]> rtime.felk.cvut.cz Git - linux-imx.git/blob - drivers/usb/host/xhci.c
usb: xhci: add missing dma-mapping.h includes
[linux-imx.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33
34 #define DRIVER_AUTHOR "Sarah Sharp"
35 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
36
37 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
38 static int link_quirk;
39 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
40 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
41
42 /* TODO: copied from ehci-hcd.c - can this be refactored? */
43 /*
44  * xhci_handshake - spin reading hc until handshake completes or fails
45  * @ptr: address of hc register to be read
46  * @mask: bits to look at in result of read
47  * @done: value of those bits when handshake succeeds
48  * @usec: timeout in microseconds
49  *
50  * Returns negative errno, or zero on success
51  *
52  * Success happens when the "mask" bits have the specified value (hardware
53  * handshake done).  There are two failure modes:  "usec" have passed (major
54  * hardware flakeout), or the register reads as all-ones (hardware removed).
55  */
56 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
57                       u32 mask, u32 done, int usec)
58 {
59         u32     result;
60
61         do {
62                 result = xhci_readl(xhci, ptr);
63                 if (result == ~(u32)0)          /* card removed */
64                         return -ENODEV;
65                 result &= mask;
66                 if (result == done)
67                         return 0;
68                 udelay(1);
69                 usec--;
70         } while (usec > 0);
71         return -ETIMEDOUT;
72 }
73
74 /*
75  * Disable interrupts and begin the xHCI halting process.
76  */
77 void xhci_quiesce(struct xhci_hcd *xhci)
78 {
79         u32 halted;
80         u32 cmd;
81         u32 mask;
82
83         mask = ~(XHCI_IRQS);
84         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
85         if (!halted)
86                 mask &= ~CMD_RUN;
87
88         cmd = xhci_readl(xhci, &xhci->op_regs->command);
89         cmd &= mask;
90         xhci_writel(xhci, cmd, &xhci->op_regs->command);
91 }
92
93 /*
94  * Force HC into halt state.
95  *
96  * Disable any IRQs and clear the run/stop bit.
97  * HC will complete any current and actively pipelined transactions, and
98  * should halt within 16 ms of the run/stop bit being cleared.
99  * Read HC Halted bit in the status register to see when the HC is finished.
100  */
101 int xhci_halt(struct xhci_hcd *xhci)
102 {
103         int ret;
104         xhci_dbg(xhci, "// Halt the HC\n");
105         xhci_quiesce(xhci);
106
107         ret = xhci_handshake(xhci, &xhci->op_regs->status,
108                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
109         if (!ret) {
110                 xhci->xhc_state |= XHCI_STATE_HALTED;
111                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
112         } else
113                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
114                                 XHCI_MAX_HALT_USEC);
115         return ret;
116 }
117
118 /*
119  * Set the run bit and wait for the host to be running.
120  */
121 static int xhci_start(struct xhci_hcd *xhci)
122 {
123         u32 temp;
124         int ret;
125
126         temp = xhci_readl(xhci, &xhci->op_regs->command);
127         temp |= (CMD_RUN);
128         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
129                         temp);
130         xhci_writel(xhci, temp, &xhci->op_regs->command);
131
132         /*
133          * Wait for the HCHalted Status bit to be 0 to indicate the host is
134          * running.
135          */
136         ret = xhci_handshake(xhci, &xhci->op_regs->status,
137                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
138         if (ret == -ETIMEDOUT)
139                 xhci_err(xhci, "Host took too long to start, "
140                                 "waited %u microseconds.\n",
141                                 XHCI_MAX_HALT_USEC);
142         if (!ret)
143                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
144         return ret;
145 }
146
147 /*
148  * Reset a halted HC.
149  *
150  * This resets pipelines, timers, counters, state machines, etc.
151  * Transactions will be terminated immediately, and operational registers
152  * will be set to their defaults.
153  */
154 int xhci_reset(struct xhci_hcd *xhci)
155 {
156         u32 command;
157         u32 state;
158         int ret, i;
159
160         state = xhci_readl(xhci, &xhci->op_regs->status);
161         if ((state & STS_HALT) == 0) {
162                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
163                 return 0;
164         }
165
166         xhci_dbg(xhci, "// Reset the HC\n");
167         command = xhci_readl(xhci, &xhci->op_regs->command);
168         command |= CMD_RESET;
169         xhci_writel(xhci, command, &xhci->op_regs->command);
170
171         ret = xhci_handshake(xhci, &xhci->op_regs->command,
172                         CMD_RESET, 0, 10 * 1000 * 1000);
173         if (ret)
174                 return ret;
175
176         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
177         /*
178          * xHCI cannot write to any doorbells or operational registers other
179          * than status until the "Controller Not Ready" flag is cleared.
180          */
181         ret = xhci_handshake(xhci, &xhci->op_regs->status,
182                         STS_CNR, 0, 10 * 1000 * 1000);
183
184         for (i = 0; i < 2; ++i) {
185                 xhci->bus_state[i].port_c_suspend = 0;
186                 xhci->bus_state[i].suspended_ports = 0;
187                 xhci->bus_state[i].resuming_ports = 0;
188         }
189
190         return ret;
191 }
192
193 #ifdef CONFIG_PCI
194 static int xhci_free_msi(struct xhci_hcd *xhci)
195 {
196         int i;
197
198         if (!xhci->msix_entries)
199                 return -EINVAL;
200
201         for (i = 0; i < xhci->msix_count; i++)
202                 if (xhci->msix_entries[i].vector)
203                         free_irq(xhci->msix_entries[i].vector,
204                                         xhci_to_hcd(xhci));
205         return 0;
206 }
207
208 /*
209  * Set up MSI
210  */
211 static int xhci_setup_msi(struct xhci_hcd *xhci)
212 {
213         int ret;
214         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
215
216         ret = pci_enable_msi(pdev);
217         if (ret) {
218                 xhci_dbg(xhci, "failed to allocate MSI entry\n");
219                 return ret;
220         }
221
222         ret = request_irq(pdev->irq, xhci_msi_irq,
223                                 0, "xhci_hcd", xhci_to_hcd(xhci));
224         if (ret) {
225                 xhci_dbg(xhci, "disable MSI interrupt\n");
226                 pci_disable_msi(pdev);
227         }
228
229         return ret;
230 }
231
232 /*
233  * Free IRQs
234  * free all IRQs request
235  */
236 static void xhci_free_irq(struct xhci_hcd *xhci)
237 {
238         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
239         int ret;
240
241         /* return if using legacy interrupt */
242         if (xhci_to_hcd(xhci)->irq > 0)
243                 return;
244
245         ret = xhci_free_msi(xhci);
246         if (!ret)
247                 return;
248         if (pdev->irq > 0)
249                 free_irq(pdev->irq, xhci_to_hcd(xhci));
250
251         return;
252 }
253
254 /*
255  * Set up MSI-X
256  */
257 static int xhci_setup_msix(struct xhci_hcd *xhci)
258 {
259         int i, ret = 0;
260         struct usb_hcd *hcd = xhci_to_hcd(xhci);
261         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
262
263         /*
264          * calculate number of msi-x vectors supported.
265          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
266          *   with max number of interrupters based on the xhci HCSPARAMS1.
267          * - num_online_cpus: maximum msi-x vectors per CPUs core.
268          *   Add additional 1 vector to ensure always available interrupt.
269          */
270         xhci->msix_count = min(num_online_cpus() + 1,
271                                 HCS_MAX_INTRS(xhci->hcs_params1));
272
273         xhci->msix_entries =
274                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
275                                 GFP_KERNEL);
276         if (!xhci->msix_entries) {
277                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
278                 return -ENOMEM;
279         }
280
281         for (i = 0; i < xhci->msix_count; i++) {
282                 xhci->msix_entries[i].entry = i;
283                 xhci->msix_entries[i].vector = 0;
284         }
285
286         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
287         if (ret) {
288                 xhci_dbg(xhci, "Failed to enable MSI-X\n");
289                 goto free_entries;
290         }
291
292         for (i = 0; i < xhci->msix_count; i++) {
293                 ret = request_irq(xhci->msix_entries[i].vector,
294                                 xhci_msi_irq,
295                                 0, "xhci_hcd", xhci_to_hcd(xhci));
296                 if (ret)
297                         goto disable_msix;
298         }
299
300         hcd->msix_enabled = 1;
301         return ret;
302
303 disable_msix:
304         xhci_dbg(xhci, "disable MSI-X interrupt\n");
305         xhci_free_irq(xhci);
306         pci_disable_msix(pdev);
307 free_entries:
308         kfree(xhci->msix_entries);
309         xhci->msix_entries = NULL;
310         return ret;
311 }
312
313 /* Free any IRQs and disable MSI-X */
314 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
315 {
316         struct usb_hcd *hcd = xhci_to_hcd(xhci);
317         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
318
319         xhci_free_irq(xhci);
320
321         if (xhci->msix_entries) {
322                 pci_disable_msix(pdev);
323                 kfree(xhci->msix_entries);
324                 xhci->msix_entries = NULL;
325         } else {
326                 pci_disable_msi(pdev);
327         }
328
329         hcd->msix_enabled = 0;
330         return;
331 }
332
333 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
334 {
335         int i;
336
337         if (xhci->msix_entries) {
338                 for (i = 0; i < xhci->msix_count; i++)
339                         synchronize_irq(xhci->msix_entries[i].vector);
340         }
341 }
342
343 static int xhci_try_enable_msi(struct usb_hcd *hcd)
344 {
345         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
346         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
347         int ret;
348
349         /*
350          * Some Fresco Logic host controllers advertise MSI, but fail to
351          * generate interrupts.  Don't even try to enable MSI.
352          */
353         if (xhci->quirks & XHCI_BROKEN_MSI)
354                 goto legacy_irq;
355
356         /* unregister the legacy interrupt */
357         if (hcd->irq)
358                 free_irq(hcd->irq, hcd);
359         hcd->irq = 0;
360
361         ret = xhci_setup_msix(xhci);
362         if (ret)
363                 /* fall back to msi*/
364                 ret = xhci_setup_msi(xhci);
365
366         if (!ret)
367                 /* hcd->irq is 0, we have MSI */
368                 return 0;
369
370         if (!pdev->irq) {
371                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
372                 return -EINVAL;
373         }
374
375  legacy_irq:
376         /* fall back to legacy interrupt*/
377         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
378                         hcd->irq_descr, hcd);
379         if (ret) {
380                 xhci_err(xhci, "request interrupt %d failed\n",
381                                 pdev->irq);
382                 return ret;
383         }
384         hcd->irq = pdev->irq;
385         return 0;
386 }
387
388 #else
389
390 static int xhci_try_enable_msi(struct usb_hcd *hcd)
391 {
392         return 0;
393 }
394
395 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
396 {
397 }
398
399 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
400 {
401 }
402
403 #endif
404
405 static void compliance_mode_recovery(unsigned long arg)
406 {
407         struct xhci_hcd *xhci;
408         struct usb_hcd *hcd;
409         u32 temp;
410         int i;
411
412         xhci = (struct xhci_hcd *)arg;
413
414         for (i = 0; i < xhci->num_usb3_ports; i++) {
415                 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
416                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
417                         /*
418                          * Compliance Mode Detected. Letting USB Core
419                          * handle the Warm Reset
420                          */
421                         xhci_dbg(xhci, "Compliance mode detected->port %d\n",
422                                         i + 1);
423                         xhci_dbg(xhci, "Attempting compliance mode recovery\n");
424                         hcd = xhci->shared_hcd;
425
426                         if (hcd->state == HC_STATE_SUSPENDED)
427                                 usb_hcd_resume_root_hub(hcd);
428
429                         usb_hcd_poll_rh_status(hcd);
430                 }
431         }
432
433         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
434                 mod_timer(&xhci->comp_mode_recovery_timer,
435                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
436 }
437
438 /*
439  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
440  * that causes ports behind that hardware to enter compliance mode sometimes.
441  * The quirk creates a timer that polls every 2 seconds the link state of
442  * each host controller's port and recovers it by issuing a Warm reset
443  * if Compliance mode is detected, otherwise the port will become "dead" (no
444  * device connections or disconnections will be detected anymore). Becasue no
445  * status event is generated when entering compliance mode (per xhci spec),
446  * this quirk is needed on systems that have the failing hardware installed.
447  */
448 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
449 {
450         xhci->port_status_u0 = 0;
451         init_timer(&xhci->comp_mode_recovery_timer);
452
453         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
454         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
455         xhci->comp_mode_recovery_timer.expires = jiffies +
456                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
457
458         set_timer_slack(&xhci->comp_mode_recovery_timer,
459                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
460         add_timer(&xhci->comp_mode_recovery_timer);
461         xhci_dbg(xhci, "Compliance mode recovery timer initialized\n");
462 }
463
464 /*
465  * This function identifies the systems that have installed the SN65LVPE502CP
466  * USB3.0 re-driver and that need the Compliance Mode Quirk.
467  * Systems:
468  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
469  */
470 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
471 {
472         const char *dmi_product_name, *dmi_sys_vendor;
473
474         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
475         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
476         if (!dmi_product_name || !dmi_sys_vendor)
477                 return false;
478
479         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
480                 return false;
481
482         if (strstr(dmi_product_name, "Z420") ||
483                         strstr(dmi_product_name, "Z620") ||
484                         strstr(dmi_product_name, "Z820") ||
485                         strstr(dmi_product_name, "Z1 Workstation"))
486                 return true;
487
488         return false;
489 }
490
491 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
492 {
493         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
494 }
495
496
497 /*
498  * Initialize memory for HCD and xHC (one-time init).
499  *
500  * Program the PAGESIZE register, initialize the device context array, create
501  * device contexts (?), set up a command ring segment (or two?), create event
502  * ring (one for now).
503  */
504 int xhci_init(struct usb_hcd *hcd)
505 {
506         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
507         int retval = 0;
508
509         xhci_dbg(xhci, "xhci_init\n");
510         spin_lock_init(&xhci->lock);
511         if (xhci->hci_version == 0x95 && link_quirk) {
512                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
513                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
514         } else {
515                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
516         }
517         retval = xhci_mem_init(xhci, GFP_KERNEL);
518         xhci_dbg(xhci, "Finished xhci_init\n");
519
520         /* Initializing Compliance Mode Recovery Data If Needed */
521         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
522                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
523                 compliance_mode_recovery_timer_init(xhci);
524         }
525
526         return retval;
527 }
528
529 /*-------------------------------------------------------------------------*/
530
531
532 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
533 static void xhci_event_ring_work(unsigned long arg)
534 {
535         unsigned long flags;
536         int temp;
537         u64 temp_64;
538         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
539         int i, j;
540
541         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
542
543         spin_lock_irqsave(&xhci->lock, flags);
544         temp = xhci_readl(xhci, &xhci->op_regs->status);
545         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
546         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
547                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
548                 xhci_dbg(xhci, "HW died, polling stopped.\n");
549                 spin_unlock_irqrestore(&xhci->lock, flags);
550                 return;
551         }
552
553         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
554         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
555         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
556         xhci->error_bitmask = 0;
557         xhci_dbg(xhci, "Event ring:\n");
558         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
559         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
560         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
561         temp_64 &= ~ERST_PTR_MASK;
562         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
563         xhci_dbg(xhci, "Command ring:\n");
564         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
565         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
566         xhci_dbg_cmd_ptrs(xhci);
567         for (i = 0; i < MAX_HC_SLOTS; ++i) {
568                 if (!xhci->devs[i])
569                         continue;
570                 for (j = 0; j < 31; ++j) {
571                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
572                 }
573         }
574         spin_unlock_irqrestore(&xhci->lock, flags);
575
576         if (!xhci->zombie)
577                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
578         else
579                 xhci_dbg(xhci, "Quit polling the event ring.\n");
580 }
581 #endif
582
583 static int xhci_run_finished(struct xhci_hcd *xhci)
584 {
585         if (xhci_start(xhci)) {
586                 xhci_halt(xhci);
587                 return -ENODEV;
588         }
589         xhci->shared_hcd->state = HC_STATE_RUNNING;
590         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
591
592         if (xhci->quirks & XHCI_NEC_HOST)
593                 xhci_ring_cmd_db(xhci);
594
595         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
596         return 0;
597 }
598
599 /*
600  * Start the HC after it was halted.
601  *
602  * This function is called by the USB core when the HC driver is added.
603  * Its opposite is xhci_stop().
604  *
605  * xhci_init() must be called once before this function can be called.
606  * Reset the HC, enable device slot contexts, program DCBAAP, and
607  * set command ring pointer and event ring pointer.
608  *
609  * Setup MSI-X vectors and enable interrupts.
610  */
611 int xhci_run(struct usb_hcd *hcd)
612 {
613         u32 temp;
614         u64 temp_64;
615         int ret;
616         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
617
618         /* Start the xHCI host controller running only after the USB 2.0 roothub
619          * is setup.
620          */
621
622         hcd->uses_new_polling = 1;
623         if (!usb_hcd_is_primary_hcd(hcd))
624                 return xhci_run_finished(xhci);
625
626         xhci_dbg(xhci, "xhci_run\n");
627
628         ret = xhci_try_enable_msi(hcd);
629         if (ret)
630                 return ret;
631
632 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
633         init_timer(&xhci->event_ring_timer);
634         xhci->event_ring_timer.data = (unsigned long) xhci;
635         xhci->event_ring_timer.function = xhci_event_ring_work;
636         /* Poll the event ring */
637         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
638         xhci->zombie = 0;
639         xhci_dbg(xhci, "Setting event ring polling timer\n");
640         add_timer(&xhci->event_ring_timer);
641 #endif
642
643         xhci_dbg(xhci, "Command ring memory map follows:\n");
644         xhci_debug_ring(xhci, xhci->cmd_ring);
645         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
646         xhci_dbg_cmd_ptrs(xhci);
647
648         xhci_dbg(xhci, "ERST memory map follows:\n");
649         xhci_dbg_erst(xhci, &xhci->erst);
650         xhci_dbg(xhci, "Event ring:\n");
651         xhci_debug_ring(xhci, xhci->event_ring);
652         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
653         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
654         temp_64 &= ~ERST_PTR_MASK;
655         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
656
657         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
658         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
659         temp &= ~ER_IRQ_INTERVAL_MASK;
660         temp |= (u32) 160;
661         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
662
663         /* Set the HCD state before we enable the irqs */
664         temp = xhci_readl(xhci, &xhci->op_regs->command);
665         temp |= (CMD_EIE);
666         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
667                         temp);
668         xhci_writel(xhci, temp, &xhci->op_regs->command);
669
670         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
671         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
672                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
673         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
674                         &xhci->ir_set->irq_pending);
675         xhci_print_ir_set(xhci, 0);
676
677         if (xhci->quirks & XHCI_NEC_HOST)
678                 xhci_queue_vendor_command(xhci, 0, 0, 0,
679                                 TRB_TYPE(TRB_NEC_GET_FW));
680
681         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
682         return 0;
683 }
684
685 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
686 {
687         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
688
689         spin_lock_irq(&xhci->lock);
690         xhci_halt(xhci);
691
692         /* The shared_hcd is going to be deallocated shortly (the USB core only
693          * calls this function when allocation fails in usb_add_hcd(), or
694          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
695          */
696         xhci->shared_hcd = NULL;
697         spin_unlock_irq(&xhci->lock);
698 }
699
700 /*
701  * Stop xHCI driver.
702  *
703  * This function is called by the USB core when the HC driver is removed.
704  * Its opposite is xhci_run().
705  *
706  * Disable device contexts, disable IRQs, and quiesce the HC.
707  * Reset the HC, finish any completed transactions, and cleanup memory.
708  */
709 void xhci_stop(struct usb_hcd *hcd)
710 {
711         u32 temp;
712         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
713
714         if (!usb_hcd_is_primary_hcd(hcd)) {
715                 xhci_only_stop_hcd(xhci->shared_hcd);
716                 return;
717         }
718
719         spin_lock_irq(&xhci->lock);
720         /* Make sure the xHC is halted for a USB3 roothub
721          * (xhci_stop() could be called as part of failed init).
722          */
723         xhci_halt(xhci);
724         xhci_reset(xhci);
725         spin_unlock_irq(&xhci->lock);
726
727         xhci_cleanup_msix(xhci);
728
729 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
730         /* Tell the event ring poll function not to reschedule */
731         xhci->zombie = 1;
732         del_timer_sync(&xhci->event_ring_timer);
733 #endif
734
735         /* Deleting Compliance Mode Recovery Timer */
736         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
737                         (!(xhci_all_ports_seen_u0(xhci)))) {
738                 del_timer_sync(&xhci->comp_mode_recovery_timer);
739                 xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
740                                 __func__);
741         }
742
743         if (xhci->quirks & XHCI_AMD_PLL_FIX)
744                 usb_amd_dev_put();
745
746         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
747         temp = xhci_readl(xhci, &xhci->op_regs->status);
748         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
749         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
750         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
751                         &xhci->ir_set->irq_pending);
752         xhci_print_ir_set(xhci, 0);
753
754         xhci_dbg(xhci, "cleaning up memory\n");
755         xhci_mem_cleanup(xhci);
756         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
757                     xhci_readl(xhci, &xhci->op_regs->status));
758 }
759
760 /*
761  * Shutdown HC (not bus-specific)
762  *
763  * This is called when the machine is rebooting or halting.  We assume that the
764  * machine will be powered off, and the HC's internal state will be reset.
765  * Don't bother to free memory.
766  *
767  * This will only ever be called with the main usb_hcd (the USB3 roothub).
768  */
769 void xhci_shutdown(struct usb_hcd *hcd)
770 {
771         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
772
773         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
774                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
775
776         spin_lock_irq(&xhci->lock);
777         xhci_halt(xhci);
778         spin_unlock_irq(&xhci->lock);
779
780         xhci_cleanup_msix(xhci);
781
782         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
783                     xhci_readl(xhci, &xhci->op_regs->status));
784 }
785
786 #ifdef CONFIG_PM
787 static void xhci_save_registers(struct xhci_hcd *xhci)
788 {
789         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
790         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
791         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
792         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
793         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
794         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
795         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
796         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
797         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
798 }
799
800 static void xhci_restore_registers(struct xhci_hcd *xhci)
801 {
802         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
803         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
804         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
805         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
806         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
807         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
808         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
809         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
810         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
811 }
812
813 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
814 {
815         u64     val_64;
816
817         /* step 2: initialize command ring buffer */
818         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
819         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
820                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
821                                       xhci->cmd_ring->dequeue) &
822                  (u64) ~CMD_RING_RSVD_BITS) |
823                 xhci->cmd_ring->cycle_state;
824         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
825                         (long unsigned long) val_64);
826         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
827 }
828
829 /*
830  * The whole command ring must be cleared to zero when we suspend the host.
831  *
832  * The host doesn't save the command ring pointer in the suspend well, so we
833  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
834  * aligned, because of the reserved bits in the command ring dequeue pointer
835  * register.  Therefore, we can't just set the dequeue pointer back in the
836  * middle of the ring (TRBs are 16-byte aligned).
837  */
838 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
839 {
840         struct xhci_ring *ring;
841         struct xhci_segment *seg;
842
843         ring = xhci->cmd_ring;
844         seg = ring->deq_seg;
845         do {
846                 memset(seg->trbs, 0,
847                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
848                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
849                         cpu_to_le32(~TRB_CYCLE);
850                 seg = seg->next;
851         } while (seg != ring->deq_seg);
852
853         /* Reset the software enqueue and dequeue pointers */
854         ring->deq_seg = ring->first_seg;
855         ring->dequeue = ring->first_seg->trbs;
856         ring->enq_seg = ring->deq_seg;
857         ring->enqueue = ring->dequeue;
858
859         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
860         /*
861          * Ring is now zeroed, so the HW should look for change of ownership
862          * when the cycle bit is set to 1.
863          */
864         ring->cycle_state = 1;
865
866         /*
867          * Reset the hardware dequeue pointer.
868          * Yes, this will need to be re-written after resume, but we're paranoid
869          * and want to make sure the hardware doesn't access bogus memory
870          * because, say, the BIOS or an SMI started the host without changing
871          * the command ring pointers.
872          */
873         xhci_set_cmd_ring_deq(xhci);
874 }
875
876 /*
877  * Stop HC (not bus-specific)
878  *
879  * This is called when the machine transition into S3/S4 mode.
880  *
881  */
882 int xhci_suspend(struct xhci_hcd *xhci)
883 {
884         int                     rc = 0;
885         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
886         u32                     command;
887
888         if (hcd->state != HC_STATE_SUSPENDED ||
889                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
890                 return -EINVAL;
891
892         /* Don't poll the roothubs on bus suspend. */
893         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
894         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
895         del_timer_sync(&hcd->rh_timer);
896
897         spin_lock_irq(&xhci->lock);
898         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
899         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
900         /* step 1: stop endpoint */
901         /* skipped assuming that port suspend has done */
902
903         /* step 2: clear Run/Stop bit */
904         command = xhci_readl(xhci, &xhci->op_regs->command);
905         command &= ~CMD_RUN;
906         xhci_writel(xhci, command, &xhci->op_regs->command);
907         if (xhci_handshake(xhci, &xhci->op_regs->status,
908                       STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
909                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
910                 spin_unlock_irq(&xhci->lock);
911                 return -ETIMEDOUT;
912         }
913         xhci_clear_command_ring(xhci);
914
915         /* step 3: save registers */
916         xhci_save_registers(xhci);
917
918         /* step 4: set CSS flag */
919         command = xhci_readl(xhci, &xhci->op_regs->command);
920         command |= CMD_CSS;
921         xhci_writel(xhci, command, &xhci->op_regs->command);
922         if (xhci_handshake(xhci, &xhci->op_regs->status,
923                                 STS_SAVE, 0, 10 * 1000)) {
924                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
925                 spin_unlock_irq(&xhci->lock);
926                 return -ETIMEDOUT;
927         }
928         spin_unlock_irq(&xhci->lock);
929
930         /*
931          * Deleting Compliance Mode Recovery Timer because the xHCI Host
932          * is about to be suspended.
933          */
934         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
935                         (!(xhci_all_ports_seen_u0(xhci)))) {
936                 del_timer_sync(&xhci->comp_mode_recovery_timer);
937                 xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
938                                 __func__);
939         }
940
941         /* step 5: remove core well power */
942         /* synchronize irq when using MSI-X */
943         xhci_msix_sync_irqs(xhci);
944
945         return rc;
946 }
947
948 /*
949  * start xHC (not bus-specific)
950  *
951  * This is called when the machine transition from S3/S4 mode.
952  *
953  */
954 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
955 {
956         u32                     command, temp = 0;
957         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
958         struct usb_hcd          *secondary_hcd;
959         int                     retval = 0;
960         bool                    comp_timer_running = false;
961
962         /* Wait a bit if either of the roothubs need to settle from the
963          * transition into bus suspend.
964          */
965         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
966                         time_before(jiffies,
967                                 xhci->bus_state[1].next_statechange))
968                 msleep(100);
969
970         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
971         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
972
973         spin_lock_irq(&xhci->lock);
974         if (xhci->quirks & XHCI_RESET_ON_RESUME)
975                 hibernated = true;
976
977         if (!hibernated) {
978                 /* step 1: restore register */
979                 xhci_restore_registers(xhci);
980                 /* step 2: initialize command ring buffer */
981                 xhci_set_cmd_ring_deq(xhci);
982                 /* step 3: restore state and start state*/
983                 /* step 3: set CRS flag */
984                 command = xhci_readl(xhci, &xhci->op_regs->command);
985                 command |= CMD_CRS;
986                 xhci_writel(xhci, command, &xhci->op_regs->command);
987                 if (xhci_handshake(xhci, &xhci->op_regs->status,
988                               STS_RESTORE, 0, 10 * 1000)) {
989                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
990                         spin_unlock_irq(&xhci->lock);
991                         return -ETIMEDOUT;
992                 }
993                 temp = xhci_readl(xhci, &xhci->op_regs->status);
994         }
995
996         /* If restore operation fails, re-initialize the HC during resume */
997         if ((temp & STS_SRE) || hibernated) {
998
999                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1000                                 !(xhci_all_ports_seen_u0(xhci))) {
1001                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1002                         xhci_dbg(xhci, "Compliance Mode Recovery Timer deleted!\n");
1003                 }
1004
1005                 /* Let the USB core know _both_ roothubs lost power. */
1006                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1007                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1008
1009                 xhci_dbg(xhci, "Stop HCD\n");
1010                 xhci_halt(xhci);
1011                 xhci_reset(xhci);
1012                 spin_unlock_irq(&xhci->lock);
1013                 xhci_cleanup_msix(xhci);
1014
1015 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
1016                 /* Tell the event ring poll function not to reschedule */
1017                 xhci->zombie = 1;
1018                 del_timer_sync(&xhci->event_ring_timer);
1019 #endif
1020
1021                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1022                 temp = xhci_readl(xhci, &xhci->op_regs->status);
1023                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
1024                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1025                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1026                                 &xhci->ir_set->irq_pending);
1027                 xhci_print_ir_set(xhci, 0);
1028
1029                 xhci_dbg(xhci, "cleaning up memory\n");
1030                 xhci_mem_cleanup(xhci);
1031                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1032                             xhci_readl(xhci, &xhci->op_regs->status));
1033
1034                 /* USB core calls the PCI reinit and start functions twice:
1035                  * first with the primary HCD, and then with the secondary HCD.
1036                  * If we don't do the same, the host will never be started.
1037                  */
1038                 if (!usb_hcd_is_primary_hcd(hcd))
1039                         secondary_hcd = hcd;
1040                 else
1041                         secondary_hcd = xhci->shared_hcd;
1042
1043                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1044                 retval = xhci_init(hcd->primary_hcd);
1045                 if (retval)
1046                         return retval;
1047                 comp_timer_running = true;
1048
1049                 xhci_dbg(xhci, "Start the primary HCD\n");
1050                 retval = xhci_run(hcd->primary_hcd);
1051                 if (!retval) {
1052                         xhci_dbg(xhci, "Start the secondary HCD\n");
1053                         retval = xhci_run(secondary_hcd);
1054                 }
1055                 hcd->state = HC_STATE_SUSPENDED;
1056                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1057                 goto done;
1058         }
1059
1060         /* step 4: set Run/Stop bit */
1061         command = xhci_readl(xhci, &xhci->op_regs->command);
1062         command |= CMD_RUN;
1063         xhci_writel(xhci, command, &xhci->op_regs->command);
1064         xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1065                   0, 250 * 1000);
1066
1067         /* step 5: walk topology and initialize portsc,
1068          * portpmsc and portli
1069          */
1070         /* this is done in bus_resume */
1071
1072         /* step 6: restart each of the previously
1073          * Running endpoints by ringing their doorbells
1074          */
1075
1076         spin_unlock_irq(&xhci->lock);
1077
1078  done:
1079         if (retval == 0) {
1080                 usb_hcd_resume_root_hub(hcd);
1081                 usb_hcd_resume_root_hub(xhci->shared_hcd);
1082         }
1083
1084         /*
1085          * If system is subject to the Quirk, Compliance Mode Timer needs to
1086          * be re-initialized Always after a system resume. Ports are subject
1087          * to suffer the Compliance Mode issue again. It doesn't matter if
1088          * ports have entered previously to U0 before system's suspension.
1089          */
1090         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1091                 compliance_mode_recovery_timer_init(xhci);
1092
1093         /* Re-enable port polling. */
1094         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1095         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1096         usb_hcd_poll_rh_status(hcd);
1097
1098         return retval;
1099 }
1100 #endif  /* CONFIG_PM */
1101
1102 /*-------------------------------------------------------------------------*/
1103
1104 /**
1105  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1106  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1107  * value to right shift 1 for the bitmask.
1108  *
1109  * Index  = (epnum * 2) + direction - 1,
1110  * where direction = 0 for OUT, 1 for IN.
1111  * For control endpoints, the IN index is used (OUT index is unused), so
1112  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1113  */
1114 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1115 {
1116         unsigned int index;
1117         if (usb_endpoint_xfer_control(desc))
1118                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1119         else
1120                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1121                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1122         return index;
1123 }
1124
1125 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1126  * address from the XHCI endpoint index.
1127  */
1128 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1129 {
1130         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1131         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1132         return direction | number;
1133 }
1134
1135 /* Find the flag for this endpoint (for use in the control context).  Use the
1136  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1137  * bit 1, etc.
1138  */
1139 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1140 {
1141         return 1 << (xhci_get_endpoint_index(desc) + 1);
1142 }
1143
1144 /* Find the flag for this endpoint (for use in the control context).  Use the
1145  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1146  * bit 1, etc.
1147  */
1148 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1149 {
1150         return 1 << (ep_index + 1);
1151 }
1152
1153 /* Compute the last valid endpoint context index.  Basically, this is the
1154  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1155  * we find the most significant bit set in the added contexts flags.
1156  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1157  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1158  */
1159 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1160 {
1161         return fls(added_ctxs) - 1;
1162 }
1163
1164 /* Returns 1 if the arguments are OK;
1165  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1166  */
1167 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1168                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1169                 const char *func) {
1170         struct xhci_hcd *xhci;
1171         struct xhci_virt_device *virt_dev;
1172
1173         if (!hcd || (check_ep && !ep) || !udev) {
1174                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1175                                 func);
1176                 return -EINVAL;
1177         }
1178         if (!udev->parent) {
1179                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1180                                 func);
1181                 return 0;
1182         }
1183
1184         xhci = hcd_to_xhci(hcd);
1185         if (check_virt_dev) {
1186                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1187                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
1188                                                 "device\n", func);
1189                         return -EINVAL;
1190                 }
1191
1192                 virt_dev = xhci->devs[udev->slot_id];
1193                 if (virt_dev->udev != udev) {
1194                         printk(KERN_DEBUG "xHCI %s called with udev and "
1195                                           "virt_dev does not match\n", func);
1196                         return -EINVAL;
1197                 }
1198         }
1199
1200         if (xhci->xhc_state & XHCI_STATE_HALTED)
1201                 return -ENODEV;
1202
1203         return 1;
1204 }
1205
1206 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1207                 struct usb_device *udev, struct xhci_command *command,
1208                 bool ctx_change, bool must_succeed);
1209
1210 /*
1211  * Full speed devices may have a max packet size greater than 8 bytes, but the
1212  * USB core doesn't know that until it reads the first 8 bytes of the
1213  * descriptor.  If the usb_device's max packet size changes after that point,
1214  * we need to issue an evaluate context command and wait on it.
1215  */
1216 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1217                 unsigned int ep_index, struct urb *urb)
1218 {
1219         struct xhci_container_ctx *in_ctx;
1220         struct xhci_container_ctx *out_ctx;
1221         struct xhci_input_control_ctx *ctrl_ctx;
1222         struct xhci_ep_ctx *ep_ctx;
1223         int max_packet_size;
1224         int hw_max_packet_size;
1225         int ret = 0;
1226
1227         out_ctx = xhci->devs[slot_id]->out_ctx;
1228         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1229         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1230         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1231         if (hw_max_packet_size != max_packet_size) {
1232                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1233                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1234                                 max_packet_size);
1235                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1236                                 hw_max_packet_size);
1237                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1238
1239                 /* Set up the input context flags for the command */
1240                 /* FIXME: This won't work if a non-default control endpoint
1241                  * changes max packet sizes.
1242                  */
1243                 in_ctx = xhci->devs[slot_id]->in_ctx;
1244                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1245                 if (!ctrl_ctx) {
1246                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1247                                         __func__);
1248                         return -ENOMEM;
1249                 }
1250                 /* Set up the modified control endpoint 0 */
1251                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1252                                 xhci->devs[slot_id]->out_ctx, ep_index);
1253
1254                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1255                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1256                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1257
1258                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1259                 ctrl_ctx->drop_flags = 0;
1260
1261                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1262                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1263                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1264                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1265
1266                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1267                                 true, false);
1268
1269                 /* Clean up the input context for later use by bandwidth
1270                  * functions.
1271                  */
1272                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1273         }
1274         return ret;
1275 }
1276
1277 /*
1278  * non-error returns are a promise to giveback() the urb later
1279  * we drop ownership so next owner (or urb unlink) can get it
1280  */
1281 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1282 {
1283         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1284         struct xhci_td *buffer;
1285         unsigned long flags;
1286         int ret = 0;
1287         unsigned int slot_id, ep_index;
1288         struct urb_priv *urb_priv;
1289         int size, i;
1290
1291         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1292                                         true, true, __func__) <= 0)
1293                 return -EINVAL;
1294
1295         slot_id = urb->dev->slot_id;
1296         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1297
1298         if (!HCD_HW_ACCESSIBLE(hcd)) {
1299                 if (!in_interrupt())
1300                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1301                 ret = -ESHUTDOWN;
1302                 goto exit;
1303         }
1304
1305         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1306                 size = urb->number_of_packets;
1307         else
1308                 size = 1;
1309
1310         urb_priv = kzalloc(sizeof(struct urb_priv) +
1311                                   size * sizeof(struct xhci_td *), mem_flags);
1312         if (!urb_priv)
1313                 return -ENOMEM;
1314
1315         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1316         if (!buffer) {
1317                 kfree(urb_priv);
1318                 return -ENOMEM;
1319         }
1320
1321         for (i = 0; i < size; i++) {
1322                 urb_priv->td[i] = buffer;
1323                 buffer++;
1324         }
1325
1326         urb_priv->length = size;
1327         urb_priv->td_cnt = 0;
1328         urb->hcpriv = urb_priv;
1329
1330         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1331                 /* Check to see if the max packet size for the default control
1332                  * endpoint changed during FS device enumeration
1333                  */
1334                 if (urb->dev->speed == USB_SPEED_FULL) {
1335                         ret = xhci_check_maxpacket(xhci, slot_id,
1336                                         ep_index, urb);
1337                         if (ret < 0) {
1338                                 xhci_urb_free_priv(xhci, urb_priv);
1339                                 urb->hcpriv = NULL;
1340                                 return ret;
1341                         }
1342                 }
1343
1344                 /* We have a spinlock and interrupts disabled, so we must pass
1345                  * atomic context to this function, which may allocate memory.
1346                  */
1347                 spin_lock_irqsave(&xhci->lock, flags);
1348                 if (xhci->xhc_state & XHCI_STATE_DYING)
1349                         goto dying;
1350                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1351                                 slot_id, ep_index);
1352                 if (ret)
1353                         goto free_priv;
1354                 spin_unlock_irqrestore(&xhci->lock, flags);
1355         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1356                 spin_lock_irqsave(&xhci->lock, flags);
1357                 if (xhci->xhc_state & XHCI_STATE_DYING)
1358                         goto dying;
1359                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1360                                 EP_GETTING_STREAMS) {
1361                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1362                                         "is transitioning to using streams.\n");
1363                         ret = -EINVAL;
1364                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1365                                 EP_GETTING_NO_STREAMS) {
1366                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1367                                         "is transitioning to "
1368                                         "not having streams.\n");
1369                         ret = -EINVAL;
1370                 } else {
1371                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1372                                         slot_id, ep_index);
1373                 }
1374                 if (ret)
1375                         goto free_priv;
1376                 spin_unlock_irqrestore(&xhci->lock, flags);
1377         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1378                 spin_lock_irqsave(&xhci->lock, flags);
1379                 if (xhci->xhc_state & XHCI_STATE_DYING)
1380                         goto dying;
1381                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1382                                 slot_id, ep_index);
1383                 if (ret)
1384                         goto free_priv;
1385                 spin_unlock_irqrestore(&xhci->lock, flags);
1386         } else {
1387                 spin_lock_irqsave(&xhci->lock, flags);
1388                 if (xhci->xhc_state & XHCI_STATE_DYING)
1389                         goto dying;
1390                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1391                                 slot_id, ep_index);
1392                 if (ret)
1393                         goto free_priv;
1394                 spin_unlock_irqrestore(&xhci->lock, flags);
1395         }
1396 exit:
1397         return ret;
1398 dying:
1399         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1400                         "non-responsive xHCI host.\n",
1401                         urb->ep->desc.bEndpointAddress, urb);
1402         ret = -ESHUTDOWN;
1403 free_priv:
1404         xhci_urb_free_priv(xhci, urb_priv);
1405         urb->hcpriv = NULL;
1406         spin_unlock_irqrestore(&xhci->lock, flags);
1407         return ret;
1408 }
1409
1410 /* Get the right ring for the given URB.
1411  * If the endpoint supports streams, boundary check the URB's stream ID.
1412  * If the endpoint doesn't support streams, return the singular endpoint ring.
1413  */
1414 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1415                 struct urb *urb)
1416 {
1417         unsigned int slot_id;
1418         unsigned int ep_index;
1419         unsigned int stream_id;
1420         struct xhci_virt_ep *ep;
1421
1422         slot_id = urb->dev->slot_id;
1423         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1424         stream_id = urb->stream_id;
1425         ep = &xhci->devs[slot_id]->eps[ep_index];
1426         /* Common case: no streams */
1427         if (!(ep->ep_state & EP_HAS_STREAMS))
1428                 return ep->ring;
1429
1430         if (stream_id == 0) {
1431                 xhci_warn(xhci,
1432                                 "WARN: Slot ID %u, ep index %u has streams, "
1433                                 "but URB has no stream ID.\n",
1434                                 slot_id, ep_index);
1435                 return NULL;
1436         }
1437
1438         if (stream_id < ep->stream_info->num_streams)
1439                 return ep->stream_info->stream_rings[stream_id];
1440
1441         xhci_warn(xhci,
1442                         "WARN: Slot ID %u, ep index %u has "
1443                         "stream IDs 1 to %u allocated, "
1444                         "but stream ID %u is requested.\n",
1445                         slot_id, ep_index,
1446                         ep->stream_info->num_streams - 1,
1447                         stream_id);
1448         return NULL;
1449 }
1450
1451 /*
1452  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1453  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1454  * should pick up where it left off in the TD, unless a Set Transfer Ring
1455  * Dequeue Pointer is issued.
1456  *
1457  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1458  * the ring.  Since the ring is a contiguous structure, they can't be physically
1459  * removed.  Instead, there are two options:
1460  *
1461  *  1) If the HC is in the middle of processing the URB to be canceled, we
1462  *     simply move the ring's dequeue pointer past those TRBs using the Set
1463  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1464  *     when drivers timeout on the last submitted URB and attempt to cancel.
1465  *
1466  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1467  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1468  *     HC will need to invalidate the any TRBs it has cached after the stop
1469  *     endpoint command, as noted in the xHCI 0.95 errata.
1470  *
1471  *  3) The TD may have completed by the time the Stop Endpoint Command
1472  *     completes, so software needs to handle that case too.
1473  *
1474  * This function should protect against the TD enqueueing code ringing the
1475  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1476  * It also needs to account for multiple cancellations on happening at the same
1477  * time for the same endpoint.
1478  *
1479  * Note that this function can be called in any context, or so says
1480  * usb_hcd_unlink_urb()
1481  */
1482 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1483 {
1484         unsigned long flags;
1485         int ret, i;
1486         u32 temp;
1487         struct xhci_hcd *xhci;
1488         struct urb_priv *urb_priv;
1489         struct xhci_td *td;
1490         unsigned int ep_index;
1491         struct xhci_ring *ep_ring;
1492         struct xhci_virt_ep *ep;
1493
1494         xhci = hcd_to_xhci(hcd);
1495         spin_lock_irqsave(&xhci->lock, flags);
1496         /* Make sure the URB hasn't completed or been unlinked already */
1497         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1498         if (ret || !urb->hcpriv)
1499                 goto done;
1500         temp = xhci_readl(xhci, &xhci->op_regs->status);
1501         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1502                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1503                 urb_priv = urb->hcpriv;
1504                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1505                         td = urb_priv->td[i];
1506                         if (!list_empty(&td->td_list))
1507                                 list_del_init(&td->td_list);
1508                         if (!list_empty(&td->cancelled_td_list))
1509                                 list_del_init(&td->cancelled_td_list);
1510                 }
1511
1512                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1513                 spin_unlock_irqrestore(&xhci->lock, flags);
1514                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1515                 xhci_urb_free_priv(xhci, urb_priv);
1516                 return ret;
1517         }
1518         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1519                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1520                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1521                                 "non-responsive xHCI host.\n",
1522                                 urb->ep->desc.bEndpointAddress, urb);
1523                 /* Let the stop endpoint command watchdog timer (which set this
1524                  * state) finish cleaning up the endpoint TD lists.  We must
1525                  * have caught it in the middle of dropping a lock and giving
1526                  * back an URB.
1527                  */
1528                 goto done;
1529         }
1530
1531         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1532         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1533         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1534         if (!ep_ring) {
1535                 ret = -EINVAL;
1536                 goto done;
1537         }
1538
1539         urb_priv = urb->hcpriv;
1540         i = urb_priv->td_cnt;
1541         if (i < urb_priv->length)
1542                 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1543                                 "starting at offset 0x%llx\n",
1544                                 urb, urb->dev->devpath,
1545                                 urb->ep->desc.bEndpointAddress,
1546                                 (unsigned long long) xhci_trb_virt_to_dma(
1547                                         urb_priv->td[i]->start_seg,
1548                                         urb_priv->td[i]->first_trb));
1549
1550         for (; i < urb_priv->length; i++) {
1551                 td = urb_priv->td[i];
1552                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1553         }
1554
1555         /* Queue a stop endpoint command, but only if this is
1556          * the first cancellation to be handled.
1557          */
1558         if (!(ep->ep_state & EP_HALT_PENDING)) {
1559                 ep->ep_state |= EP_HALT_PENDING;
1560                 ep->stop_cmds_pending++;
1561                 ep->stop_cmd_timer.expires = jiffies +
1562                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1563                 add_timer(&ep->stop_cmd_timer);
1564                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1565                 xhci_ring_cmd_db(xhci);
1566         }
1567 done:
1568         spin_unlock_irqrestore(&xhci->lock, flags);
1569         return ret;
1570 }
1571
1572 /* Drop an endpoint from a new bandwidth configuration for this device.
1573  * Only one call to this function is allowed per endpoint before
1574  * check_bandwidth() or reset_bandwidth() must be called.
1575  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1576  * add the endpoint to the schedule with possibly new parameters denoted by a
1577  * different endpoint descriptor in usb_host_endpoint.
1578  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1579  * not allowed.
1580  *
1581  * The USB core will not allow URBs to be queued to an endpoint that is being
1582  * disabled, so there's no need for mutual exclusion to protect
1583  * the xhci->devs[slot_id] structure.
1584  */
1585 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1586                 struct usb_host_endpoint *ep)
1587 {
1588         struct xhci_hcd *xhci;
1589         struct xhci_container_ctx *in_ctx, *out_ctx;
1590         struct xhci_input_control_ctx *ctrl_ctx;
1591         struct xhci_slot_ctx *slot_ctx;
1592         unsigned int last_ctx;
1593         unsigned int ep_index;
1594         struct xhci_ep_ctx *ep_ctx;
1595         u32 drop_flag;
1596         u32 new_add_flags, new_drop_flags, new_slot_info;
1597         int ret;
1598
1599         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1600         if (ret <= 0)
1601                 return ret;
1602         xhci = hcd_to_xhci(hcd);
1603         if (xhci->xhc_state & XHCI_STATE_DYING)
1604                 return -ENODEV;
1605
1606         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1607         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1608         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1609                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1610                                 __func__, drop_flag);
1611                 return 0;
1612         }
1613
1614         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1615         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1616         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1617         if (!ctrl_ctx) {
1618                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1619                                 __func__);
1620                 return 0;
1621         }
1622
1623         ep_index = xhci_get_endpoint_index(&ep->desc);
1624         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1625         /* If the HC already knows the endpoint is disabled,
1626          * or the HCD has noted it is disabled, ignore this request
1627          */
1628         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1629              cpu_to_le32(EP_STATE_DISABLED)) ||
1630             le32_to_cpu(ctrl_ctx->drop_flags) &
1631             xhci_get_endpoint_flag(&ep->desc)) {
1632                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1633                                 __func__, ep);
1634                 return 0;
1635         }
1636
1637         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1638         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1639
1640         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1641         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1642
1643         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1644         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1645         /* Update the last valid endpoint context, if we deleted the last one */
1646         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1647             LAST_CTX(last_ctx)) {
1648                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1649                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1650         }
1651         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1652
1653         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1654
1655         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1656                         (unsigned int) ep->desc.bEndpointAddress,
1657                         udev->slot_id,
1658                         (unsigned int) new_drop_flags,
1659                         (unsigned int) new_add_flags,
1660                         (unsigned int) new_slot_info);
1661         return 0;
1662 }
1663
1664 /* Add an endpoint to a new possible bandwidth configuration for this device.
1665  * Only one call to this function is allowed per endpoint before
1666  * check_bandwidth() or reset_bandwidth() must be called.
1667  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1668  * add the endpoint to the schedule with possibly new parameters denoted by a
1669  * different endpoint descriptor in usb_host_endpoint.
1670  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1671  * not allowed.
1672  *
1673  * The USB core will not allow URBs to be queued to an endpoint until the
1674  * configuration or alt setting is installed in the device, so there's no need
1675  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1676  */
1677 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1678                 struct usb_host_endpoint *ep)
1679 {
1680         struct xhci_hcd *xhci;
1681         struct xhci_container_ctx *in_ctx, *out_ctx;
1682         unsigned int ep_index;
1683         struct xhci_slot_ctx *slot_ctx;
1684         struct xhci_input_control_ctx *ctrl_ctx;
1685         u32 added_ctxs;
1686         unsigned int last_ctx;
1687         u32 new_add_flags, new_drop_flags, new_slot_info;
1688         struct xhci_virt_device *virt_dev;
1689         int ret = 0;
1690
1691         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1692         if (ret <= 0) {
1693                 /* So we won't queue a reset ep command for a root hub */
1694                 ep->hcpriv = NULL;
1695                 return ret;
1696         }
1697         xhci = hcd_to_xhci(hcd);
1698         if (xhci->xhc_state & XHCI_STATE_DYING)
1699                 return -ENODEV;
1700
1701         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1702         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1703         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1704                 /* FIXME when we have to issue an evaluate endpoint command to
1705                  * deal with ep0 max packet size changing once we get the
1706                  * descriptors
1707                  */
1708                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1709                                 __func__, added_ctxs);
1710                 return 0;
1711         }
1712
1713         virt_dev = xhci->devs[udev->slot_id];
1714         in_ctx = virt_dev->in_ctx;
1715         out_ctx = virt_dev->out_ctx;
1716         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1717         if (!ctrl_ctx) {
1718                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1719                                 __func__);
1720                 return 0;
1721         }
1722
1723         ep_index = xhci_get_endpoint_index(&ep->desc);
1724         /* If this endpoint is already in use, and the upper layers are trying
1725          * to add it again without dropping it, reject the addition.
1726          */
1727         if (virt_dev->eps[ep_index].ring &&
1728                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1729                                 xhci_get_endpoint_flag(&ep->desc))) {
1730                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1731                                 "without dropping it.\n",
1732                                 (unsigned int) ep->desc.bEndpointAddress);
1733                 return -EINVAL;
1734         }
1735
1736         /* If the HCD has already noted the endpoint is enabled,
1737          * ignore this request.
1738          */
1739         if (le32_to_cpu(ctrl_ctx->add_flags) &
1740             xhci_get_endpoint_flag(&ep->desc)) {
1741                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1742                                 __func__, ep);
1743                 return 0;
1744         }
1745
1746         /*
1747          * Configuration and alternate setting changes must be done in
1748          * process context, not interrupt context (or so documenation
1749          * for usb_set_interface() and usb_set_configuration() claim).
1750          */
1751         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1752                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1753                                 __func__, ep->desc.bEndpointAddress);
1754                 return -ENOMEM;
1755         }
1756
1757         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1758         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1759
1760         /* If xhci_endpoint_disable() was called for this endpoint, but the
1761          * xHC hasn't been notified yet through the check_bandwidth() call,
1762          * this re-adds a new state for the endpoint from the new endpoint
1763          * descriptors.  We must drop and re-add this endpoint, so we leave the
1764          * drop flags alone.
1765          */
1766         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1767
1768         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1769         /* Update the last valid endpoint context, if we just added one past */
1770         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1771             LAST_CTX(last_ctx)) {
1772                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1773                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1774         }
1775         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1776
1777         /* Store the usb_device pointer for later use */
1778         ep->hcpriv = udev;
1779
1780         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1781                         (unsigned int) ep->desc.bEndpointAddress,
1782                         udev->slot_id,
1783                         (unsigned int) new_drop_flags,
1784                         (unsigned int) new_add_flags,
1785                         (unsigned int) new_slot_info);
1786         return 0;
1787 }
1788
1789 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1790 {
1791         struct xhci_input_control_ctx *ctrl_ctx;
1792         struct xhci_ep_ctx *ep_ctx;
1793         struct xhci_slot_ctx *slot_ctx;
1794         int i;
1795
1796         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1797         if (!ctrl_ctx) {
1798                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1799                                 __func__);
1800                 return;
1801         }
1802
1803         /* When a device's add flag and drop flag are zero, any subsequent
1804          * configure endpoint command will leave that endpoint's state
1805          * untouched.  Make sure we don't leave any old state in the input
1806          * endpoint contexts.
1807          */
1808         ctrl_ctx->drop_flags = 0;
1809         ctrl_ctx->add_flags = 0;
1810         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1811         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1812         /* Endpoint 0 is always valid */
1813         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1814         for (i = 1; i < 31; ++i) {
1815                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1816                 ep_ctx->ep_info = 0;
1817                 ep_ctx->ep_info2 = 0;
1818                 ep_ctx->deq = 0;
1819                 ep_ctx->tx_info = 0;
1820         }
1821 }
1822
1823 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1824                 struct usb_device *udev, u32 *cmd_status)
1825 {
1826         int ret;
1827
1828         switch (*cmd_status) {
1829         case COMP_ENOMEM:
1830                 dev_warn(&udev->dev, "Not enough host controller resources "
1831                                 "for new device state.\n");
1832                 ret = -ENOMEM;
1833                 /* FIXME: can we allocate more resources for the HC? */
1834                 break;
1835         case COMP_BW_ERR:
1836         case COMP_2ND_BW_ERR:
1837                 dev_warn(&udev->dev, "Not enough bandwidth "
1838                                 "for new device state.\n");
1839                 ret = -ENOSPC;
1840                 /* FIXME: can we go back to the old state? */
1841                 break;
1842         case COMP_TRB_ERR:
1843                 /* the HCD set up something wrong */
1844                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1845                                 "add flag = 1, "
1846                                 "and endpoint is not disabled.\n");
1847                 ret = -EINVAL;
1848                 break;
1849         case COMP_DEV_ERR:
1850                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1851                                 "configure command.\n");
1852                 ret = -ENODEV;
1853                 break;
1854         case COMP_SUCCESS:
1855                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1856                 ret = 0;
1857                 break;
1858         default:
1859                 xhci_err(xhci, "ERROR: unexpected command completion "
1860                                 "code 0x%x.\n", *cmd_status);
1861                 ret = -EINVAL;
1862                 break;
1863         }
1864         return ret;
1865 }
1866
1867 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1868                 struct usb_device *udev, u32 *cmd_status)
1869 {
1870         int ret;
1871         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1872
1873         switch (*cmd_status) {
1874         case COMP_EINVAL:
1875                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1876                                 "context command.\n");
1877                 ret = -EINVAL;
1878                 break;
1879         case COMP_EBADSLT:
1880                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1881                                 "evaluate context command.\n");
1882                 ret = -EINVAL;
1883                 break;
1884         case COMP_CTX_STATE:
1885                 dev_warn(&udev->dev, "WARN: invalid context state for "
1886                                 "evaluate context command.\n");
1887                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1888                 ret = -EINVAL;
1889                 break;
1890         case COMP_DEV_ERR:
1891                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1892                                 "context command.\n");
1893                 ret = -ENODEV;
1894                 break;
1895         case COMP_MEL_ERR:
1896                 /* Max Exit Latency too large error */
1897                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1898                 ret = -EINVAL;
1899                 break;
1900         case COMP_SUCCESS:
1901                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1902                 ret = 0;
1903                 break;
1904         default:
1905                 xhci_err(xhci, "ERROR: unexpected command completion "
1906                                 "code 0x%x.\n", *cmd_status);
1907                 ret = -EINVAL;
1908                 break;
1909         }
1910         return ret;
1911 }
1912
1913 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1914                 struct xhci_input_control_ctx *ctrl_ctx)
1915 {
1916         u32 valid_add_flags;
1917         u32 valid_drop_flags;
1918
1919         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1920          * (bit 1).  The default control endpoint is added during the Address
1921          * Device command and is never removed until the slot is disabled.
1922          */
1923         valid_add_flags = ctrl_ctx->add_flags >> 2;
1924         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1925
1926         /* Use hweight32 to count the number of ones in the add flags, or
1927          * number of endpoints added.  Don't count endpoints that are changed
1928          * (both added and dropped).
1929          */
1930         return hweight32(valid_add_flags) -
1931                 hweight32(valid_add_flags & valid_drop_flags);
1932 }
1933
1934 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1935                 struct xhci_input_control_ctx *ctrl_ctx)
1936 {
1937         u32 valid_add_flags;
1938         u32 valid_drop_flags;
1939
1940         valid_add_flags = ctrl_ctx->add_flags >> 2;
1941         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1942
1943         return hweight32(valid_drop_flags) -
1944                 hweight32(valid_add_flags & valid_drop_flags);
1945 }
1946
1947 /*
1948  * We need to reserve the new number of endpoints before the configure endpoint
1949  * command completes.  We can't subtract the dropped endpoints from the number
1950  * of active endpoints until the command completes because we can oversubscribe
1951  * the host in this case:
1952  *
1953  *  - the first configure endpoint command drops more endpoints than it adds
1954  *  - a second configure endpoint command that adds more endpoints is queued
1955  *  - the first configure endpoint command fails, so the config is unchanged
1956  *  - the second command may succeed, even though there isn't enough resources
1957  *
1958  * Must be called with xhci->lock held.
1959  */
1960 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1961                 struct xhci_input_control_ctx *ctrl_ctx)
1962 {
1963         u32 added_eps;
1964
1965         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1966         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1967                 xhci_dbg(xhci, "Not enough ep ctxs: "
1968                                 "%u active, need to add %u, limit is %u.\n",
1969                                 xhci->num_active_eps, added_eps,
1970                                 xhci->limit_active_eps);
1971                 return -ENOMEM;
1972         }
1973         xhci->num_active_eps += added_eps;
1974         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1975                         xhci->num_active_eps);
1976         return 0;
1977 }
1978
1979 /*
1980  * The configure endpoint was failed by the xHC for some other reason, so we
1981  * need to revert the resources that failed configuration would have used.
1982  *
1983  * Must be called with xhci->lock held.
1984  */
1985 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1986                 struct xhci_input_control_ctx *ctrl_ctx)
1987 {
1988         u32 num_failed_eps;
1989
1990         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1991         xhci->num_active_eps -= num_failed_eps;
1992         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1993                         num_failed_eps,
1994                         xhci->num_active_eps);
1995 }
1996
1997 /*
1998  * Now that the command has completed, clean up the active endpoint count by
1999  * subtracting out the endpoints that were dropped (but not changed).
2000  *
2001  * Must be called with xhci->lock held.
2002  */
2003 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2004                 struct xhci_input_control_ctx *ctrl_ctx)
2005 {
2006         u32 num_dropped_eps;
2007
2008         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2009         xhci->num_active_eps -= num_dropped_eps;
2010         if (num_dropped_eps)
2011                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
2012                                 num_dropped_eps,
2013                                 xhci->num_active_eps);
2014 }
2015
2016 static unsigned int xhci_get_block_size(struct usb_device *udev)
2017 {
2018         switch (udev->speed) {
2019         case USB_SPEED_LOW:
2020         case USB_SPEED_FULL:
2021                 return FS_BLOCK;
2022         case USB_SPEED_HIGH:
2023                 return HS_BLOCK;
2024         case USB_SPEED_SUPER:
2025                 return SS_BLOCK;
2026         case USB_SPEED_UNKNOWN:
2027         case USB_SPEED_WIRELESS:
2028         default:
2029                 /* Should never happen */
2030                 return 1;
2031         }
2032 }
2033
2034 static unsigned int
2035 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2036 {
2037         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2038                 return LS_OVERHEAD;
2039         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2040                 return FS_OVERHEAD;
2041         return HS_OVERHEAD;
2042 }
2043
2044 /* If we are changing a LS/FS device under a HS hub,
2045  * make sure (if we are activating a new TT) that the HS bus has enough
2046  * bandwidth for this new TT.
2047  */
2048 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2049                 struct xhci_virt_device *virt_dev,
2050                 int old_active_eps)
2051 {
2052         struct xhci_interval_bw_table *bw_table;
2053         struct xhci_tt_bw_info *tt_info;
2054
2055         /* Find the bandwidth table for the root port this TT is attached to. */
2056         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2057         tt_info = virt_dev->tt_info;
2058         /* If this TT already had active endpoints, the bandwidth for this TT
2059          * has already been added.  Removing all periodic endpoints (and thus
2060          * making the TT enactive) will only decrease the bandwidth used.
2061          */
2062         if (old_active_eps)
2063                 return 0;
2064         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2065                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2066                         return -ENOMEM;
2067                 return 0;
2068         }
2069         /* Not sure why we would have no new active endpoints...
2070          *
2071          * Maybe because of an Evaluate Context change for a hub update or a
2072          * control endpoint 0 max packet size change?
2073          * FIXME: skip the bandwidth calculation in that case.
2074          */
2075         return 0;
2076 }
2077
2078 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2079                 struct xhci_virt_device *virt_dev)
2080 {
2081         unsigned int bw_reserved;
2082
2083         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2084         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2085                 return -ENOMEM;
2086
2087         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2088         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2089                 return -ENOMEM;
2090
2091         return 0;
2092 }
2093
2094 /*
2095  * This algorithm is a very conservative estimate of the worst-case scheduling
2096  * scenario for any one interval.  The hardware dynamically schedules the
2097  * packets, so we can't tell which microframe could be the limiting factor in
2098  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2099  *
2100  * Obviously, we can't solve an NP complete problem to find the minimum worst
2101  * case scenario.  Instead, we come up with an estimate that is no less than
2102  * the worst case bandwidth used for any one microframe, but may be an
2103  * over-estimate.
2104  *
2105  * We walk the requirements for each endpoint by interval, starting with the
2106  * smallest interval, and place packets in the schedule where there is only one
2107  * possible way to schedule packets for that interval.  In order to simplify
2108  * this algorithm, we record the largest max packet size for each interval, and
2109  * assume all packets will be that size.
2110  *
2111  * For interval 0, we obviously must schedule all packets for each interval.
2112  * The bandwidth for interval 0 is just the amount of data to be transmitted
2113  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2114  * the number of packets).
2115  *
2116  * For interval 1, we have two possible microframes to schedule those packets
2117  * in.  For this algorithm, if we can schedule the same number of packets for
2118  * each possible scheduling opportunity (each microframe), we will do so.  The
2119  * remaining number of packets will be saved to be transmitted in the gaps in
2120  * the next interval's scheduling sequence.
2121  *
2122  * As we move those remaining packets to be scheduled with interval 2 packets,
2123  * we have to double the number of remaining packets to transmit.  This is
2124  * because the intervals are actually powers of 2, and we would be transmitting
2125  * the previous interval's packets twice in this interval.  We also have to be
2126  * sure that when we look at the largest max packet size for this interval, we
2127  * also look at the largest max packet size for the remaining packets and take
2128  * the greater of the two.
2129  *
2130  * The algorithm continues to evenly distribute packets in each scheduling
2131  * opportunity, and push the remaining packets out, until we get to the last
2132  * interval.  Then those packets and their associated overhead are just added
2133  * to the bandwidth used.
2134  */
2135 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2136                 struct xhci_virt_device *virt_dev,
2137                 int old_active_eps)
2138 {
2139         unsigned int bw_reserved;
2140         unsigned int max_bandwidth;
2141         unsigned int bw_used;
2142         unsigned int block_size;
2143         struct xhci_interval_bw_table *bw_table;
2144         unsigned int packet_size = 0;
2145         unsigned int overhead = 0;
2146         unsigned int packets_transmitted = 0;
2147         unsigned int packets_remaining = 0;
2148         unsigned int i;
2149
2150         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2151                 return xhci_check_ss_bw(xhci, virt_dev);
2152
2153         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2154                 max_bandwidth = HS_BW_LIMIT;
2155                 /* Convert percent of bus BW reserved to blocks reserved */
2156                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2157         } else {
2158                 max_bandwidth = FS_BW_LIMIT;
2159                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2160         }
2161
2162         bw_table = virt_dev->bw_table;
2163         /* We need to translate the max packet size and max ESIT payloads into
2164          * the units the hardware uses.
2165          */
2166         block_size = xhci_get_block_size(virt_dev->udev);
2167
2168         /* If we are manipulating a LS/FS device under a HS hub, double check
2169          * that the HS bus has enough bandwidth if we are activing a new TT.
2170          */
2171         if (virt_dev->tt_info) {
2172                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2173                                 virt_dev->real_port);
2174                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2175                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2176                                         "newly activated TT.\n");
2177                         return -ENOMEM;
2178                 }
2179                 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2180                                 virt_dev->tt_info->slot_id,
2181                                 virt_dev->tt_info->ttport);
2182         } else {
2183                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2184                                 virt_dev->real_port);
2185         }
2186
2187         /* Add in how much bandwidth will be used for interval zero, or the
2188          * rounded max ESIT payload + number of packets * largest overhead.
2189          */
2190         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2191                 bw_table->interval_bw[0].num_packets *
2192                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2193
2194         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2195                 unsigned int bw_added;
2196                 unsigned int largest_mps;
2197                 unsigned int interval_overhead;
2198
2199                 /*
2200                  * How many packets could we transmit in this interval?
2201                  * If packets didn't fit in the previous interval, we will need
2202                  * to transmit that many packets twice within this interval.
2203                  */
2204                 packets_remaining = 2 * packets_remaining +
2205                         bw_table->interval_bw[i].num_packets;
2206
2207                 /* Find the largest max packet size of this or the previous
2208                  * interval.
2209                  */
2210                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2211                         largest_mps = 0;
2212                 else {
2213                         struct xhci_virt_ep *virt_ep;
2214                         struct list_head *ep_entry;
2215
2216                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2217                         virt_ep = list_entry(ep_entry,
2218                                         struct xhci_virt_ep, bw_endpoint_list);
2219                         /* Convert to blocks, rounding up */
2220                         largest_mps = DIV_ROUND_UP(
2221                                         virt_ep->bw_info.max_packet_size,
2222                                         block_size);
2223                 }
2224                 if (largest_mps > packet_size)
2225                         packet_size = largest_mps;
2226
2227                 /* Use the larger overhead of this or the previous interval. */
2228                 interval_overhead = xhci_get_largest_overhead(
2229                                 &bw_table->interval_bw[i]);
2230                 if (interval_overhead > overhead)
2231                         overhead = interval_overhead;
2232
2233                 /* How many packets can we evenly distribute across
2234                  * (1 << (i + 1)) possible scheduling opportunities?
2235                  */
2236                 packets_transmitted = packets_remaining >> (i + 1);
2237
2238                 /* Add in the bandwidth used for those scheduled packets */
2239                 bw_added = packets_transmitted * (overhead + packet_size);
2240
2241                 /* How many packets do we have remaining to transmit? */
2242                 packets_remaining = packets_remaining % (1 << (i + 1));
2243
2244                 /* What largest max packet size should those packets have? */
2245                 /* If we've transmitted all packets, don't carry over the
2246                  * largest packet size.
2247                  */
2248                 if (packets_remaining == 0) {
2249                         packet_size = 0;
2250                         overhead = 0;
2251                 } else if (packets_transmitted > 0) {
2252                         /* Otherwise if we do have remaining packets, and we've
2253                          * scheduled some packets in this interval, take the
2254                          * largest max packet size from endpoints with this
2255                          * interval.
2256                          */
2257                         packet_size = largest_mps;
2258                         overhead = interval_overhead;
2259                 }
2260                 /* Otherwise carry over packet_size and overhead from the last
2261                  * time we had a remainder.
2262                  */
2263                 bw_used += bw_added;
2264                 if (bw_used > max_bandwidth) {
2265                         xhci_warn(xhci, "Not enough bandwidth. "
2266                                         "Proposed: %u, Max: %u\n",
2267                                 bw_used, max_bandwidth);
2268                         return -ENOMEM;
2269                 }
2270         }
2271         /*
2272          * Ok, we know we have some packets left over after even-handedly
2273          * scheduling interval 15.  We don't know which microframes they will
2274          * fit into, so we over-schedule and say they will be scheduled every
2275          * microframe.
2276          */
2277         if (packets_remaining > 0)
2278                 bw_used += overhead + packet_size;
2279
2280         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2281                 unsigned int port_index = virt_dev->real_port - 1;
2282
2283                 /* OK, we're manipulating a HS device attached to a
2284                  * root port bandwidth domain.  Include the number of active TTs
2285                  * in the bandwidth used.
2286                  */
2287                 bw_used += TT_HS_OVERHEAD *
2288                         xhci->rh_bw[port_index].num_active_tts;
2289         }
2290
2291         xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2292                 "Available: %u " "percent\n",
2293                 bw_used, max_bandwidth, bw_reserved,
2294                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2295                 max_bandwidth);
2296
2297         bw_used += bw_reserved;
2298         if (bw_used > max_bandwidth) {
2299                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2300                                 bw_used, max_bandwidth);
2301                 return -ENOMEM;
2302         }
2303
2304         bw_table->bw_used = bw_used;
2305         return 0;
2306 }
2307
2308 static bool xhci_is_async_ep(unsigned int ep_type)
2309 {
2310         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2311                                         ep_type != ISOC_IN_EP &&
2312                                         ep_type != INT_IN_EP);
2313 }
2314
2315 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2316 {
2317         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2318 }
2319
2320 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2321 {
2322         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2323
2324         if (ep_bw->ep_interval == 0)
2325                 return SS_OVERHEAD_BURST +
2326                         (ep_bw->mult * ep_bw->num_packets *
2327                                         (SS_OVERHEAD + mps));
2328         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2329                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2330                                 1 << ep_bw->ep_interval);
2331
2332 }
2333
2334 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2335                 struct xhci_bw_info *ep_bw,
2336                 struct xhci_interval_bw_table *bw_table,
2337                 struct usb_device *udev,
2338                 struct xhci_virt_ep *virt_ep,
2339                 struct xhci_tt_bw_info *tt_info)
2340 {
2341         struct xhci_interval_bw *interval_bw;
2342         int normalized_interval;
2343
2344         if (xhci_is_async_ep(ep_bw->type))
2345                 return;
2346
2347         if (udev->speed == USB_SPEED_SUPER) {
2348                 if (xhci_is_sync_in_ep(ep_bw->type))
2349                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2350                                 xhci_get_ss_bw_consumed(ep_bw);
2351                 else
2352                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2353                                 xhci_get_ss_bw_consumed(ep_bw);
2354                 return;
2355         }
2356
2357         /* SuperSpeed endpoints never get added to intervals in the table, so
2358          * this check is only valid for HS/FS/LS devices.
2359          */
2360         if (list_empty(&virt_ep->bw_endpoint_list))
2361                 return;
2362         /* For LS/FS devices, we need to translate the interval expressed in
2363          * microframes to frames.
2364          */
2365         if (udev->speed == USB_SPEED_HIGH)
2366                 normalized_interval = ep_bw->ep_interval;
2367         else
2368                 normalized_interval = ep_bw->ep_interval - 3;
2369
2370         if (normalized_interval == 0)
2371                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2372         interval_bw = &bw_table->interval_bw[normalized_interval];
2373         interval_bw->num_packets -= ep_bw->num_packets;
2374         switch (udev->speed) {
2375         case USB_SPEED_LOW:
2376                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2377                 break;
2378         case USB_SPEED_FULL:
2379                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2380                 break;
2381         case USB_SPEED_HIGH:
2382                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2383                 break;
2384         case USB_SPEED_SUPER:
2385         case USB_SPEED_UNKNOWN:
2386         case USB_SPEED_WIRELESS:
2387                 /* Should never happen because only LS/FS/HS endpoints will get
2388                  * added to the endpoint list.
2389                  */
2390                 return;
2391         }
2392         if (tt_info)
2393                 tt_info->active_eps -= 1;
2394         list_del_init(&virt_ep->bw_endpoint_list);
2395 }
2396
2397 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2398                 struct xhci_bw_info *ep_bw,
2399                 struct xhci_interval_bw_table *bw_table,
2400                 struct usb_device *udev,
2401                 struct xhci_virt_ep *virt_ep,
2402                 struct xhci_tt_bw_info *tt_info)
2403 {
2404         struct xhci_interval_bw *interval_bw;
2405         struct xhci_virt_ep *smaller_ep;
2406         int normalized_interval;
2407
2408         if (xhci_is_async_ep(ep_bw->type))
2409                 return;
2410
2411         if (udev->speed == USB_SPEED_SUPER) {
2412                 if (xhci_is_sync_in_ep(ep_bw->type))
2413                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2414                                 xhci_get_ss_bw_consumed(ep_bw);
2415                 else
2416                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2417                                 xhci_get_ss_bw_consumed(ep_bw);
2418                 return;
2419         }
2420
2421         /* For LS/FS devices, we need to translate the interval expressed in
2422          * microframes to frames.
2423          */
2424         if (udev->speed == USB_SPEED_HIGH)
2425                 normalized_interval = ep_bw->ep_interval;
2426         else
2427                 normalized_interval = ep_bw->ep_interval - 3;
2428
2429         if (normalized_interval == 0)
2430                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2431         interval_bw = &bw_table->interval_bw[normalized_interval];
2432         interval_bw->num_packets += ep_bw->num_packets;
2433         switch (udev->speed) {
2434         case USB_SPEED_LOW:
2435                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2436                 break;
2437         case USB_SPEED_FULL:
2438                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2439                 break;
2440         case USB_SPEED_HIGH:
2441                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2442                 break;
2443         case USB_SPEED_SUPER:
2444         case USB_SPEED_UNKNOWN:
2445         case USB_SPEED_WIRELESS:
2446                 /* Should never happen because only LS/FS/HS endpoints will get
2447                  * added to the endpoint list.
2448                  */
2449                 return;
2450         }
2451
2452         if (tt_info)
2453                 tt_info->active_eps += 1;
2454         /* Insert the endpoint into the list, largest max packet size first. */
2455         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2456                         bw_endpoint_list) {
2457                 if (ep_bw->max_packet_size >=
2458                                 smaller_ep->bw_info.max_packet_size) {
2459                         /* Add the new ep before the smaller endpoint */
2460                         list_add_tail(&virt_ep->bw_endpoint_list,
2461                                         &smaller_ep->bw_endpoint_list);
2462                         return;
2463                 }
2464         }
2465         /* Add the new endpoint at the end of the list. */
2466         list_add_tail(&virt_ep->bw_endpoint_list,
2467                         &interval_bw->endpoints);
2468 }
2469
2470 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2471                 struct xhci_virt_device *virt_dev,
2472                 int old_active_eps)
2473 {
2474         struct xhci_root_port_bw_info *rh_bw_info;
2475         if (!virt_dev->tt_info)
2476                 return;
2477
2478         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2479         if (old_active_eps == 0 &&
2480                                 virt_dev->tt_info->active_eps != 0) {
2481                 rh_bw_info->num_active_tts += 1;
2482                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2483         } else if (old_active_eps != 0 &&
2484                                 virt_dev->tt_info->active_eps == 0) {
2485                 rh_bw_info->num_active_tts -= 1;
2486                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2487         }
2488 }
2489
2490 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2491                 struct xhci_virt_device *virt_dev,
2492                 struct xhci_container_ctx *in_ctx)
2493 {
2494         struct xhci_bw_info ep_bw_info[31];
2495         int i;
2496         struct xhci_input_control_ctx *ctrl_ctx;
2497         int old_active_eps = 0;
2498
2499         if (virt_dev->tt_info)
2500                 old_active_eps = virt_dev->tt_info->active_eps;
2501
2502         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2503         if (!ctrl_ctx) {
2504                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2505                                 __func__);
2506                 return -ENOMEM;
2507         }
2508
2509         for (i = 0; i < 31; i++) {
2510                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2511                         continue;
2512
2513                 /* Make a copy of the BW info in case we need to revert this */
2514                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2515                                 sizeof(ep_bw_info[i]));
2516                 /* Drop the endpoint from the interval table if the endpoint is
2517                  * being dropped or changed.
2518                  */
2519                 if (EP_IS_DROPPED(ctrl_ctx, i))
2520                         xhci_drop_ep_from_interval_table(xhci,
2521                                         &virt_dev->eps[i].bw_info,
2522                                         virt_dev->bw_table,
2523                                         virt_dev->udev,
2524                                         &virt_dev->eps[i],
2525                                         virt_dev->tt_info);
2526         }
2527         /* Overwrite the information stored in the endpoints' bw_info */
2528         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2529         for (i = 0; i < 31; i++) {
2530                 /* Add any changed or added endpoints to the interval table */
2531                 if (EP_IS_ADDED(ctrl_ctx, i))
2532                         xhci_add_ep_to_interval_table(xhci,
2533                                         &virt_dev->eps[i].bw_info,
2534                                         virt_dev->bw_table,
2535                                         virt_dev->udev,
2536                                         &virt_dev->eps[i],
2537                                         virt_dev->tt_info);
2538         }
2539
2540         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2541                 /* Ok, this fits in the bandwidth we have.
2542                  * Update the number of active TTs.
2543                  */
2544                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2545                 return 0;
2546         }
2547
2548         /* We don't have enough bandwidth for this, revert the stored info. */
2549         for (i = 0; i < 31; i++) {
2550                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2551                         continue;
2552
2553                 /* Drop the new copies of any added or changed endpoints from
2554                  * the interval table.
2555                  */
2556                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2557                         xhci_drop_ep_from_interval_table(xhci,
2558                                         &virt_dev->eps[i].bw_info,
2559                                         virt_dev->bw_table,
2560                                         virt_dev->udev,
2561                                         &virt_dev->eps[i],
2562                                         virt_dev->tt_info);
2563                 }
2564                 /* Revert the endpoint back to its old information */
2565                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2566                                 sizeof(ep_bw_info[i]));
2567                 /* Add any changed or dropped endpoints back into the table */
2568                 if (EP_IS_DROPPED(ctrl_ctx, i))
2569                         xhci_add_ep_to_interval_table(xhci,
2570                                         &virt_dev->eps[i].bw_info,
2571                                         virt_dev->bw_table,
2572                                         virt_dev->udev,
2573                                         &virt_dev->eps[i],
2574                                         virt_dev->tt_info);
2575         }
2576         return -ENOMEM;
2577 }
2578
2579
2580 /* Issue a configure endpoint command or evaluate context command
2581  * and wait for it to finish.
2582  */
2583 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2584                 struct usb_device *udev,
2585                 struct xhci_command *command,
2586                 bool ctx_change, bool must_succeed)
2587 {
2588         int ret;
2589         int timeleft;
2590         unsigned long flags;
2591         struct xhci_container_ctx *in_ctx;
2592         struct xhci_input_control_ctx *ctrl_ctx;
2593         struct completion *cmd_completion;
2594         u32 *cmd_status;
2595         struct xhci_virt_device *virt_dev;
2596         union xhci_trb *cmd_trb;
2597
2598         spin_lock_irqsave(&xhci->lock, flags);
2599         virt_dev = xhci->devs[udev->slot_id];
2600
2601         if (command)
2602                 in_ctx = command->in_ctx;
2603         else
2604                 in_ctx = virt_dev->in_ctx;
2605         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2606         if (!ctrl_ctx) {
2607                 spin_unlock_irqrestore(&xhci->lock, flags);
2608                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2609                                 __func__);
2610                 return -ENOMEM;
2611         }
2612
2613         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2614                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2615                 spin_unlock_irqrestore(&xhci->lock, flags);
2616                 xhci_warn(xhci, "Not enough host resources, "
2617                                 "active endpoint contexts = %u\n",
2618                                 xhci->num_active_eps);
2619                 return -ENOMEM;
2620         }
2621         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2622                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2623                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2624                         xhci_free_host_resources(xhci, ctrl_ctx);
2625                 spin_unlock_irqrestore(&xhci->lock, flags);
2626                 xhci_warn(xhci, "Not enough bandwidth\n");
2627                 return -ENOMEM;
2628         }
2629
2630         if (command) {
2631                 cmd_completion = command->completion;
2632                 cmd_status = &command->status;
2633                 command->command_trb = xhci->cmd_ring->enqueue;
2634
2635                 /* Enqueue pointer can be left pointing to the link TRB,
2636                  * we must handle that
2637                  */
2638                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2639                         command->command_trb =
2640                                 xhci->cmd_ring->enq_seg->next->trbs;
2641
2642                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2643         } else {
2644                 cmd_completion = &virt_dev->cmd_completion;
2645                 cmd_status = &virt_dev->cmd_status;
2646         }
2647         init_completion(cmd_completion);
2648
2649         cmd_trb = xhci->cmd_ring->dequeue;
2650         if (!ctx_change)
2651                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2652                                 udev->slot_id, must_succeed);
2653         else
2654                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2655                                 udev->slot_id, must_succeed);
2656         if (ret < 0) {
2657                 if (command)
2658                         list_del(&command->cmd_list);
2659                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2660                         xhci_free_host_resources(xhci, ctrl_ctx);
2661                 spin_unlock_irqrestore(&xhci->lock, flags);
2662                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2663                 return -ENOMEM;
2664         }
2665         xhci_ring_cmd_db(xhci);
2666         spin_unlock_irqrestore(&xhci->lock, flags);
2667
2668         /* Wait for the configure endpoint command to complete */
2669         timeleft = wait_for_completion_interruptible_timeout(
2670                         cmd_completion,
2671                         XHCI_CMD_DEFAULT_TIMEOUT);
2672         if (timeleft <= 0) {
2673                 xhci_warn(xhci, "%s while waiting for %s command\n",
2674                                 timeleft == 0 ? "Timeout" : "Signal",
2675                                 ctx_change == 0 ?
2676                                         "configure endpoint" :
2677                                         "evaluate context");
2678                 /* cancel the configure endpoint command */
2679                 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2680                 if (ret < 0)
2681                         return ret;
2682                 return -ETIME;
2683         }
2684
2685         if (!ctx_change)
2686                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2687         else
2688                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2689
2690         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2691                 spin_lock_irqsave(&xhci->lock, flags);
2692                 /* If the command failed, remove the reserved resources.
2693                  * Otherwise, clean up the estimate to include dropped eps.
2694                  */
2695                 if (ret)
2696                         xhci_free_host_resources(xhci, ctrl_ctx);
2697                 else
2698                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2699                 spin_unlock_irqrestore(&xhci->lock, flags);
2700         }
2701         return ret;
2702 }
2703
2704 /* Called after one or more calls to xhci_add_endpoint() or
2705  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2706  * to call xhci_reset_bandwidth().
2707  *
2708  * Since we are in the middle of changing either configuration or
2709  * installing a new alt setting, the USB core won't allow URBs to be
2710  * enqueued for any endpoint on the old config or interface.  Nothing
2711  * else should be touching the xhci->devs[slot_id] structure, so we
2712  * don't need to take the xhci->lock for manipulating that.
2713  */
2714 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2715 {
2716         int i;
2717         int ret = 0;
2718         struct xhci_hcd *xhci;
2719         struct xhci_virt_device *virt_dev;
2720         struct xhci_input_control_ctx *ctrl_ctx;
2721         struct xhci_slot_ctx *slot_ctx;
2722
2723         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2724         if (ret <= 0)
2725                 return ret;
2726         xhci = hcd_to_xhci(hcd);
2727         if (xhci->xhc_state & XHCI_STATE_DYING)
2728                 return -ENODEV;
2729
2730         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2731         virt_dev = xhci->devs[udev->slot_id];
2732
2733         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2734         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2735         if (!ctrl_ctx) {
2736                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2737                                 __func__);
2738                 return -ENOMEM;
2739         }
2740         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2741         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2742         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2743
2744         /* Don't issue the command if there's no endpoints to update. */
2745         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2746                         ctrl_ctx->drop_flags == 0)
2747                 return 0;
2748
2749         xhci_dbg(xhci, "New Input Control Context:\n");
2750         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2751         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2752                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2753
2754         ret = xhci_configure_endpoint(xhci, udev, NULL,
2755                         false, false);
2756         if (ret) {
2757                 /* Callee should call reset_bandwidth() */
2758                 return ret;
2759         }
2760
2761         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2762         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2763                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2764
2765         /* Free any rings that were dropped, but not changed. */
2766         for (i = 1; i < 31; ++i) {
2767                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2768                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2769                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2770         }
2771         xhci_zero_in_ctx(xhci, virt_dev);
2772         /*
2773          * Install any rings for completely new endpoints or changed endpoints,
2774          * and free or cache any old rings from changed endpoints.
2775          */
2776         for (i = 1; i < 31; ++i) {
2777                 if (!virt_dev->eps[i].new_ring)
2778                         continue;
2779                 /* Only cache or free the old ring if it exists.
2780                  * It may not if this is the first add of an endpoint.
2781                  */
2782                 if (virt_dev->eps[i].ring) {
2783                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2784                 }
2785                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2786                 virt_dev->eps[i].new_ring = NULL;
2787         }
2788
2789         return ret;
2790 }
2791
2792 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2793 {
2794         struct xhci_hcd *xhci;
2795         struct xhci_virt_device *virt_dev;
2796         int i, ret;
2797
2798         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2799         if (ret <= 0)
2800                 return;
2801         xhci = hcd_to_xhci(hcd);
2802
2803         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2804         virt_dev = xhci->devs[udev->slot_id];
2805         /* Free any rings allocated for added endpoints */
2806         for (i = 0; i < 31; ++i) {
2807                 if (virt_dev->eps[i].new_ring) {
2808                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2809                         virt_dev->eps[i].new_ring = NULL;
2810                 }
2811         }
2812         xhci_zero_in_ctx(xhci, virt_dev);
2813 }
2814
2815 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2816                 struct xhci_container_ctx *in_ctx,
2817                 struct xhci_container_ctx *out_ctx,
2818                 struct xhci_input_control_ctx *ctrl_ctx,
2819                 u32 add_flags, u32 drop_flags)
2820 {
2821         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2822         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2823         xhci_slot_copy(xhci, in_ctx, out_ctx);
2824         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2825
2826         xhci_dbg(xhci, "Input Context:\n");
2827         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2828 }
2829
2830 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2831                 unsigned int slot_id, unsigned int ep_index,
2832                 struct xhci_dequeue_state *deq_state)
2833 {
2834         struct xhci_input_control_ctx *ctrl_ctx;
2835         struct xhci_container_ctx *in_ctx;
2836         struct xhci_ep_ctx *ep_ctx;
2837         u32 added_ctxs;
2838         dma_addr_t addr;
2839
2840         in_ctx = xhci->devs[slot_id]->in_ctx;
2841         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2842         if (!ctrl_ctx) {
2843                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2844                                 __func__);
2845                 return;
2846         }
2847
2848         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2849                         xhci->devs[slot_id]->out_ctx, ep_index);
2850         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2851         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2852                         deq_state->new_deq_ptr);
2853         if (addr == 0) {
2854                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2855                                 "reset ep command\n");
2856                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2857                                 deq_state->new_deq_seg,
2858                                 deq_state->new_deq_ptr);
2859                 return;
2860         }
2861         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2862
2863         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2864         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2865                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2866                         added_ctxs, added_ctxs);
2867 }
2868
2869 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2870                 struct usb_device *udev, unsigned int ep_index)
2871 {
2872         struct xhci_dequeue_state deq_state;
2873         struct xhci_virt_ep *ep;
2874
2875         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2876         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2877         /* We need to move the HW's dequeue pointer past this TD,
2878          * or it will attempt to resend it on the next doorbell ring.
2879          */
2880         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2881                         ep_index, ep->stopped_stream, ep->stopped_td,
2882                         &deq_state);
2883
2884         /* HW with the reset endpoint quirk will use the saved dequeue state to
2885          * issue a configure endpoint command later.
2886          */
2887         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2888                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2889                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2890                                 ep_index, ep->stopped_stream, &deq_state);
2891         } else {
2892                 /* Better hope no one uses the input context between now and the
2893                  * reset endpoint completion!
2894                  * XXX: No idea how this hardware will react when stream rings
2895                  * are enabled.
2896                  */
2897                 xhci_dbg(xhci, "Setting up input context for "
2898                                 "configure endpoint command\n");
2899                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2900                                 ep_index, &deq_state);
2901         }
2902 }
2903
2904 /* Deal with stalled endpoints.  The core should have sent the control message
2905  * to clear the halt condition.  However, we need to make the xHCI hardware
2906  * reset its sequence number, since a device will expect a sequence number of
2907  * zero after the halt condition is cleared.
2908  * Context: in_interrupt
2909  */
2910 void xhci_endpoint_reset(struct usb_hcd *hcd,
2911                 struct usb_host_endpoint *ep)
2912 {
2913         struct xhci_hcd *xhci;
2914         struct usb_device *udev;
2915         unsigned int ep_index;
2916         unsigned long flags;
2917         int ret;
2918         struct xhci_virt_ep *virt_ep;
2919
2920         xhci = hcd_to_xhci(hcd);
2921         udev = (struct usb_device *) ep->hcpriv;
2922         /* Called with a root hub endpoint (or an endpoint that wasn't added
2923          * with xhci_add_endpoint()
2924          */
2925         if (!ep->hcpriv)
2926                 return;
2927         ep_index = xhci_get_endpoint_index(&ep->desc);
2928         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2929         if (!virt_ep->stopped_td) {
2930                 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2931                                 ep->desc.bEndpointAddress);
2932                 return;
2933         }
2934         if (usb_endpoint_xfer_control(&ep->desc)) {
2935                 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2936                 return;
2937         }
2938
2939         xhci_dbg(xhci, "Queueing reset endpoint command\n");
2940         spin_lock_irqsave(&xhci->lock, flags);
2941         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2942         /*
2943          * Can't change the ring dequeue pointer until it's transitioned to the
2944          * stopped state, which is only upon a successful reset endpoint
2945          * command.  Better hope that last command worked!
2946          */
2947         if (!ret) {
2948                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2949                 kfree(virt_ep->stopped_td);
2950                 xhci_ring_cmd_db(xhci);
2951         }
2952         virt_ep->stopped_td = NULL;
2953         virt_ep->stopped_trb = NULL;
2954         virt_ep->stopped_stream = 0;
2955         spin_unlock_irqrestore(&xhci->lock, flags);
2956
2957         if (ret)
2958                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2959 }
2960
2961 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2962                 struct usb_device *udev, struct usb_host_endpoint *ep,
2963                 unsigned int slot_id)
2964 {
2965         int ret;
2966         unsigned int ep_index;
2967         unsigned int ep_state;
2968
2969         if (!ep)
2970                 return -EINVAL;
2971         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2972         if (ret <= 0)
2973                 return -EINVAL;
2974         if (ep->ss_ep_comp.bmAttributes == 0) {
2975                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2976                                 " descriptor for ep 0x%x does not support streams\n",
2977                                 ep->desc.bEndpointAddress);
2978                 return -EINVAL;
2979         }
2980
2981         ep_index = xhci_get_endpoint_index(&ep->desc);
2982         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2983         if (ep_state & EP_HAS_STREAMS ||
2984                         ep_state & EP_GETTING_STREAMS) {
2985                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2986                                 "already has streams set up.\n",
2987                                 ep->desc.bEndpointAddress);
2988                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2989                                 "dynamic stream context array reallocation.\n");
2990                 return -EINVAL;
2991         }
2992         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2993                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2994                                 "endpoint 0x%x; URBs are pending.\n",
2995                                 ep->desc.bEndpointAddress);
2996                 return -EINVAL;
2997         }
2998         return 0;
2999 }
3000
3001 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3002                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3003 {
3004         unsigned int max_streams;
3005
3006         /* The stream context array size must be a power of two */
3007         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3008         /*
3009          * Find out how many primary stream array entries the host controller
3010          * supports.  Later we may use secondary stream arrays (similar to 2nd
3011          * level page entries), but that's an optional feature for xHCI host
3012          * controllers. xHCs must support at least 4 stream IDs.
3013          */
3014         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3015         if (*num_stream_ctxs > max_streams) {
3016                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3017                                 max_streams);
3018                 *num_stream_ctxs = max_streams;
3019                 *num_streams = max_streams;
3020         }
3021 }
3022
3023 /* Returns an error code if one of the endpoint already has streams.
3024  * This does not change any data structures, it only checks and gathers
3025  * information.
3026  */
3027 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3028                 struct usb_device *udev,
3029                 struct usb_host_endpoint **eps, unsigned int num_eps,
3030                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3031 {
3032         unsigned int max_streams;
3033         unsigned int endpoint_flag;
3034         int i;
3035         int ret;
3036
3037         for (i = 0; i < num_eps; i++) {
3038                 ret = xhci_check_streams_endpoint(xhci, udev,
3039                                 eps[i], udev->slot_id);
3040                 if (ret < 0)
3041                         return ret;
3042
3043                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3044                 if (max_streams < (*num_streams - 1)) {
3045                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3046                                         eps[i]->desc.bEndpointAddress,
3047                                         max_streams);
3048                         *num_streams = max_streams+1;
3049                 }
3050
3051                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3052                 if (*changed_ep_bitmask & endpoint_flag)
3053                         return -EINVAL;
3054                 *changed_ep_bitmask |= endpoint_flag;
3055         }
3056         return 0;
3057 }
3058
3059 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3060                 struct usb_device *udev,
3061                 struct usb_host_endpoint **eps, unsigned int num_eps)
3062 {
3063         u32 changed_ep_bitmask = 0;
3064         unsigned int slot_id;
3065         unsigned int ep_index;
3066         unsigned int ep_state;
3067         int i;
3068
3069         slot_id = udev->slot_id;
3070         if (!xhci->devs[slot_id])
3071                 return 0;
3072
3073         for (i = 0; i < num_eps; i++) {
3074                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3075                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3076                 /* Are streams already being freed for the endpoint? */
3077                 if (ep_state & EP_GETTING_NO_STREAMS) {
3078                         xhci_warn(xhci, "WARN Can't disable streams for "
3079                                         "endpoint 0x%x\n, "
3080                                         "streams are being disabled already.",
3081                                         eps[i]->desc.bEndpointAddress);
3082                         return 0;
3083                 }
3084                 /* Are there actually any streams to free? */
3085                 if (!(ep_state & EP_HAS_STREAMS) &&
3086                                 !(ep_state & EP_GETTING_STREAMS)) {
3087                         xhci_warn(xhci, "WARN Can't disable streams for "
3088                                         "endpoint 0x%x\n, "
3089                                         "streams are already disabled!",
3090                                         eps[i]->desc.bEndpointAddress);
3091                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3092                                         "with non-streams endpoint\n");
3093                         return 0;
3094                 }
3095                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3096         }
3097         return changed_ep_bitmask;
3098 }
3099
3100 /*
3101  * The USB device drivers use this function (though the HCD interface in USB
3102  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3103  * coordinate mass storage command queueing across multiple endpoints (basically
3104  * a stream ID == a task ID).
3105  *
3106  * Setting up streams involves allocating the same size stream context array
3107  * for each endpoint and issuing a configure endpoint command for all endpoints.
3108  *
3109  * Don't allow the call to succeed if one endpoint only supports one stream
3110  * (which means it doesn't support streams at all).
3111  *
3112  * Drivers may get less stream IDs than they asked for, if the host controller
3113  * hardware or endpoints claim they can't support the number of requested
3114  * stream IDs.
3115  */
3116 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3117                 struct usb_host_endpoint **eps, unsigned int num_eps,
3118                 unsigned int num_streams, gfp_t mem_flags)
3119 {
3120         int i, ret;
3121         struct xhci_hcd *xhci;
3122         struct xhci_virt_device *vdev;
3123         struct xhci_command *config_cmd;
3124         struct xhci_input_control_ctx *ctrl_ctx;
3125         unsigned int ep_index;
3126         unsigned int num_stream_ctxs;
3127         unsigned long flags;
3128         u32 changed_ep_bitmask = 0;
3129
3130         if (!eps)
3131                 return -EINVAL;
3132
3133         /* Add one to the number of streams requested to account for
3134          * stream 0 that is reserved for xHCI usage.
3135          */
3136         num_streams += 1;
3137         xhci = hcd_to_xhci(hcd);
3138         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3139                         num_streams);
3140
3141         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3142         if (!config_cmd) {
3143                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3144                 return -ENOMEM;
3145         }
3146         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3147         if (!ctrl_ctx) {
3148                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3149                                 __func__);
3150                 xhci_free_command(xhci, config_cmd);
3151                 return -ENOMEM;
3152         }
3153
3154         /* Check to make sure all endpoints are not already configured for
3155          * streams.  While we're at it, find the maximum number of streams that
3156          * all the endpoints will support and check for duplicate endpoints.
3157          */
3158         spin_lock_irqsave(&xhci->lock, flags);
3159         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3160                         num_eps, &num_streams, &changed_ep_bitmask);
3161         if (ret < 0) {
3162                 xhci_free_command(xhci, config_cmd);
3163                 spin_unlock_irqrestore(&xhci->lock, flags);
3164                 return ret;
3165         }
3166         if (num_streams <= 1) {
3167                 xhci_warn(xhci, "WARN: endpoints can't handle "
3168                                 "more than one stream.\n");
3169                 xhci_free_command(xhci, config_cmd);
3170                 spin_unlock_irqrestore(&xhci->lock, flags);
3171                 return -EINVAL;
3172         }
3173         vdev = xhci->devs[udev->slot_id];
3174         /* Mark each endpoint as being in transition, so
3175          * xhci_urb_enqueue() will reject all URBs.
3176          */
3177         for (i = 0; i < num_eps; i++) {
3178                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3179                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3180         }
3181         spin_unlock_irqrestore(&xhci->lock, flags);
3182
3183         /* Setup internal data structures and allocate HW data structures for
3184          * streams (but don't install the HW structures in the input context
3185          * until we're sure all memory allocation succeeded).
3186          */
3187         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3188         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3189                         num_stream_ctxs, num_streams);
3190
3191         for (i = 0; i < num_eps; i++) {
3192                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3193                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3194                                 num_stream_ctxs,
3195                                 num_streams, mem_flags);
3196                 if (!vdev->eps[ep_index].stream_info)
3197                         goto cleanup;
3198                 /* Set maxPstreams in endpoint context and update deq ptr to
3199                  * point to stream context array. FIXME
3200                  */
3201         }
3202
3203         /* Set up the input context for a configure endpoint command. */
3204         for (i = 0; i < num_eps; i++) {
3205                 struct xhci_ep_ctx *ep_ctx;
3206
3207                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3208                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3209
3210                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3211                                 vdev->out_ctx, ep_index);
3212                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3213                                 vdev->eps[ep_index].stream_info);
3214         }
3215         /* Tell the HW to drop its old copy of the endpoint context info
3216          * and add the updated copy from the input context.
3217          */
3218         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3219                         vdev->out_ctx, ctrl_ctx,
3220                         changed_ep_bitmask, changed_ep_bitmask);
3221
3222         /* Issue and wait for the configure endpoint command */
3223         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3224                         false, false);
3225
3226         /* xHC rejected the configure endpoint command for some reason, so we
3227          * leave the old ring intact and free our internal streams data
3228          * structure.
3229          */
3230         if (ret < 0)
3231                 goto cleanup;
3232
3233         spin_lock_irqsave(&xhci->lock, flags);
3234         for (i = 0; i < num_eps; i++) {
3235                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3236                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3237                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3238                          udev->slot_id, ep_index);
3239                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3240         }
3241         xhci_free_command(xhci, config_cmd);
3242         spin_unlock_irqrestore(&xhci->lock, flags);
3243
3244         /* Subtract 1 for stream 0, which drivers can't use */
3245         return num_streams - 1;
3246
3247 cleanup:
3248         /* If it didn't work, free the streams! */
3249         for (i = 0; i < num_eps; i++) {
3250                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3251                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3252                 vdev->eps[ep_index].stream_info = NULL;
3253                 /* FIXME Unset maxPstreams in endpoint context and
3254                  * update deq ptr to point to normal string ring.
3255                  */
3256                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3257                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3258                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3259         }
3260         xhci_free_command(xhci, config_cmd);
3261         return -ENOMEM;
3262 }
3263
3264 /* Transition the endpoint from using streams to being a "normal" endpoint
3265  * without streams.
3266  *
3267  * Modify the endpoint context state, submit a configure endpoint command,
3268  * and free all endpoint rings for streams if that completes successfully.
3269  */
3270 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3271                 struct usb_host_endpoint **eps, unsigned int num_eps,
3272                 gfp_t mem_flags)
3273 {
3274         int i, ret;
3275         struct xhci_hcd *xhci;
3276         struct xhci_virt_device *vdev;
3277         struct xhci_command *command;
3278         struct xhci_input_control_ctx *ctrl_ctx;
3279         unsigned int ep_index;
3280         unsigned long flags;
3281         u32 changed_ep_bitmask;
3282
3283         xhci = hcd_to_xhci(hcd);
3284         vdev = xhci->devs[udev->slot_id];
3285
3286         /* Set up a configure endpoint command to remove the streams rings */
3287         spin_lock_irqsave(&xhci->lock, flags);
3288         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3289                         udev, eps, num_eps);
3290         if (changed_ep_bitmask == 0) {
3291                 spin_unlock_irqrestore(&xhci->lock, flags);
3292                 return -EINVAL;
3293         }
3294
3295         /* Use the xhci_command structure from the first endpoint.  We may have
3296          * allocated too many, but the driver may call xhci_free_streams() for
3297          * each endpoint it grouped into one call to xhci_alloc_streams().
3298          */
3299         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3300         command = vdev->eps[ep_index].stream_info->free_streams_command;
3301         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3302         if (!ctrl_ctx) {
3303                 spin_unlock_irqrestore(&xhci->lock, flags);
3304                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3305                                 __func__);
3306                 return -EINVAL;
3307         }
3308
3309         for (i = 0; i < num_eps; i++) {
3310                 struct xhci_ep_ctx *ep_ctx;
3311
3312                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3313                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3314                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3315                         EP_GETTING_NO_STREAMS;
3316
3317                 xhci_endpoint_copy(xhci, command->in_ctx,
3318                                 vdev->out_ctx, ep_index);
3319                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3320                                 &vdev->eps[ep_index]);
3321         }
3322         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3323                         vdev->out_ctx, ctrl_ctx,
3324                         changed_ep_bitmask, changed_ep_bitmask);
3325         spin_unlock_irqrestore(&xhci->lock, flags);
3326
3327         /* Issue and wait for the configure endpoint command,
3328          * which must succeed.
3329          */
3330         ret = xhci_configure_endpoint(xhci, udev, command,
3331                         false, true);
3332
3333         /* xHC rejected the configure endpoint command for some reason, so we
3334          * leave the streams rings intact.
3335          */
3336         if (ret < 0)
3337                 return ret;
3338
3339         spin_lock_irqsave(&xhci->lock, flags);
3340         for (i = 0; i < num_eps; i++) {
3341                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3342                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3343                 vdev->eps[ep_index].stream_info = NULL;
3344                 /* FIXME Unset maxPstreams in endpoint context and
3345                  * update deq ptr to point to normal string ring.
3346                  */
3347                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3348                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3349         }
3350         spin_unlock_irqrestore(&xhci->lock, flags);
3351
3352         return 0;
3353 }
3354
3355 /*
3356  * Deletes endpoint resources for endpoints that were active before a Reset
3357  * Device command, or a Disable Slot command.  The Reset Device command leaves
3358  * the control endpoint intact, whereas the Disable Slot command deletes it.
3359  *
3360  * Must be called with xhci->lock held.
3361  */
3362 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3363         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3364 {
3365         int i;
3366         unsigned int num_dropped_eps = 0;
3367         unsigned int drop_flags = 0;
3368
3369         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3370                 if (virt_dev->eps[i].ring) {
3371                         drop_flags |= 1 << i;
3372                         num_dropped_eps++;
3373                 }
3374         }
3375         xhci->num_active_eps -= num_dropped_eps;
3376         if (num_dropped_eps)
3377                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3378                                 "%u now active.\n",
3379                                 num_dropped_eps, drop_flags,
3380                                 xhci->num_active_eps);
3381 }
3382
3383 /*
3384  * This submits a Reset Device Command, which will set the device state to 0,
3385  * set the device address to 0, and disable all the endpoints except the default
3386  * control endpoint.  The USB core should come back and call
3387  * xhci_address_device(), and then re-set up the configuration.  If this is
3388  * called because of a usb_reset_and_verify_device(), then the old alternate
3389  * settings will be re-installed through the normal bandwidth allocation
3390  * functions.
3391  *
3392  * Wait for the Reset Device command to finish.  Remove all structures
3393  * associated with the endpoints that were disabled.  Clear the input device
3394  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3395  *
3396  * If the virt_dev to be reset does not exist or does not match the udev,
3397  * it means the device is lost, possibly due to the xHC restore error and
3398  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3399  * re-allocate the device.
3400  */
3401 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3402 {
3403         int ret, i;
3404         unsigned long flags;
3405         struct xhci_hcd *xhci;
3406         unsigned int slot_id;
3407         struct xhci_virt_device *virt_dev;
3408         struct xhci_command *reset_device_cmd;
3409         int timeleft;
3410         int last_freed_endpoint;
3411         struct xhci_slot_ctx *slot_ctx;
3412         int old_active_eps = 0;
3413
3414         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3415         if (ret <= 0)
3416                 return ret;
3417         xhci = hcd_to_xhci(hcd);
3418         slot_id = udev->slot_id;
3419         virt_dev = xhci->devs[slot_id];
3420         if (!virt_dev) {
3421                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3422                                 "not exist. Re-allocate the device\n", slot_id);
3423                 ret = xhci_alloc_dev(hcd, udev);
3424                 if (ret == 1)
3425                         return 0;
3426                 else
3427                         return -EINVAL;
3428         }
3429
3430         if (virt_dev->udev != udev) {
3431                 /* If the virt_dev and the udev does not match, this virt_dev
3432                  * may belong to another udev.
3433                  * Re-allocate the device.
3434                  */
3435                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3436                                 "not match the udev. Re-allocate the device\n",
3437                                 slot_id);
3438                 ret = xhci_alloc_dev(hcd, udev);
3439                 if (ret == 1)
3440                         return 0;
3441                 else
3442                         return -EINVAL;
3443         }
3444
3445         /* If device is not setup, there is no point in resetting it */
3446         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3447         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3448                                                 SLOT_STATE_DISABLED)
3449                 return 0;
3450
3451         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3452         /* Allocate the command structure that holds the struct completion.
3453          * Assume we're in process context, since the normal device reset
3454          * process has to wait for the device anyway.  Storage devices are
3455          * reset as part of error handling, so use GFP_NOIO instead of
3456          * GFP_KERNEL.
3457          */
3458         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3459         if (!reset_device_cmd) {
3460                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3461                 return -ENOMEM;
3462         }
3463
3464         /* Attempt to submit the Reset Device command to the command ring */
3465         spin_lock_irqsave(&xhci->lock, flags);
3466         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3467
3468         /* Enqueue pointer can be left pointing to the link TRB,
3469          * we must handle that
3470          */
3471         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3472                 reset_device_cmd->command_trb =
3473                         xhci->cmd_ring->enq_seg->next->trbs;
3474
3475         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3476         ret = xhci_queue_reset_device(xhci, slot_id);
3477         if (ret) {
3478                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3479                 list_del(&reset_device_cmd->cmd_list);
3480                 spin_unlock_irqrestore(&xhci->lock, flags);
3481                 goto command_cleanup;
3482         }
3483         xhci_ring_cmd_db(xhci);
3484         spin_unlock_irqrestore(&xhci->lock, flags);
3485
3486         /* Wait for the Reset Device command to finish */
3487         timeleft = wait_for_completion_interruptible_timeout(
3488                         reset_device_cmd->completion,
3489                         USB_CTRL_SET_TIMEOUT);
3490         if (timeleft <= 0) {
3491                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3492                                 timeleft == 0 ? "Timeout" : "Signal");
3493                 spin_lock_irqsave(&xhci->lock, flags);
3494                 /* The timeout might have raced with the event ring handler, so
3495                  * only delete from the list if the item isn't poisoned.
3496                  */
3497                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3498                         list_del(&reset_device_cmd->cmd_list);
3499                 spin_unlock_irqrestore(&xhci->lock, flags);
3500                 ret = -ETIME;
3501                 goto command_cleanup;
3502         }
3503
3504         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3505          * unless we tried to reset a slot ID that wasn't enabled,
3506          * or the device wasn't in the addressed or configured state.
3507          */
3508         ret = reset_device_cmd->status;
3509         switch (ret) {
3510         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3511         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3512                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3513                                 slot_id,
3514                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3515                 xhci_info(xhci, "Not freeing device rings.\n");
3516                 /* Don't treat this as an error.  May change my mind later. */
3517                 ret = 0;
3518                 goto command_cleanup;
3519         case COMP_SUCCESS:
3520                 xhci_dbg(xhci, "Successful reset device command.\n");
3521                 break;
3522         default:
3523                 if (xhci_is_vendor_info_code(xhci, ret))
3524                         break;
3525                 xhci_warn(xhci, "Unknown completion code %u for "
3526                                 "reset device command.\n", ret);
3527                 ret = -EINVAL;
3528                 goto command_cleanup;
3529         }
3530
3531         /* Free up host controller endpoint resources */
3532         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3533                 spin_lock_irqsave(&xhci->lock, flags);
3534                 /* Don't delete the default control endpoint resources */
3535                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3536                 spin_unlock_irqrestore(&xhci->lock, flags);
3537         }
3538
3539         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3540         last_freed_endpoint = 1;
3541         for (i = 1; i < 31; ++i) {
3542                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3543
3544                 if (ep->ep_state & EP_HAS_STREAMS) {
3545                         xhci_free_stream_info(xhci, ep->stream_info);
3546                         ep->stream_info = NULL;
3547                         ep->ep_state &= ~EP_HAS_STREAMS;
3548                 }
3549
3550                 if (ep->ring) {
3551                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3552                         last_freed_endpoint = i;
3553                 }
3554                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3555                         xhci_drop_ep_from_interval_table(xhci,
3556                                         &virt_dev->eps[i].bw_info,
3557                                         virt_dev->bw_table,
3558                                         udev,
3559                                         &virt_dev->eps[i],
3560                                         virt_dev->tt_info);
3561                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3562         }
3563         /* If necessary, update the number of active TTs on this root port */
3564         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3565
3566         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3567         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3568         ret = 0;
3569
3570 command_cleanup:
3571         xhci_free_command(xhci, reset_device_cmd);
3572         return ret;
3573 }
3574
3575 /*
3576  * At this point, the struct usb_device is about to go away, the device has
3577  * disconnected, and all traffic has been stopped and the endpoints have been
3578  * disabled.  Free any HC data structures associated with that device.
3579  */
3580 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3581 {
3582         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3583         struct xhci_virt_device *virt_dev;
3584         unsigned long flags;
3585         u32 state;
3586         int i, ret;
3587
3588         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3589         /* If the host is halted due to driver unload, we still need to free the
3590          * device.
3591          */
3592         if (ret <= 0 && ret != -ENODEV)
3593                 return;
3594
3595         virt_dev = xhci->devs[udev->slot_id];
3596
3597         /* Stop any wayward timer functions (which may grab the lock) */
3598         for (i = 0; i < 31; ++i) {
3599                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3600                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3601         }
3602
3603         if (udev->usb2_hw_lpm_enabled) {
3604                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3605                 udev->usb2_hw_lpm_enabled = 0;
3606         }
3607
3608         spin_lock_irqsave(&xhci->lock, flags);
3609         /* Don't disable the slot if the host controller is dead. */
3610         state = xhci_readl(xhci, &xhci->op_regs->status);
3611         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3612                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3613                 xhci_free_virt_device(xhci, udev->slot_id);
3614                 spin_unlock_irqrestore(&xhci->lock, flags);
3615                 return;
3616         }
3617
3618         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3619                 spin_unlock_irqrestore(&xhci->lock, flags);
3620                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3621                 return;
3622         }
3623         xhci_ring_cmd_db(xhci);
3624         spin_unlock_irqrestore(&xhci->lock, flags);
3625         /*
3626          * Event command completion handler will free any data structures
3627          * associated with the slot.  XXX Can free sleep?
3628          */
3629 }
3630
3631 /*
3632  * Checks if we have enough host controller resources for the default control
3633  * endpoint.
3634  *
3635  * Must be called with xhci->lock held.
3636  */
3637 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3638 {
3639         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3640                 xhci_dbg(xhci, "Not enough ep ctxs: "
3641                                 "%u active, need to add 1, limit is %u.\n",
3642                                 xhci->num_active_eps, xhci->limit_active_eps);
3643                 return -ENOMEM;
3644         }
3645         xhci->num_active_eps += 1;
3646         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3647                         xhci->num_active_eps);
3648         return 0;
3649 }
3650
3651
3652 /*
3653  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3654  * timed out, or allocating memory failed.  Returns 1 on success.
3655  */
3656 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3657 {
3658         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3659         unsigned long flags;
3660         int timeleft;
3661         int ret;
3662         union xhci_trb *cmd_trb;
3663
3664         spin_lock_irqsave(&xhci->lock, flags);
3665         cmd_trb = xhci->cmd_ring->dequeue;
3666         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3667         if (ret) {
3668                 spin_unlock_irqrestore(&xhci->lock, flags);
3669                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3670                 return 0;
3671         }
3672         xhci_ring_cmd_db(xhci);
3673         spin_unlock_irqrestore(&xhci->lock, flags);
3674
3675         /* XXX: how much time for xHC slot assignment? */
3676         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3677                         XHCI_CMD_DEFAULT_TIMEOUT);
3678         if (timeleft <= 0) {
3679                 xhci_warn(xhci, "%s while waiting for a slot\n",
3680                                 timeleft == 0 ? "Timeout" : "Signal");
3681                 /* cancel the enable slot request */
3682                 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3683         }
3684
3685         if (!xhci->slot_id) {
3686                 xhci_err(xhci, "Error while assigning device slot ID\n");
3687                 return 0;
3688         }
3689
3690         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3691                 spin_lock_irqsave(&xhci->lock, flags);
3692                 ret = xhci_reserve_host_control_ep_resources(xhci);
3693                 if (ret) {
3694                         spin_unlock_irqrestore(&xhci->lock, flags);
3695                         xhci_warn(xhci, "Not enough host resources, "
3696                                         "active endpoint contexts = %u\n",
3697                                         xhci->num_active_eps);
3698                         goto disable_slot;
3699                 }
3700                 spin_unlock_irqrestore(&xhci->lock, flags);
3701         }
3702         /* Use GFP_NOIO, since this function can be called from
3703          * xhci_discover_or_reset_device(), which may be called as part of
3704          * mass storage driver error handling.
3705          */
3706         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3707                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3708                 goto disable_slot;
3709         }
3710         udev->slot_id = xhci->slot_id;
3711         /* Is this a LS or FS device under a HS hub? */
3712         /* Hub or peripherial? */
3713         return 1;
3714
3715 disable_slot:
3716         /* Disable slot, if we can do it without mem alloc */
3717         spin_lock_irqsave(&xhci->lock, flags);
3718         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3719                 xhci_ring_cmd_db(xhci);
3720         spin_unlock_irqrestore(&xhci->lock, flags);
3721         return 0;
3722 }
3723
3724 /*
3725  * Issue an Address Device command (which will issue a SetAddress request to
3726  * the device).
3727  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3728  * we should only issue and wait on one address command at the same time.
3729  *
3730  * We add one to the device address issued by the hardware because the USB core
3731  * uses address 1 for the root hubs (even though they're not really devices).
3732  */
3733 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3734 {
3735         unsigned long flags;
3736         int timeleft;
3737         struct xhci_virt_device *virt_dev;
3738         int ret = 0;
3739         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3740         struct xhci_slot_ctx *slot_ctx;
3741         struct xhci_input_control_ctx *ctrl_ctx;
3742         u64 temp_64;
3743         union xhci_trb *cmd_trb;
3744
3745         if (!udev->slot_id) {
3746                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3747                 return -EINVAL;
3748         }
3749
3750         virt_dev = xhci->devs[udev->slot_id];
3751
3752         if (WARN_ON(!virt_dev)) {
3753                 /*
3754                  * In plug/unplug torture test with an NEC controller,
3755                  * a zero-dereference was observed once due to virt_dev = 0.
3756                  * Print useful debug rather than crash if it is observed again!
3757                  */
3758                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3759                         udev->slot_id);
3760                 return -EINVAL;
3761         }
3762
3763         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3764         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3765         if (!ctrl_ctx) {
3766                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3767                                 __func__);
3768                 return -EINVAL;
3769         }
3770         /*
3771          * If this is the first Set Address since device plug-in or
3772          * virt_device realloaction after a resume with an xHCI power loss,
3773          * then set up the slot context.
3774          */
3775         if (!slot_ctx->dev_info)
3776                 xhci_setup_addressable_virt_dev(xhci, udev);
3777         /* Otherwise, update the control endpoint ring enqueue pointer. */
3778         else
3779                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3780         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3781         ctrl_ctx->drop_flags = 0;
3782
3783         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3784         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3785
3786         spin_lock_irqsave(&xhci->lock, flags);
3787         cmd_trb = xhci->cmd_ring->dequeue;
3788         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3789                                         udev->slot_id);
3790         if (ret) {
3791                 spin_unlock_irqrestore(&xhci->lock, flags);
3792                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3793                 return ret;
3794         }
3795         xhci_ring_cmd_db(xhci);
3796         spin_unlock_irqrestore(&xhci->lock, flags);
3797
3798         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3799         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3800                         XHCI_CMD_DEFAULT_TIMEOUT);
3801         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3802          * the SetAddress() "recovery interval" required by USB and aborting the
3803          * command on a timeout.
3804          */
3805         if (timeleft <= 0) {
3806                 xhci_warn(xhci, "%s while waiting for address device command\n",
3807                                 timeleft == 0 ? "Timeout" : "Signal");
3808                 /* cancel the address device command */
3809                 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3810                 if (ret < 0)
3811                         return ret;
3812                 return -ETIME;
3813         }
3814
3815         switch (virt_dev->cmd_status) {
3816         case COMP_CTX_STATE:
3817         case COMP_EBADSLT:
3818                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3819                                 udev->slot_id);
3820                 ret = -EINVAL;
3821                 break;
3822         case COMP_TX_ERR:
3823                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3824                 ret = -EPROTO;
3825                 break;
3826         case COMP_DEV_ERR:
3827                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3828                                 "device command.\n");
3829                 ret = -ENODEV;
3830                 break;
3831         case COMP_SUCCESS:
3832                 xhci_dbg(xhci, "Successful Address Device command\n");
3833                 break;
3834         default:
3835                 xhci_err(xhci, "ERROR: unexpected command completion "
3836                                 "code 0x%x.\n", virt_dev->cmd_status);
3837                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3838                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3839                 ret = -EINVAL;
3840                 break;
3841         }
3842         if (ret) {
3843                 return ret;
3844         }
3845         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3846         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3847         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3848                  udev->slot_id,
3849                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3850                  (unsigned long long)
3851                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3852         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3853                         (unsigned long long)virt_dev->out_ctx->dma);
3854         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3855         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3856         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3857         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3858         /*
3859          * USB core uses address 1 for the roothubs, so we add one to the
3860          * address given back to us by the HC.
3861          */
3862         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3863         /* Use kernel assigned address for devices; store xHC assigned
3864          * address locally. */
3865         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3866                 + 1;
3867         /* Zero the input context control for later use */
3868         ctrl_ctx->add_flags = 0;
3869         ctrl_ctx->drop_flags = 0;
3870
3871         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3872
3873         return 0;
3874 }
3875
3876 /*
3877  * Transfer the port index into real index in the HW port status
3878  * registers. Caculate offset between the port's PORTSC register
3879  * and port status base. Divide the number of per port register
3880  * to get the real index. The raw port number bases 1.
3881  */
3882 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3883 {
3884         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3885         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3886         __le32 __iomem *addr;
3887         int raw_port;
3888
3889         if (hcd->speed != HCD_USB3)
3890                 addr = xhci->usb2_ports[port1 - 1];
3891         else
3892                 addr = xhci->usb3_ports[port1 - 1];
3893
3894         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3895         return raw_port;
3896 }
3897
3898 /*
3899  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3900  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3901  */
3902 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3903                         struct usb_device *udev, u16 max_exit_latency)
3904 {
3905         struct xhci_virt_device *virt_dev;
3906         struct xhci_command *command;
3907         struct xhci_input_control_ctx *ctrl_ctx;
3908         struct xhci_slot_ctx *slot_ctx;
3909         unsigned long flags;
3910         int ret;
3911
3912         spin_lock_irqsave(&xhci->lock, flags);
3913         if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3914                 spin_unlock_irqrestore(&xhci->lock, flags);
3915                 return 0;
3916         }
3917
3918         /* Attempt to issue an Evaluate Context command to change the MEL. */
3919         virt_dev = xhci->devs[udev->slot_id];
3920         command = xhci->lpm_command;
3921         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3922         if (!ctrl_ctx) {
3923                 spin_unlock_irqrestore(&xhci->lock, flags);
3924                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3925                                 __func__);
3926                 return -ENOMEM;
3927         }
3928
3929         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3930         spin_unlock_irqrestore(&xhci->lock, flags);
3931
3932         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3933         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3934         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3935         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3936
3937         xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
3938         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3939         xhci_dbg_ctx(xhci, command->in_ctx, 0);
3940
3941         /* Issue and wait for the evaluate context command. */
3942         ret = xhci_configure_endpoint(xhci, udev, command,
3943                         true, true);
3944         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3945         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3946
3947         if (!ret) {
3948                 spin_lock_irqsave(&xhci->lock, flags);
3949                 virt_dev->current_mel = max_exit_latency;
3950                 spin_unlock_irqrestore(&xhci->lock, flags);
3951         }
3952         return ret;
3953 }
3954
3955 #ifdef CONFIG_PM_RUNTIME
3956
3957 /* BESL to HIRD Encoding array for USB2 LPM */
3958 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3959         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3960
3961 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3962 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3963                                         struct usb_device *udev)
3964 {
3965         int u2del, besl, besl_host;
3966         int besl_device = 0;
3967         u32 field;
3968
3969         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3970         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3971
3972         if (field & USB_BESL_SUPPORT) {
3973                 for (besl_host = 0; besl_host < 16; besl_host++) {
3974                         if (xhci_besl_encoding[besl_host] >= u2del)
3975                                 break;
3976                 }
3977                 /* Use baseline BESL value as default */
3978                 if (field & USB_BESL_BASELINE_VALID)
3979                         besl_device = USB_GET_BESL_BASELINE(field);
3980                 else if (field & USB_BESL_DEEP_VALID)
3981                         besl_device = USB_GET_BESL_DEEP(field);
3982         } else {
3983                 if (u2del <= 50)
3984                         besl_host = 0;
3985                 else
3986                         besl_host = (u2del - 51) / 75 + 1;
3987         }
3988
3989         besl = besl_host + besl_device;
3990         if (besl > 15)
3991                 besl = 15;
3992
3993         return besl;
3994 }
3995
3996 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
3997 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
3998 {
3999         u32 field;
4000         int l1;
4001         int besld = 0;
4002         int hirdm = 0;
4003
4004         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4005
4006         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4007         l1 = udev->l1_params.timeout / 256;
4008
4009         /* device has preferred BESLD */
4010         if (field & USB_BESL_DEEP_VALID) {
4011                 besld = USB_GET_BESL_DEEP(field);
4012                 hirdm = 1;
4013         }
4014
4015         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4016 }
4017
4018 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
4019                                         struct usb_device *udev)
4020 {
4021         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4022         struct dev_info *dev_info;
4023         __le32 __iomem  **port_array;
4024         __le32 __iomem  *addr, *pm_addr;
4025         u32             temp, dev_id;
4026         unsigned int    port_num;
4027         unsigned long   flags;
4028         int             hird;
4029         int             ret;
4030
4031         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4032                         !udev->lpm_capable)
4033                 return -EINVAL;
4034
4035         /* we only support lpm for non-hub device connected to root hub yet */
4036         if (!udev->parent || udev->parent->parent ||
4037                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4038                 return -EINVAL;
4039
4040         spin_lock_irqsave(&xhci->lock, flags);
4041
4042         /* Look for devices in lpm_failed_devs list */
4043         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
4044                         le16_to_cpu(udev->descriptor.idProduct);
4045         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
4046                 if (dev_info->dev_id == dev_id) {
4047                         ret = -EINVAL;
4048                         goto finish;
4049                 }
4050         }
4051
4052         port_array = xhci->usb2_ports;
4053         port_num = udev->portnum - 1;
4054
4055         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
4056                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
4057                 ret = -EINVAL;
4058                 goto finish;
4059         }
4060
4061         /*
4062          * Test USB 2.0 software LPM.
4063          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
4064          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
4065          * in the June 2011 errata release.
4066          */
4067         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
4068         /*
4069          * Set L1 Device Slot and HIRD/BESL.
4070          * Check device's USB 2.0 extension descriptor to determine whether
4071          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
4072          */
4073         pm_addr = port_array[port_num] + PORTPMSC;
4074         hird = xhci_calculate_hird_besl(xhci, udev);
4075         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
4076         xhci_writel(xhci, temp, pm_addr);
4077
4078         /* Set port link state to U2(L1) */
4079         addr = port_array[port_num];
4080         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
4081
4082         /* wait for ACK */
4083         spin_unlock_irqrestore(&xhci->lock, flags);
4084         msleep(10);
4085         spin_lock_irqsave(&xhci->lock, flags);
4086
4087         /* Check L1 Status */
4088         ret = xhci_handshake(xhci, pm_addr,
4089                         PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
4090         if (ret != -ETIMEDOUT) {
4091                 /* enter L1 successfully */
4092                 temp = xhci_readl(xhci, addr);
4093                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
4094                                 port_num, temp);
4095                 ret = 0;
4096         } else {
4097                 temp = xhci_readl(xhci, pm_addr);
4098                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
4099                                 port_num, temp & PORT_L1S_MASK);
4100                 ret = -EINVAL;
4101         }
4102
4103         /* Resume the port */
4104         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
4105
4106         spin_unlock_irqrestore(&xhci->lock, flags);
4107         msleep(10);
4108         spin_lock_irqsave(&xhci->lock, flags);
4109
4110         /* Clear PLC */
4111         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
4112
4113         /* Check PORTSC to make sure the device is in the right state */
4114         if (!ret) {
4115                 temp = xhci_readl(xhci, addr);
4116                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
4117                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
4118                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
4119                         xhci_dbg(xhci, "port L1 resume fail\n");
4120                         ret = -EINVAL;
4121                 }
4122         }
4123
4124         if (ret) {
4125                 /* Insert dev to lpm_failed_devs list */
4126                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
4127                                 "re-enumerate\n");
4128                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
4129                 if (!dev_info) {
4130                         ret = -ENOMEM;
4131                         goto finish;
4132                 }
4133                 dev_info->dev_id = dev_id;
4134                 INIT_LIST_HEAD(&dev_info->list);
4135                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
4136         } else {
4137                 xhci_ring_device(xhci, udev->slot_id);
4138         }
4139
4140 finish:
4141         spin_unlock_irqrestore(&xhci->lock, flags);
4142         return ret;
4143 }
4144
4145 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4146                         struct usb_device *udev, int enable)
4147 {
4148         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4149         __le32 __iomem  **port_array;
4150         __le32 __iomem  *pm_addr, *hlpm_addr;
4151         u32             pm_val, hlpm_val, field;
4152         unsigned int    port_num;
4153         unsigned long   flags;
4154         int             hird, exit_latency;
4155         int             ret;
4156
4157         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4158                         !udev->lpm_capable)
4159                 return -EPERM;
4160
4161         if (!udev->parent || udev->parent->parent ||
4162                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4163                 return -EPERM;
4164
4165         if (udev->usb2_hw_lpm_capable != 1)
4166                 return -EPERM;
4167
4168         spin_lock_irqsave(&xhci->lock, flags);
4169
4170         port_array = xhci->usb2_ports;
4171         port_num = udev->portnum - 1;
4172         pm_addr = port_array[port_num] + PORTPMSC;
4173         pm_val = xhci_readl(xhci, pm_addr);
4174         hlpm_addr = port_array[port_num] + PORTHLPMC;
4175         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4176
4177         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4178                         enable ? "enable" : "disable", port_num);
4179
4180         if (enable) {
4181                 /* Host supports BESL timeout instead of HIRD */
4182                 if (udev->usb2_hw_lpm_besl_capable) {
4183                         /* if device doesn't have a preferred BESL value use a
4184                          * default one which works with mixed HIRD and BESL
4185                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4186                          */
4187                         if ((field & USB_BESL_SUPPORT) &&
4188                             (field & USB_BESL_BASELINE_VALID))
4189                                 hird = USB_GET_BESL_BASELINE(field);
4190                         else
4191                                 hird = udev->l1_params.besl;
4192
4193                         exit_latency = xhci_besl_encoding[hird];
4194                         spin_unlock_irqrestore(&xhci->lock, flags);
4195
4196                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4197                          * input context for link powermanagement evaluate
4198                          * context commands. It is protected by hcd->bandwidth
4199                          * mutex and is shared by all devices. We need to set
4200                          * the max ext latency in USB 2 BESL LPM as well, so
4201                          * use the same mutex and xhci_change_max_exit_latency()
4202                          */
4203                         mutex_lock(hcd->bandwidth_mutex);
4204                         ret = xhci_change_max_exit_latency(xhci, udev,
4205                                                            exit_latency);
4206                         mutex_unlock(hcd->bandwidth_mutex);
4207
4208                         if (ret < 0)
4209                                 return ret;
4210                         spin_lock_irqsave(&xhci->lock, flags);
4211
4212                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4213                         xhci_writel(xhci, hlpm_val, hlpm_addr);
4214                         /* flush write */
4215                         xhci_readl(xhci, hlpm_addr);
4216                 } else {
4217                         hird = xhci_calculate_hird_besl(xhci, udev);
4218                 }
4219
4220                 pm_val &= ~PORT_HIRD_MASK;
4221                 pm_val |= PORT_HIRD(hird) | PORT_RWE;
4222                 xhci_writel(xhci, pm_val, pm_addr);
4223                 pm_val = xhci_readl(xhci, pm_addr);
4224                 pm_val |= PORT_HLE;
4225                 xhci_writel(xhci, pm_val, pm_addr);
4226                 /* flush write */
4227                 xhci_readl(xhci, pm_addr);
4228         } else {
4229                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
4230                 xhci_writel(xhci, pm_val, pm_addr);
4231                 /* flush write */
4232                 xhci_readl(xhci, pm_addr);
4233                 if (udev->usb2_hw_lpm_besl_capable) {
4234                         spin_unlock_irqrestore(&xhci->lock, flags);
4235                         mutex_lock(hcd->bandwidth_mutex);
4236                         xhci_change_max_exit_latency(xhci, udev, 0);
4237                         mutex_unlock(hcd->bandwidth_mutex);
4238                         return 0;
4239                 }
4240         }
4241
4242         spin_unlock_irqrestore(&xhci->lock, flags);
4243         return 0;
4244 }
4245
4246 /* check if a usb2 port supports a given extened capability protocol
4247  * only USB2 ports extended protocol capability values are cached.
4248  * Return 1 if capability is supported
4249  */
4250 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4251                                            unsigned capability)
4252 {
4253         u32 port_offset, port_count;
4254         int i;
4255
4256         for (i = 0; i < xhci->num_ext_caps; i++) {
4257                 if (xhci->ext_caps[i] & capability) {
4258                         /* port offsets starts at 1 */
4259                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4260                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4261                         if (port >= port_offset &&
4262                             port < port_offset + port_count)
4263                                 return 1;
4264                 }
4265         }
4266         return 0;
4267 }
4268
4269 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4270 {
4271         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4272         int             ret;
4273         int             portnum = udev->portnum - 1;
4274
4275         ret = xhci_usb2_software_lpm_test(hcd, udev);
4276         if (!ret) {
4277                 xhci_dbg(xhci, "software LPM test succeed\n");
4278                 if (xhci->hw_lpm_support == 1 &&
4279                     xhci_check_usb2_port_capability(xhci, portnum, XHCI_HLC)) {
4280                         udev->usb2_hw_lpm_capable = 1;
4281                         udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4282                         udev->l1_params.besl = XHCI_DEFAULT_BESL;
4283                         if (xhci_check_usb2_port_capability(xhci, portnum,
4284                                                             XHCI_BLC))
4285                                 udev->usb2_hw_lpm_besl_capable = 1;
4286                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4287                         if (!ret)
4288                                 udev->usb2_hw_lpm_enabled = 1;
4289                 }
4290         }
4291
4292         return 0;
4293 }
4294
4295 #else
4296
4297 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4298                                 struct usb_device *udev, int enable)
4299 {
4300         return 0;
4301 }
4302
4303 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4304 {
4305         return 0;
4306 }
4307
4308 #endif /* CONFIG_PM_RUNTIME */
4309
4310 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4311
4312 #ifdef CONFIG_PM
4313 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4314 static unsigned long long xhci_service_interval_to_ns(
4315                 struct usb_endpoint_descriptor *desc)
4316 {
4317         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4318 }
4319
4320 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4321                 enum usb3_link_state state)
4322 {
4323         unsigned long long sel;
4324         unsigned long long pel;
4325         unsigned int max_sel_pel;
4326         char *state_name;
4327
4328         switch (state) {
4329         case USB3_LPM_U1:
4330                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4331                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4332                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4333                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4334                 state_name = "U1";
4335                 break;
4336         case USB3_LPM_U2:
4337                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4338                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4339                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4340                 state_name = "U2";
4341                 break;
4342         default:
4343                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4344                                 __func__);
4345                 return USB3_LPM_DISABLED;
4346         }
4347
4348         if (sel <= max_sel_pel && pel <= max_sel_pel)
4349                 return USB3_LPM_DEVICE_INITIATED;
4350
4351         if (sel > max_sel_pel)
4352                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4353                                 "due to long SEL %llu ms\n",
4354                                 state_name, sel);
4355         else
4356                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4357                                 "due to long PEL %llu\n ms",
4358                                 state_name, pel);
4359         return USB3_LPM_DISABLED;
4360 }
4361
4362 /* Returns the hub-encoded U1 timeout value.
4363  * The U1 timeout should be the maximum of the following values:
4364  *  - For control endpoints, U1 system exit latency (SEL) * 3
4365  *  - For bulk endpoints, U1 SEL * 5
4366  *  - For interrupt endpoints:
4367  *    - Notification EPs, U1 SEL * 3
4368  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4369  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4370  */
4371 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4372                 struct usb_endpoint_descriptor *desc)
4373 {
4374         unsigned long long timeout_ns;
4375         int ep_type;
4376         int intr_type;
4377
4378         ep_type = usb_endpoint_type(desc);
4379         switch (ep_type) {
4380         case USB_ENDPOINT_XFER_CONTROL:
4381                 timeout_ns = udev->u1_params.sel * 3;
4382                 break;
4383         case USB_ENDPOINT_XFER_BULK:
4384                 timeout_ns = udev->u1_params.sel * 5;
4385                 break;
4386         case USB_ENDPOINT_XFER_INT:
4387                 intr_type = usb_endpoint_interrupt_type(desc);
4388                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4389                         timeout_ns = udev->u1_params.sel * 3;
4390                         break;
4391                 }
4392                 /* Otherwise the calculation is the same as isoc eps */
4393         case USB_ENDPOINT_XFER_ISOC:
4394                 timeout_ns = xhci_service_interval_to_ns(desc);
4395                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4396                 if (timeout_ns < udev->u1_params.sel * 2)
4397                         timeout_ns = udev->u1_params.sel * 2;
4398                 break;
4399         default:
4400                 return 0;
4401         }
4402
4403         /* The U1 timeout is encoded in 1us intervals. */
4404         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4405         /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4406         if (timeout_ns == USB3_LPM_DISABLED)
4407                 timeout_ns++;
4408
4409         /* If the necessary timeout value is bigger than what we can set in the
4410          * USB 3.0 hub, we have to disable hub-initiated U1.
4411          */
4412         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4413                 return timeout_ns;
4414         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4415                         "due to long timeout %llu ms\n", timeout_ns);
4416         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4417 }
4418
4419 /* Returns the hub-encoded U2 timeout value.
4420  * The U2 timeout should be the maximum of:
4421  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4422  *  - largest bInterval of any active periodic endpoint (to avoid going
4423  *    into lower power link states between intervals).
4424  *  - the U2 Exit Latency of the device
4425  */
4426 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4427                 struct usb_endpoint_descriptor *desc)
4428 {
4429         unsigned long long timeout_ns;
4430         unsigned long long u2_del_ns;
4431
4432         timeout_ns = 10 * 1000 * 1000;
4433
4434         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4435                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4436                 timeout_ns = xhci_service_interval_to_ns(desc);
4437
4438         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4439         if (u2_del_ns > timeout_ns)
4440                 timeout_ns = u2_del_ns;
4441
4442         /* The U2 timeout is encoded in 256us intervals */
4443         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4444         /* If the necessary timeout value is bigger than what we can set in the
4445          * USB 3.0 hub, we have to disable hub-initiated U2.
4446          */
4447         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4448                 return timeout_ns;
4449         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4450                         "due to long timeout %llu ms\n", timeout_ns);
4451         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4452 }
4453
4454 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4455                 struct usb_device *udev,
4456                 struct usb_endpoint_descriptor *desc,
4457                 enum usb3_link_state state,
4458                 u16 *timeout)
4459 {
4460         if (state == USB3_LPM_U1) {
4461                 if (xhci->quirks & XHCI_INTEL_HOST)
4462                         return xhci_calculate_intel_u1_timeout(udev, desc);
4463         } else {
4464                 if (xhci->quirks & XHCI_INTEL_HOST)
4465                         return xhci_calculate_intel_u2_timeout(udev, desc);
4466         }
4467
4468         return USB3_LPM_DISABLED;
4469 }
4470
4471 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4472                 struct usb_device *udev,
4473                 struct usb_endpoint_descriptor *desc,
4474                 enum usb3_link_state state,
4475                 u16 *timeout)
4476 {
4477         u16 alt_timeout;
4478
4479         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4480                 desc, state, timeout);
4481
4482         /* If we found we can't enable hub-initiated LPM, or
4483          * the U1 or U2 exit latency was too high to allow
4484          * device-initiated LPM as well, just stop searching.
4485          */
4486         if (alt_timeout == USB3_LPM_DISABLED ||
4487                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4488                 *timeout = alt_timeout;
4489                 return -E2BIG;
4490         }
4491         if (alt_timeout > *timeout)
4492                 *timeout = alt_timeout;
4493         return 0;
4494 }
4495
4496 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4497                 struct usb_device *udev,
4498                 struct usb_host_interface *alt,
4499                 enum usb3_link_state state,
4500                 u16 *timeout)
4501 {
4502         int j;
4503
4504         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4505                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4506                                         &alt->endpoint[j].desc, state, timeout))
4507                         return -E2BIG;
4508                 continue;
4509         }
4510         return 0;
4511 }
4512
4513 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4514                 enum usb3_link_state state)
4515 {
4516         struct usb_device *parent;
4517         unsigned int num_hubs;
4518
4519         if (state == USB3_LPM_U2)
4520                 return 0;
4521
4522         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4523         for (parent = udev->parent, num_hubs = 0; parent->parent;
4524                         parent = parent->parent)
4525                 num_hubs++;
4526
4527         if (num_hubs < 2)
4528                 return 0;
4529
4530         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4531                         " below second-tier hub.\n");
4532         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4533                         "to decrease power consumption.\n");
4534         return -E2BIG;
4535 }
4536
4537 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4538                 struct usb_device *udev,
4539                 enum usb3_link_state state)
4540 {
4541         if (xhci->quirks & XHCI_INTEL_HOST)
4542                 return xhci_check_intel_tier_policy(udev, state);
4543         return -EINVAL;
4544 }
4545
4546 /* Returns the U1 or U2 timeout that should be enabled.
4547  * If the tier check or timeout setting functions return with a non-zero exit
4548  * code, that means the timeout value has been finalized and we shouldn't look
4549  * at any more endpoints.
4550  */
4551 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4552                         struct usb_device *udev, enum usb3_link_state state)
4553 {
4554         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4555         struct usb_host_config *config;
4556         char *state_name;
4557         int i;
4558         u16 timeout = USB3_LPM_DISABLED;
4559
4560         if (state == USB3_LPM_U1)
4561                 state_name = "U1";
4562         else if (state == USB3_LPM_U2)
4563                 state_name = "U2";
4564         else {
4565                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4566                                 state);
4567                 return timeout;
4568         }
4569
4570         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4571                 return timeout;
4572
4573         /* Gather some information about the currently installed configuration
4574          * and alternate interface settings.
4575          */
4576         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4577                         state, &timeout))
4578                 return timeout;
4579
4580         config = udev->actconfig;
4581         if (!config)
4582                 return timeout;
4583
4584         for (i = 0; i < USB_MAXINTERFACES; i++) {
4585                 struct usb_driver *driver;
4586                 struct usb_interface *intf = config->interface[i];
4587
4588                 if (!intf)
4589                         continue;
4590
4591                 /* Check if any currently bound drivers want hub-initiated LPM
4592                  * disabled.
4593                  */
4594                 if (intf->dev.driver) {
4595                         driver = to_usb_driver(intf->dev.driver);
4596                         if (driver && driver->disable_hub_initiated_lpm) {
4597                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4598                                                 "at request of driver %s\n",
4599                                                 state_name, driver->name);
4600                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4601                         }
4602                 }
4603
4604                 /* Not sure how this could happen... */
4605                 if (!intf->cur_altsetting)
4606                         continue;
4607
4608                 if (xhci_update_timeout_for_interface(xhci, udev,
4609                                         intf->cur_altsetting,
4610                                         state, &timeout))
4611                         return timeout;
4612         }
4613         return timeout;
4614 }
4615
4616 static int calculate_max_exit_latency(struct usb_device *udev,
4617                 enum usb3_link_state state_changed,
4618                 u16 hub_encoded_timeout)
4619 {
4620         unsigned long long u1_mel_us = 0;
4621         unsigned long long u2_mel_us = 0;
4622         unsigned long long mel_us = 0;
4623         bool disabling_u1;
4624         bool disabling_u2;
4625         bool enabling_u1;
4626         bool enabling_u2;
4627
4628         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4629                         hub_encoded_timeout == USB3_LPM_DISABLED);
4630         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4631                         hub_encoded_timeout == USB3_LPM_DISABLED);
4632
4633         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4634                         hub_encoded_timeout != USB3_LPM_DISABLED);
4635         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4636                         hub_encoded_timeout != USB3_LPM_DISABLED);
4637
4638         /* If U1 was already enabled and we're not disabling it,
4639          * or we're going to enable U1, account for the U1 max exit latency.
4640          */
4641         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4642                         enabling_u1)
4643                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4644         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4645                         enabling_u2)
4646                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4647
4648         if (u1_mel_us > u2_mel_us)
4649                 mel_us = u1_mel_us;
4650         else
4651                 mel_us = u2_mel_us;
4652         /* xHCI host controller max exit latency field is only 16 bits wide. */
4653         if (mel_us > MAX_EXIT) {
4654                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4655                                 "is too big.\n", mel_us);
4656                 return -E2BIG;
4657         }
4658         return mel_us;
4659 }
4660
4661 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4662 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4663                         struct usb_device *udev, enum usb3_link_state state)
4664 {
4665         struct xhci_hcd *xhci;
4666         u16 hub_encoded_timeout;
4667         int mel;
4668         int ret;
4669
4670         xhci = hcd_to_xhci(hcd);
4671         /* The LPM timeout values are pretty host-controller specific, so don't
4672          * enable hub-initiated timeouts unless the vendor has provided
4673          * information about their timeout algorithm.
4674          */
4675         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4676                         !xhci->devs[udev->slot_id])
4677                 return USB3_LPM_DISABLED;
4678
4679         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4680         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4681         if (mel < 0) {
4682                 /* Max Exit Latency is too big, disable LPM. */
4683                 hub_encoded_timeout = USB3_LPM_DISABLED;
4684                 mel = 0;
4685         }
4686
4687         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4688         if (ret)
4689                 return ret;
4690         return hub_encoded_timeout;
4691 }
4692
4693 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4694                         struct usb_device *udev, enum usb3_link_state state)
4695 {
4696         struct xhci_hcd *xhci;
4697         u16 mel;
4698         int ret;
4699
4700         xhci = hcd_to_xhci(hcd);
4701         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4702                         !xhci->devs[udev->slot_id])
4703                 return 0;
4704
4705         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4706         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4707         if (ret)
4708                 return ret;
4709         return 0;
4710 }
4711 #else /* CONFIG_PM */
4712
4713 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4714                         struct usb_device *udev, enum usb3_link_state state)
4715 {
4716         return USB3_LPM_DISABLED;
4717 }
4718
4719 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4720                         struct usb_device *udev, enum usb3_link_state state)
4721 {
4722         return 0;
4723 }
4724 #endif  /* CONFIG_PM */
4725
4726 /*-------------------------------------------------------------------------*/
4727
4728 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4729  * internal data structures for the device.
4730  */
4731 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4732                         struct usb_tt *tt, gfp_t mem_flags)
4733 {
4734         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4735         struct xhci_virt_device *vdev;
4736         struct xhci_command *config_cmd;
4737         struct xhci_input_control_ctx *ctrl_ctx;
4738         struct xhci_slot_ctx *slot_ctx;
4739         unsigned long flags;
4740         unsigned think_time;
4741         int ret;
4742
4743         /* Ignore root hubs */
4744         if (!hdev->parent)
4745                 return 0;
4746
4747         vdev = xhci->devs[hdev->slot_id];
4748         if (!vdev) {
4749                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4750                 return -EINVAL;
4751         }
4752         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4753         if (!config_cmd) {
4754                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4755                 return -ENOMEM;
4756         }
4757         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4758         if (!ctrl_ctx) {
4759                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4760                                 __func__);
4761                 xhci_free_command(xhci, config_cmd);
4762                 return -ENOMEM;
4763         }
4764
4765         spin_lock_irqsave(&xhci->lock, flags);
4766         if (hdev->speed == USB_SPEED_HIGH &&
4767                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4768                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4769                 xhci_free_command(xhci, config_cmd);
4770                 spin_unlock_irqrestore(&xhci->lock, flags);
4771                 return -ENOMEM;
4772         }
4773
4774         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4775         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4776         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4777         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4778         if (tt->multi)
4779                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4780         if (xhci->hci_version > 0x95) {
4781                 xhci_dbg(xhci, "xHCI version %x needs hub "
4782                                 "TT think time and number of ports\n",
4783                                 (unsigned int) xhci->hci_version);
4784                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4785                 /* Set TT think time - convert from ns to FS bit times.
4786                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4787                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4788                  *
4789                  * xHCI 1.0: this field shall be 0 if the device is not a
4790                  * High-spped hub.
4791                  */
4792                 think_time = tt->think_time;
4793                 if (think_time != 0)
4794                         think_time = (think_time / 666) - 1;
4795                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4796                         slot_ctx->tt_info |=
4797                                 cpu_to_le32(TT_THINK_TIME(think_time));
4798         } else {
4799                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4800                                 "TT think time or number of ports\n",
4801                                 (unsigned int) xhci->hci_version);
4802         }
4803         slot_ctx->dev_state = 0;
4804         spin_unlock_irqrestore(&xhci->lock, flags);
4805
4806         xhci_dbg(xhci, "Set up %s for hub device.\n",
4807                         (xhci->hci_version > 0x95) ?
4808                         "configure endpoint" : "evaluate context");
4809         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4810         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4811
4812         /* Issue and wait for the configure endpoint or
4813          * evaluate context command.
4814          */
4815         if (xhci->hci_version > 0x95)
4816                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4817                                 false, false);
4818         else
4819                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4820                                 true, false);
4821
4822         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4823         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4824
4825         xhci_free_command(xhci, config_cmd);
4826         return ret;
4827 }
4828
4829 int xhci_get_frame(struct usb_hcd *hcd)
4830 {
4831         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4832         /* EHCI mods by the periodic size.  Why? */
4833         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4834 }
4835
4836 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4837 {
4838         struct xhci_hcd         *xhci;
4839         struct device           *dev = hcd->self.controller;
4840         int                     retval;
4841         u32                     temp;
4842
4843         /* Accept arbitrarily long scatter-gather lists */
4844         hcd->self.sg_tablesize = ~0;
4845         /* XHCI controllers don't stop the ep queue on short packets :| */
4846         hcd->self.no_stop_on_short = 1;
4847
4848         if (usb_hcd_is_primary_hcd(hcd)) {
4849                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4850                 if (!xhci)
4851                         return -ENOMEM;
4852                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4853                 xhci->main_hcd = hcd;
4854                 /* Mark the first roothub as being USB 2.0.
4855                  * The xHCI driver will register the USB 3.0 roothub.
4856                  */
4857                 hcd->speed = HCD_USB2;
4858                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4859                 /*
4860                  * USB 2.0 roothub under xHCI has an integrated TT,
4861                  * (rate matching hub) as opposed to having an OHCI/UHCI
4862                  * companion controller.
4863                  */
4864                 hcd->has_tt = 1;
4865         } else {
4866                 /* xHCI private pointer was set in xhci_pci_probe for the second
4867                  * registered roothub.
4868                  */
4869                 xhci = hcd_to_xhci(hcd);
4870                 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4871                 if (HCC_64BIT_ADDR(temp)) {
4872                         xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4873                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4874                 } else {
4875                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4876                 }
4877                 return 0;
4878         }
4879
4880         xhci->cap_regs = hcd->regs;
4881         xhci->op_regs = hcd->regs +
4882                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4883         xhci->run_regs = hcd->regs +
4884                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4885         /* Cache read-only capability registers */
4886         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4887         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4888         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4889         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4890         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4891         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4892         xhci_print_registers(xhci);
4893
4894         get_quirks(dev, xhci);
4895
4896         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4897          * success event after a short transfer. This quirk will ignore such
4898          * spurious event.
4899          */
4900         if (xhci->hci_version > 0x96)
4901                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4902
4903         /* Make sure the HC is halted. */
4904         retval = xhci_halt(xhci);
4905         if (retval)
4906                 goto error;
4907
4908         xhci_dbg(xhci, "Resetting HCD\n");
4909         /* Reset the internal HC memory state and registers. */
4910         retval = xhci_reset(xhci);
4911         if (retval)
4912                 goto error;
4913         xhci_dbg(xhci, "Reset complete\n");
4914
4915         temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4916         if (HCC_64BIT_ADDR(temp)) {
4917                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4918                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4919         } else {
4920                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4921         }
4922
4923         xhci_dbg(xhci, "Calling HCD init\n");
4924         /* Initialize HCD and host controller data structures. */
4925         retval = xhci_init(hcd);
4926         if (retval)
4927                 goto error;
4928         xhci_dbg(xhci, "Called HCD init\n");
4929         return 0;
4930 error:
4931         kfree(xhci);
4932         return retval;
4933 }
4934
4935 MODULE_DESCRIPTION(DRIVER_DESC);
4936 MODULE_AUTHOR(DRIVER_AUTHOR);
4937 MODULE_LICENSE("GPL");
4938
4939 static int __init xhci_hcd_init(void)
4940 {
4941         int retval;
4942
4943         retval = xhci_register_pci();
4944         if (retval < 0) {
4945                 printk(KERN_DEBUG "Problem registering PCI driver.");
4946                 return retval;
4947         }
4948         retval = xhci_register_plat();
4949         if (retval < 0) {
4950                 printk(KERN_DEBUG "Problem registering platform driver.");
4951                 goto unreg_pci;
4952         }
4953         /*
4954          * Check the compiler generated sizes of structures that must be laid
4955          * out in specific ways for hardware access.
4956          */
4957         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4958         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4959         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4960         /* xhci_device_control has eight fields, and also
4961          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4962          */
4963         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4964         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4965         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4966         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4967         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4968         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4969         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4970         return 0;
4971 unreg_pci:
4972         xhci_unregister_pci();
4973         return retval;
4974 }
4975 module_init(xhci_hcd_init);
4976
4977 static void __exit xhci_hcd_cleanup(void)
4978 {
4979         xhci_unregister_pci();
4980         xhci_unregister_plat();
4981 }
4982 module_exit(xhci_hcd_cleanup);