
61                 for (; t <= DIRTY_COLD_NODE; t++) {
62                         if (t == dirty_type)
63                                 continue;
64                         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
65                                 dirty_i->nr_dirty[t]--;
66                 }
67         }
68 }
69
70 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
71                 enum dirty_type dirty_type)
72 {
73         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
74
75         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
76                 dirty_i->nr_dirty[dirty_type]--;
77
78         if (dirty_type == DIRTY) {
79                 enum dirty_type t = DIRTY_HOT_DATA;
80
81                 /* clear all the bitmaps */
82                 for (; t <= DIRTY_COLD_NODE; t++)
83                         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
84                                 dirty_i->nr_dirty[t]--;
85
86                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
87                         clear_bit(GET_SECNO(sbi, segno),
88                                                 dirty_i->victim_secmap);
89         }
90 }
91
92 /*
93  * Should not occur error such as -ENOMEM.
94  * Adding dirty entry into seglist is not critical operation.
95  * If a given segment is one of current working segments, it won't be added.
96  */
97 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
98 {
99         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
100         unsigned short valid_blocks;
101
102         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
103                 return;
104
105         mutex_lock(&dirty_i->seglist_lock);
106
107         valid_blocks = get_valid_blocks(sbi, segno, 0);
108
109         if (valid_blocks == 0) {
110                 __locate_dirty_segment(sbi, segno, PRE);
111                 __remove_dirty_segment(sbi, segno, DIRTY);
112         } else if (valid_blocks < sbi->blocks_per_seg) {
113                 __locate_dirty_segment(sbi, segno, DIRTY);
114         } else {
115                 /* Recovery routine with SSR needs this */
116                 __remove_dirty_segment(sbi, segno, DIRTY);
117         }
118
119         mutex_unlock(&dirty_i->seglist_lock);
120         return;
121 }
122
123 /*
124  * Should call clear_prefree_segments after checkpoint is done.
125  */
126 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
127 {
128         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
129         unsigned int segno = -1;
130         unsigned int total_segs = TOTAL_SEGS(sbi);
131
132         mutex_lock(&dirty_i->seglist_lock);
133         while (1) {
134                 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
135                                 segno + 1);
136                 if (segno >= total_segs)
137                         break;
138                 __set_test_and_free(sbi, segno);
139         }
140         mutex_unlock(&dirty_i->seglist_lock);
141 }
142
143 void clear_prefree_segments(struct f2fs_sb_info *sbi)
144 {
145         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
146         unsigned int segno = -1;
147         unsigned int total_segs = TOTAL_SEGS(sbi);
148
149         mutex_lock(&dirty_i->seglist_lock);
150         while (1) {
151                 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
152                                 segno + 1);
153                 if (segno >= total_segs)
154                         break;
155
156                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[PRE]))
157                         dirty_i->nr_dirty[PRE]--;
158
159                 /* Let's use trim */
160                 if (test_opt(sbi, DISCARD))
161                         blkdev_issue_discard(sbi->sb->s_bdev,
162                                         START_BLOCK(sbi, segno) <<
163                                         sbi->log_sectors_per_block,
164                                         1 << (sbi->log_sectors_per_block +
165                                                 sbi->log_blocks_per_seg),
166                                         GFP_NOFS, 0);
167         }
168         mutex_unlock(&dirty_i->seglist_lock);
169 }
170
171 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
172 {
173         struct sit_info *sit_i = SIT_I(sbi);
174         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
175                 sit_i->dirty_sentries++;
176 }
177
178 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
179                                         unsigned int segno, int modified)
180 {
181         struct seg_entry *se = get_seg_entry(sbi, segno);
182         se->type = type;
183         if (modified)
184                 __mark_sit_entry_dirty(sbi, segno);
185 }
186
187 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
188 {
189         struct seg_entry *se;
190         unsigned int segno, offset;
191         long int new_vblocks;
192
193         segno = GET_SEGNO(sbi, blkaddr);
194
195         se = get_seg_entry(sbi, segno);
196         new_vblocks = se->valid_blocks + del;
197         offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
198
199         BUG_ON((new_vblocks >> (sizeof(unsigned short) << 3) ||
200                                 (new_vblocks > sbi->blocks_per_seg)));
201
202         se->valid_blocks = new_vblocks;
203         se->mtime = get_mtime(sbi);
204         SIT_I(sbi)->max_mtime = se->mtime;
205
206         /* Update valid block bitmap */
207         if (del > 0) {
208                 if (f2fs_set_bit(offset, se->cur_valid_map))
209                         BUG();
210         } else {
211                 if (!f2fs_clear_bit(offset, se->cur_valid_map))
212                         BUG();
213         }
214         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
215                 se->ckpt_valid_blocks += del;
216
217         __mark_sit_entry_dirty(sbi, segno);
218
219         /* update total number of valid blocks to be written in ckpt area */
220         SIT_I(sbi)->written_valid_blocks += del;
221
222         if (sbi->segs_per_sec > 1)
223                 get_sec_entry(sbi, segno)->valid_blocks += del;
224 }
225
226 static void refresh_sit_entry(struct f2fs_sb_info *sbi,
227                         block_t old_blkaddr, block_t new_blkaddr)
228 {
229         update_sit_entry(sbi, new_blkaddr, 1);
230         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
231                 update_sit_entry(sbi, old_blkaddr, -1);
232 }
233
234 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
235 {
236         unsigned int segno = GET_SEGNO(sbi, addr);
237         struct sit_info *sit_i = SIT_I(sbi);
238
239         BUG_ON(addr == NULL_ADDR);
240         if (addr == NEW_ADDR)
241                 return;
242
243         /* add it into sit main buffer */
244         mutex_lock(&sit_i->sentry_lock);
245
246         update_sit_entry(sbi, addr, -1);
247
248         /* add it into dirty seglist */
249         locate_dirty_segment(sbi, segno);
250
251         mutex_unlock(&sit_i->sentry_lock);
252 }
253
254 /*
255  * This function should be resided under the curseg_mutex lock
256  */
257 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
258                                         struct f2fs_summary *sum)
259 {
260         struct curseg_info *curseg = CURSEG_I(sbi, type);
261         void *addr = curseg->sum_blk;
262         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
263         memcpy(addr, sum, sizeof(struct f2fs_summary));
264         return;
265 }
266
267 /*
268  * Calculate the number of current summary pages for writing
269  */
270 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
271 {
272         int total_size_bytes = 0;
273         int valid_sum_count = 0;
274         int i, sum_space;
275
276         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
277                 if (sbi->ckpt->alloc_type[i] == SSR)
278                         valid_sum_count += sbi->blocks_per_seg;
279                 else
280                         valid_sum_count += curseg_blkoff(sbi, i);
281         }
282
283         total_size_bytes = valid_sum_count * (SUMMARY_SIZE + 1)
284                         + sizeof(struct nat_journal) + 2
285                         + sizeof(struct sit_journal) + 2;
286         sum_space = PAGE_CACHE_SIZE - SUM_FOOTER_SIZE;
287         if (total_size_bytes < sum_space)
288                 return 1;
289         else if (total_size_bytes < 2 * sum_space)
290                 return 2;
291         return 3;
292 }
293
294 /*
295  * Caller should put this summary page
296  */
297 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
298 {
299         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
300 }
301
302 static void write_sum_page(struct f2fs_sb_info *sbi,
303                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
304 {
305         struct page *page = grab_meta_page(sbi, blk_addr);
306         void *kaddr = page_address(page);
307         memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
308         set_page_dirty(page);
309         f2fs_put_page(page, 1);
310 }
311
312 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
313 {
314         struct curseg_info *curseg = CURSEG_I(sbi, type);
315         unsigned int segno = curseg->segno + 1;
316         struct free_segmap_info *free_i = FREE_I(sbi);
317
318         if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
319                 return !test_bit(segno, free_i->free_segmap);
320         return 0;
321 }
322
323 /*
324  * Find a new segment from the free segments bitmap to right order
325  * This function should be returned with success, otherwise BUG
326  */
327 static void get_new_segment(struct f2fs_sb_info *sbi,
328                         unsigned int *newseg, bool new_sec, int dir)
329 {
330         struct free_segmap_info *free_i = FREE_I(sbi);
331         unsigned int segno, secno, zoneno;
332         unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
333         unsigned int hint = *newseg / sbi->segs_per_sec;
334         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
335         unsigned int left_start = hint;
336         bool init = true;
337         int go_left = 0;
338         int i;
339
340         write_lock(&free_i->segmap_lock);
341
342         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
343                 segno = find_next_zero_bit(free_i->free_segmap,
344                                         TOTAL_SEGS(sbi), *newseg + 1);
345                 if (segno - *newseg < sbi->segs_per_sec -
346                                         (*newseg % sbi->segs_per_sec))
347                         goto got_it;
348         }
349 find_other_zone:
350         secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
351         if (secno >= TOTAL_SECS(sbi)) {
352                 if (dir == ALLOC_RIGHT) {
353                         secno = find_next_zero_bit(free_i->free_secmap,
354                                                         TOTAL_SECS(sbi), 0);
355                         BUG_ON(secno >= TOTAL_SECS(sbi));
356                 } else {
357                         go_left = 1;
358                         left_start = hint - 1;
359                 }
360         }
361         if (go_left == 0)
362                 goto skip_left;
363
364         while (test_bit(left_start, free_i->free_secmap)) {
365                 if (left_start > 0) {
366                         left_start--;
367                         continue;
368                 }
369                 left_start = find_next_zero_bit(free_i->free_secmap,
370                                                         TOTAL_SECS(sbi), 0);
371                 BUG_ON(left_start >= TOTAL_SECS(sbi));
372                 break;
373         }
374         secno = left_start;
375 skip_left:
376         hint = secno;
377         segno = secno * sbi->segs_per_sec;
378         zoneno = secno / sbi->secs_per_zone;
379
380         /* give up on finding another zone */
381         if (!init)
382                 goto got_it;
383         if (sbi->secs_per_zone == 1)
384                 goto got_it;
385         if (zoneno == old_zoneno)
386                 goto got_it;
387         if (dir == ALLOC_LEFT) {
388                 if (!go_left && zoneno + 1 >= total_zones)
389                         goto got_it;
390                 if (go_left && zoneno == 0)
391                         goto got_it;
392         }
393         for (i = 0; i < NR_CURSEG_TYPE; i++)
394                 if (CURSEG_I(sbi, i)->zone == zoneno)
395                         break;
396
397         if (i < NR_CURSEG_TYPE) {
398                 /* zone is in user, try another */
399                 if (go_left)
400                         hint = zoneno * sbi->secs_per_zone - 1;
401                 else if (zoneno + 1 >= total_zones)
402                         hint = 0;
403                 else
404                         hint = (zoneno + 1) * sbi->secs_per_zone;
405                 init = false;
406                 goto find_other_zone;
407         }
408 got_it:
409         /* set it as dirty segment in free segmap */
410         BUG_ON(test_bit(segno, free_i->free_segmap));
411         __set_inuse(sbi, segno);
412         *newseg = segno;
413         write_unlock(&free_i->segmap_lock);
414 }
415
416 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
417 {
418         struct curseg_info *curseg = CURSEG_I(sbi, type);
419         struct summary_footer *sum_footer;
420
421         curseg->segno = curseg->next_segno;
422         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
423         curseg->next_blkoff = 0;
424         curseg->next_segno = NULL_SEGNO;
425
426         sum_footer = &(curseg->sum_blk->footer);
427         memset(sum_footer, 0, sizeof(struct summary_footer));
428         if (IS_DATASEG(type))
429                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
430         if (IS_NODESEG(type))
431                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
432         __set_sit_entry_type(sbi, type, curseg->segno, modified);
433 }
434
435 /*
436  * Allocate a current working segment.
437  * This function always allocates a free segment in LFS manner.
438  */
439 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
440 {
441         struct curseg_info *curseg = CURSEG_I(sbi, type);
442         unsigned int segno = curseg->segno;
443         int dir = ALLOC_LEFT;
444
445         write_sum_page(sbi, curseg->sum_blk,
446                                 GET_SUM_BLOCK(sbi, segno));
447         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
448                 dir = ALLOC_RIGHT;
449
450         if (test_opt(sbi, NOHEAP))
451                 dir = ALLOC_RIGHT;
452
453         get_new_segment(sbi, &segno, new_sec, dir);
454         curseg->next_segno = segno;
455         reset_curseg(sbi, type, 1);
456         curseg->alloc_type = LFS;
457 }
458
459 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
460                         struct curseg_info *seg, block_t start)
461 {
462         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
463         block_t ofs;
464         for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) {
465                 if (!f2fs_test_bit(ofs, se->ckpt_valid_map)
466                         && !f2fs_test_bit(ofs, se->cur_valid_map))
467                         break;
468         }
469         seg->next_blkoff = ofs;
470 }
471
472 /*
473  * If a segment is written by LFS manner, next block offset is just obtained
474  * by increasing the current block offset. However, if a segment is written by
475  * SSR manner, next block offset obtained by calling __next_free_blkoff
476  */
477 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
478                                 struct curseg_info *seg)
479 {
480         if (seg->alloc_type == SSR)
481                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
482         else
483                 seg->next_blkoff++;
484 }
485
486 /*
487  * This function always allocates a used segment (from dirty seglist) by SSR
488  * manner, so it should recover the existing segment information of valid blocks
489  */
490 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
491 {
492         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
493         struct curseg_info *curseg = CURSEG_I(sbi, type);
494         unsigned int new_segno = curseg->next_segno;
495         struct f2fs_summary_block *sum_node;
496         struct page *sum_page;
497
498         write_sum_page(sbi, curseg->sum_blk,
499                                 GET_SUM_BLOCK(sbi, curseg->segno));
500         __set_test_and_inuse(sbi, new_segno);
501
502         mutex_lock(&dirty_i->seglist_lock);
503         __remove_dirty_segment(sbi, new_segno, PRE);
504         __remove_dirty_segment(sbi, new_segno, DIRTY);
505         mutex_unlock(&dirty_i->seglist_lock);
506
507         reset_curseg(sbi, type, 1);
508         curseg->alloc_type = SSR;
509         __next_free_blkoff(sbi, curseg, 0);
510
511         if (reuse) {
512                 sum_page = get_sum_page(sbi, new_segno);
513                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
514                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
515                 f2fs_put_page(sum_page, 1);
516         }
517 }
518
519 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
520 {
521         struct curseg_info *curseg = CURSEG_I(sbi, type);
522         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
523
524         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
525                 return v_ops->get_victim(sbi,
526                                 &(curseg)->next_segno, BG_GC, type, SSR);
527
528         /* For data segments, let's do SSR more intensively */
529         for (; type >= CURSEG_HOT_DATA; type--)
530                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
531                                                 BG_GC, type, SSR))
532                         return 1;
533         return 0;
534 }
535
536 /*
537  * flush out current segment and replace it with new segment
538  * This function should be returned with success, otherwise BUG
539  */
540 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
541                                                 int type, bool force)
542 {
543         struct curseg_info *curseg = CURSEG_I(sbi, type);
544
545         if (force) {
546                 new_curseg(sbi, type, true);
547                 goto out;
548         }
549
550         if (type == CURSEG_WARM_NODE)
551                 new_curseg(sbi, type, false);
552         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
553                 new_curseg(sbi, type, false);
554         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
555                 change_curseg(sbi, type, true);
556         else
557                 new_curseg(sbi, type, false);
558 out:
559 #ifdef CONFIG_F2FS_STAT_FS
560         sbi->segment_count[curseg->alloc_type]++;
561 #endif
562         return;
563 }
564
565 void allocate_new_segments(struct f2fs_sb_info *sbi)
566 {
567         struct curseg_info *curseg;
568         unsigned int old_curseg;
569         int i;
570
571         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
572                 curseg = CURSEG_I(sbi, i);
573                 old_curseg = curseg->segno;
574                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
575                 locate_dirty_segment(sbi, old_curseg);
576         }
577 }
578
579 static const struct segment_allocation default_salloc_ops = {
580         .allocate_segment = allocate_segment_by_default,
581 };
582
583 static void f2fs_end_io_write(struct bio *bio, int err)
584 {
585         const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
586         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
587         struct bio_private *p = bio->bi_private;
588
589         do {
590                 struct page *page = bvec->bv_page;
591
592                 if (--bvec >= bio->bi_io_vec)
593                         prefetchw(&bvec->bv_page->flags);
594                 if (!uptodate) {
595                         SetPageError(page);
596                         if (page->mapping)
597                                 set_bit(AS_EIO, &page->mapping->flags);
598                         set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
599                         p->sbi->sb->s_flags |= MS_RDONLY;
600                 }
601                 end_page_writeback(page);
602                 dec_page_count(p->sbi, F2FS_WRITEBACK);
603         } while (bvec >= bio->bi_io_vec);
604
605         if (p->is_sync)
606                 complete(p->wait);
607         kfree(p);
608         bio_put(bio);
609 }
610
611 struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
612 {
613         struct bio *bio;
614         struct bio_private *priv;
615 retry:
616         priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
617         if (!priv) {
618                 cond_resched();
619                 goto retry;
620         }
621
622         /* No failure on bio allocation */
623         bio = bio_alloc(GFP_NOIO, npages);
624         bio->bi_bdev = bdev;
625         bio->bi_private = priv;
626         return bio;
627 }
628
629 static void do_submit_bio(struct f2fs_sb_info *sbi,
630                                 enum page_type type, bool sync)
631 {
632         int rw = sync ? WRITE_SYNC : WRITE;
633         enum page_type btype = type > META ? META : type;
634
635         if (type >= META_FLUSH)
636                 rw = WRITE_FLUSH_FUA;
637
638         if (btype == META)
639                 rw |= REQ_META;
640
641         if (sbi->bio[btype]) {
642                 struct bio_private *p = sbi->bio[btype]->bi_private;
643                 p->sbi = sbi;
644                 sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
645
646                 trace_f2fs_do_submit_bio(sbi->sb, btype, sync, sbi->bio[btype]);
647
648                 if (type == META_FLUSH) {
649                         DECLARE_COMPLETION_ONSTACK(wait);
650                         p->is_sync = true;
651                         p->wait = &wait;
652                         submit_bio(rw, sbi->bio[btype]);
653                         wait_for_completion(&wait);
654                 } else {
655                         p->is_sync = false;
656                         submit_bio(rw, sbi->bio[btype]);
657                 }
658                 sbi->bio[btype] = NULL;
659         }
660 }
661
662 void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
663 {
664         down_write(&sbi->bio_sem);
665         do_submit_bio(sbi, type, sync);
666         up_write(&sbi->bio_sem);
667 }
668
669 static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
670                                 block_t blk_addr, enum page_type type)
671 {
672         struct block_device *bdev = sbi->sb->s_bdev;
673
674         verify_block_addr(sbi, blk_addr);
675
676         down_write(&sbi->bio_sem);
677
678         inc_page_count(sbi, F2FS_WRITEBACK);
679
680         if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
681                 do_submit_bio(sbi, type, false);
682 alloc_new:
683         if (sbi->bio[type] == NULL) {
684                 sbi->bio[type] = f2fs_bio_alloc(bdev, max_hw_blocks(sbi));
685                 sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
686                 /*
687                  * The end_io will be assigned at the sumbission phase.
688                  * Until then, let bio_add_page() merge consecutive IOs as much
689                  * as possible.
690                  */
691         }
692
693         if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
694                                                         PAGE_CACHE_SIZE) {
695                 do_submit_bio(sbi, type, false);
696                 goto alloc_new;
697         }
698
699         sbi->last_block_in_bio[type] = blk_addr;
700
701         up_write(&sbi->bio_sem);
702         trace_f2fs_submit_write_page(page, blk_addr, type);
703 }
704
705 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
706 {
707         struct curseg_info *curseg = CURSEG_I(sbi, type);
708         if (curseg->next_blkoff < sbi->blocks_per_seg)
709                 return true;
710         return false;
711 }
712
713 static int __get_segment_type_2(struct page *page, enum page_type p_type)
714 {
715         if (p_type == DATA)
716                 return CURSEG_HOT_DATA;
717         else
718                 return CURSEG_HOT_NODE;
719 }
720
721 static int __get_segment_type_4(struct page *page, enum page_type p_type)
722 {
723         if (p_type == DATA) {
724                 struct inode *inode = page->mapping->host;
725
726                 if (S_ISDIR(inode->i_mode))
727                         return CURSEG_HOT_DATA;
728                 else
729                         return CURSEG_COLD_DATA;
730         } else {
731                 if (IS_DNODE(page) && !is_cold_node(page))
732                         return CURSEG_HOT_NODE;
733                 else
734                         return CURSEG_COLD_NODE;
735         }
736 }
737
738 static int __get_segment_type_6(struct page *page, enum page_type p_type)
739 {
740         if (p_type == DATA) {
741                 struct inode *inode = page->mapping->host;
742
743                 if (S_ISDIR(inode->i_mode))
744                         return CURSEG_HOT_DATA;
745                 else if (is_cold_data(page) || file_is_cold(inode))
746                         return CURSEG_COLD_DATA;
747                 else
748                         return CURSEG_WARM_DATA;
749         } else {
750                 if (IS_DNODE(page))
751                         return is_cold_node(page) ? CURSEG_WARM_NODE :
752                                                 CURSEG_HOT_NODE;
753                 else
754                         return CURSEG_COLD_NODE;
755         }
756 }
757
758 static int __get_segment_type(struct page *page, enum page_type p_type)
759 {
760         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
761         switch (sbi->active_logs) {
762         case 2:
763                 return __get_segment_type_2(page, p_type);
764         case 4:
765                 return __get_segment_type_4(page, p_type);
766         }
767         /* NR_CURSEG_TYPE(6) logs by default */
768         BUG_ON(sbi->active_logs != NR_CURSEG_TYPE);
769         return __get_segment_type_6(page, p_type);
770 }
771
772 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
773                         block_t old_blkaddr, block_t *new_blkaddr,
774                         struct f2fs_summary *sum, enum page_type p_type)
775 {
776         struct sit_info *sit_i = SIT_I(sbi);
777         struct curseg_info *curseg;
778         unsigned int old_cursegno;
779         int type;
780
781         type = __get_segment_type(page, p_type);
782         curseg = CURSEG_I(sbi, type);
783
784         mutex_lock(&curseg->curseg_mutex);
785
786         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
787         old_cursegno = curseg->segno;
788
789         /*
790          * __add_sum_entry should be resided under the curseg_mutex
791          * because, this function updates a summary entry in the
792          * current summary block.
793          */
794         __add_sum_entry(sbi, type, sum);
795
796         mutex_lock(&sit_i->sentry_lock);
797         __refresh_next_blkoff(sbi, curseg);
798 #ifdef CONFIG_F2FS_STAT_FS
799         sbi->block_count[curseg->alloc_type]++;
800 #endif
801
802         /*
803          * SIT information should be updated before segment allocation,
804          * since SSR needs latest valid block information.
805          */
806         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
807
808         if (!__has_curseg_space(sbi, type))
809                 sit_i->s_ops->allocate_segment(sbi, type, false);
810
811         locate_dirty_segment(sbi, old_cursegno);
812         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
813         mutex_unlock(&sit_i->sentry_lock);
814
815         if (p_type == NODE)
816                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
817
818         /* writeout dirty page into bdev */
819         submit_write_page(sbi, page, *new_blkaddr, p_type);
820
821         mutex_unlock(&curseg->curseg_mutex);
822 }
823
824 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
825 {
826         set_page_writeback(page);
827         submit_write_page(sbi, page, page->index, META);
828 }
829
830 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
831                 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
832 {
833         struct f2fs_summary sum;
834         set_summary(&sum, nid, 0, 0);
835         do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
836 }
837
838 void write_data_page(struct inode *inode, struct page *page,
839                 struct dnode_of_data *dn, block_t old_blkaddr,
840                 block_t *new_blkaddr)
841 {
842         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
843         struct f2fs_summary sum;
844         struct node_info ni;
845
846         BUG_ON(old_blkaddr == NULL_ADDR);
847         get_node_info(sbi, dn->nid, &ni);
848         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
849
850         do_write_page(sbi, page, old_blkaddr,
851                         new_blkaddr, &sum, DATA);
852 }
853
854 void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
855                                         block_t old_blk_addr)
856 {
857         submit_write_page(sbi, page, old_blk_addr, DATA);
858 }
859
860 void recover_data_page(struct f2fs_sb_info *sbi,
861                         struct page *page, struct f2fs_summary *sum,
862                         block_t old_blkaddr, block_t new_blkaddr)
863 {
864         struct sit_info *sit_i = SIT_I(sbi);
865         struct curseg_info *curseg;
866         unsigned int segno, old_cursegno;
867         struct seg_entry *se;
868         int type;
869
870         segno = GET_SEGNO(sbi, new_blkaddr);
871         se = get_seg_entry(sbi, segno);
872         type = se->type;
873
874         if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
875                 if (old_blkaddr == NULL_ADDR)
876                         type = CURSEG_COLD_DATA;
877                 else
878                         type = CURSEG_WARM_DATA;
879         }
880         curseg = CURSEG_I(sbi, type);
881
882         mutex_lock(&curseg->curseg_mutex);
883         mutex_lock(&sit_i->sentry_lock);
884
885         old_cursegno = curseg->segno;
886
887         /* change the current segment */
888         if (segno != curseg->segno) {
889                 curseg->next_segno = segno;
890                 change_curseg(sbi, type, true);
891         }
892
893         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
894                                         (sbi->blocks_per_seg - 1);
895         __add_sum_entry(sbi, type, sum);
896
897         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
898
899         locate_dirty_segment(sbi, old_cursegno);
900         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
901
902         mutex_unlock(&sit_i->sentry_lock);
903         mutex_unlock(&curseg->curseg_mutex);
904 }
905
906 void rewrite_node_page(struct f2fs_sb_info *sbi,
907                         struct page *page, struct f2fs_summary *sum,
908                         block_t old_blkaddr, block_t new_blkaddr)
909 {
910         struct sit_info *sit_i = SIT_I(sbi);
911         int type = CURSEG_WARM_NODE;
912         struct curseg_info *curseg;
913         unsigned int segno, old_cursegno;
914         block_t next_blkaddr = next_blkaddr_of_node(page);
915         unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
916
917         curseg = CURSEG_I(sbi, type);
918
919         mutex_lock(&curseg->curseg_mutex);
920         mutex_lock(&sit_i->sentry_lock);
921
922         segno = GET_SEGNO(sbi, new_blkaddr);
923         old_cursegno = curseg->segno;
924
925         /* change the current segment */
926         if (segno != curseg->segno) {
927                 curseg->next_segno = segno;
928                 change_curseg(sbi, type, true);
929         }
930         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
931                                         (sbi->blocks_per_seg - 1);
932         __add_sum_entry(sbi, type, sum);
933
934         /* change the current log to the next block addr in advance */
935         if (next_segno != segno) {
936                 curseg->next_segno = next_segno;
937                 change_curseg(sbi, type, true);
938         }
939         curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
940                                         (sbi->blocks_per_seg - 1);
941
942         /* rewrite node page */
943         set_page_writeback(page);
944         submit_write_page(sbi, page, new_blkaddr, NODE);
945         f2fs_submit_bio(sbi, NODE, true);
946         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
947
948         locate_dirty_segment(sbi, old_cursegno);
949         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
950
951         mutex_unlock(&sit_i->sentry_lock);
952         mutex_unlock(&curseg->curseg_mutex);
953 }
954
955 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
956 {
957         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
958         struct curseg_info *seg_i;
959         unsigned char *kaddr;
960         struct page *page;
961         block_t start;
962         int i, j, offset;
963
964         start = start_sum_block(sbi);
965
966         page = get_meta_page(sbi, start++);
967         kaddr = (unsigned char *)page_address(page);
968
969         /* Step 1: restore nat cache */
970         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
971         memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
972
973         /* Step 2: restore sit cache */
974         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
975         memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
976                                                 SUM_JOURNAL_SIZE);
977         offset = 2 * SUM_JOURNAL_SIZE;
978
979         /* Step 3: restore summary entries */
980         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
981                 unsigned short blk_off;
982                 unsigned int segno;
983
984                 seg_i = CURSEG_I(sbi, i);
985                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
986                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
987                 seg_i->next_segno = segno;
988                 reset_curseg(sbi, i, 0);
989                 seg_i->alloc_type = ckpt->alloc_type[i];
990                 seg_i->next_blkoff = blk_off;
991
992                 if (seg_i->alloc_type == SSR)
993                         blk_off = sbi->blocks_per_seg;
994
995                 for (j = 0; j < blk_off; j++) {
996                         struct f2fs_summary *s;
997                         s = (struct f2fs_summary *)(kaddr + offset);
998                         seg_i->sum_blk->entries[j] = *s;
999                         offset += SUMMARY_SIZE;
1000                         if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1001                                                 SUM_FOOTER_SIZE)
1002                                 continue;
1003
1004                         f2fs_put_page(page, 1);
1005                         page = NULL;
1006
1007                         page = get_meta_page(sbi, start++);
1008                         kaddr = (unsigned char *)page_address(page);
1009                         offset = 0;
1010                 }
1011         }
1012         f2fs_put_page(page, 1);
1013         return 0;
1014 }
1015
1016 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1017 {
1018         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1019         struct f2fs_summary_block *sum;
1020         struct curseg_info *curseg;
1021         struct page *new;
1022         unsigned short blk_off;
1023         unsigned int segno = 0;
1024         block_t blk_addr = 0;
1025
1026         /* get segment number and block addr */
1027         if (IS_DATASEG(type)) {
1028                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1029                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1030                                                         CURSEG_HOT_DATA]);
1031                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1032                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1033                 else
1034                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1035         } else {
1036                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1037                                                         CURSEG_HOT_NODE]);
1038                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1039                                                         CURSEG_HOT_NODE]);
1040                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1041                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1042                                                         type - CURSEG_HOT_NODE);
1043                 else
1044                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1045         }
1046
1047         new = get_meta_page(sbi, blk_addr);
1048         sum = (struct f2fs_summary_block *)page_address(new);
1049
1050         if (IS_NODESEG(type)) {
1051                 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1052                         struct f2fs_summary *ns = &sum->entries[0];
1053                         int i;
1054                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1055                                 ns->version = 0;
1056                                 ns->ofs_in_node = 0;
1057                         }
1058                 } else {
1059                         if (restore_node_summary(sbi, segno, sum)) {
1060                                 f2fs_put_page(new, 1);
1061                                 return -EINVAL;
1062                         }
1063                 }
1064         }
1065
1066         /* set uncompleted segment to curseg */
1067         curseg = CURSEG_I(sbi, type);
1068         mutex_lock(&curseg->curseg_mutex);
1069         memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1070         curseg->next_segno = segno;
1071         reset_curseg(sbi, type, 0);
1072         curseg->alloc_type = ckpt->alloc_type[type];
1073         curseg->next_blkoff = blk_off;
1074         mutex_unlock(&curseg->curseg_mutex);
1075         f2fs_put_page(new, 1);
1076         return 0;
1077 }
1078
1079 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1080 {
1081         int type = CURSEG_HOT_DATA;
1082
1083         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1084                 /* restore for compacted data summary */
1085                 if (read_compacted_summaries(sbi))
1086                         return -EINVAL;
1087                 type = CURSEG_HOT_NODE;
1088         }
1089
1090         for (; type <= CURSEG_COLD_NODE; type++)
1091                 if (read_normal_summaries(sbi, type))
1092                         return -EINVAL;
1093         return 0;
1094 }
1095
1096 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1097 {
1098         struct page *page;
1099         unsigned char *kaddr;
1100         struct f2fs_summary *summary;
1101         struct curseg_info *seg_i;
1102         int written_size = 0;
1103         int i, j;
1104
1105         page = grab_meta_page(sbi, blkaddr++);
1106         kaddr = (unsigned char *)page_address(page);
1107
1108         /* Step 1: write nat cache */
1109         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1110         memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1111         written_size += SUM_JOURNAL_SIZE;
1112
1113         /* Step 2: write sit cache */
1114         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1115         memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1116                                                 SUM_JOURNAL_SIZE);
1117         written_size += SUM_JOURNAL_SIZE;
1118
1119         set_page_dirty(page);
1120
1121         /* Step 3: write summary entries */
1122         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1123                 unsigned short blkoff;
1124                 seg_i = CURSEG_I(sbi, i);
1125                 if (sbi->ckpt->alloc_type[i] == SSR)
1126                         blkoff = sbi->blocks_per_seg;
1127                 else
1128                         blkoff = curseg_blkoff(sbi, i);
1129
1130                 for (j = 0; j < blkoff; j++) {
1131                         if (!page) {
1132                                 page = grab_meta_page(sbi, blkaddr++);
1133                                 kaddr = (unsigned char *)page_address(page);
1134                                 written_size = 0;
1135                         }
1136                         summary = (struct f2fs_summary *)(kaddr + written_size);
1137                         *summary = seg_i->sum_blk->entries[j];
1138                         written_size += SUMMARY_SIZE;
1139                         set_page_dirty(page);
1140
1141                         if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1142                                                         SUM_FOOTER_SIZE)
1143                                 continue;
1144
1145                         f2fs_put_page(page, 1);
1146                         page = NULL;
1147                 }
1148         }
1149         if (page)
1150                 f2fs_put_page(page, 1);
1151 }
1152
1153 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1154                                         block_t blkaddr, int type)
1155 {
1156         int i, end;
1157         if (IS_DATASEG(type))
1158                 end = type + NR_CURSEG_DATA_TYPE;
1159         else
1160                 end = type + NR_CURSEG_NODE_TYPE;
1161
1162         for (i = type; i < end; i++) {
1163                 struct curseg_info *sum = CURSEG_I(sbi, i);
1164                 mutex_lock(&sum->curseg_mutex);
1165                 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1166                 mutex_unlock(&sum->curseg_mutex);
1167         }
1168 }
1169
1170 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1171 {
1172         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1173                 write_compacted_summaries(sbi, start_blk);
1174         else
1175                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1176 }
1177
1178 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1179 {
1180         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1181                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1182         return;
1183 }
1184
1185 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1186                                         unsigned int val, int alloc)
1187 {
1188         int i;
1189
1190         if (type == NAT_JOURNAL) {
1191                 for (i = 0; i < nats_in_cursum(sum); i++) {
1192                         if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1193                                 return i;
1194                 }
1195                 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1196                         return update_nats_in_cursum(sum, 1);
1197         } else if (type == SIT_JOURNAL) {
1198                 for (i = 0; i < sits_in_cursum(sum); i++)
1199                         if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1200                                 return i;
1201                 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1202                         return update_sits_in_cursum(sum, 1);
1203         }
1204         return -1;
1205 }
1206
1207 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1208                                         unsigned int segno)
1209 {
1210         struct sit_info *sit_i = SIT_I(sbi);
1211         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1212         block_t blk_addr = sit_i->sit_base_addr + offset;
1213
1214         check_seg_range(sbi, segno);
1215
1216         /* calculate sit block address */
1217         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1218                 blk_addr += sit_i->sit_blocks;
1219
1220         return get_meta_page(sbi, blk_addr);
1221 }
1222
1223 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1224                                         unsigned int start)
1225 {
1226         struct sit_info *sit_i = SIT_I(sbi);
1227         struct page *src_page, *dst_page;
1228         pgoff_t src_off, dst_off;
1229         void *src_addr, *dst_addr;
1230
1231         src_off = current_sit_addr(sbi, start);
1232         dst_off = next_sit_addr(sbi, src_off);
1233
1234         /* get current sit block page without lock */
1235         src_page = get_meta_page(sbi, src_off);
1236         dst_page = grab_meta_page(sbi, dst_off);
1237         BUG_ON(PageDirty(src_page));
1238
1239         src_addr = page_address(src_page);
1240         dst_addr = page_address(dst_page);
1241         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1242
1243         set_page_dirty(dst_page);
1244         f2fs_put_page(src_page, 1);
1245
1246         set_to_next_sit(sit_i, start);
1247
1248         return dst_page;
1249 }
1250
1251 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1252 {
1253         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1254         struct f2fs_summary_block *sum = curseg->sum_blk;
1255         int i;
1256
1257         /*
1258          * If the journal area in the current summary is full of sit entries,
1259          * all the sit entries will be flushed. Otherwise the sit entries
1260          * are not able to replace with newly hot sit entries.
1261          */
1262         if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1263                 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1264                         unsigned int segno;
1265                         segno = le32_to_cpu(segno_in_journal(sum, i));
1266                         __mark_sit_entry_dirty(sbi, segno);
1267                 }
1268                 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1269                 return 1;
1270         }
1271         return 0;
1272 }
1273
1274 /*
1275  * CP calls this function, which flushes SIT entries including sit_journal,
1276  * and moves prefree segs to free segs.
1277  */
1278 void flush_sit_entries(struct f2fs_sb_info *sbi)
1279 {
1280         struct sit_info *sit_i = SIT_I(sbi);
1281         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1282         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1283         struct f2fs_summary_block *sum = curseg->sum_blk;
1284         unsigned long nsegs = TOTAL_SEGS(sbi);
1285         struct page *page = NULL;
1286         struct f2fs_sit_block *raw_sit = NULL;
1287         unsigned int start = 0, end = 0;
1288         unsigned int segno = -1;
1289         bool flushed;
1290
1291         mutex_lock(&curseg->curseg_mutex);
1292         mutex_lock(&sit_i->sentry_lock);
1293
1294         /*
1295          * "flushed" indicates whether sit entries in journal are flushed
1296          * to the SIT area or not.
1297          */
1298         flushed = flush_sits_in_journal(sbi);
1299
1300         while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1301                 struct seg_entry *se = get_seg_entry(sbi, segno);
1302                 int sit_offset, offset;
1303
1304                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1305
1306                 if (flushed)
1307                         goto to_sit_page;
1308
1309                 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1310                 if (offset >= 0) {
1311                         segno_in_journal(sum, offset) = cpu_to_le32(segno);
1312                         seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1313                         goto flush_done;
1314                 }
1315 to_sit_page:
1316                 if (!page || (start > segno) || (segno > end)) {
1317                         if (page) {
1318                                 f2fs_put_page(page, 1);
1319                                 page = NULL;
1320                         }
1321
1322                         start = START_SEGNO(sit_i, segno);
1323                         end = start + SIT_ENTRY_PER_BLOCK - 1;
1324
1325                         /* read sit block that will be updated */
1326                         page = get_next_sit_page(sbi, start);
1327                         raw_sit = page_address(page);
1328                 }
1329
1330                 /* udpate entry in SIT block */
1331                 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1332 flush_done:
1333                 __clear_bit(segno, bitmap);
1334                 sit_i->dirty_sentries--;
1335         }
1336         mutex_unlock(&sit_i->sentry_lock);
1337         mutex_unlock(&curseg->curseg_mutex);
1338
1339         /* writeout last modified SIT block */
1340         f2fs_put_page(page, 1);
1341
1342         set_prefree_as_free_segments(sbi);
1343 }
1344
1345 static int build_sit_info(struct f2fs_sb_info *sbi)
1346 {
1347         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1348         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1349         struct sit_info *sit_i;
1350         unsigned int sit_segs, start;
1351         char *src_bitmap, *dst_bitmap;
1352         unsigned int bitmap_size;
1353
1354         /* allocate memory for SIT information */
1355         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1356         if (!sit_i)
1357                 return -ENOMEM;
1358
1359         SM_I(sbi)->sit_info = sit_i;
1360
1361         sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1362         if (!sit_i->sentries)
1363                 return -ENOMEM;
1364
1365         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1366         sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1367         if (!sit_i->dirty_sentries_bitmap)
1368                 return -ENOMEM;
1369
1370         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1371                 sit_i->sentries[start].cur_valid_map
1372                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1373                 sit_i->sentries[start].ckpt_valid_map
1374                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1375                 if (!sit_i->sentries[start].cur_valid_map
1376                                 || !sit_i->sentries[start].ckpt_valid_map)
1377                         return -ENOMEM;
1378         }
1379
1380         if (sbi->segs_per_sec > 1) {
1381                 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1382                                         sizeof(struct sec_entry));
1383                 if (!sit_i->sec_entries)
1384                         return -ENOMEM;
1385         }
1386
1387         /* get information related with SIT */
1388         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1389
1390         /* setup SIT bitmap from ckeckpoint pack */
1391         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1392         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1393
1394         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1395         if (!dst_bitmap)
1396                 return -ENOMEM;
1397
1398         /* init SIT information */
1399         sit_i->s_ops = &default_salloc_ops;
1400
1401         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1402         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1403         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1404         sit_i->sit_bitmap = dst_bitmap;
1405         sit_i->bitmap_size = bitmap_size;
1406         sit_i->dirty_sentries = 0;
1407         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1408         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1409         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1410         mutex_init(&sit_i->sentry_lock);
1411         return 0;
1412 }
1413
1414 static int build_free_segmap(struct f2fs_sb_info *sbi)
1415 {
1416         struct f2fs_sm_info *sm_info = SM_I(sbi);
1417         struct free_segmap_info *free_i;
1418         unsigned int bitmap_size, sec_bitmap_size;
1419
1420         /* allocate memory for free segmap information */
1421         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1422         if (!free_i)
1423                 return -ENOMEM;
1424
1425         SM_I(sbi)->free_info = free_i;
1426
1427         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1428         free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1429         if (!free_i->free_segmap)
1430                 return -ENOMEM;
1431
1432         sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1433         free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1434         if (!free_i->free_secmap)
1435                 return -ENOMEM;
1436
1437         /* set all segments as dirty temporarily */
1438         memset(free_i->free_segmap, 0xff, bitmap_size);
1439         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1440
1441         /* init free segmap information */
1442         free_i->start_segno =
1443                 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1444         free_i->free_segments = 0;
1445         free_i->free_sections = 0;
1446         rwlock_init(&free_i->segmap_lock);
1447         return 0;
1448 }
1449
1450 static int build_curseg(struct f2fs_sb_info *sbi)
1451 {
1452         struct curseg_info *array;
1453         int i;
1454
1455         array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1456         if (!array)
1457                 return -ENOMEM;
1458
1459         SM_I(sbi)->curseg_array = array;
1460
1461         for (i = 0; i < NR_CURSEG_TYPE; i++) {
1462                 mutex_init(&array[i].curseg_mutex);
1463                 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1464                 if (!array[i].sum_blk)
1465                         return -ENOMEM;
1466                 array[i].segno = NULL_SEGNO;
1467                 array[i].next_blkoff = 0;
1468         }
1469         return restore_curseg_summaries(sbi);
1470 }
1471
1472 static void build_sit_entries(struct f2fs_sb_info *sbi)
1473 {
1474         struct sit_info *sit_i = SIT_I(sbi);
1475         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1476         struct f2fs_summary_block *sum = curseg->sum_blk;
1477         unsigned int start;
1478
1479         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1480                 struct seg_entry *se = &sit_i->sentries[start];
1481                 struct f2fs_sit_block *sit_blk;
1482                 struct f2fs_sit_entry sit;
1483                 struct page *page;
1484                 int i;
1485
1486                 mutex_lock(&curseg->curseg_mutex);
1487                 for (i = 0; i < sits_in_cursum(sum); i++) {
1488                         if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1489                                 sit = sit_in_journal(sum, i);
1490                                 mutex_unlock(&curseg->curseg_mutex);
1491                                 goto got_it;
1492                         }
1493                 }
1494                 mutex_unlock(&curseg->curseg_mutex);
1495                 page = get_current_sit_page(sbi, start);
1496                 sit_blk = (struct f2fs_sit_block *)page_address(page);
1497                 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1498                 f2fs_put_page(page, 1);
1499 got_it:
1500                 check_block_count(sbi, start, &sit);
1501                 seg_info_from_raw_sit(se, &sit);
1502                 if (sbi->segs_per_sec > 1) {
1503                         struct sec_entry *e = get_sec_entry(sbi, start);
1504                         e->valid_blocks += se->valid_blocks;
1505                 }
1506         }
1507 }
1508
1509 static void init_free_segmap(struct f2fs_sb_info *sbi)
1510 {
1511         unsigned int start;
1512         int type;
1513
1514         for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1515                 struct seg_entry *sentry = get_seg_entry(sbi, start);
1516                 if (!sentry->valid_blocks)
1517                         __set_free(sbi, start);
1518         }
1519
1520         /* set use the current segments */
1521         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1522                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1523                 __set_test_and_inuse(sbi, curseg_t->segno);
1524         }
1525 }
1526
1527 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1528 {
1529         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1530         struct free_segmap_info *free_i = FREE_I(sbi);
1531         unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1532         unsigned short valid_blocks;
1533
1534         while (1) {
1535                 /* find dirty segment based on free segmap */
1536                 segno = find_next_inuse(free_i, total_segs, offset);
1537                 if (segno >= total_segs)
1538                         break;
1539                 offset = segno + 1;
1540                 valid_blocks = get_valid_blocks(sbi, segno, 0);
1541                 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1542                         continue;
1543                 mutex_lock(&dirty_i->seglist_lock);
1544                 __locate_dirty_segment(sbi, segno, DIRTY);
1545                 mutex_unlock(&dirty_i->seglist_lock);
1546         }
1547 }
1548
1549 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1550 {
1551         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1552         unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1553
1554         dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1555         if (!dirty_i->victim_secmap)
1556                 return -ENOMEM;
1557         return 0;
1558 }
1559
1560 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1561 {
1562         struct dirty_seglist_info *dirty_i;
1563         unsigned int bitmap_size, i;
1564
1565         /* allocate memory for dirty segments list information */
1566         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1567         if (!dirty_i)
1568                 return -ENOMEM;
1569
1570         SM_I(sbi)->dirty_info = dirty_i;
1571         mutex_init(&dirty_i->seglist_lock);
1572
1573         bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1574
1575         for (i = 0; i < NR_DIRTY_TYPE; i++) {
1576                 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1577                 if (!dirty_i->dirty_segmap[i])
1578                         return -ENOMEM;
1579         }
1580
1581         init_dirty_segmap(sbi);
1582         return init_victim_secmap(sbi);
1583 }
1584
1585 /*
1586  * Update min, max modified time for cost-benefit GC algorithm
1587  */
1588 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1589 {
1590         struct sit_info *sit_i = SIT_I(sbi);
1591         unsigned int segno;
1592
1593         mutex_lock(&sit_i->sentry_lock);
1594
1595         sit_i->min_mtime = LLONG_MAX;
1596
1597         for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1598                 unsigned int i;
1599                 unsigned long long mtime = 0;
1600
1601                 for (i = 0; i < sbi->segs_per_sec; i++)
1602                         mtime += get_seg_entry(sbi, segno + i)->mtime;
1603
1604                 mtime = div_u64(mtime, sbi->segs_per_sec);
1605
1606                 if (sit_i->min_mtime > mtime)
1607                         sit_i->min_mtime = mtime;
1608         }
1609         sit_i->max_mtime = get_mtime(sbi);
1610         mutex_unlock(&sit_i->sentry_lock);
1611 }
1612
1613 int build_segment_manager(struct f2fs_sb_info *sbi)
1614 {
1615         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1616         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1617         struct f2fs_sm_info *sm_info;
1618         int err;
1619
1620         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1621         if (!sm_info)
1622                 return -ENOMEM;
1623
1624         /* init sm info */
1625         sbi->sm_info = sm_info;
1626         INIT_LIST_HEAD(&sm_info->wblist_head);
1627         spin_lock_init(&sm_info->wblist_lock);
1628         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1629         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1630         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1631         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1632         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1633         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1634         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1635
1636         err = build_sit_info(sbi);
1637         if (err)
1638                 return err;
1639         err = build_free_segmap(sbi);
1640         if (err)
1641                 return err;
1642         err = build_curseg(sbi);
1643         if (err)
1644                 return err;
1645
1646         /* reinit free segmap based on SIT */
1647         build_sit_entries(sbi);
1648
1649         init_free_segmap(sbi);
1650         err = build_dirty_segmap(sbi);
1651         if (err)
1652                 return err;
1653
1654         init_min_max_mtime(sbi);
1655         return 0;
1656 }
1657
1658 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1659                 enum dirty_type dirty_type)
1660 {
1661         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1662
1663         mutex_lock(&dirty_i->seglist_lock);
1664         kfree(dirty_i->dirty_segmap[dirty_type]);
1665         dirty_i->nr_dirty[dirty_type] = 0;
1666         mutex_unlock(&dirty_i->seglist_lock);
1667 }
1668
1669 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1670 {
1671         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1672         kfree(dirty_i->victim_secmap);
1673 }
1674
1675 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1676 {
1677         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1678         int i;
1679
1680         if (!dirty_i)
1681                 return;
1682
1683         /* discard pre-free/dirty segments list */
1684         for (i = 0; i < NR_DIRTY_TYPE; i++)
1685                 discard_dirty_segmap(sbi, i);
1686
1687         destroy_victim_secmap(sbi);
1688         SM_I(sbi)->dirty_info = NULL;
1689         kfree(dirty_i);
1690 }
1691
1692 static void destroy_curseg(struct f2fs_sb_info *sbi)
1693 {
1694         struct curseg_info *array = SM_I(sbi)->curseg_array;
1695         int i;
1696
1697         if (!array)
1698                 return;
1699         SM_I(sbi)->curseg_array = NULL;
1700         for (i = 0; i < NR_CURSEG_TYPE; i++)
1701                 kfree(array[i].sum_blk);
1702         kfree(array);
1703 }
1704
1705 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1706 {
1707         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1708         if (!free_i)
1709                 return;
1710         SM_I(sbi)->free_info = NULL;
1711         kfree(free_i->free_segmap);
1712         kfree(free_i->free_secmap);
1713         kfree(free_i);
1714 }
1715
1716 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1717 {
1718         struct sit_info *sit_i = SIT_I(sbi);
1719         unsigned int start;
1720
1721         if (!sit_i)
1722                 return;
1723
1724         if (sit_i->sentries) {
1725                 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1726                         kfree(sit_i->sentries[start].cur_valid_map);
1727                         kfree(sit_i->sentries[start].ckpt_valid_map);
1728                 }
1729         }
1730         vfree(sit_i->sentries);
1731         vfree(sit_i->sec_entries);
1732         kfree(sit_i->dirty_sentries_bitmap);
1733
1734         SM_I(sbi)->sit_info = NULL;
1735         kfree(sit_i->sit_bitmap);
1736         kfree(sit_i);
1737 }
1738
1739 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1740 {
1741         struct f2fs_sm_info *sm_info = SM_I(sbi);
1742         destroy_dirty_segmap(sbi);
1743         destroy_curseg(sbi);
1744         destroy_free_segmap(sbi);
1745         destroy_sit_info(sbi);
1746         sbi->sm_info = NULL;
1747         kfree(sm_info);
1748 }