]> rtime.felk.cvut.cz Git - l4.git/blob - l4/pkg/uclibc/lib/contrib/uclibc/libm/e_jn.c
Inital import
[l4.git] / l4 / pkg / uclibc / lib / contrib / uclibc / libm / e_jn.c
1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11
12 /*
13  * __ieee754_jn(n, x), __ieee754_yn(n, x)
14  * floating point Bessel's function of the 1st and 2nd kind
15  * of order n
16  *
17  * Special cases:
18  *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
19  *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
20  * Note 2. About jn(n,x), yn(n,x)
21  *      For n=0, j0(x) is called,
22  *      for n=1, j1(x) is called,
23  *      for n<x, forward recursion us used starting
24  *      from values of j0(x) and j1(x).
25  *      for n>x, a continued fraction approximation to
26  *      j(n,x)/j(n-1,x) is evaluated and then backward
27  *      recursion is used starting from a supposed value
28  *      for j(n,x). The resulting value of j(0,x) is
29  *      compared with the actual value to correct the
30  *      supposed value of j(n,x).
31  *
32  *      yn(n,x) is similar in all respects, except
33  *      that forward recursion is used for all
34  *      values of n>1.
35  *
36  */
37
38 #include "math.h"
39 #include "math_private.h"
40
41 static const double
42 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
43 two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
44 one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
45
46 static const double zero  =  0.00000000000000000000e+00;
47
48 double attribute_hidden __ieee754_jn(int n, double x)
49 {
50         int32_t i,hx,ix,lx, sgn;
51         double a, b, temp=0, di;
52         double z, w;
53
54     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
55      * Thus, J(-n,x) = J(n,-x)
56      */
57         EXTRACT_WORDS(hx,lx,x);
58         ix = 0x7fffffff&hx;
59     /* if J(n,NaN) is NaN */
60         if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
61         if(n<0){
62                 n = -n;
63                 x = -x;
64                 hx ^= 0x80000000;
65         }
66         if(n==0) return(__ieee754_j0(x));
67         if(n==1) return(__ieee754_j1(x));
68         sgn = (n&1)&(hx>>31);   /* even n -- 0, odd n -- sign(x) */
69         x = fabs(x);
70         if((ix|lx)==0||ix>=0x7ff00000)  /* if x is 0 or inf */
71             b = zero;
72         else if((double)n<=x) {
73                 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
74             if(ix>=0x52D00000) { /* x > 2**302 */
75     /* (x >> n**2)
76      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
77      *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
78      *      Let s=sin(x), c=cos(x),
79      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
80      *
81      *             n    sin(xn)*sqt2    cos(xn)*sqt2
82      *          ----------------------------------
83      *             0     s-c             c+s
84      *             1    -s-c            -c+s
85      *             2    -s+c            -c-s
86      *             3     s+c             c-s
87      */
88                 switch(n&3) {
89                     case 0: temp =  cos(x)+sin(x); break;
90                     case 1: temp = -cos(x)+sin(x); break;
91                     case 2: temp = -cos(x)-sin(x); break;
92                     case 3: temp =  cos(x)-sin(x); break;
93                 }
94                 b = invsqrtpi*temp/sqrt(x);
95             } else {
96                 a = __ieee754_j0(x);
97                 b = __ieee754_j1(x);
98                 for(i=1;i<n;i++){
99                     temp = b;
100                     b = b*((double)(i+i)/x) - a; /* avoid underflow */
101                     a = temp;
102                 }
103             }
104         } else {
105             if(ix<0x3e100000) { /* x < 2**-29 */
106     /* x is tiny, return the first Taylor expansion of J(n,x)
107      * J(n,x) = 1/n!*(x/2)^n  - ...
108      */
109                 if(n>33)        /* underflow */
110                     b = zero;
111                 else {
112                     temp = x*0.5; b = temp;
113                     for (a=one,i=2;i<=n;i++) {
114                         a *= (double)i;         /* a = n! */
115                         b *= temp;              /* b = (x/2)^n */
116                     }
117                     b = b/a;
118                 }
119             } else {
120                 /* use backward recurrence */
121                 /*                      x      x^2      x^2
122                  *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
123                  *                      2n  - 2(n+1) - 2(n+2)
124                  *
125                  *                      1      1        1
126                  *  (for large x)   =  ----  ------   ------   .....
127                  *                      2n   2(n+1)   2(n+2)
128                  *                      -- - ------ - ------ -
129                  *                       x     x         x
130                  *
131                  * Let w = 2n/x and h=2/x, then the above quotient
132                  * is equal to the continued fraction:
133                  *                  1
134                  *      = -----------------------
135                  *                     1
136                  *         w - -----------------
137                  *                        1
138                  *              w+h - ---------
139                  *                     w+2h - ...
140                  *
141                  * To determine how many terms needed, let
142                  * Q(0) = w, Q(1) = w(w+h) - 1,
143                  * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
144                  * When Q(k) > 1e4      good for single
145                  * When Q(k) > 1e9      good for double
146                  * When Q(k) > 1e17     good for quadruple
147                  */
148             /* determine k */
149                 double t,v;
150                 double q0,q1,h,tmp; int32_t k,m;
151                 w  = (n+n)/(double)x; h = 2.0/(double)x;
152                 q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
153                 while(q1<1.0e9) {
154                         k += 1; z += h;
155                         tmp = z*q1 - q0;
156                         q0 = q1;
157                         q1 = tmp;
158                 }
159                 m = n+n;
160                 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
161                 a = t;
162                 b = one;
163                 /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
164                  *  Hence, if n*(log(2n/x)) > ...
165                  *  single 8.8722839355e+01
166                  *  double 7.09782712893383973096e+02
167                  *  long double 1.1356523406294143949491931077970765006170e+04
168                  *  then recurrent value may overflow and the result is
169                  *  likely underflow to zero
170                  */
171                 tmp = n;
172                 v = two/x;
173                 tmp = tmp*__ieee754_log(fabs(v*tmp));
174                 if(tmp<7.09782712893383973096e+02) {
175                     for(i=n-1,di=(double)(i+i);i>0;i--){
176                         temp = b;
177                         b *= di;
178                         b  = b/x - a;
179                         a = temp;
180                         di -= two;
181                     }
182                 } else {
183                     for(i=n-1,di=(double)(i+i);i>0;i--){
184                         temp = b;
185                         b *= di;
186                         b  = b/x - a;
187                         a = temp;
188                         di -= two;
189                     /* scale b to avoid spurious overflow */
190                         if(b>1e100) {
191                             a /= b;
192                             t /= b;
193                             b  = one;
194                         }
195                     }
196                 }
197                 b = (t*__ieee754_j0(x)/b);
198             }
199         }
200         if(sgn==1) return -b; else return b;
201 }
202
203 /*
204  * wrapper jn(int n, double x)
205  */
206 #ifndef _IEEE_LIBM
207 double jn(int n, double x)
208 {
209         double z = __ieee754_jn(n, x);
210         if (_LIB_VERSION == _IEEE_ || isnan(x))
211                 return z;
212         if (fabs(x) > X_TLOSS)
213                 return __kernel_standard((double)n, x, 38); /* jn(|x|>X_TLOSS,n) */
214         return z;
215 }
216 #else
217 strong_alias(__ieee754_jn, jn)
218 #endif
219
220 double attribute_hidden __ieee754_yn(int n, double x)
221 {
222         int32_t i,hx,ix,lx;
223         int32_t sign;
224         double a, b, temp=0;
225
226         EXTRACT_WORDS(hx,lx,x);
227         ix = 0x7fffffff&hx;
228     /* if Y(n,NaN) is NaN */
229         if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
230         if((ix|lx)==0) return -one/zero;
231         if(hx<0) return zero/zero;
232         sign = 1;
233         if(n<0){
234                 n = -n;
235                 sign = 1 - ((n&1)<<1);
236         }
237         if(n==0) return(__ieee754_y0(x));
238         if(n==1) return(sign*__ieee754_y1(x));
239         if(ix==0x7ff00000) return zero;
240         if(ix>=0x52D00000) { /* x > 2**302 */
241     /* (x >> n**2)
242      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
243      *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
244      *      Let s=sin(x), c=cos(x),
245      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
246      *
247      *             n    sin(xn)*sqt2    cos(xn)*sqt2
248      *          ----------------------------------
249      *             0     s-c             c+s
250      *             1    -s-c            -c+s
251      *             2    -s+c            -c-s
252      *             3     s+c             c-s
253      */
254                 switch(n&3) {
255                     case 0: temp =  sin(x)-cos(x); break;
256                     case 1: temp = -sin(x)-cos(x); break;
257                     case 2: temp = -sin(x)+cos(x); break;
258                     case 3: temp =  sin(x)+cos(x); break;
259                 }
260                 b = invsqrtpi*temp/sqrt(x);
261         } else {
262             u_int32_t high;
263             a = __ieee754_y0(x);
264             b = __ieee754_y1(x);
265         /* quit if b is -inf */
266             GET_HIGH_WORD(high,b);
267             for(i=1;i<n&&high!=0xfff00000;i++){
268                 temp = b;
269                 b = ((double)(i+i)/x)*b - a;
270                 GET_HIGH_WORD(high,b);
271                 a = temp;
272             }
273         }
274         if(sign>0) return b; else return -b;
275 }
276
277 /*
278  * wrapper yn(int n, double x)
279  */
280 #ifndef _IEEE_LIBM
281 double yn(int n, double x)      /* wrapper yn */
282 {
283         double z = __ieee754_yn(n, x);
284         if (_LIB_VERSION == _IEEE_ || isnan(x))
285                 return z;
286         if (x <= 0.0) {
287                 if(x == 0.0) /* d= -one/(x-x); */
288                         return __kernel_standard((double)n, x, 12);
289                 /* d = zero/(x-x); */
290                 return __kernel_standard((double)n, x, 13);
291         }
292         if (x > X_TLOSS)
293                 return __kernel_standard((double)n, x, 39); /* yn(x>X_TLOSS,n) */
294         return z;
295 }
296 #else
297 strong_alias(__ieee754_yn, yn)
298 #endif