]> rtime.felk.cvut.cz Git - l4.git/blob - l4/pkg/libjpeg/lib/contrib/jccoefct.c
Some minor fixes.
[l4.git] / l4 / pkg / libjpeg / lib / contrib / jccoefct.c
1 /*
2  * jccoefct.c
3  *
4  * Copyright (C) 1994-1997, Thomas G. Lane.
5  * Modified 2003-2011 by Guido Vollbeding.
6  * This file is part of the Independent JPEG Group's software.
7  * For conditions of distribution and use, see the accompanying README file.
8  *
9  * This file contains the coefficient buffer controller for compression.
10  * This controller is the top level of the JPEG compressor proper.
11  * The coefficient buffer lies between forward-DCT and entropy encoding steps.
12  */
13
14 #define JPEG_INTERNALS
15 #include "jinclude.h"
16 #include "jpeglib.h"
17
18
19 /* We use a full-image coefficient buffer when doing Huffman optimization,
20  * and also for writing multiple-scan JPEG files.  In all cases, the DCT
21  * step is run during the first pass, and subsequent passes need only read
22  * the buffered coefficients.
23  */
24 #ifdef ENTROPY_OPT_SUPPORTED
25 #define FULL_COEF_BUFFER_SUPPORTED
26 #else
27 #ifdef C_MULTISCAN_FILES_SUPPORTED
28 #define FULL_COEF_BUFFER_SUPPORTED
29 #endif
30 #endif
31
32
33 /* Private buffer controller object */
34
35 typedef struct {
36   struct jpeg_c_coef_controller pub; /* public fields */
37
38   JDIMENSION iMCU_row_num;      /* iMCU row # within image */
39   JDIMENSION mcu_ctr;           /* counts MCUs processed in current row */
40   int MCU_vert_offset;          /* counts MCU rows within iMCU row */
41   int MCU_rows_per_iMCU_row;    /* number of such rows needed */
42
43   /* For single-pass compression, it's sufficient to buffer just one MCU
44    * (although this may prove a bit slow in practice).  We allocate a
45    * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
46    * MCU constructed and sent.  (On 80x86, the workspace is FAR even though
47    * it's not really very big; this is to keep the module interfaces unchanged
48    * when a large coefficient buffer is necessary.)
49    * In multi-pass modes, this array points to the current MCU's blocks
50    * within the virtual arrays.
51    */
52   JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
53
54   /* In multi-pass modes, we need a virtual block array for each component. */
55   jvirt_barray_ptr whole_image[MAX_COMPONENTS];
56 } my_coef_controller;
57
58 typedef my_coef_controller * my_coef_ptr;
59
60
61 /* Forward declarations */
62 METHODDEF(boolean) compress_data
63     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
64 #ifdef FULL_COEF_BUFFER_SUPPORTED
65 METHODDEF(boolean) compress_first_pass
66     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
67 METHODDEF(boolean) compress_output
68     JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
69 #endif
70
71
72 LOCAL(void)
73 start_iMCU_row (j_compress_ptr cinfo)
74 /* Reset within-iMCU-row counters for a new row */
75 {
76   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
77
78   /* In an interleaved scan, an MCU row is the same as an iMCU row.
79    * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
80    * But at the bottom of the image, process only what's left.
81    */
82   if (cinfo->comps_in_scan > 1) {
83     coef->MCU_rows_per_iMCU_row = 1;
84   } else {
85     if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
86       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
87     else
88       coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
89   }
90
91   coef->mcu_ctr = 0;
92   coef->MCU_vert_offset = 0;
93 }
94
95
96 /*
97  * Initialize for a processing pass.
98  */
99
100 METHODDEF(void)
101 start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
102 {
103   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
104
105   coef->iMCU_row_num = 0;
106   start_iMCU_row(cinfo);
107
108   switch (pass_mode) {
109   case JBUF_PASS_THRU:
110     if (coef->whole_image[0] != NULL)
111       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
112     coef->pub.compress_data = compress_data;
113     break;
114 #ifdef FULL_COEF_BUFFER_SUPPORTED
115   case JBUF_SAVE_AND_PASS:
116     if (coef->whole_image[0] == NULL)
117       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
118     coef->pub.compress_data = compress_first_pass;
119     break;
120   case JBUF_CRANK_DEST:
121     if (coef->whole_image[0] == NULL)
122       ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
123     coef->pub.compress_data = compress_output;
124     break;
125 #endif
126   default:
127     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
128     break;
129   }
130 }
131
132
133 /*
134  * Process some data in the single-pass case.
135  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
136  * per call, ie, v_samp_factor block rows for each component in the image.
137  * Returns TRUE if the iMCU row is completed, FALSE if suspended.
138  *
139  * NB: input_buf contains a plane for each component in image,
140  * which we index according to the component's SOF position.
141  */
142
143 METHODDEF(boolean)
144 compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
145 {
146   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
147   JDIMENSION MCU_col_num;       /* index of current MCU within row */
148   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
149   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
150   int blkn, bi, ci, yindex, yoffset, blockcnt;
151   JDIMENSION ypos, xpos;
152   jpeg_component_info *compptr;
153   forward_DCT_ptr forward_DCT;
154
155   /* Loop to write as much as one whole iMCU row */
156   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
157        yoffset++) {
158     for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
159          MCU_col_num++) {
160       /* Determine where data comes from in input_buf and do the DCT thing.
161        * Each call on forward_DCT processes a horizontal row of DCT blocks
162        * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
163        * sequentially.  Dummy blocks at the right or bottom edge are filled in
164        * specially.  The data in them does not matter for image reconstruction,
165        * so we fill them with values that will encode to the smallest amount of
166        * data, viz: all zeroes in the AC entries, DC entries equal to previous
167        * block's DC value.  (Thanks to Thomas Kinsman for this idea.)
168        */
169       blkn = 0;
170       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
171         compptr = cinfo->cur_comp_info[ci];
172         forward_DCT = cinfo->fdct->forward_DCT[compptr->component_index];
173         blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
174                                                 : compptr->last_col_width;
175         xpos = MCU_col_num * compptr->MCU_sample_width;
176         ypos = yoffset * compptr->DCT_v_scaled_size;
177         /* ypos == (yoffset+yindex) * DCTSIZE */
178         for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
179           if (coef->iMCU_row_num < last_iMCU_row ||
180               yoffset+yindex < compptr->last_row_height) {
181             (*forward_DCT) (cinfo, compptr,
182                             input_buf[compptr->component_index],
183                             coef->MCU_buffer[blkn],
184                             ypos, xpos, (JDIMENSION) blockcnt);
185             if (blockcnt < compptr->MCU_width) {
186               /* Create some dummy blocks at the right edge of the image. */
187               FMEMZERO((void FAR *) coef->MCU_buffer[blkn + blockcnt],
188                        (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
189               for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
190                 coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
191               }
192             }
193           } else {
194             /* Create a row of dummy blocks at the bottom of the image. */
195             FMEMZERO((void FAR *) coef->MCU_buffer[blkn],
196                      compptr->MCU_width * SIZEOF(JBLOCK));
197             for (bi = 0; bi < compptr->MCU_width; bi++) {
198               coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
199             }
200           }
201           blkn += compptr->MCU_width;
202           ypos += compptr->DCT_v_scaled_size;
203         }
204       }
205       /* Try to write the MCU.  In event of a suspension failure, we will
206        * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
207        */
208       if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
209         /* Suspension forced; update state counters and exit */
210         coef->MCU_vert_offset = yoffset;
211         coef->mcu_ctr = MCU_col_num;
212         return FALSE;
213       }
214     }
215     /* Completed an MCU row, but perhaps not an iMCU row */
216     coef->mcu_ctr = 0;
217   }
218   /* Completed the iMCU row, advance counters for next one */
219   coef->iMCU_row_num++;
220   start_iMCU_row(cinfo);
221   return TRUE;
222 }
223
224
225 #ifdef FULL_COEF_BUFFER_SUPPORTED
226
227 /*
228  * Process some data in the first pass of a multi-pass case.
229  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
230  * per call, ie, v_samp_factor block rows for each component in the image.
231  * This amount of data is read from the source buffer, DCT'd and quantized,
232  * and saved into the virtual arrays.  We also generate suitable dummy blocks
233  * as needed at the right and lower edges.  (The dummy blocks are constructed
234  * in the virtual arrays, which have been padded appropriately.)  This makes
235  * it possible for subsequent passes not to worry about real vs. dummy blocks.
236  *
237  * We must also emit the data to the entropy encoder.  This is conveniently
238  * done by calling compress_output() after we've loaded the current strip
239  * of the virtual arrays.
240  *
241  * NB: input_buf contains a plane for each component in image.  All
242  * components are DCT'd and loaded into the virtual arrays in this pass.
243  * However, it may be that only a subset of the components are emitted to
244  * the entropy encoder during this first pass; be careful about looking
245  * at the scan-dependent variables (MCU dimensions, etc).
246  */
247
248 METHODDEF(boolean)
249 compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
250 {
251   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
252   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
253   JDIMENSION blocks_across, MCUs_across, MCUindex;
254   int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
255   JCOEF lastDC;
256   jpeg_component_info *compptr;
257   JBLOCKARRAY buffer;
258   JBLOCKROW thisblockrow, lastblockrow;
259   forward_DCT_ptr forward_DCT;
260
261   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
262        ci++, compptr++) {
263     /* Align the virtual buffer for this component. */
264     buffer = (*cinfo->mem->access_virt_barray)
265       ((j_common_ptr) cinfo, coef->whole_image[ci],
266        coef->iMCU_row_num * compptr->v_samp_factor,
267        (JDIMENSION) compptr->v_samp_factor, TRUE);
268     /* Count non-dummy DCT block rows in this iMCU row. */
269     if (coef->iMCU_row_num < last_iMCU_row)
270       block_rows = compptr->v_samp_factor;
271     else {
272       /* NB: can't use last_row_height here, since may not be set! */
273       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
274       if (block_rows == 0) block_rows = compptr->v_samp_factor;
275     }
276     blocks_across = compptr->width_in_blocks;
277     h_samp_factor = compptr->h_samp_factor;
278     /* Count number of dummy blocks to be added at the right margin. */
279     ndummy = (int) (blocks_across % h_samp_factor);
280     if (ndummy > 0)
281       ndummy = h_samp_factor - ndummy;
282     forward_DCT = cinfo->fdct->forward_DCT[ci];
283     /* Perform DCT for all non-dummy blocks in this iMCU row.  Each call
284      * on forward_DCT processes a complete horizontal row of DCT blocks.
285      */
286     for (block_row = 0; block_row < block_rows; block_row++) {
287       thisblockrow = buffer[block_row];
288       (*forward_DCT) (cinfo, compptr, input_buf[ci], thisblockrow,
289                       (JDIMENSION) (block_row * compptr->DCT_v_scaled_size),
290                       (JDIMENSION) 0, blocks_across);
291       if (ndummy > 0) {
292         /* Create dummy blocks at the right edge of the image. */
293         thisblockrow += blocks_across; /* => first dummy block */
294         FMEMZERO((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
295         lastDC = thisblockrow[-1][0];
296         for (bi = 0; bi < ndummy; bi++) {
297           thisblockrow[bi][0] = lastDC;
298         }
299       }
300     }
301     /* If at end of image, create dummy block rows as needed.
302      * The tricky part here is that within each MCU, we want the DC values
303      * of the dummy blocks to match the last real block's DC value.
304      * This squeezes a few more bytes out of the resulting file...
305      */
306     if (coef->iMCU_row_num == last_iMCU_row) {
307       blocks_across += ndummy;  /* include lower right corner */
308       MCUs_across = blocks_across / h_samp_factor;
309       for (block_row = block_rows; block_row < compptr->v_samp_factor;
310            block_row++) {
311         thisblockrow = buffer[block_row];
312         lastblockrow = buffer[block_row-1];
313         FMEMZERO((void FAR *) thisblockrow,
314                  (size_t) (blocks_across * SIZEOF(JBLOCK)));
315         for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
316           lastDC = lastblockrow[h_samp_factor-1][0];
317           for (bi = 0; bi < h_samp_factor; bi++) {
318             thisblockrow[bi][0] = lastDC;
319           }
320           thisblockrow += h_samp_factor; /* advance to next MCU in row */
321           lastblockrow += h_samp_factor;
322         }
323       }
324     }
325   }
326   /* NB: compress_output will increment iMCU_row_num if successful.
327    * A suspension return will result in redoing all the work above next time.
328    */
329
330   /* Emit data to the entropy encoder, sharing code with subsequent passes */
331   return compress_output(cinfo, input_buf);
332 }
333
334
335 /*
336  * Process some data in subsequent passes of a multi-pass case.
337  * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
338  * per call, ie, v_samp_factor block rows for each component in the scan.
339  * The data is obtained from the virtual arrays and fed to the entropy coder.
340  * Returns TRUE if the iMCU row is completed, FALSE if suspended.
341  *
342  * NB: input_buf is ignored; it is likely to be a NULL pointer.
343  */
344
345 METHODDEF(boolean)
346 compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
347 {
348   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
349   JDIMENSION MCU_col_num;       /* index of current MCU within row */
350   int blkn, ci, xindex, yindex, yoffset;
351   JDIMENSION start_col;
352   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
353   JBLOCKROW buffer_ptr;
354   jpeg_component_info *compptr;
355
356   /* Align the virtual buffers for the components used in this scan.
357    * NB: during first pass, this is safe only because the buffers will
358    * already be aligned properly, so jmemmgr.c won't need to do any I/O.
359    */
360   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
361     compptr = cinfo->cur_comp_info[ci];
362     buffer[ci] = (*cinfo->mem->access_virt_barray)
363       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
364        coef->iMCU_row_num * compptr->v_samp_factor,
365        (JDIMENSION) compptr->v_samp_factor, FALSE);
366   }
367
368   /* Loop to process one whole iMCU row */
369   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
370        yoffset++) {
371     for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
372          MCU_col_num++) {
373       /* Construct list of pointers to DCT blocks belonging to this MCU */
374       blkn = 0;                 /* index of current DCT block within MCU */
375       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
376         compptr = cinfo->cur_comp_info[ci];
377         start_col = MCU_col_num * compptr->MCU_width;
378         for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
379           buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
380           for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
381             coef->MCU_buffer[blkn++] = buffer_ptr++;
382           }
383         }
384       }
385       /* Try to write the MCU. */
386       if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
387         /* Suspension forced; update state counters and exit */
388         coef->MCU_vert_offset = yoffset;
389         coef->mcu_ctr = MCU_col_num;
390         return FALSE;
391       }
392     }
393     /* Completed an MCU row, but perhaps not an iMCU row */
394     coef->mcu_ctr = 0;
395   }
396   /* Completed the iMCU row, advance counters for next one */
397   coef->iMCU_row_num++;
398   start_iMCU_row(cinfo);
399   return TRUE;
400 }
401
402 #endif /* FULL_COEF_BUFFER_SUPPORTED */
403
404
405 /*
406  * Initialize coefficient buffer controller.
407  */
408
409 GLOBAL(void)
410 jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
411 {
412   my_coef_ptr coef;
413
414   coef = (my_coef_ptr)
415     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
416                                 SIZEOF(my_coef_controller));
417   cinfo->coef = (struct jpeg_c_coef_controller *) coef;
418   coef->pub.start_pass = start_pass_coef;
419
420   /* Create the coefficient buffer. */
421   if (need_full_buffer) {
422 #ifdef FULL_COEF_BUFFER_SUPPORTED
423     /* Allocate a full-image virtual array for each component, */
424     /* padded to a multiple of samp_factor DCT blocks in each direction. */
425     int ci;
426     jpeg_component_info *compptr;
427
428     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
429          ci++, compptr++) {
430       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
431         ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
432          (JDIMENSION) jround_up((long) compptr->width_in_blocks,
433                                 (long) compptr->h_samp_factor),
434          (JDIMENSION) jround_up((long) compptr->height_in_blocks,
435                                 (long) compptr->v_samp_factor),
436          (JDIMENSION) compptr->v_samp_factor);
437     }
438 #else
439     ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
440 #endif
441   } else {
442     /* We only need a single-MCU buffer. */
443     JBLOCKROW buffer;
444     int i;
445
446     buffer = (JBLOCKROW)
447       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
448                                   C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
449     for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
450       coef->MCU_buffer[i] = buffer + i;
451     }
452     coef->whole_image[0] = NULL; /* flag for no virtual arrays */
453   }
454 }