]> rtime.felk.cvut.cz Git - linux-imx.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm: dp helper: extract drm_dp_clock_recovery_ok
[linux-imx.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_RECEIVER_CAP_SIZE    0xf
40 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
41
42 /**
43  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
44  * @intel_dp: DP struct
45  *
46  * If a CPU or PCH DP output is attached to an eDP panel, this function
47  * will return true, and false otherwise.
48  */
49 static bool is_edp(struct intel_dp *intel_dp)
50 {
51         return intel_dp->base.type == INTEL_OUTPUT_EDP;
52 }
53
54 /**
55  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
56  * @intel_dp: DP struct
57  *
58  * Returns true if the given DP struct corresponds to a PCH DP port attached
59  * to an eDP panel, false otherwise.  Helpful for determining whether we
60  * may need FDI resources for a given DP output or not.
61  */
62 static bool is_pch_edp(struct intel_dp *intel_dp)
63 {
64         return intel_dp->is_pch_edp;
65 }
66
67 /**
68  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
69  * @intel_dp: DP struct
70  *
71  * Returns true if the given DP struct corresponds to a CPU eDP port.
72  */
73 static bool is_cpu_edp(struct intel_dp *intel_dp)
74 {
75         return is_edp(intel_dp) && !is_pch_edp(intel_dp);
76 }
77
78 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
79 {
80         return container_of(intel_attached_encoder(connector),
81                             struct intel_dp, base);
82 }
83
84 /**
85  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
86  * @encoder: DRM encoder
87  *
88  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
89  * by intel_display.c.
90  */
91 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
92 {
93         struct intel_dp *intel_dp;
94
95         if (!encoder)
96                 return false;
97
98         intel_dp = enc_to_intel_dp(encoder);
99
100         return is_pch_edp(intel_dp);
101 }
102
103 static void intel_dp_link_down(struct intel_dp *intel_dp);
104
105 void
106 intel_edp_link_config(struct intel_encoder *intel_encoder,
107                        int *lane_num, int *link_bw)
108 {
109         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
110
111         *lane_num = intel_dp->lane_count;
112         if (intel_dp->link_bw == DP_LINK_BW_1_62)
113                 *link_bw = 162000;
114         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
115                 *link_bw = 270000;
116 }
117
118 int
119 intel_edp_target_clock(struct intel_encoder *intel_encoder,
120                        struct drm_display_mode *mode)
121 {
122         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
123         struct intel_connector *intel_connector = intel_dp->attached_connector;
124
125         if (intel_connector->panel.fixed_mode)
126                 return intel_connector->panel.fixed_mode->clock;
127         else
128                 return mode->clock;
129 }
130
131 static int
132 intel_dp_max_lane_count(struct intel_dp *intel_dp)
133 {
134         int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
135         switch (max_lane_count) {
136         case 1: case 2: case 4:
137                 break;
138         default:
139                 max_lane_count = 4;
140         }
141         return max_lane_count;
142 }
143
144 static int
145 intel_dp_max_link_bw(struct intel_dp *intel_dp)
146 {
147         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
148
149         switch (max_link_bw) {
150         case DP_LINK_BW_1_62:
151         case DP_LINK_BW_2_7:
152                 break;
153         default:
154                 max_link_bw = DP_LINK_BW_1_62;
155                 break;
156         }
157         return max_link_bw;
158 }
159
160 static int
161 intel_dp_link_clock(uint8_t link_bw)
162 {
163         if (link_bw == DP_LINK_BW_2_7)
164                 return 270000;
165         else
166                 return 162000;
167 }
168
169 /*
170  * The units on the numbers in the next two are... bizarre.  Examples will
171  * make it clearer; this one parallels an example in the eDP spec.
172  *
173  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
174  *
175  *     270000 * 1 * 8 / 10 == 216000
176  *
177  * The actual data capacity of that configuration is 2.16Gbit/s, so the
178  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
179  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
180  * 119000.  At 18bpp that's 2142000 kilobits per second.
181  *
182  * Thus the strange-looking division by 10 in intel_dp_link_required, to
183  * get the result in decakilobits instead of kilobits.
184  */
185
186 static int
187 intel_dp_link_required(int pixel_clock, int bpp)
188 {
189         return (pixel_clock * bpp + 9) / 10;
190 }
191
192 static int
193 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
194 {
195         return (max_link_clock * max_lanes * 8) / 10;
196 }
197
198 static bool
199 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
200                           struct drm_display_mode *mode,
201                           bool adjust_mode)
202 {
203         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
204         int max_lanes = intel_dp_max_lane_count(intel_dp);
205         int max_rate, mode_rate;
206
207         mode_rate = intel_dp_link_required(mode->clock, 24);
208         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
209
210         if (mode_rate > max_rate) {
211                 mode_rate = intel_dp_link_required(mode->clock, 18);
212                 if (mode_rate > max_rate)
213                         return false;
214
215                 if (adjust_mode)
216                         mode->private_flags
217                                 |= INTEL_MODE_DP_FORCE_6BPC;
218
219                 return true;
220         }
221
222         return true;
223 }
224
225 static int
226 intel_dp_mode_valid(struct drm_connector *connector,
227                     struct drm_display_mode *mode)
228 {
229         struct intel_dp *intel_dp = intel_attached_dp(connector);
230         struct intel_connector *intel_connector = to_intel_connector(connector);
231         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
232
233         if (is_edp(intel_dp) && fixed_mode) {
234                 if (mode->hdisplay > fixed_mode->hdisplay)
235                         return MODE_PANEL;
236
237                 if (mode->vdisplay > fixed_mode->vdisplay)
238                         return MODE_PANEL;
239         }
240
241         if (!intel_dp_adjust_dithering(intel_dp, mode, false))
242                 return MODE_CLOCK_HIGH;
243
244         if (mode->clock < 10000)
245                 return MODE_CLOCK_LOW;
246
247         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
248                 return MODE_H_ILLEGAL;
249
250         return MODE_OK;
251 }
252
253 static uint32_t
254 pack_aux(uint8_t *src, int src_bytes)
255 {
256         int     i;
257         uint32_t v = 0;
258
259         if (src_bytes > 4)
260                 src_bytes = 4;
261         for (i = 0; i < src_bytes; i++)
262                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
263         return v;
264 }
265
266 static void
267 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
268 {
269         int i;
270         if (dst_bytes > 4)
271                 dst_bytes = 4;
272         for (i = 0; i < dst_bytes; i++)
273                 dst[i] = src >> ((3-i) * 8);
274 }
275
276 /* hrawclock is 1/4 the FSB frequency */
277 static int
278 intel_hrawclk(struct drm_device *dev)
279 {
280         struct drm_i915_private *dev_priv = dev->dev_private;
281         uint32_t clkcfg;
282
283         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
284         if (IS_VALLEYVIEW(dev))
285                 return 200;
286
287         clkcfg = I915_READ(CLKCFG);
288         switch (clkcfg & CLKCFG_FSB_MASK) {
289         case CLKCFG_FSB_400:
290                 return 100;
291         case CLKCFG_FSB_533:
292                 return 133;
293         case CLKCFG_FSB_667:
294                 return 166;
295         case CLKCFG_FSB_800:
296                 return 200;
297         case CLKCFG_FSB_1067:
298                 return 266;
299         case CLKCFG_FSB_1333:
300                 return 333;
301         /* these two are just a guess; one of them might be right */
302         case CLKCFG_FSB_1600:
303         case CLKCFG_FSB_1600_ALT:
304                 return 400;
305         default:
306                 return 133;
307         }
308 }
309
310 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
311 {
312         struct drm_device *dev = intel_dp->base.base.dev;
313         struct drm_i915_private *dev_priv = dev->dev_private;
314
315         return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
316 }
317
318 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
319 {
320         struct drm_device *dev = intel_dp->base.base.dev;
321         struct drm_i915_private *dev_priv = dev->dev_private;
322
323         return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
324 }
325
326 static void
327 intel_dp_check_edp(struct intel_dp *intel_dp)
328 {
329         struct drm_device *dev = intel_dp->base.base.dev;
330         struct drm_i915_private *dev_priv = dev->dev_private;
331
332         if (!is_edp(intel_dp))
333                 return;
334         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
335                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
336                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
337                               I915_READ(PCH_PP_STATUS),
338                               I915_READ(PCH_PP_CONTROL));
339         }
340 }
341
342 static int
343 intel_dp_aux_ch(struct intel_dp *intel_dp,
344                 uint8_t *send, int send_bytes,
345                 uint8_t *recv, int recv_size)
346 {
347         uint32_t output_reg = intel_dp->output_reg;
348         struct drm_device *dev = intel_dp->base.base.dev;
349         struct drm_i915_private *dev_priv = dev->dev_private;
350         uint32_t ch_ctl = output_reg + 0x10;
351         uint32_t ch_data = ch_ctl + 4;
352         int i;
353         int recv_bytes;
354         uint32_t status;
355         uint32_t aux_clock_divider;
356         int try, precharge;
357
358         if (IS_HASWELL(dev)) {
359                 switch (intel_dp->port) {
360                 case PORT_A:
361                         ch_ctl = DPA_AUX_CH_CTL;
362                         ch_data = DPA_AUX_CH_DATA1;
363                         break;
364                 case PORT_B:
365                         ch_ctl = PCH_DPB_AUX_CH_CTL;
366                         ch_data = PCH_DPB_AUX_CH_DATA1;
367                         break;
368                 case PORT_C:
369                         ch_ctl = PCH_DPC_AUX_CH_CTL;
370                         ch_data = PCH_DPC_AUX_CH_DATA1;
371                         break;
372                 case PORT_D:
373                         ch_ctl = PCH_DPD_AUX_CH_CTL;
374                         ch_data = PCH_DPD_AUX_CH_DATA1;
375                         break;
376                 default:
377                         BUG();
378                 }
379         }
380
381         intel_dp_check_edp(intel_dp);
382         /* The clock divider is based off the hrawclk,
383          * and would like to run at 2MHz. So, take the
384          * hrawclk value and divide by 2 and use that
385          *
386          * Note that PCH attached eDP panels should use a 125MHz input
387          * clock divider.
388          */
389         if (is_cpu_edp(intel_dp)) {
390                 if (IS_VALLEYVIEW(dev))
391                         aux_clock_divider = 100;
392                 else if (IS_GEN6(dev) || IS_GEN7(dev))
393                         aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
394                 else
395                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
396         } else if (HAS_PCH_SPLIT(dev))
397                 aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
398         else
399                 aux_clock_divider = intel_hrawclk(dev) / 2;
400
401         if (IS_GEN6(dev))
402                 precharge = 3;
403         else
404                 precharge = 5;
405
406         /* Try to wait for any previous AUX channel activity */
407         for (try = 0; try < 3; try++) {
408                 status = I915_READ(ch_ctl);
409                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
410                         break;
411                 msleep(1);
412         }
413
414         if (try == 3) {
415                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
416                      I915_READ(ch_ctl));
417                 return -EBUSY;
418         }
419
420         /* Must try at least 3 times according to DP spec */
421         for (try = 0; try < 5; try++) {
422                 /* Load the send data into the aux channel data registers */
423                 for (i = 0; i < send_bytes; i += 4)
424                         I915_WRITE(ch_data + i,
425                                    pack_aux(send + i, send_bytes - i));
426
427                 /* Send the command and wait for it to complete */
428                 I915_WRITE(ch_ctl,
429                            DP_AUX_CH_CTL_SEND_BUSY |
430                            DP_AUX_CH_CTL_TIME_OUT_400us |
431                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
432                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
433                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
434                            DP_AUX_CH_CTL_DONE |
435                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
436                            DP_AUX_CH_CTL_RECEIVE_ERROR);
437                 for (;;) {
438                         status = I915_READ(ch_ctl);
439                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
440                                 break;
441                         udelay(100);
442                 }
443
444                 /* Clear done status and any errors */
445                 I915_WRITE(ch_ctl,
446                            status |
447                            DP_AUX_CH_CTL_DONE |
448                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
449                            DP_AUX_CH_CTL_RECEIVE_ERROR);
450
451                 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
452                               DP_AUX_CH_CTL_RECEIVE_ERROR))
453                         continue;
454                 if (status & DP_AUX_CH_CTL_DONE)
455                         break;
456         }
457
458         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
459                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
460                 return -EBUSY;
461         }
462
463         /* Check for timeout or receive error.
464          * Timeouts occur when the sink is not connected
465          */
466         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
467                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
468                 return -EIO;
469         }
470
471         /* Timeouts occur when the device isn't connected, so they're
472          * "normal" -- don't fill the kernel log with these */
473         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
474                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
475                 return -ETIMEDOUT;
476         }
477
478         /* Unload any bytes sent back from the other side */
479         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
480                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
481         if (recv_bytes > recv_size)
482                 recv_bytes = recv_size;
483
484         for (i = 0; i < recv_bytes; i += 4)
485                 unpack_aux(I915_READ(ch_data + i),
486                            recv + i, recv_bytes - i);
487
488         return recv_bytes;
489 }
490
491 /* Write data to the aux channel in native mode */
492 static int
493 intel_dp_aux_native_write(struct intel_dp *intel_dp,
494                           uint16_t address, uint8_t *send, int send_bytes)
495 {
496         int ret;
497         uint8_t msg[20];
498         int msg_bytes;
499         uint8_t ack;
500
501         intel_dp_check_edp(intel_dp);
502         if (send_bytes > 16)
503                 return -1;
504         msg[0] = AUX_NATIVE_WRITE << 4;
505         msg[1] = address >> 8;
506         msg[2] = address & 0xff;
507         msg[3] = send_bytes - 1;
508         memcpy(&msg[4], send, send_bytes);
509         msg_bytes = send_bytes + 4;
510         for (;;) {
511                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
512                 if (ret < 0)
513                         return ret;
514                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
515                         break;
516                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
517                         udelay(100);
518                 else
519                         return -EIO;
520         }
521         return send_bytes;
522 }
523
524 /* Write a single byte to the aux channel in native mode */
525 static int
526 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
527                             uint16_t address, uint8_t byte)
528 {
529         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
530 }
531
532 /* read bytes from a native aux channel */
533 static int
534 intel_dp_aux_native_read(struct intel_dp *intel_dp,
535                          uint16_t address, uint8_t *recv, int recv_bytes)
536 {
537         uint8_t msg[4];
538         int msg_bytes;
539         uint8_t reply[20];
540         int reply_bytes;
541         uint8_t ack;
542         int ret;
543
544         intel_dp_check_edp(intel_dp);
545         msg[0] = AUX_NATIVE_READ << 4;
546         msg[1] = address >> 8;
547         msg[2] = address & 0xff;
548         msg[3] = recv_bytes - 1;
549
550         msg_bytes = 4;
551         reply_bytes = recv_bytes + 1;
552
553         for (;;) {
554                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
555                                       reply, reply_bytes);
556                 if (ret == 0)
557                         return -EPROTO;
558                 if (ret < 0)
559                         return ret;
560                 ack = reply[0];
561                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
562                         memcpy(recv, reply + 1, ret - 1);
563                         return ret - 1;
564                 }
565                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
566                         udelay(100);
567                 else
568                         return -EIO;
569         }
570 }
571
572 static int
573 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
574                     uint8_t write_byte, uint8_t *read_byte)
575 {
576         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
577         struct intel_dp *intel_dp = container_of(adapter,
578                                                 struct intel_dp,
579                                                 adapter);
580         uint16_t address = algo_data->address;
581         uint8_t msg[5];
582         uint8_t reply[2];
583         unsigned retry;
584         int msg_bytes;
585         int reply_bytes;
586         int ret;
587
588         intel_dp_check_edp(intel_dp);
589         /* Set up the command byte */
590         if (mode & MODE_I2C_READ)
591                 msg[0] = AUX_I2C_READ << 4;
592         else
593                 msg[0] = AUX_I2C_WRITE << 4;
594
595         if (!(mode & MODE_I2C_STOP))
596                 msg[0] |= AUX_I2C_MOT << 4;
597
598         msg[1] = address >> 8;
599         msg[2] = address;
600
601         switch (mode) {
602         case MODE_I2C_WRITE:
603                 msg[3] = 0;
604                 msg[4] = write_byte;
605                 msg_bytes = 5;
606                 reply_bytes = 1;
607                 break;
608         case MODE_I2C_READ:
609                 msg[3] = 0;
610                 msg_bytes = 4;
611                 reply_bytes = 2;
612                 break;
613         default:
614                 msg_bytes = 3;
615                 reply_bytes = 1;
616                 break;
617         }
618
619         for (retry = 0; retry < 5; retry++) {
620                 ret = intel_dp_aux_ch(intel_dp,
621                                       msg, msg_bytes,
622                                       reply, reply_bytes);
623                 if (ret < 0) {
624                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
625                         return ret;
626                 }
627
628                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
629                 case AUX_NATIVE_REPLY_ACK:
630                         /* I2C-over-AUX Reply field is only valid
631                          * when paired with AUX ACK.
632                          */
633                         break;
634                 case AUX_NATIVE_REPLY_NACK:
635                         DRM_DEBUG_KMS("aux_ch native nack\n");
636                         return -EREMOTEIO;
637                 case AUX_NATIVE_REPLY_DEFER:
638                         udelay(100);
639                         continue;
640                 default:
641                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
642                                   reply[0]);
643                         return -EREMOTEIO;
644                 }
645
646                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
647                 case AUX_I2C_REPLY_ACK:
648                         if (mode == MODE_I2C_READ) {
649                                 *read_byte = reply[1];
650                         }
651                         return reply_bytes - 1;
652                 case AUX_I2C_REPLY_NACK:
653                         DRM_DEBUG_KMS("aux_i2c nack\n");
654                         return -EREMOTEIO;
655                 case AUX_I2C_REPLY_DEFER:
656                         DRM_DEBUG_KMS("aux_i2c defer\n");
657                         udelay(100);
658                         break;
659                 default:
660                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
661                         return -EREMOTEIO;
662                 }
663         }
664
665         DRM_ERROR("too many retries, giving up\n");
666         return -EREMOTEIO;
667 }
668
669 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
670 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
671
672 static int
673 intel_dp_i2c_init(struct intel_dp *intel_dp,
674                   struct intel_connector *intel_connector, const char *name)
675 {
676         int     ret;
677
678         DRM_DEBUG_KMS("i2c_init %s\n", name);
679         intel_dp->algo.running = false;
680         intel_dp->algo.address = 0;
681         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
682
683         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
684         intel_dp->adapter.owner = THIS_MODULE;
685         intel_dp->adapter.class = I2C_CLASS_DDC;
686         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
687         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
688         intel_dp->adapter.algo_data = &intel_dp->algo;
689         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
690
691         ironlake_edp_panel_vdd_on(intel_dp);
692         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
693         ironlake_edp_panel_vdd_off(intel_dp, false);
694         return ret;
695 }
696
697 static bool
698 intel_dp_mode_fixup(struct drm_encoder *encoder,
699                     const struct drm_display_mode *mode,
700                     struct drm_display_mode *adjusted_mode)
701 {
702         struct drm_device *dev = encoder->dev;
703         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
704         struct intel_connector *intel_connector = intel_dp->attached_connector;
705         int lane_count, clock;
706         int max_lane_count = intel_dp_max_lane_count(intel_dp);
707         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
708         int bpp, mode_rate;
709         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
710
711         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
712                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
713                                        adjusted_mode);
714                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
715                                         mode, adjusted_mode);
716         }
717
718         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
719                 return false;
720
721         DRM_DEBUG_KMS("DP link computation with max lane count %i "
722                       "max bw %02x pixel clock %iKHz\n",
723                       max_lane_count, bws[max_clock], adjusted_mode->clock);
724
725         if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
726                 return false;
727
728         bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
729         mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
730
731         for (clock = 0; clock <= max_clock; clock++) {
732                 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
733                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
734
735                         if (mode_rate <= link_avail) {
736                                 intel_dp->link_bw = bws[clock];
737                                 intel_dp->lane_count = lane_count;
738                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
739                                 DRM_DEBUG_KMS("DP link bw %02x lane "
740                                                 "count %d clock %d bpp %d\n",
741                                        intel_dp->link_bw, intel_dp->lane_count,
742                                        adjusted_mode->clock, bpp);
743                                 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
744                                               mode_rate, link_avail);
745                                 return true;
746                         }
747                 }
748         }
749
750         return false;
751 }
752
753 struct intel_dp_m_n {
754         uint32_t        tu;
755         uint32_t        gmch_m;
756         uint32_t        gmch_n;
757         uint32_t        link_m;
758         uint32_t        link_n;
759 };
760
761 static void
762 intel_reduce_ratio(uint32_t *num, uint32_t *den)
763 {
764         while (*num > 0xffffff || *den > 0xffffff) {
765                 *num >>= 1;
766                 *den >>= 1;
767         }
768 }
769
770 static void
771 intel_dp_compute_m_n(int bpp,
772                      int nlanes,
773                      int pixel_clock,
774                      int link_clock,
775                      struct intel_dp_m_n *m_n)
776 {
777         m_n->tu = 64;
778         m_n->gmch_m = (pixel_clock * bpp) >> 3;
779         m_n->gmch_n = link_clock * nlanes;
780         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
781         m_n->link_m = pixel_clock;
782         m_n->link_n = link_clock;
783         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
784 }
785
786 void
787 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
788                  struct drm_display_mode *adjusted_mode)
789 {
790         struct drm_device *dev = crtc->dev;
791         struct intel_encoder *encoder;
792         struct drm_i915_private *dev_priv = dev->dev_private;
793         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
794         int lane_count = 4;
795         struct intel_dp_m_n m_n;
796         int pipe = intel_crtc->pipe;
797
798         /*
799          * Find the lane count in the intel_encoder private
800          */
801         for_each_encoder_on_crtc(dev, crtc, encoder) {
802                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
803
804                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
805                     intel_dp->base.type == INTEL_OUTPUT_EDP)
806                 {
807                         lane_count = intel_dp->lane_count;
808                         break;
809                 }
810         }
811
812         /*
813          * Compute the GMCH and Link ratios. The '3' here is
814          * the number of bytes_per_pixel post-LUT, which we always
815          * set up for 8-bits of R/G/B, or 3 bytes total.
816          */
817         intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
818                              mode->clock, adjusted_mode->clock, &m_n);
819
820         if (IS_HASWELL(dev)) {
821                 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
822                 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
823                 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
824                 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
825         } else if (HAS_PCH_SPLIT(dev)) {
826                 I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
827                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
828                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
829                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
830         } else if (IS_VALLEYVIEW(dev)) {
831                 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
832                 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
833                 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
834                 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
835         } else {
836                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
837                            TU_SIZE(m_n.tu) | m_n.gmch_m);
838                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
839                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
840                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
841         }
842 }
843
844 void intel_dp_init_link_config(struct intel_dp *intel_dp)
845 {
846         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
847         intel_dp->link_configuration[0] = intel_dp->link_bw;
848         intel_dp->link_configuration[1] = intel_dp->lane_count;
849         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
850         /*
851          * Check for DPCD version > 1.1 and enhanced framing support
852          */
853         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
854             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
855                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
856         }
857 }
858
859 static void
860 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
861                   struct drm_display_mode *adjusted_mode)
862 {
863         struct drm_device *dev = encoder->dev;
864         struct drm_i915_private *dev_priv = dev->dev_private;
865         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
866         struct drm_crtc *crtc = intel_dp->base.base.crtc;
867         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
868
869         /*
870          * There are four kinds of DP registers:
871          *
872          *      IBX PCH
873          *      SNB CPU
874          *      IVB CPU
875          *      CPT PCH
876          *
877          * IBX PCH and CPU are the same for almost everything,
878          * except that the CPU DP PLL is configured in this
879          * register
880          *
881          * CPT PCH is quite different, having many bits moved
882          * to the TRANS_DP_CTL register instead. That
883          * configuration happens (oddly) in ironlake_pch_enable
884          */
885
886         /* Preserve the BIOS-computed detected bit. This is
887          * supposed to be read-only.
888          */
889         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
890
891         /* Handle DP bits in common between all three register formats */
892         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
893
894         switch (intel_dp->lane_count) {
895         case 1:
896                 intel_dp->DP |= DP_PORT_WIDTH_1;
897                 break;
898         case 2:
899                 intel_dp->DP |= DP_PORT_WIDTH_2;
900                 break;
901         case 4:
902                 intel_dp->DP |= DP_PORT_WIDTH_4;
903                 break;
904         }
905         if (intel_dp->has_audio) {
906                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
907                                  pipe_name(intel_crtc->pipe));
908                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
909                 intel_write_eld(encoder, adjusted_mode);
910         }
911
912         intel_dp_init_link_config(intel_dp);
913
914         /* Split out the IBX/CPU vs CPT settings */
915
916         if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
917                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
918                         intel_dp->DP |= DP_SYNC_HS_HIGH;
919                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
920                         intel_dp->DP |= DP_SYNC_VS_HIGH;
921                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
922
923                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
924                         intel_dp->DP |= DP_ENHANCED_FRAMING;
925
926                 intel_dp->DP |= intel_crtc->pipe << 29;
927
928                 /* don't miss out required setting for eDP */
929                 if (adjusted_mode->clock < 200000)
930                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
931                 else
932                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
933         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
934                 intel_dp->DP |= intel_dp->color_range;
935
936                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
937                         intel_dp->DP |= DP_SYNC_HS_HIGH;
938                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
939                         intel_dp->DP |= DP_SYNC_VS_HIGH;
940                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
941
942                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
943                         intel_dp->DP |= DP_ENHANCED_FRAMING;
944
945                 if (intel_crtc->pipe == 1)
946                         intel_dp->DP |= DP_PIPEB_SELECT;
947
948                 if (is_cpu_edp(intel_dp)) {
949                         /* don't miss out required setting for eDP */
950                         if (adjusted_mode->clock < 200000)
951                                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
952                         else
953                                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
954                 }
955         } else {
956                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
957         }
958 }
959
960 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
961 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
962
963 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
964 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
965
966 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
967 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
968
969 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
970                                        u32 mask,
971                                        u32 value)
972 {
973         struct drm_device *dev = intel_dp->base.base.dev;
974         struct drm_i915_private *dev_priv = dev->dev_private;
975
976         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
977                       mask, value,
978                       I915_READ(PCH_PP_STATUS),
979                       I915_READ(PCH_PP_CONTROL));
980
981         if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
982                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
983                           I915_READ(PCH_PP_STATUS),
984                           I915_READ(PCH_PP_CONTROL));
985         }
986 }
987
988 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
989 {
990         DRM_DEBUG_KMS("Wait for panel power on\n");
991         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
992 }
993
994 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
995 {
996         DRM_DEBUG_KMS("Wait for panel power off time\n");
997         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
998 }
999
1000 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1001 {
1002         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1003         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1004 }
1005
1006
1007 /* Read the current pp_control value, unlocking the register if it
1008  * is locked
1009  */
1010
1011 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1012 {
1013         u32     control = I915_READ(PCH_PP_CONTROL);
1014
1015         control &= ~PANEL_UNLOCK_MASK;
1016         control |= PANEL_UNLOCK_REGS;
1017         return control;
1018 }
1019
1020 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1021 {
1022         struct drm_device *dev = intel_dp->base.base.dev;
1023         struct drm_i915_private *dev_priv = dev->dev_private;
1024         u32 pp;
1025
1026         if (!is_edp(intel_dp))
1027                 return;
1028         DRM_DEBUG_KMS("Turn eDP VDD on\n");
1029
1030         WARN(intel_dp->want_panel_vdd,
1031              "eDP VDD already requested on\n");
1032
1033         intel_dp->want_panel_vdd = true;
1034
1035         if (ironlake_edp_have_panel_vdd(intel_dp)) {
1036                 DRM_DEBUG_KMS("eDP VDD already on\n");
1037                 return;
1038         }
1039
1040         if (!ironlake_edp_have_panel_power(intel_dp))
1041                 ironlake_wait_panel_power_cycle(intel_dp);
1042
1043         pp = ironlake_get_pp_control(dev_priv);
1044         pp |= EDP_FORCE_VDD;
1045         I915_WRITE(PCH_PP_CONTROL, pp);
1046         POSTING_READ(PCH_PP_CONTROL);
1047         DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1048                       I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1049
1050         /*
1051          * If the panel wasn't on, delay before accessing aux channel
1052          */
1053         if (!ironlake_edp_have_panel_power(intel_dp)) {
1054                 DRM_DEBUG_KMS("eDP was not running\n");
1055                 msleep(intel_dp->panel_power_up_delay);
1056         }
1057 }
1058
1059 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1060 {
1061         struct drm_device *dev = intel_dp->base.base.dev;
1062         struct drm_i915_private *dev_priv = dev->dev_private;
1063         u32 pp;
1064
1065         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1066                 pp = ironlake_get_pp_control(dev_priv);
1067                 pp &= ~EDP_FORCE_VDD;
1068                 I915_WRITE(PCH_PP_CONTROL, pp);
1069                 POSTING_READ(PCH_PP_CONTROL);
1070
1071                 /* Make sure sequencer is idle before allowing subsequent activity */
1072                 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1073                               I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1074
1075                 msleep(intel_dp->panel_power_down_delay);
1076         }
1077 }
1078
1079 static void ironlake_panel_vdd_work(struct work_struct *__work)
1080 {
1081         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1082                                                  struct intel_dp, panel_vdd_work);
1083         struct drm_device *dev = intel_dp->base.base.dev;
1084
1085         mutex_lock(&dev->mode_config.mutex);
1086         ironlake_panel_vdd_off_sync(intel_dp);
1087         mutex_unlock(&dev->mode_config.mutex);
1088 }
1089
1090 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1091 {
1092         if (!is_edp(intel_dp))
1093                 return;
1094
1095         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1096         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1097
1098         intel_dp->want_panel_vdd = false;
1099
1100         if (sync) {
1101                 ironlake_panel_vdd_off_sync(intel_dp);
1102         } else {
1103                 /*
1104                  * Queue the timer to fire a long
1105                  * time from now (relative to the power down delay)
1106                  * to keep the panel power up across a sequence of operations
1107                  */
1108                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1109                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1110         }
1111 }
1112
1113 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1114 {
1115         struct drm_device *dev = intel_dp->base.base.dev;
1116         struct drm_i915_private *dev_priv = dev->dev_private;
1117         u32 pp;
1118
1119         if (!is_edp(intel_dp))
1120                 return;
1121
1122         DRM_DEBUG_KMS("Turn eDP power on\n");
1123
1124         if (ironlake_edp_have_panel_power(intel_dp)) {
1125                 DRM_DEBUG_KMS("eDP power already on\n");
1126                 return;
1127         }
1128
1129         ironlake_wait_panel_power_cycle(intel_dp);
1130
1131         pp = ironlake_get_pp_control(dev_priv);
1132         if (IS_GEN5(dev)) {
1133                 /* ILK workaround: disable reset around power sequence */
1134                 pp &= ~PANEL_POWER_RESET;
1135                 I915_WRITE(PCH_PP_CONTROL, pp);
1136                 POSTING_READ(PCH_PP_CONTROL);
1137         }
1138
1139         pp |= POWER_TARGET_ON;
1140         if (!IS_GEN5(dev))
1141                 pp |= PANEL_POWER_RESET;
1142
1143         I915_WRITE(PCH_PP_CONTROL, pp);
1144         POSTING_READ(PCH_PP_CONTROL);
1145
1146         ironlake_wait_panel_on(intel_dp);
1147
1148         if (IS_GEN5(dev)) {
1149                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1150                 I915_WRITE(PCH_PP_CONTROL, pp);
1151                 POSTING_READ(PCH_PP_CONTROL);
1152         }
1153 }
1154
1155 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1156 {
1157         struct drm_device *dev = intel_dp->base.base.dev;
1158         struct drm_i915_private *dev_priv = dev->dev_private;
1159         u32 pp;
1160
1161         if (!is_edp(intel_dp))
1162                 return;
1163
1164         DRM_DEBUG_KMS("Turn eDP power off\n");
1165
1166         WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1167
1168         pp = ironlake_get_pp_control(dev_priv);
1169         /* We need to switch off panel power _and_ force vdd, for otherwise some
1170          * panels get very unhappy and cease to work. */
1171         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1172         I915_WRITE(PCH_PP_CONTROL, pp);
1173         POSTING_READ(PCH_PP_CONTROL);
1174
1175         intel_dp->want_panel_vdd = false;
1176
1177         ironlake_wait_panel_off(intel_dp);
1178 }
1179
1180 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1181 {
1182         struct drm_device *dev = intel_dp->base.base.dev;
1183         struct drm_i915_private *dev_priv = dev->dev_private;
1184         u32 pp;
1185
1186         if (!is_edp(intel_dp))
1187                 return;
1188
1189         DRM_DEBUG_KMS("\n");
1190         /*
1191          * If we enable the backlight right away following a panel power
1192          * on, we may see slight flicker as the panel syncs with the eDP
1193          * link.  So delay a bit to make sure the image is solid before
1194          * allowing it to appear.
1195          */
1196         msleep(intel_dp->backlight_on_delay);
1197         pp = ironlake_get_pp_control(dev_priv);
1198         pp |= EDP_BLC_ENABLE;
1199         I915_WRITE(PCH_PP_CONTROL, pp);
1200         POSTING_READ(PCH_PP_CONTROL);
1201 }
1202
1203 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1204 {
1205         struct drm_device *dev = intel_dp->base.base.dev;
1206         struct drm_i915_private *dev_priv = dev->dev_private;
1207         u32 pp;
1208
1209         if (!is_edp(intel_dp))
1210                 return;
1211
1212         DRM_DEBUG_KMS("\n");
1213         pp = ironlake_get_pp_control(dev_priv);
1214         pp &= ~EDP_BLC_ENABLE;
1215         I915_WRITE(PCH_PP_CONTROL, pp);
1216         POSTING_READ(PCH_PP_CONTROL);
1217         msleep(intel_dp->backlight_off_delay);
1218 }
1219
1220 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1221 {
1222         struct drm_device *dev = intel_dp->base.base.dev;
1223         struct drm_crtc *crtc = intel_dp->base.base.crtc;
1224         struct drm_i915_private *dev_priv = dev->dev_private;
1225         u32 dpa_ctl;
1226
1227         assert_pipe_disabled(dev_priv,
1228                              to_intel_crtc(crtc)->pipe);
1229
1230         DRM_DEBUG_KMS("\n");
1231         dpa_ctl = I915_READ(DP_A);
1232         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1233         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1234
1235         /* We don't adjust intel_dp->DP while tearing down the link, to
1236          * facilitate link retraining (e.g. after hotplug). Hence clear all
1237          * enable bits here to ensure that we don't enable too much. */
1238         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1239         intel_dp->DP |= DP_PLL_ENABLE;
1240         I915_WRITE(DP_A, intel_dp->DP);
1241         POSTING_READ(DP_A);
1242         udelay(200);
1243 }
1244
1245 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1246 {
1247         struct drm_device *dev = intel_dp->base.base.dev;
1248         struct drm_crtc *crtc = intel_dp->base.base.crtc;
1249         struct drm_i915_private *dev_priv = dev->dev_private;
1250         u32 dpa_ctl;
1251
1252         assert_pipe_disabled(dev_priv,
1253                              to_intel_crtc(crtc)->pipe);
1254
1255         dpa_ctl = I915_READ(DP_A);
1256         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1257              "dp pll off, should be on\n");
1258         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1259
1260         /* We can't rely on the value tracked for the DP register in
1261          * intel_dp->DP because link_down must not change that (otherwise link
1262          * re-training will fail. */
1263         dpa_ctl &= ~DP_PLL_ENABLE;
1264         I915_WRITE(DP_A, dpa_ctl);
1265         POSTING_READ(DP_A);
1266         udelay(200);
1267 }
1268
1269 /* If the sink supports it, try to set the power state appropriately */
1270 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1271 {
1272         int ret, i;
1273
1274         /* Should have a valid DPCD by this point */
1275         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1276                 return;
1277
1278         if (mode != DRM_MODE_DPMS_ON) {
1279                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1280                                                   DP_SET_POWER_D3);
1281                 if (ret != 1)
1282                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1283         } else {
1284                 /*
1285                  * When turning on, we need to retry for 1ms to give the sink
1286                  * time to wake up.
1287                  */
1288                 for (i = 0; i < 3; i++) {
1289                         ret = intel_dp_aux_native_write_1(intel_dp,
1290                                                           DP_SET_POWER,
1291                                                           DP_SET_POWER_D0);
1292                         if (ret == 1)
1293                                 break;
1294                         msleep(1);
1295                 }
1296         }
1297 }
1298
1299 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1300                                   enum pipe *pipe)
1301 {
1302         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1303         struct drm_device *dev = encoder->base.dev;
1304         struct drm_i915_private *dev_priv = dev->dev_private;
1305         u32 tmp = I915_READ(intel_dp->output_reg);
1306
1307         if (!(tmp & DP_PORT_EN))
1308                 return false;
1309
1310         if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1311                 *pipe = PORT_TO_PIPE_CPT(tmp);
1312         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1313                 *pipe = PORT_TO_PIPE(tmp);
1314         } else {
1315                 u32 trans_sel;
1316                 u32 trans_dp;
1317                 int i;
1318
1319                 switch (intel_dp->output_reg) {
1320                 case PCH_DP_B:
1321                         trans_sel = TRANS_DP_PORT_SEL_B;
1322                         break;
1323                 case PCH_DP_C:
1324                         trans_sel = TRANS_DP_PORT_SEL_C;
1325                         break;
1326                 case PCH_DP_D:
1327                         trans_sel = TRANS_DP_PORT_SEL_D;
1328                         break;
1329                 default:
1330                         return true;
1331                 }
1332
1333                 for_each_pipe(i) {
1334                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1335                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1336                                 *pipe = i;
1337                                 return true;
1338                         }
1339                 }
1340         }
1341
1342         DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n", intel_dp->output_reg);
1343
1344         return true;
1345 }
1346
1347 static void intel_disable_dp(struct intel_encoder *encoder)
1348 {
1349         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1350
1351         /* Make sure the panel is off before trying to change the mode. But also
1352          * ensure that we have vdd while we switch off the panel. */
1353         ironlake_edp_panel_vdd_on(intel_dp);
1354         ironlake_edp_backlight_off(intel_dp);
1355         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1356         ironlake_edp_panel_off(intel_dp);
1357
1358         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1359         if (!is_cpu_edp(intel_dp))
1360                 intel_dp_link_down(intel_dp);
1361 }
1362
1363 static void intel_post_disable_dp(struct intel_encoder *encoder)
1364 {
1365         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1366
1367         if (is_cpu_edp(intel_dp)) {
1368                 intel_dp_link_down(intel_dp);
1369                 ironlake_edp_pll_off(intel_dp);
1370         }
1371 }
1372
1373 static void intel_enable_dp(struct intel_encoder *encoder)
1374 {
1375         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1376         struct drm_device *dev = encoder->base.dev;
1377         struct drm_i915_private *dev_priv = dev->dev_private;
1378         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1379
1380         if (WARN_ON(dp_reg & DP_PORT_EN))
1381                 return;
1382
1383         ironlake_edp_panel_vdd_on(intel_dp);
1384         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1385         intel_dp_start_link_train(intel_dp);
1386         ironlake_edp_panel_on(intel_dp);
1387         ironlake_edp_panel_vdd_off(intel_dp, true);
1388         intel_dp_complete_link_train(intel_dp);
1389         ironlake_edp_backlight_on(intel_dp);
1390 }
1391
1392 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1393 {
1394         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1395
1396         if (is_cpu_edp(intel_dp))
1397                 ironlake_edp_pll_on(intel_dp);
1398 }
1399
1400 /*
1401  * Native read with retry for link status and receiver capability reads for
1402  * cases where the sink may still be asleep.
1403  */
1404 static bool
1405 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1406                                uint8_t *recv, int recv_bytes)
1407 {
1408         int ret, i;
1409
1410         /*
1411          * Sinks are *supposed* to come up within 1ms from an off state,
1412          * but we're also supposed to retry 3 times per the spec.
1413          */
1414         for (i = 0; i < 3; i++) {
1415                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1416                                                recv_bytes);
1417                 if (ret == recv_bytes)
1418                         return true;
1419                 msleep(1);
1420         }
1421
1422         return false;
1423 }
1424
1425 /*
1426  * Fetch AUX CH registers 0x202 - 0x207 which contain
1427  * link status information
1428  */
1429 static bool
1430 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1431 {
1432         return intel_dp_aux_native_read_retry(intel_dp,
1433                                               DP_LANE0_1_STATUS,
1434                                               link_status,
1435                                               DP_LINK_STATUS_SIZE);
1436 }
1437
1438 static uint8_t
1439 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1440                                  int lane)
1441 {
1442         int         s = ((lane & 1) ?
1443                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1444                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1445         uint8_t l = adjust_request[lane>>1];
1446
1447         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1448 }
1449
1450 static uint8_t
1451 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1452                                       int lane)
1453 {
1454         int         s = ((lane & 1) ?
1455                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1456                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1457         uint8_t l = adjust_request[lane>>1];
1458
1459         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1460 }
1461
1462
1463 #if 0
1464 static char     *voltage_names[] = {
1465         "0.4V", "0.6V", "0.8V", "1.2V"
1466 };
1467 static char     *pre_emph_names[] = {
1468         "0dB", "3.5dB", "6dB", "9.5dB"
1469 };
1470 static char     *link_train_names[] = {
1471         "pattern 1", "pattern 2", "idle", "off"
1472 };
1473 #endif
1474
1475 /*
1476  * These are source-specific values; current Intel hardware supports
1477  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1478  */
1479
1480 static uint8_t
1481 intel_dp_voltage_max(struct intel_dp *intel_dp)
1482 {
1483         struct drm_device *dev = intel_dp->base.base.dev;
1484
1485         if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1486                 return DP_TRAIN_VOLTAGE_SWING_800;
1487         else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1488                 return DP_TRAIN_VOLTAGE_SWING_1200;
1489         else
1490                 return DP_TRAIN_VOLTAGE_SWING_800;
1491 }
1492
1493 static uint8_t
1494 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1495 {
1496         struct drm_device *dev = intel_dp->base.base.dev;
1497
1498         if (IS_HASWELL(dev)) {
1499                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1500                 case DP_TRAIN_VOLTAGE_SWING_400:
1501                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1502                 case DP_TRAIN_VOLTAGE_SWING_600:
1503                         return DP_TRAIN_PRE_EMPHASIS_6;
1504                 case DP_TRAIN_VOLTAGE_SWING_800:
1505                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1506                 case DP_TRAIN_VOLTAGE_SWING_1200:
1507                 default:
1508                         return DP_TRAIN_PRE_EMPHASIS_0;
1509                 }
1510         } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1511                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1512                 case DP_TRAIN_VOLTAGE_SWING_400:
1513                         return DP_TRAIN_PRE_EMPHASIS_6;
1514                 case DP_TRAIN_VOLTAGE_SWING_600:
1515                 case DP_TRAIN_VOLTAGE_SWING_800:
1516                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1517                 default:
1518                         return DP_TRAIN_PRE_EMPHASIS_0;
1519                 }
1520         } else {
1521                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1522                 case DP_TRAIN_VOLTAGE_SWING_400:
1523                         return DP_TRAIN_PRE_EMPHASIS_6;
1524                 case DP_TRAIN_VOLTAGE_SWING_600:
1525                         return DP_TRAIN_PRE_EMPHASIS_6;
1526                 case DP_TRAIN_VOLTAGE_SWING_800:
1527                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1528                 case DP_TRAIN_VOLTAGE_SWING_1200:
1529                 default:
1530                         return DP_TRAIN_PRE_EMPHASIS_0;
1531                 }
1532         }
1533 }
1534
1535 static void
1536 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1537 {
1538         uint8_t v = 0;
1539         uint8_t p = 0;
1540         int lane;
1541         uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1542         uint8_t voltage_max;
1543         uint8_t preemph_max;
1544
1545         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1546                 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1547                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1548
1549                 if (this_v > v)
1550                         v = this_v;
1551                 if (this_p > p)
1552                         p = this_p;
1553         }
1554
1555         voltage_max = intel_dp_voltage_max(intel_dp);
1556         if (v >= voltage_max)
1557                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1558
1559         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1560         if (p >= preemph_max)
1561                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1562
1563         for (lane = 0; lane < 4; lane++)
1564                 intel_dp->train_set[lane] = v | p;
1565 }
1566
1567 static uint32_t
1568 intel_dp_signal_levels(uint8_t train_set)
1569 {
1570         uint32_t        signal_levels = 0;
1571
1572         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1573         case DP_TRAIN_VOLTAGE_SWING_400:
1574         default:
1575                 signal_levels |= DP_VOLTAGE_0_4;
1576                 break;
1577         case DP_TRAIN_VOLTAGE_SWING_600:
1578                 signal_levels |= DP_VOLTAGE_0_6;
1579                 break;
1580         case DP_TRAIN_VOLTAGE_SWING_800:
1581                 signal_levels |= DP_VOLTAGE_0_8;
1582                 break;
1583         case DP_TRAIN_VOLTAGE_SWING_1200:
1584                 signal_levels |= DP_VOLTAGE_1_2;
1585                 break;
1586         }
1587         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1588         case DP_TRAIN_PRE_EMPHASIS_0:
1589         default:
1590                 signal_levels |= DP_PRE_EMPHASIS_0;
1591                 break;
1592         case DP_TRAIN_PRE_EMPHASIS_3_5:
1593                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1594                 break;
1595         case DP_TRAIN_PRE_EMPHASIS_6:
1596                 signal_levels |= DP_PRE_EMPHASIS_6;
1597                 break;
1598         case DP_TRAIN_PRE_EMPHASIS_9_5:
1599                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1600                 break;
1601         }
1602         return signal_levels;
1603 }
1604
1605 /* Gen6's DP voltage swing and pre-emphasis control */
1606 static uint32_t
1607 intel_gen6_edp_signal_levels(uint8_t train_set)
1608 {
1609         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1610                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1611         switch (signal_levels) {
1612         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1613         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1614                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1615         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1616                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1617         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1618         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1619                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1620         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1621         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1622                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1623         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1624         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1625                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1626         default:
1627                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1628                               "0x%x\n", signal_levels);
1629                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1630         }
1631 }
1632
1633 /* Gen7's DP voltage swing and pre-emphasis control */
1634 static uint32_t
1635 intel_gen7_edp_signal_levels(uint8_t train_set)
1636 {
1637         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1638                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1639         switch (signal_levels) {
1640         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1641                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1642         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1643                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1644         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1645                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1646
1647         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1648                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1649         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1650                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1651
1652         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1653                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1654         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1655                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1656
1657         default:
1658                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1659                               "0x%x\n", signal_levels);
1660                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1661         }
1662 }
1663
1664 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1665 static uint32_t
1666 intel_dp_signal_levels_hsw(uint8_t train_set)
1667 {
1668         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1669                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1670         switch (signal_levels) {
1671         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1672                 return DDI_BUF_EMP_400MV_0DB_HSW;
1673         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1674                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
1675         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1676                 return DDI_BUF_EMP_400MV_6DB_HSW;
1677         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1678                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
1679
1680         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1681                 return DDI_BUF_EMP_600MV_0DB_HSW;
1682         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1683                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
1684         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1685                 return DDI_BUF_EMP_600MV_6DB_HSW;
1686
1687         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1688                 return DDI_BUF_EMP_800MV_0DB_HSW;
1689         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1690                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
1691         default:
1692                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1693                               "0x%x\n", signal_levels);
1694                 return DDI_BUF_EMP_400MV_0DB_HSW;
1695         }
1696 }
1697
1698 static bool
1699 intel_dp_set_link_train(struct intel_dp *intel_dp,
1700                         uint32_t dp_reg_value,
1701                         uint8_t dp_train_pat)
1702 {
1703         struct drm_device *dev = intel_dp->base.base.dev;
1704         struct drm_i915_private *dev_priv = dev->dev_private;
1705         int ret;
1706         uint32_t temp;
1707
1708         if (IS_HASWELL(dev)) {
1709                 temp = I915_READ(DP_TP_CTL(intel_dp->port));
1710
1711                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1712                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1713                 else
1714                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1715
1716                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1717                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1718                 case DP_TRAINING_PATTERN_DISABLE:
1719                         temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
1720                         I915_WRITE(DP_TP_CTL(intel_dp->port), temp);
1721
1722                         if (wait_for((I915_READ(DP_TP_STATUS(intel_dp->port)) &
1723                                       DP_TP_STATUS_IDLE_DONE), 1))
1724                                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
1725
1726                         temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1727                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1728
1729                         break;
1730                 case DP_TRAINING_PATTERN_1:
1731                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1732                         break;
1733                 case DP_TRAINING_PATTERN_2:
1734                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1735                         break;
1736                 case DP_TRAINING_PATTERN_3:
1737                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1738                         break;
1739                 }
1740                 I915_WRITE(DP_TP_CTL(intel_dp->port), temp);
1741
1742         } else if (HAS_PCH_CPT(dev) &&
1743                    (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1744                 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1745
1746                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1747                 case DP_TRAINING_PATTERN_DISABLE:
1748                         dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1749                         break;
1750                 case DP_TRAINING_PATTERN_1:
1751                         dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1752                         break;
1753                 case DP_TRAINING_PATTERN_2:
1754                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1755                         break;
1756                 case DP_TRAINING_PATTERN_3:
1757                         DRM_ERROR("DP training pattern 3 not supported\n");
1758                         dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1759                         break;
1760                 }
1761
1762         } else {
1763                 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1764
1765                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1766                 case DP_TRAINING_PATTERN_DISABLE:
1767                         dp_reg_value |= DP_LINK_TRAIN_OFF;
1768                         break;
1769                 case DP_TRAINING_PATTERN_1:
1770                         dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1771                         break;
1772                 case DP_TRAINING_PATTERN_2:
1773                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1774                         break;
1775                 case DP_TRAINING_PATTERN_3:
1776                         DRM_ERROR("DP training pattern 3 not supported\n");
1777                         dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1778                         break;
1779                 }
1780         }
1781
1782         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1783         POSTING_READ(intel_dp->output_reg);
1784
1785         intel_dp_aux_native_write_1(intel_dp,
1786                                     DP_TRAINING_PATTERN_SET,
1787                                     dp_train_pat);
1788
1789         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1790             DP_TRAINING_PATTERN_DISABLE) {
1791                 ret = intel_dp_aux_native_write(intel_dp,
1792                                                 DP_TRAINING_LANE0_SET,
1793                                                 intel_dp->train_set,
1794                                                 intel_dp->lane_count);
1795                 if (ret != intel_dp->lane_count)
1796                         return false;
1797         }
1798
1799         return true;
1800 }
1801
1802 /* Enable corresponding port and start training pattern 1 */
1803 void
1804 intel_dp_start_link_train(struct intel_dp *intel_dp)
1805 {
1806         struct drm_encoder *encoder = &intel_dp->base.base;
1807         struct drm_device *dev = encoder->dev;
1808         int i;
1809         uint8_t voltage;
1810         bool clock_recovery = false;
1811         int voltage_tries, loop_tries;
1812         uint32_t DP = intel_dp->DP;
1813
1814         if (IS_HASWELL(dev))
1815                 intel_ddi_prepare_link_retrain(encoder);
1816
1817         /* Write the link configuration data */
1818         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1819                                   intel_dp->link_configuration,
1820                                   DP_LINK_CONFIGURATION_SIZE);
1821
1822         DP |= DP_PORT_EN;
1823
1824         memset(intel_dp->train_set, 0, 4);
1825         voltage = 0xff;
1826         voltage_tries = 0;
1827         loop_tries = 0;
1828         clock_recovery = false;
1829         for (;;) {
1830                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1831                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1832                 uint32_t    signal_levels;
1833
1834                 if (IS_HASWELL(dev)) {
1835                         signal_levels = intel_dp_signal_levels_hsw(
1836                                                         intel_dp->train_set[0]);
1837                         DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
1838                 } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1839                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1840                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1841                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1842                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1843                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1844                 } else {
1845                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1846                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1847                 }
1848                 DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n",
1849                               signal_levels);
1850
1851                 if (!intel_dp_set_link_train(intel_dp, DP,
1852                                              DP_TRAINING_PATTERN_1 |
1853                                              DP_LINK_SCRAMBLING_DISABLE))
1854                         break;
1855                 /* Set training pattern 1 */
1856
1857                 udelay(100);
1858                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1859                         DRM_ERROR("failed to get link status\n");
1860                         break;
1861                 }
1862
1863                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1864                         DRM_DEBUG_KMS("clock recovery OK\n");
1865                         clock_recovery = true;
1866                         break;
1867                 }
1868
1869                 /* Check to see if we've tried the max voltage */
1870                 for (i = 0; i < intel_dp->lane_count; i++)
1871                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1872                                 break;
1873                 if (i == intel_dp->lane_count && voltage_tries == 5) {
1874                         if (++loop_tries == 5) {
1875                                 DRM_DEBUG_KMS("too many full retries, give up\n");
1876                                 break;
1877                         }
1878                         memset(intel_dp->train_set, 0, 4);
1879                         voltage_tries = 0;
1880                         continue;
1881                 }
1882
1883                 /* Check to see if we've tried the same voltage 5 times */
1884                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) != voltage) {
1885                         voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1886                         voltage_tries = 0;
1887                 } else
1888                         ++voltage_tries;
1889
1890                 /* Compute new intel_dp->train_set as requested by target */
1891                 intel_get_adjust_train(intel_dp, link_status);
1892         }
1893
1894         intel_dp->DP = DP;
1895 }
1896
1897 void
1898 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1899 {
1900         struct drm_device *dev = intel_dp->base.base.dev;
1901         bool channel_eq = false;
1902         int tries, cr_tries;
1903         uint32_t DP = intel_dp->DP;
1904
1905         /* channel equalization */
1906         tries = 0;
1907         cr_tries = 0;
1908         channel_eq = false;
1909         for (;;) {
1910                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1911                 uint32_t    signal_levels;
1912                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1913
1914                 if (cr_tries > 5) {
1915                         DRM_ERROR("failed to train DP, aborting\n");
1916                         intel_dp_link_down(intel_dp);
1917                         break;
1918                 }
1919
1920                 if (IS_HASWELL(dev)) {
1921                         signal_levels = intel_dp_signal_levels_hsw(intel_dp->train_set[0]);
1922                         DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
1923                 } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1924                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1925                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1926                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1927                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1928                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1929                 } else {
1930                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1931                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1932                 }
1933
1934                 /* channel eq pattern */
1935                 if (!intel_dp_set_link_train(intel_dp, DP,
1936                                              DP_TRAINING_PATTERN_2 |
1937                                              DP_LINK_SCRAMBLING_DISABLE))
1938                         break;
1939
1940                 udelay(400);
1941                 if (!intel_dp_get_link_status(intel_dp, link_status))
1942                         break;
1943
1944                 /* Make sure clock is still ok */
1945                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1946                         intel_dp_start_link_train(intel_dp);
1947                         cr_tries++;
1948                         continue;
1949                 }
1950
1951                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
1952                         channel_eq = true;
1953                         break;
1954                 }
1955
1956                 /* Try 5 times, then try clock recovery if that fails */
1957                 if (tries > 5) {
1958                         intel_dp_link_down(intel_dp);
1959                         intel_dp_start_link_train(intel_dp);
1960                         tries = 0;
1961                         cr_tries++;
1962                         continue;
1963                 }
1964
1965                 /* Compute new intel_dp->train_set as requested by target */
1966                 intel_get_adjust_train(intel_dp, link_status);
1967                 ++tries;
1968         }
1969
1970         if (channel_eq)
1971                 DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
1972
1973         intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
1974 }
1975
1976 static void
1977 intel_dp_link_down(struct intel_dp *intel_dp)
1978 {
1979         struct drm_device *dev = intel_dp->base.base.dev;
1980         struct drm_i915_private *dev_priv = dev->dev_private;
1981         uint32_t DP = intel_dp->DP;
1982
1983         /*
1984          * DDI code has a strict mode set sequence and we should try to respect
1985          * it, otherwise we might hang the machine in many different ways. So we
1986          * really should be disabling the port only on a complete crtc_disable
1987          * sequence. This function is just called under two conditions on DDI
1988          * code:
1989          * - Link train failed while doing crtc_enable, and on this case we
1990          *   really should respect the mode set sequence and wait for a
1991          *   crtc_disable.
1992          * - Someone turned the monitor off and intel_dp_check_link_status
1993          *   called us. We don't need to disable the whole port on this case, so
1994          *   when someone turns the monitor on again,
1995          *   intel_ddi_prepare_link_retrain will take care of redoing the link
1996          *   train.
1997          */
1998         if (IS_HASWELL(dev))
1999                 return;
2000
2001         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2002                 return;
2003
2004         DRM_DEBUG_KMS("\n");
2005
2006         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
2007                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2008                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2009         } else {
2010                 DP &= ~DP_LINK_TRAIN_MASK;
2011                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2012         }
2013         POSTING_READ(intel_dp->output_reg);
2014
2015         msleep(17);
2016
2017         if (HAS_PCH_IBX(dev) &&
2018             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2019                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2020
2021                 /* Hardware workaround: leaving our transcoder select
2022                  * set to transcoder B while it's off will prevent the
2023                  * corresponding HDMI output on transcoder A.
2024                  *
2025                  * Combine this with another hardware workaround:
2026                  * transcoder select bit can only be cleared while the
2027                  * port is enabled.
2028                  */
2029                 DP &= ~DP_PIPEB_SELECT;
2030                 I915_WRITE(intel_dp->output_reg, DP);
2031
2032                 /* Changes to enable or select take place the vblank
2033                  * after being written.
2034                  */
2035                 if (crtc == NULL) {
2036                         /* We can arrive here never having been attached
2037                          * to a CRTC, for instance, due to inheriting
2038                          * random state from the BIOS.
2039                          *
2040                          * If the pipe is not running, play safe and
2041                          * wait for the clocks to stabilise before
2042                          * continuing.
2043                          */
2044                         POSTING_READ(intel_dp->output_reg);
2045                         msleep(50);
2046                 } else
2047                         intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
2048         }
2049
2050         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2051         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2052         POSTING_READ(intel_dp->output_reg);
2053         msleep(intel_dp->panel_power_down_delay);
2054 }
2055
2056 static bool
2057 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2058 {
2059         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2060                                            sizeof(intel_dp->dpcd)) == 0)
2061                 return false; /* aux transfer failed */
2062
2063         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2064                 return false; /* DPCD not present */
2065
2066         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2067               DP_DWN_STRM_PORT_PRESENT))
2068                 return true; /* native DP sink */
2069
2070         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2071                 return true; /* no per-port downstream info */
2072
2073         if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2074                                            intel_dp->downstream_ports,
2075                                            DP_MAX_DOWNSTREAM_PORTS) == 0)
2076                 return false; /* downstream port status fetch failed */
2077
2078         return true;
2079 }
2080
2081 static void
2082 intel_dp_probe_oui(struct intel_dp *intel_dp)
2083 {
2084         u8 buf[3];
2085
2086         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2087                 return;
2088
2089         ironlake_edp_panel_vdd_on(intel_dp);
2090
2091         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2092                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2093                               buf[0], buf[1], buf[2]);
2094
2095         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2096                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2097                               buf[0], buf[1], buf[2]);
2098
2099         ironlake_edp_panel_vdd_off(intel_dp, false);
2100 }
2101
2102 static bool
2103 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2104 {
2105         int ret;
2106
2107         ret = intel_dp_aux_native_read_retry(intel_dp,
2108                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2109                                              sink_irq_vector, 1);
2110         if (!ret)
2111                 return false;
2112
2113         return true;
2114 }
2115
2116 static void
2117 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2118 {
2119         /* NAK by default */
2120         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
2121 }
2122
2123 /*
2124  * According to DP spec
2125  * 5.1.2:
2126  *  1. Read DPCD
2127  *  2. Configure link according to Receiver Capabilities
2128  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2129  *  4. Check link status on receipt of hot-plug interrupt
2130  */
2131
2132 static void
2133 intel_dp_check_link_status(struct intel_dp *intel_dp)
2134 {
2135         u8 sink_irq_vector;
2136         u8 link_status[DP_LINK_STATUS_SIZE];
2137
2138         if (!intel_dp->base.connectors_active)
2139                 return;
2140
2141         if (WARN_ON(!intel_dp->base.base.crtc))
2142                 return;
2143
2144         /* Try to read receiver status if the link appears to be up */
2145         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2146                 intel_dp_link_down(intel_dp);
2147                 return;
2148         }
2149
2150         /* Now read the DPCD to see if it's actually running */
2151         if (!intel_dp_get_dpcd(intel_dp)) {
2152                 intel_dp_link_down(intel_dp);
2153                 return;
2154         }
2155
2156         /* Try to read the source of the interrupt */
2157         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2158             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2159                 /* Clear interrupt source */
2160                 intel_dp_aux_native_write_1(intel_dp,
2161                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2162                                             sink_irq_vector);
2163
2164                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2165                         intel_dp_handle_test_request(intel_dp);
2166                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2167                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2168         }
2169
2170         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2171                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2172                               drm_get_encoder_name(&intel_dp->base.base));
2173                 intel_dp_start_link_train(intel_dp);
2174                 intel_dp_complete_link_train(intel_dp);
2175         }
2176 }
2177
2178 /* XXX this is probably wrong for multiple downstream ports */
2179 static enum drm_connector_status
2180 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2181 {
2182         uint8_t *dpcd = intel_dp->dpcd;
2183         bool hpd;
2184         uint8_t type;
2185
2186         if (!intel_dp_get_dpcd(intel_dp))
2187                 return connector_status_disconnected;
2188
2189         /* if there's no downstream port, we're done */
2190         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2191                 return connector_status_connected;
2192
2193         /* If we're HPD-aware, SINK_COUNT changes dynamically */
2194         hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2195         if (hpd) {
2196                 uint8_t reg;
2197                 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2198                                                     &reg, 1))
2199                         return connector_status_unknown;
2200                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2201                                               : connector_status_disconnected;
2202         }
2203
2204         /* If no HPD, poke DDC gently */
2205         if (drm_probe_ddc(&intel_dp->adapter))
2206                 return connector_status_connected;
2207
2208         /* Well we tried, say unknown for unreliable port types */
2209         type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2210         if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2211                 return connector_status_unknown;
2212
2213         /* Anything else is out of spec, warn and ignore */
2214         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2215         return connector_status_disconnected;
2216 }
2217
2218 static enum drm_connector_status
2219 ironlake_dp_detect(struct intel_dp *intel_dp)
2220 {
2221         enum drm_connector_status status;
2222
2223         /* Can't disconnect eDP, but you can close the lid... */
2224         if (is_edp(intel_dp)) {
2225                 status = intel_panel_detect(intel_dp->base.base.dev);
2226                 if (status == connector_status_unknown)
2227                         status = connector_status_connected;
2228                 return status;
2229         }
2230
2231         return intel_dp_detect_dpcd(intel_dp);
2232 }
2233
2234 static enum drm_connector_status
2235 g4x_dp_detect(struct intel_dp *intel_dp)
2236 {
2237         struct drm_device *dev = intel_dp->base.base.dev;
2238         struct drm_i915_private *dev_priv = dev->dev_private;
2239         uint32_t bit;
2240
2241         switch (intel_dp->output_reg) {
2242         case DP_B:
2243                 bit = DPB_HOTPLUG_LIVE_STATUS;
2244                 break;
2245         case DP_C:
2246                 bit = DPC_HOTPLUG_LIVE_STATUS;
2247                 break;
2248         case DP_D:
2249                 bit = DPD_HOTPLUG_LIVE_STATUS;
2250                 break;
2251         default:
2252                 return connector_status_unknown;
2253         }
2254
2255         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2256                 return connector_status_disconnected;
2257
2258         return intel_dp_detect_dpcd(intel_dp);
2259 }
2260
2261 static struct edid *
2262 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2263 {
2264         struct intel_connector *intel_connector = to_intel_connector(connector);
2265
2266         /* use cached edid if we have one */
2267         if (intel_connector->edid) {
2268                 struct edid *edid;
2269                 int size;
2270
2271                 /* invalid edid */
2272                 if (IS_ERR(intel_connector->edid))
2273                         return NULL;
2274
2275                 size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2276                 edid = kmalloc(size, GFP_KERNEL);
2277                 if (!edid)
2278                         return NULL;
2279
2280                 memcpy(edid, intel_connector->edid, size);
2281                 return edid;
2282         }
2283
2284         return drm_get_edid(connector, adapter);
2285 }
2286
2287 static int
2288 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2289 {
2290         struct intel_connector *intel_connector = to_intel_connector(connector);
2291
2292         /* use cached edid if we have one */
2293         if (intel_connector->edid) {
2294                 /* invalid edid */
2295                 if (IS_ERR(intel_connector->edid))
2296                         return 0;
2297
2298                 return intel_connector_update_modes(connector,
2299                                                     intel_connector->edid);
2300         }
2301
2302         return intel_ddc_get_modes(connector, adapter);
2303 }
2304
2305
2306 /**
2307  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2308  *
2309  * \return true if DP port is connected.
2310  * \return false if DP port is disconnected.
2311  */
2312 static enum drm_connector_status
2313 intel_dp_detect(struct drm_connector *connector, bool force)
2314 {
2315         struct intel_dp *intel_dp = intel_attached_dp(connector);
2316         struct drm_device *dev = intel_dp->base.base.dev;
2317         enum drm_connector_status status;
2318         struct edid *edid = NULL;
2319
2320         intel_dp->has_audio = false;
2321
2322         if (HAS_PCH_SPLIT(dev))
2323                 status = ironlake_dp_detect(intel_dp);
2324         else
2325                 status = g4x_dp_detect(intel_dp);
2326
2327         DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2328                       intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2329                       intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2330                       intel_dp->dpcd[6], intel_dp->dpcd[7]);
2331
2332         if (status != connector_status_connected)
2333                 return status;
2334
2335         intel_dp_probe_oui(intel_dp);
2336
2337         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2338                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2339         } else {
2340                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2341                 if (edid) {
2342                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2343                         kfree(edid);
2344                 }
2345         }
2346
2347         return connector_status_connected;
2348 }
2349
2350 static int intel_dp_get_modes(struct drm_connector *connector)
2351 {
2352         struct intel_dp *intel_dp = intel_attached_dp(connector);
2353         struct intel_connector *intel_connector = to_intel_connector(connector);
2354         struct drm_device *dev = intel_dp->base.base.dev;
2355         int ret;
2356
2357         /* We should parse the EDID data and find out if it has an audio sink
2358          */
2359
2360         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2361         if (ret)
2362                 return ret;
2363
2364         /* if eDP has no EDID, fall back to fixed mode */
2365         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2366                 struct drm_display_mode *mode;
2367                 mode = drm_mode_duplicate(dev,
2368                                           intel_connector->panel.fixed_mode);
2369                 if (mode) {
2370                         drm_mode_probed_add(connector, mode);
2371                         return 1;
2372                 }
2373         }
2374         return 0;
2375 }
2376
2377 static bool
2378 intel_dp_detect_audio(struct drm_connector *connector)
2379 {
2380         struct intel_dp *intel_dp = intel_attached_dp(connector);
2381         struct edid *edid;
2382         bool has_audio = false;
2383
2384         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2385         if (edid) {
2386                 has_audio = drm_detect_monitor_audio(edid);
2387                 kfree(edid);
2388         }
2389
2390         return has_audio;
2391 }
2392
2393 static int
2394 intel_dp_set_property(struct drm_connector *connector,
2395                       struct drm_property *property,
2396                       uint64_t val)
2397 {
2398         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2399         struct intel_dp *intel_dp = intel_attached_dp(connector);
2400         int ret;
2401
2402         ret = drm_connector_property_set_value(connector, property, val);
2403         if (ret)
2404                 return ret;
2405
2406         if (property == dev_priv->force_audio_property) {
2407                 int i = val;
2408                 bool has_audio;
2409
2410                 if (i == intel_dp->force_audio)
2411                         return 0;
2412
2413                 intel_dp->force_audio = i;
2414
2415                 if (i == HDMI_AUDIO_AUTO)
2416                         has_audio = intel_dp_detect_audio(connector);
2417                 else
2418                         has_audio = (i == HDMI_AUDIO_ON);
2419
2420                 if (has_audio == intel_dp->has_audio)
2421                         return 0;
2422
2423                 intel_dp->has_audio = has_audio;
2424                 goto done;
2425         }
2426
2427         if (property == dev_priv->broadcast_rgb_property) {
2428                 if (val == !!intel_dp->color_range)
2429                         return 0;
2430
2431                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2432                 goto done;
2433         }
2434
2435         return -EINVAL;
2436
2437 done:
2438         if (intel_dp->base.base.crtc) {
2439                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2440                 intel_set_mode(crtc, &crtc->mode,
2441                                crtc->x, crtc->y, crtc->fb);
2442         }
2443
2444         return 0;
2445 }
2446
2447 static void
2448 intel_dp_destroy(struct drm_connector *connector)
2449 {
2450         struct drm_device *dev = connector->dev;
2451         struct intel_dp *intel_dp = intel_attached_dp(connector);
2452         struct intel_connector *intel_connector = to_intel_connector(connector);
2453
2454         if (!IS_ERR_OR_NULL(intel_connector->edid))
2455                 kfree(intel_connector->edid);
2456
2457         if (is_edp(intel_dp)) {
2458                 intel_panel_destroy_backlight(dev);
2459                 intel_panel_fini(&intel_connector->panel);
2460         }
2461
2462         drm_sysfs_connector_remove(connector);
2463         drm_connector_cleanup(connector);
2464         kfree(connector);
2465 }
2466
2467 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2468 {
2469         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2470
2471         i2c_del_adapter(&intel_dp->adapter);
2472         drm_encoder_cleanup(encoder);
2473         if (is_edp(intel_dp)) {
2474                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2475                 ironlake_panel_vdd_off_sync(intel_dp);
2476         }
2477         kfree(intel_dp);
2478 }
2479
2480 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2481         .mode_fixup = intel_dp_mode_fixup,
2482         .mode_set = intel_dp_mode_set,
2483         .disable = intel_encoder_noop,
2484 };
2485
2486 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs_hsw = {
2487         .mode_fixup = intel_dp_mode_fixup,
2488         .mode_set = intel_ddi_mode_set,
2489         .disable = intel_encoder_noop,
2490 };
2491
2492 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2493         .dpms = intel_connector_dpms,
2494         .detect = intel_dp_detect,
2495         .fill_modes = drm_helper_probe_single_connector_modes,
2496         .set_property = intel_dp_set_property,
2497         .destroy = intel_dp_destroy,
2498 };
2499
2500 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2501         .get_modes = intel_dp_get_modes,
2502         .mode_valid = intel_dp_mode_valid,
2503         .best_encoder = intel_best_encoder,
2504 };
2505
2506 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2507         .destroy = intel_dp_encoder_destroy,
2508 };
2509
2510 static void
2511 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2512 {
2513         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2514
2515         intel_dp_check_link_status(intel_dp);
2516 }
2517
2518 /* Return which DP Port should be selected for Transcoder DP control */
2519 int
2520 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2521 {
2522         struct drm_device *dev = crtc->dev;
2523         struct intel_encoder *encoder;
2524
2525         for_each_encoder_on_crtc(dev, crtc, encoder) {
2526                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2527
2528                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2529                     intel_dp->base.type == INTEL_OUTPUT_EDP)
2530                         return intel_dp->output_reg;
2531         }
2532
2533         return -1;
2534 }
2535
2536 /* check the VBT to see whether the eDP is on DP-D port */
2537 bool intel_dpd_is_edp(struct drm_device *dev)
2538 {
2539         struct drm_i915_private *dev_priv = dev->dev_private;
2540         struct child_device_config *p_child;
2541         int i;
2542
2543         if (!dev_priv->child_dev_num)
2544                 return false;
2545
2546         for (i = 0; i < dev_priv->child_dev_num; i++) {
2547                 p_child = dev_priv->child_dev + i;
2548
2549                 if (p_child->dvo_port == PORT_IDPD &&
2550                     p_child->device_type == DEVICE_TYPE_eDP)
2551                         return true;
2552         }
2553         return false;
2554 }
2555
2556 static void
2557 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2558 {
2559         intel_attach_force_audio_property(connector);
2560         intel_attach_broadcast_rgb_property(connector);
2561 }
2562
2563 void
2564 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2565 {
2566         struct drm_i915_private *dev_priv = dev->dev_private;
2567         struct drm_connector *connector;
2568         struct intel_dp *intel_dp;
2569         struct intel_encoder *intel_encoder;
2570         struct intel_connector *intel_connector;
2571         struct drm_display_mode *fixed_mode = NULL;
2572         const char *name = NULL;
2573         int type;
2574
2575         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2576         if (!intel_dp)
2577                 return;
2578
2579         intel_dp->output_reg = output_reg;
2580         intel_dp->port = port;
2581         /* Preserve the current hw state. */
2582         intel_dp->DP = I915_READ(intel_dp->output_reg);
2583
2584         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2585         if (!intel_connector) {
2586                 kfree(intel_dp);
2587                 return;
2588         }
2589         intel_encoder = &intel_dp->base;
2590         intel_dp->attached_connector = intel_connector;
2591
2592         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2593                 if (intel_dpd_is_edp(dev))
2594                         intel_dp->is_pch_edp = true;
2595
2596         /*
2597          * FIXME : We need to initialize built-in panels before external panels.
2598          * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2599          */
2600         if (IS_VALLEYVIEW(dev) && output_reg == DP_C) {
2601                 type = DRM_MODE_CONNECTOR_eDP;
2602                 intel_encoder->type = INTEL_OUTPUT_EDP;
2603         } else if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2604                 type = DRM_MODE_CONNECTOR_eDP;
2605                 intel_encoder->type = INTEL_OUTPUT_EDP;
2606         } else {
2607                 type = DRM_MODE_CONNECTOR_DisplayPort;
2608                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2609         }
2610
2611         connector = &intel_connector->base;
2612         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2613         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2614
2615         connector->polled = DRM_CONNECTOR_POLL_HPD;
2616
2617         intel_encoder->cloneable = false;
2618
2619         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2620                           ironlake_panel_vdd_work);
2621
2622         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2623
2624         connector->interlace_allowed = true;
2625         connector->doublescan_allowed = 0;
2626
2627         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2628                          DRM_MODE_ENCODER_TMDS);
2629
2630         if (IS_HASWELL(dev))
2631                 drm_encoder_helper_add(&intel_encoder->base,
2632                                        &intel_dp_helper_funcs_hsw);
2633         else
2634                 drm_encoder_helper_add(&intel_encoder->base,
2635                                        &intel_dp_helper_funcs);
2636
2637         intel_connector_attach_encoder(intel_connector, intel_encoder);
2638         drm_sysfs_connector_add(connector);
2639
2640         if (IS_HASWELL(dev)) {
2641                 intel_encoder->enable = intel_enable_ddi;
2642                 intel_encoder->pre_enable = intel_ddi_pre_enable;
2643                 intel_encoder->disable = intel_disable_ddi;
2644                 intel_encoder->post_disable = intel_ddi_post_disable;
2645                 intel_encoder->get_hw_state = intel_ddi_get_hw_state;
2646         } else {
2647                 intel_encoder->enable = intel_enable_dp;
2648                 intel_encoder->pre_enable = intel_pre_enable_dp;
2649                 intel_encoder->disable = intel_disable_dp;
2650                 intel_encoder->post_disable = intel_post_disable_dp;
2651                 intel_encoder->get_hw_state = intel_dp_get_hw_state;
2652         }
2653         intel_connector->get_hw_state = intel_connector_get_hw_state;
2654
2655         /* Set up the DDC bus. */
2656         switch (port) {
2657         case PORT_A:
2658                 name = "DPDDC-A";
2659                 break;
2660         case PORT_B:
2661                 dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
2662                 name = "DPDDC-B";
2663                 break;
2664         case PORT_C:
2665                 dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
2666                 name = "DPDDC-C";
2667                 break;
2668         case PORT_D:
2669                 dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
2670                 name = "DPDDC-D";
2671                 break;
2672         default:
2673                 WARN(1, "Invalid port %c\n", port_name(port));
2674                 break;
2675         }
2676
2677         /* Cache some DPCD data in the eDP case */
2678         if (is_edp(intel_dp)) {
2679                 struct edp_power_seq    cur, vbt;
2680                 u32 pp_on, pp_off, pp_div;
2681
2682                 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2683                 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2684                 pp_div = I915_READ(PCH_PP_DIVISOR);
2685
2686                 if (!pp_on || !pp_off || !pp_div) {
2687                         DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2688                         intel_dp_encoder_destroy(&intel_dp->base.base);
2689                         intel_dp_destroy(&intel_connector->base);
2690                         return;
2691                 }
2692
2693                 /* Pull timing values out of registers */
2694                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2695                         PANEL_POWER_UP_DELAY_SHIFT;
2696
2697                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2698                         PANEL_LIGHT_ON_DELAY_SHIFT;
2699
2700                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2701                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2702
2703                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2704                         PANEL_POWER_DOWN_DELAY_SHIFT;
2705
2706                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2707                                PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2708
2709                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2710                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2711
2712                 vbt = dev_priv->edp.pps;
2713
2714                 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2715                               vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2716
2717 #define get_delay(field)        ((max(cur.field, vbt.field) + 9) / 10)
2718
2719                 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2720                 intel_dp->backlight_on_delay = get_delay(t8);
2721                 intel_dp->backlight_off_delay = get_delay(t9);
2722                 intel_dp->panel_power_down_delay = get_delay(t10);
2723                 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2724
2725                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2726                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2727                               intel_dp->panel_power_cycle_delay);
2728
2729                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2730                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2731         }
2732
2733         intel_dp_i2c_init(intel_dp, intel_connector, name);
2734
2735         if (is_edp(intel_dp)) {
2736                 bool ret;
2737                 struct drm_display_mode *scan;
2738                 struct edid *edid;
2739
2740                 ironlake_edp_panel_vdd_on(intel_dp);
2741                 ret = intel_dp_get_dpcd(intel_dp);
2742                 ironlake_edp_panel_vdd_off(intel_dp, false);
2743
2744                 if (ret) {
2745                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2746                                 dev_priv->no_aux_handshake =
2747                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2748                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2749                 } else {
2750                         /* if this fails, presume the device is a ghost */
2751                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2752                         intel_dp_encoder_destroy(&intel_dp->base.base);
2753                         intel_dp_destroy(&intel_connector->base);
2754                         return;
2755                 }
2756
2757                 ironlake_edp_panel_vdd_on(intel_dp);
2758                 edid = drm_get_edid(connector, &intel_dp->adapter);
2759                 if (edid) {
2760                         if (drm_add_edid_modes(connector, edid)) {
2761                                 drm_mode_connector_update_edid_property(connector, edid);
2762                                 drm_edid_to_eld(connector, edid);
2763                         } else {
2764                                 kfree(edid);
2765                                 edid = ERR_PTR(-EINVAL);
2766                         }
2767                 } else {
2768                         edid = ERR_PTR(-ENOENT);
2769                 }
2770                 intel_connector->edid = edid;
2771
2772                 /* prefer fixed mode from EDID if available */
2773                 list_for_each_entry(scan, &connector->probed_modes, head) {
2774                         if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
2775                                 fixed_mode = drm_mode_duplicate(dev, scan);
2776                                 break;
2777                         }
2778                 }
2779
2780                 /* fallback to VBT if available for eDP */
2781                 if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
2782                         fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2783                         if (fixed_mode)
2784                                 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
2785                 }
2786
2787                 ironlake_edp_panel_vdd_off(intel_dp, false);
2788         }
2789
2790         intel_encoder->hot_plug = intel_dp_hot_plug;
2791
2792         if (is_edp(intel_dp)) {
2793                 intel_panel_init(&intel_connector->panel, fixed_mode);
2794                 intel_panel_setup_backlight(connector);
2795         }
2796
2797         intel_dp_add_properties(intel_dp, connector);
2798
2799         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2800          * 0xd.  Failure to do so will result in spurious interrupts being
2801          * generated on the port when a cable is not attached.
2802          */
2803         if (IS_G4X(dev) && !IS_GM45(dev)) {
2804                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2805                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2806         }
2807 }