]> rtime.felk.cvut.cz Git - l4.git/blob - l4/pkg/libjpeg/lib/contrib/jdcoefct.c
update
[l4.git] / l4 / pkg / libjpeg / lib / contrib / jdcoefct.c
1 /*
2  * jdcoefct.c
3  *
4  * Copyright (C) 1994-1997, Thomas G. Lane.
5  * Modified 2002-2011 by Guido Vollbeding.
6  * This file is part of the Independent JPEG Group's software.
7  * For conditions of distribution and use, see the accompanying README file.
8  *
9  * This file contains the coefficient buffer controller for decompression.
10  * This controller is the top level of the JPEG decompressor proper.
11  * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
12  *
13  * In buffered-image mode, this controller is the interface between
14  * input-oriented processing and output-oriented processing.
15  * Also, the input side (only) is used when reading a file for transcoding.
16  */
17
18 #define JPEG_INTERNALS
19 #include "jinclude.h"
20 #include "jpeglib.h"
21
22 /* Block smoothing is only applicable for progressive JPEG, so: */
23 #ifndef D_PROGRESSIVE_SUPPORTED
24 #undef BLOCK_SMOOTHING_SUPPORTED
25 #endif
26
27 /* Private buffer controller object */
28
29 typedef struct {
30   struct jpeg_d_coef_controller pub; /* public fields */
31
32   /* These variables keep track of the current location of the input side. */
33   /* cinfo->input_iMCU_row is also used for this. */
34   JDIMENSION MCU_ctr;           /* counts MCUs processed in current row */
35   int MCU_vert_offset;          /* counts MCU rows within iMCU row */
36   int MCU_rows_per_iMCU_row;    /* number of such rows needed */
37
38   /* The output side's location is represented by cinfo->output_iMCU_row. */
39
40   /* In single-pass modes, it's sufficient to buffer just one MCU.
41    * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
42    * and let the entropy decoder write into that workspace each time.
43    * (On 80x86, the workspace is FAR even though it's not really very big;
44    * this is to keep the module interfaces unchanged when a large coefficient
45    * buffer is necessary.)
46    * In multi-pass modes, this array points to the current MCU's blocks
47    * within the virtual arrays; it is used only by the input side.
48    */
49   JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
50
51 #ifdef D_MULTISCAN_FILES_SUPPORTED
52   /* In multi-pass modes, we need a virtual block array for each component. */
53   jvirt_barray_ptr whole_image[MAX_COMPONENTS];
54 #endif
55
56 #ifdef BLOCK_SMOOTHING_SUPPORTED
57   /* When doing block smoothing, we latch coefficient Al values here */
58   int * coef_bits_latch;
59 #define SAVED_COEFS  6          /* we save coef_bits[0..5] */
60 #endif
61 } my_coef_controller;
62
63 typedef my_coef_controller * my_coef_ptr;
64
65 /* Forward declarations */
66 METHODDEF(int) decompress_onepass
67         JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
68 #ifdef D_MULTISCAN_FILES_SUPPORTED
69 METHODDEF(int) decompress_data
70         JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
71 #endif
72 #ifdef BLOCK_SMOOTHING_SUPPORTED
73 LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
74 METHODDEF(int) decompress_smooth_data
75         JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
76 #endif
77
78
79 LOCAL(void)
80 start_iMCU_row (j_decompress_ptr cinfo)
81 /* Reset within-iMCU-row counters for a new row (input side) */
82 {
83   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
84
85   /* In an interleaved scan, an MCU row is the same as an iMCU row.
86    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
87    * But at the bottom of the image, process only what's left.
88    */
89   if (cinfo->comps_in_scan > 1) {
90     coef->MCU_rows_per_iMCU_row = 1;
91   } else {
92     if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
93       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
94     else
95       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
96   }
97
98   coef->MCU_ctr = 0;
99   coef->MCU_vert_offset = 0;
100 }
101
102
103 /*
104  * Initialize for an input processing pass.
105  */
106
107 METHODDEF(void)
108 start_input_pass (j_decompress_ptr cinfo)
109 {
110   cinfo->input_iMCU_row = 0;
111   start_iMCU_row(cinfo);
112 }
113
114
115 /*
116  * Initialize for an output processing pass.
117  */
118
119 METHODDEF(void)
120 start_output_pass (j_decompress_ptr cinfo)
121 {
122 #ifdef BLOCK_SMOOTHING_SUPPORTED
123   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
124
125   /* If multipass, check to see whether to use block smoothing on this pass */
126   if (coef->pub.coef_arrays != NULL) {
127     if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
128       coef->pub.decompress_data = decompress_smooth_data;
129     else
130       coef->pub.decompress_data = decompress_data;
131   }
132 #endif
133   cinfo->output_iMCU_row = 0;
134 }
135
136
137 /*
138  * Decompress and return some data in the single-pass case.
139  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
140  * Input and output must run in lockstep since we have only a one-MCU buffer.
141  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
142  *
143  * NB: output_buf contains a plane for each component in image,
144  * which we index according to the component's SOF position.
145  */
146
147 METHODDEF(int)
148 decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
149 {
150   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
151   JDIMENSION MCU_col_num;       /* index of current MCU within row */
152   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
153   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
154   int blkn, ci, xindex, yindex, yoffset, useful_width;
155   JSAMPARRAY output_ptr;
156   JDIMENSION start_col, output_col;
157   jpeg_component_info *compptr;
158   inverse_DCT_method_ptr inverse_DCT;
159
160   /* Loop to process as much as one whole iMCU row */
161   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
162        yoffset++) {
163     for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
164          MCU_col_num++) {
165       /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
166       if (cinfo->lim_Se)        /* can bypass in DC only case */
167         FMEMZERO((void FAR *) coef->MCU_buffer[0],
168                  (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
169       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
170         /* Suspension forced; update state counters and exit */
171         coef->MCU_vert_offset = yoffset;
172         coef->MCU_ctr = MCU_col_num;
173         return JPEG_SUSPENDED;
174       }
175       /* Determine where data should go in output_buf and do the IDCT thing.
176        * We skip dummy blocks at the right and bottom edges (but blkn gets
177        * incremented past them!).  Note the inner loop relies on having
178        * allocated the MCU_buffer[] blocks sequentially.
179        */
180       blkn = 0;                 /* index of current DCT block within MCU */
181       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
182         compptr = cinfo->cur_comp_info[ci];
183         /* Don't bother to IDCT an uninteresting component. */
184         if (! compptr->component_needed) {
185           blkn += compptr->MCU_blocks;
186           continue;
187         }
188         inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
189         useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
190                                                     : compptr->last_col_width;
191         output_ptr = output_buf[compptr->component_index] +
192           yoffset * compptr->DCT_v_scaled_size;
193         start_col = MCU_col_num * compptr->MCU_sample_width;
194         for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
195           if (cinfo->input_iMCU_row < last_iMCU_row ||
196               yoffset+yindex < compptr->last_row_height) {
197             output_col = start_col;
198             for (xindex = 0; xindex < useful_width; xindex++) {
199               (*inverse_DCT) (cinfo, compptr,
200                               (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
201                               output_ptr, output_col);
202               output_col += compptr->DCT_h_scaled_size;
203             }
204           }
205           blkn += compptr->MCU_width;
206           output_ptr += compptr->DCT_v_scaled_size;
207         }
208       }
209     }
210     /* Completed an MCU row, but perhaps not an iMCU row */
211     coef->MCU_ctr = 0;
212   }
213   /* Completed the iMCU row, advance counters for next one */
214   cinfo->output_iMCU_row++;
215   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
216     start_iMCU_row(cinfo);
217     return JPEG_ROW_COMPLETED;
218   }
219   /* Completed the scan */
220   (*cinfo->inputctl->finish_input_pass) (cinfo);
221   return JPEG_SCAN_COMPLETED;
222 }
223
224
225 /*
226  * Dummy consume-input routine for single-pass operation.
227  */
228
229 METHODDEF(int)
230 dummy_consume_data (j_decompress_ptr cinfo)
231 {
232   return JPEG_SUSPENDED;        /* Always indicate nothing was done */
233 }
234
235
236 #ifdef D_MULTISCAN_FILES_SUPPORTED
237
238 /*
239  * Consume input data and store it in the full-image coefficient buffer.
240  * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
241  * ie, v_samp_factor block rows for each component in the scan.
242  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
243  */
244
245 METHODDEF(int)
246 consume_data (j_decompress_ptr cinfo)
247 {
248   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
249   JDIMENSION MCU_col_num;       /* index of current MCU within row */
250   int blkn, ci, xindex, yindex, yoffset;
251   JDIMENSION start_col;
252   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
253   JBLOCKROW buffer_ptr;
254   jpeg_component_info *compptr;
255
256   /* Align the virtual buffers for the components used in this scan. */
257   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
258     compptr = cinfo->cur_comp_info[ci];
259     buffer[ci] = (*cinfo->mem->access_virt_barray)
260       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
261        cinfo->input_iMCU_row * compptr->v_samp_factor,
262        (JDIMENSION) compptr->v_samp_factor, TRUE);
263     /* Note: entropy decoder expects buffer to be zeroed,
264      * but this is handled automatically by the memory manager
265      * because we requested a pre-zeroed array.
266      */
267   }
268
269   /* Loop to process one whole iMCU row */
270   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
271        yoffset++) {
272     for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
273          MCU_col_num++) {
274       /* Construct list of pointers to DCT blocks belonging to this MCU */
275       blkn = 0;                 /* index of current DCT block within MCU */
276       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
277         compptr = cinfo->cur_comp_info[ci];
278         start_col = MCU_col_num * compptr->MCU_width;
279         for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
280           buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
281           for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
282             coef->MCU_buffer[blkn++] = buffer_ptr++;
283           }
284         }
285       }
286       /* Try to fetch the MCU. */
287       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
288         /* Suspension forced; update state counters and exit */
289         coef->MCU_vert_offset = yoffset;
290         coef->MCU_ctr = MCU_col_num;
291         return JPEG_SUSPENDED;
292       }
293     }
294     /* Completed an MCU row, but perhaps not an iMCU row */
295     coef->MCU_ctr = 0;
296   }
297   /* Completed the iMCU row, advance counters for next one */
298   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
299     start_iMCU_row(cinfo);
300     return JPEG_ROW_COMPLETED;
301   }
302   /* Completed the scan */
303   (*cinfo->inputctl->finish_input_pass) (cinfo);
304   return JPEG_SCAN_COMPLETED;
305 }
306
307
308 /*
309  * Decompress and return some data in the multi-pass case.
310  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
311  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
312  *
313  * NB: output_buf contains a plane for each component in image.
314  */
315
316 METHODDEF(int)
317 decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
318 {
319   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
320   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
321   JDIMENSION block_num;
322   int ci, block_row, block_rows;
323   JBLOCKARRAY buffer;
324   JBLOCKROW buffer_ptr;
325   JSAMPARRAY output_ptr;
326   JDIMENSION output_col;
327   jpeg_component_info *compptr;
328   inverse_DCT_method_ptr inverse_DCT;
329
330   /* Force some input to be done if we are getting ahead of the input. */
331   while (cinfo->input_scan_number < cinfo->output_scan_number ||
332          (cinfo->input_scan_number == cinfo->output_scan_number &&
333           cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
334     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
335       return JPEG_SUSPENDED;
336   }
337
338   /* OK, output from the virtual arrays. */
339   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
340        ci++, compptr++) {
341     /* Don't bother to IDCT an uninteresting component. */
342     if (! compptr->component_needed)
343       continue;
344     /* Align the virtual buffer for this component. */
345     buffer = (*cinfo->mem->access_virt_barray)
346       ((j_common_ptr) cinfo, coef->whole_image[ci],
347        cinfo->output_iMCU_row * compptr->v_samp_factor,
348        (JDIMENSION) compptr->v_samp_factor, FALSE);
349     /* Count non-dummy DCT block rows in this iMCU row. */
350     if (cinfo->output_iMCU_row < last_iMCU_row)
351       block_rows = compptr->v_samp_factor;
352     else {
353       /* NB: can't use last_row_height here; it is input-side-dependent! */
354       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
355       if (block_rows == 0) block_rows = compptr->v_samp_factor;
356     }
357     inverse_DCT = cinfo->idct->inverse_DCT[ci];
358     output_ptr = output_buf[ci];
359     /* Loop over all DCT blocks to be processed. */
360     for (block_row = 0; block_row < block_rows; block_row++) {
361       buffer_ptr = buffer[block_row];
362       output_col = 0;
363       for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
364         (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
365                         output_ptr, output_col);
366         buffer_ptr++;
367         output_col += compptr->DCT_h_scaled_size;
368       }
369       output_ptr += compptr->DCT_v_scaled_size;
370     }
371   }
372
373   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
374     return JPEG_ROW_COMPLETED;
375   return JPEG_SCAN_COMPLETED;
376 }
377
378 #endif /* D_MULTISCAN_FILES_SUPPORTED */
379
380
381 #ifdef BLOCK_SMOOTHING_SUPPORTED
382
383 /*
384  * This code applies interblock smoothing as described by section K.8
385  * of the JPEG standard: the first 5 AC coefficients are estimated from
386  * the DC values of a DCT block and its 8 neighboring blocks.
387  * We apply smoothing only for progressive JPEG decoding, and only if
388  * the coefficients it can estimate are not yet known to full precision.
389  */
390
391 /* Natural-order array positions of the first 5 zigzag-order coefficients */
392 #define Q01_POS  1
393 #define Q10_POS  8
394 #define Q20_POS  16
395 #define Q11_POS  9
396 #define Q02_POS  2
397
398 /*
399  * Determine whether block smoothing is applicable and safe.
400  * We also latch the current states of the coef_bits[] entries for the
401  * AC coefficients; otherwise, if the input side of the decompressor
402  * advances into a new scan, we might think the coefficients are known
403  * more accurately than they really are.
404  */
405
406 LOCAL(boolean)
407 smoothing_ok (j_decompress_ptr cinfo)
408 {
409   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
410   boolean smoothing_useful = FALSE;
411   int ci, coefi;
412   jpeg_component_info *compptr;
413   JQUANT_TBL * qtable;
414   int * coef_bits;
415   int * coef_bits_latch;
416
417   if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
418     return FALSE;
419
420   /* Allocate latch area if not already done */
421   if (coef->coef_bits_latch == NULL)
422     coef->coef_bits_latch = (int *)
423       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
424                                   cinfo->num_components *
425                                   (SAVED_COEFS * SIZEOF(int)));
426   coef_bits_latch = coef->coef_bits_latch;
427
428   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
429        ci++, compptr++) {
430     /* All components' quantization values must already be latched. */
431     if ((qtable = compptr->quant_table) == NULL)
432       return FALSE;
433     /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
434     if (qtable->quantval[0] == 0 ||
435         qtable->quantval[Q01_POS] == 0 ||
436         qtable->quantval[Q10_POS] == 0 ||
437         qtable->quantval[Q20_POS] == 0 ||
438         qtable->quantval[Q11_POS] == 0 ||
439         qtable->quantval[Q02_POS] == 0)
440       return FALSE;
441     /* DC values must be at least partly known for all components. */
442     coef_bits = cinfo->coef_bits[ci];
443     if (coef_bits[0] < 0)
444       return FALSE;
445     /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
446     for (coefi = 1; coefi <= 5; coefi++) {
447       coef_bits_latch[coefi] = coef_bits[coefi];
448       if (coef_bits[coefi] != 0)
449         smoothing_useful = TRUE;
450     }
451     coef_bits_latch += SAVED_COEFS;
452   }
453
454   return smoothing_useful;
455 }
456
457
458 /*
459  * Variant of decompress_data for use when doing block smoothing.
460  */
461
462 METHODDEF(int)
463 decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
464 {
465   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
466   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
467   JDIMENSION block_num, last_block_column;
468   int ci, block_row, block_rows, access_rows;
469   JBLOCKARRAY buffer;
470   JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
471   JSAMPARRAY output_ptr;
472   JDIMENSION output_col;
473   jpeg_component_info *compptr;
474   inverse_DCT_method_ptr inverse_DCT;
475   boolean first_row, last_row;
476   JBLOCK workspace;
477   int *coef_bits;
478   JQUANT_TBL *quanttbl;
479   INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
480   int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
481   int Al, pred;
482
483   /* Force some input to be done if we are getting ahead of the input. */
484   while (cinfo->input_scan_number <= cinfo->output_scan_number &&
485          ! cinfo->inputctl->eoi_reached) {
486     if (cinfo->input_scan_number == cinfo->output_scan_number) {
487       /* If input is working on current scan, we ordinarily want it to
488        * have completed the current row.  But if input scan is DC,
489        * we want it to keep one row ahead so that next block row's DC
490        * values are up to date.
491        */
492       JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
493       if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
494         break;
495     }
496     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
497       return JPEG_SUSPENDED;
498   }
499
500   /* OK, output from the virtual arrays. */
501   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
502        ci++, compptr++) {
503     /* Don't bother to IDCT an uninteresting component. */
504     if (! compptr->component_needed)
505       continue;
506     /* Count non-dummy DCT block rows in this iMCU row. */
507     if (cinfo->output_iMCU_row < last_iMCU_row) {
508       block_rows = compptr->v_samp_factor;
509       access_rows = block_rows * 2; /* this and next iMCU row */
510       last_row = FALSE;
511     } else {
512       /* NB: can't use last_row_height here; it is input-side-dependent! */
513       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
514       if (block_rows == 0) block_rows = compptr->v_samp_factor;
515       access_rows = block_rows; /* this iMCU row only */
516       last_row = TRUE;
517     }
518     /* Align the virtual buffer for this component. */
519     if (cinfo->output_iMCU_row > 0) {
520       access_rows += compptr->v_samp_factor; /* prior iMCU row too */
521       buffer = (*cinfo->mem->access_virt_barray)
522         ((j_common_ptr) cinfo, coef->whole_image[ci],
523          (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
524          (JDIMENSION) access_rows, FALSE);
525       buffer += compptr->v_samp_factor; /* point to current iMCU row */
526       first_row = FALSE;
527     } else {
528       buffer = (*cinfo->mem->access_virt_barray)
529         ((j_common_ptr) cinfo, coef->whole_image[ci],
530          (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
531       first_row = TRUE;
532     }
533     /* Fetch component-dependent info */
534     coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
535     quanttbl = compptr->quant_table;
536     Q00 = quanttbl->quantval[0];
537     Q01 = quanttbl->quantval[Q01_POS];
538     Q10 = quanttbl->quantval[Q10_POS];
539     Q20 = quanttbl->quantval[Q20_POS];
540     Q11 = quanttbl->quantval[Q11_POS];
541     Q02 = quanttbl->quantval[Q02_POS];
542     inverse_DCT = cinfo->idct->inverse_DCT[ci];
543     output_ptr = output_buf[ci];
544     /* Loop over all DCT blocks to be processed. */
545     for (block_row = 0; block_row < block_rows; block_row++) {
546       buffer_ptr = buffer[block_row];
547       if (first_row && block_row == 0)
548         prev_block_row = buffer_ptr;
549       else
550         prev_block_row = buffer[block_row-1];
551       if (last_row && block_row == block_rows-1)
552         next_block_row = buffer_ptr;
553       else
554         next_block_row = buffer[block_row+1];
555       /* We fetch the surrounding DC values using a sliding-register approach.
556        * Initialize all nine here so as to do the right thing on narrow pics.
557        */
558       DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
559       DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
560       DC7 = DC8 = DC9 = (int) next_block_row[0][0];
561       output_col = 0;
562       last_block_column = compptr->width_in_blocks - 1;
563       for (block_num = 0; block_num <= last_block_column; block_num++) {
564         /* Fetch current DCT block into workspace so we can modify it. */
565         jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
566         /* Update DC values */
567         if (block_num < last_block_column) {
568           DC3 = (int) prev_block_row[1][0];
569           DC6 = (int) buffer_ptr[1][0];
570           DC9 = (int) next_block_row[1][0];
571         }
572         /* Compute coefficient estimates per K.8.
573          * An estimate is applied only if coefficient is still zero,
574          * and is not known to be fully accurate.
575          */
576         /* AC01 */
577         if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
578           num = 36 * Q00 * (DC4 - DC6);
579           if (num >= 0) {
580             pred = (int) (((Q01<<7) + num) / (Q01<<8));
581             if (Al > 0 && pred >= (1<<Al))
582               pred = (1<<Al)-1;
583           } else {
584             pred = (int) (((Q01<<7) - num) / (Q01<<8));
585             if (Al > 0 && pred >= (1<<Al))
586               pred = (1<<Al)-1;
587             pred = -pred;
588           }
589           workspace[1] = (JCOEF) pred;
590         }
591         /* AC10 */
592         if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
593           num = 36 * Q00 * (DC2 - DC8);
594           if (num >= 0) {
595             pred = (int) (((Q10<<7) + num) / (Q10<<8));
596             if (Al > 0 && pred >= (1<<Al))
597               pred = (1<<Al)-1;
598           } else {
599             pred = (int) (((Q10<<7) - num) / (Q10<<8));
600             if (Al > 0 && pred >= (1<<Al))
601               pred = (1<<Al)-1;
602             pred = -pred;
603           }
604           workspace[8] = (JCOEF) pred;
605         }
606         /* AC20 */
607         if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
608           num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
609           if (num >= 0) {
610             pred = (int) (((Q20<<7) + num) / (Q20<<8));
611             if (Al > 0 && pred >= (1<<Al))
612               pred = (1<<Al)-1;
613           } else {
614             pred = (int) (((Q20<<7) - num) / (Q20<<8));
615             if (Al > 0 && pred >= (1<<Al))
616               pred = (1<<Al)-1;
617             pred = -pred;
618           }
619           workspace[16] = (JCOEF) pred;
620         }
621         /* AC11 */
622         if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
623           num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
624           if (num >= 0) {
625             pred = (int) (((Q11<<7) + num) / (Q11<<8));
626             if (Al > 0 && pred >= (1<<Al))
627               pred = (1<<Al)-1;
628           } else {
629             pred = (int) (((Q11<<7) - num) / (Q11<<8));
630             if (Al > 0 && pred >= (1<<Al))
631               pred = (1<<Al)-1;
632             pred = -pred;
633           }
634           workspace[9] = (JCOEF) pred;
635         }
636         /* AC02 */
637         if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
638           num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
639           if (num >= 0) {
640             pred = (int) (((Q02<<7) + num) / (Q02<<8));
641             if (Al > 0 && pred >= (1<<Al))
642               pred = (1<<Al)-1;
643           } else {
644             pred = (int) (((Q02<<7) - num) / (Q02<<8));
645             if (Al > 0 && pred >= (1<<Al))
646               pred = (1<<Al)-1;
647             pred = -pred;
648           }
649           workspace[2] = (JCOEF) pred;
650         }
651         /* OK, do the IDCT */
652         (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
653                         output_ptr, output_col);
654         /* Advance for next column */
655         DC1 = DC2; DC2 = DC3;
656         DC4 = DC5; DC5 = DC6;
657         DC7 = DC8; DC8 = DC9;
658         buffer_ptr++, prev_block_row++, next_block_row++;
659         output_col += compptr->DCT_h_scaled_size;
660       }
661       output_ptr += compptr->DCT_v_scaled_size;
662     }
663   }
664
665   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
666     return JPEG_ROW_COMPLETED;
667   return JPEG_SCAN_COMPLETED;
668 }
669
670 #endif /* BLOCK_SMOOTHING_SUPPORTED */
671
672
673 /*
674  * Initialize coefficient buffer controller.
675  */
676
677 GLOBAL(void)
678 jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
679 {
680   my_coef_ptr coef;
681
682   coef = (my_coef_ptr)
683     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
684                                 SIZEOF(my_coef_controller));
685   cinfo->coef = (struct jpeg_d_coef_controller *) coef;
686   coef->pub.start_input_pass = start_input_pass;
687   coef->pub.start_output_pass = start_output_pass;
688 #ifdef BLOCK_SMOOTHING_SUPPORTED
689   coef->coef_bits_latch = NULL;
690 #endif
691
692   /* Create the coefficient buffer. */
693   if (need_full_buffer) {
694 #ifdef D_MULTISCAN_FILES_SUPPORTED
695     /* Allocate a full-image virtual array for each component, */
696     /* padded to a multiple of samp_factor DCT blocks in each direction. */
697     /* Note we ask for a pre-zeroed array. */
698     int ci, access_rows;
699     jpeg_component_info *compptr;
700
701     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
702          ci++, compptr++) {
703       access_rows = compptr->v_samp_factor;
704 #ifdef BLOCK_SMOOTHING_SUPPORTED
705       /* If block smoothing could be used, need a bigger window */
706       if (cinfo->progressive_mode)
707         access_rows *= 3;
708 #endif
709       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
710         ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
711          (JDIMENSION) jround_up((long) compptr->width_in_blocks,
712                                 (long) compptr->h_samp_factor),
713          (JDIMENSION) jround_up((long) compptr->height_in_blocks,
714                                 (long) compptr->v_samp_factor),
715          (JDIMENSION) access_rows);
716     }
717     coef->pub.consume_data = consume_data;
718     coef->pub.decompress_data = decompress_data;
719     coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
720 #else
721     ERREXIT(cinfo, JERR_NOT_COMPILED);
722 #endif
723   } else {
724     /* We only need a single-MCU buffer. */
725     JBLOCKROW buffer;
726     int i;
727
728     buffer = (JBLOCKROW)
729       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
730                                   D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
731     for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
732       coef->MCU_buffer[i] = buffer + i;
733     }
734     if (cinfo->lim_Se == 0)     /* DC only case: want to bypass later */
735       FMEMZERO((void FAR *) buffer,
736                (size_t) (D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)));
737     coef->pub.consume_data = dummy_consume_data;
738     coef->pub.decompress_data = decompress_onepass;
739     coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
740   }
741 }