]> rtime.felk.cvut.cz Git - l4.git/blob - l4/pkg/valgrind/src/valgrind-3.6.0-svn/memcheck/mc_leakcheck.c
9bd050a6fa905d476ca713bca6edc86654e1eda7
[l4.git] / l4 / pkg / valgrind / src / valgrind-3.6.0-svn / memcheck / mc_leakcheck.c
1
2 /*--------------------------------------------------------------------*/
3 /*--- The leak checker.                             mc_leakcheck.c ---*/
4 /*--------------------------------------------------------------------*/
5
6 /*
7    This file is part of MemCheck, a heavyweight Valgrind tool for
8    detecting memory errors.
9
10    Copyright (C) 2000-2010 Julian Seward 
11       jseward@acm.org
12
13    This program is free software; you can redistribute it and/or
14    modify it under the terms of the GNU General Public License as
15    published by the Free Software Foundation; either version 2 of the
16    License, or (at your option) any later version.
17
18    This program is distributed in the hope that it will be useful, but
19    WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
21    General Public License for more details.
22
23    You should have received a copy of the GNU General Public License
24    along with this program; if not, write to the Free Software
25    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
26    02111-1307, USA.
27
28    The GNU General Public License is contained in the file COPYING.
29 */
30
31 #include "pub_tool_basics.h"
32 #include "pub_tool_vki.h"
33 #include "pub_tool_aspacehl.h"
34 #include "pub_tool_aspacemgr.h"
35 #include "pub_tool_execontext.h"
36 #include "pub_tool_hashtable.h"
37 #include "pub_tool_libcbase.h"
38 #include "pub_tool_libcassert.h"
39 #include "pub_tool_libcprint.h"
40 #include "pub_tool_libcsignal.h"
41 #include "pub_tool_machine.h"
42 #include "pub_tool_mallocfree.h"
43 #include "pub_tool_options.h"
44 #include "pub_tool_oset.h"
45 #include "pub_tool_signals.h"
46 #include "pub_tool_tooliface.h"     // Needed for mc_include.h
47
48 #include "mc_include.h"
49
50 #include <setjmp.h>                 // For jmp_buf
51
52 /*------------------------------------------------------------*/
53 /*--- An overview of leak checking.                        ---*/
54 /*------------------------------------------------------------*/
55
56 // Leak-checking is a directed-graph traversal problem.  The graph has
57 // two kinds of nodes:
58 // - root-set nodes:
59 //   - GP registers of all threads;
60 //   - valid, aligned, pointer-sized data words in valid client memory,
61 //     including stacks, but excluding words within client heap-allocated
62 //     blocks (they are excluded so that later on we can differentiate
63 //     between heap blocks that are indirectly leaked vs. directly leaked).
64 // - heap-allocated blocks.  A block is a mempool chunk or a malloc chunk
65 //   that doesn't contain a mempool chunk.  Nb: the terms "blocks" and
66 //   "chunks" are used interchangeably below.
67 //
68 // There are two kinds of edges:
69 // - start-pointers, i.e. pointers to the start of a block;
70 // - interior-pointers, i.e. pointers to the interior of a block.
71 //
72 // We use "pointers" rather than "edges" below.
73 //
74 // Root set nodes only point to blocks.  Blocks only point to blocks;
75 // a block can point to itself.
76 //
77 // The aim is to traverse the graph and determine the status of each block.
78 //
79 // There are 9 distinct cases.  See memcheck/docs/mc-manual.xml for details.
80 // Presenting all nine categories to the user is probably too much.
81 // Currently we do this:
82 // - definitely lost:  case 3
83 // - indirectly lost:  case 4, 9
84 // - possibly lost:    cases 5..8
85 // - still reachable:  cases 1, 2
86 // 
87 // It's far from clear that this is the best possible categorisation;  it's
88 // accreted over time without any central guiding principle.
89
90 /*------------------------------------------------------------*/
91 /*--- XXX: Thoughts for improvement.                       ---*/
92 /*------------------------------------------------------------*/
93
94 // From the user's point of view:
95 // - If they aren't using interior-pointers, they just have to fix the
96 //   directly lost blocks, and the indirectly lost ones will be fixed as
97 //   part of that.  Any possibly lost blocks will just be due to random
98 //   pointer garbage and can be ignored.
99 // 
100 // - If they are using interior-pointers, the fact that they currently are not
101 //   being told which ones might be directly lost vs. indirectly lost makes
102 //   it hard to know where to begin.
103 // 
104 // All this makes me wonder if new option is warranted:
105 // --follow-interior-pointers.  By default it would be off, the leak checker
106 // wouldn't follow interior-pointers and there would only be 3 categories:
107 // R, DL, IL.
108 // 
109 // If turned on, then it would show 7 categories (R, DL, IL, DR/DL, IR/IL,
110 // IR/IL/DL, IL/DL).  That output is harder to understand but it's your own
111 // damn fault for using interior-pointers...
112 //
113 // ----
114 //
115 // Also, why are two blank lines printed between each loss record?
116 // [bug 197930]
117 //
118 // ----
119 //
120 // Also, --show-reachable is a bad name because it also turns on the showing
121 // of indirectly leaked blocks(!)  It would be better named --show-all or
122 // --show-all-heap-blocks, because that's the end result.
123 //
124 // ----
125 //
126 // Also, the VALGRIND_LEAK_CHECK and VALGRIND_QUICK_LEAK_CHECK aren't great
127 // names.  VALGRIND_FULL_LEAK_CHECK and VALGRIND_SUMMARY_LEAK_CHECK would be
128 // better.
129 //
130 // ----
131 //
132 // Also, VALGRIND_COUNT_LEAKS and VALGRIND_COUNT_LEAK_BLOCKS aren't great as
133 // they combine direct leaks and indirect leaks into one.  New, more precise
134 // ones (they'll need new names) would be good.  If more categories are
135 // used, as per the --follow-interior-pointers option, they should be
136 // updated accordingly.  And they should use a struct to return the values.
137 //
138 // ----
139 //
140 // Also, for this case:
141 //
142 //  (4)  p4      BBB ---> AAA
143 // 
144 // BBB is definitely directly lost.  AAA is definitely indirectly lost.
145 // Here's the relevant loss records printed for a full check (each block is
146 // 16 bytes):
147 // 
148 // ==20397== 16 bytes in 1 blocks are indirectly lost in loss record 9 of 15
149 // ==20397==    at 0x4C2694E: malloc (vg_replace_malloc.c:177)
150 // ==20397==    by 0x400521: mk (leak-cases.c:49)
151 // ==20397==    by 0x400578: main (leak-cases.c:72)
152 // 
153 // ==20397== 32 (16 direct, 16 indirect) bytes in 1 blocks are definitely
154 // lost in loss record 14 of 15
155 // ==20397==    at 0x4C2694E: malloc (vg_replace_malloc.c:177)
156 // ==20397==    by 0x400521: mk (leak-cases.c:49)
157 // ==20397==    by 0x400580: main (leak-cases.c:72)
158 // 
159 // The first one is fine -- it describes AAA.
160 // 
161 // The second one is for BBB.  It's correct in that 16 bytes in 1 block are
162 // directly lost. It's also correct that 16 are indirectly lost as a result,
163 // but it means that AAA is being counted twice in the loss records.  (It's
164 // not, thankfully, counted twice in the summary counts).  Argh.
165 // 
166 // This would be less confusing for the second one:
167 // 
168 // ==20397== 16 bytes in 1 blocks are definitely lost in loss record 14
169 // of 15 (and 16 bytes in 1 block are indirectly lost as a result;  they
170 // are mentioned elsewhere (if --show-reachable=yes is given!))
171 // ==20397==    at 0x4C2694E: malloc (vg_replace_malloc.c:177)
172 // ==20397==    by 0x400521: mk (leak-cases.c:49)
173 // ==20397==    by 0x400580: main (leak-cases.c:72)
174 // 
175 // But ideally we'd present the loss record for the directly lost block and
176 // then the resultant indirectly lost blocks and make it clear the
177 // dependence.  Double argh.
178
179 /*------------------------------------------------------------*/
180 /*--- The actual algorithm.                                ---*/
181 /*------------------------------------------------------------*/
182
183 // - Find all the blocks (a.k.a. chunks) to check.  Mempool chunks require
184 //   some special treatment because they can be within malloc'd blocks.
185 // - Scan every word in the root set (GP registers and valid
186 //   non-heap memory words).
187 //   - First, we skip if it doesn't point to valid memory.
188 //   - Then, we see if it points to the start or interior of a block.  If
189 //     so, we push the block onto the mark stack and mark it as having been
190 //     reached.
191 // - Then, we process the mark stack, repeating the scanning for each block;
192 //   this can push more blocks onto the mark stack.  We repeat until the
193 //   mark stack is empty.  Each block is marked as definitely or possibly
194 //   reachable, depending on whether interior-pointers were required to
195 //   reach it.
196 // - At this point we know for every block if it's reachable or not.
197 // - We then push each unreached block onto the mark stack, using the block
198 //   number as the "clique" number.
199 // - We process the mark stack again, this time grouping blocks into cliques
200 //   in order to facilitate the directly/indirectly lost categorisation.
201 // - We group blocks by their ExeContexts and categorisation, and print them
202 //   if --leak-check=full.  We also print summary numbers.
203 //
204 // A note on "cliques":
205 // - A directly lost block is one with no pointers to it.  An indirectly
206 //   lost block is one that is pointed to by a directly or indirectly lost
207 //   block.
208 // - Each directly lost block has zero or more indirectly lost blocks
209 //   hanging off it.  All these blocks together form a "clique".  The
210 //   directly lost block is called the "clique leader".  The clique number
211 //   is the number (in lc_chunks[]) of the clique leader.
212 // - Actually, a directly lost block may be pointed to if it's part of a
213 //   cycle.  In that case, there may be more than one choice for the clique
214 //   leader, and the choice is arbitrary.  Eg. if you have A-->B and B-->A
215 //   either A or B could be the clique leader.
216 // - Cliques cannot overlap, and will be truncated to avoid this.  Eg. if we
217 //   have A-->C and B-->C, the two cliques will be {A,C} and {B}, or {A} and
218 //   {B,C} (again the choice is arbitrary).  This is because we don't want
219 //   to count a block as indirectly lost more than once.
220 //
221 // A note on 'is_prior_definite': 
222 // - This is a boolean used in various places that indicates if the chain
223 //   up to the prior node (prior to the one being considered) is definite.
224 // - In the clique == -1 case: 
225 //   - if True it means that the prior node is a root-set node, or that the
226 //     prior node is a block which is reachable from the root-set via
227 //     start-pointers.
228 //   - if False it means that the prior node is a block that is only
229 //     reachable from the root-set via a path including at least one
230 //     interior-pointer.
231 // - In the clique != -1 case, currently it's always True because we treat
232 //   start-pointers and interior-pointers the same for direct/indirect leak
233 //   checking.  If we added a PossibleIndirectLeak state then this would
234 //   change.
235
236
237 // Define to debug the memory-leak-detector.
238 #define VG_DEBUG_LEAKCHECK 0
239 #define VG_DEBUG_CLIQUE    0
240  
241
242 /*------------------------------------------------------------*/
243 /*--- Getting the initial chunks, and searching them.      ---*/
244 /*------------------------------------------------------------*/
245
246 // Compare the MC_Chunks by 'data' (i.e. the address of the block).
247 static Int compare_MC_Chunks(void* n1, void* n2)
248 {
249    MC_Chunk* mc1 = *(MC_Chunk**)n1;
250    MC_Chunk* mc2 = *(MC_Chunk**)n2;
251    if (mc1->data < mc2->data) return -1;
252    if (mc1->data > mc2->data) return  1;
253    return 0;
254 }
255
256 #if VG_DEBUG_LEAKCHECK
257 // Used to sanity-check the fast binary-search mechanism.
258 static 
259 Int find_chunk_for_OLD ( Addr       ptr, 
260                          MC_Chunk** chunks,
261                          Int        n_chunks )
262
263 {
264    Int  i;
265    Addr a_lo, a_hi;
266    PROF_EVENT(70, "find_chunk_for_OLD");
267    for (i = 0; i < n_chunks; i++) {
268       PROF_EVENT(71, "find_chunk_for_OLD(loop)");
269       a_lo = chunks[i]->data;
270       a_hi = ((Addr)chunks[i]->data) + chunks[i]->szB;
271       if (a_lo <= ptr && ptr < a_hi)
272          return i;
273    }
274    return -1;
275 }
276 #endif
277
278 // Find the i such that ptr points at or inside the block described by
279 // chunks[i].  Return -1 if none found.  This assumes that chunks[]
280 // has been sorted on the 'data' field.
281 static 
282 Int find_chunk_for ( Addr       ptr, 
283                      MC_Chunk** chunks,
284                      Int        n_chunks )
285 {
286    Addr a_mid_lo, a_mid_hi;
287    Int lo, mid, hi, retVal;
288    // VG_(printf)("find chunk for %p = ", ptr);
289    retVal = -1;
290    lo = 0;
291    hi = n_chunks-1;
292    while (True) {
293       // Invariant: current unsearched space is from lo to hi, inclusive.
294       if (lo > hi) break; // not found
295
296       mid      = (lo + hi) / 2;
297       a_mid_lo = chunks[mid]->data;
298       a_mid_hi = chunks[mid]->data + chunks[mid]->szB;
299       // Extent of block 'mid' is [a_mid_lo .. a_mid_hi).
300       // Special-case zero-sized blocks - treat them as if they had
301       // size 1.  Not doing so causes them to not cover any address
302       // range at all and so will never be identified as the target of
303       // any pointer, which causes them to be incorrectly reported as
304       // definitely leaked.
305       if (chunks[mid]->szB == 0)
306          a_mid_hi++;
307
308       if (ptr < a_mid_lo) {
309          hi = mid-1;
310          continue;
311       } 
312       if (ptr >= a_mid_hi) {
313          lo = mid+1;
314          continue;
315       }
316       tl_assert(ptr >= a_mid_lo && ptr < a_mid_hi);
317       retVal = mid;
318       break;
319    }
320
321 #  if VG_DEBUG_LEAKCHECK
322    tl_assert(retVal == find_chunk_for_OLD ( ptr, chunks, n_chunks ));
323 #  endif
324    // VG_(printf)("%d\n", retVal);
325    return retVal;
326 }
327
328
329 static MC_Chunk**
330 find_active_chunks(UInt* pn_chunks)
331 {
332    // Our goal is to construct a set of chunks that includes every
333    // mempool chunk, and every malloc region that *doesn't* contain a
334    // mempool chunk.
335    MC_Mempool *mp;
336    MC_Chunk **mallocs, **chunks, *mc;
337    UInt n_mallocs, n_chunks, m, s;
338    Bool *malloc_chunk_holds_a_pool_chunk;
339
340    // First we collect all the malloc chunks into an array and sort it.
341    // We do this because we want to query the chunks by interior
342    // pointers, requiring binary search.
343    mallocs = (MC_Chunk**) VG_(HT_to_array)( MC_(malloc_list), &n_mallocs );
344    if (n_mallocs == 0) {
345       tl_assert(mallocs == NULL);
346       *pn_chunks = 0;
347       return NULL;
348    }
349    VG_(ssort)(mallocs, n_mallocs, sizeof(VgHashNode*), compare_MC_Chunks);
350
351    // Then we build an array containing a Bool for each malloc chunk,
352    // indicating whether it contains any mempools.
353    malloc_chunk_holds_a_pool_chunk = VG_(calloc)( "mc.fas.1",
354                                                   n_mallocs, sizeof(Bool) );
355    n_chunks = n_mallocs;
356
357    // Then we loop over the mempool tables. For each chunk in each
358    // pool, we set the entry in the Bool array corresponding to the
359    // malloc chunk containing the mempool chunk.
360    VG_(HT_ResetIter)(MC_(mempool_list));
361    while ( (mp = VG_(HT_Next)(MC_(mempool_list))) ) {
362       VG_(HT_ResetIter)(mp->chunks);
363       while ( (mc = VG_(HT_Next)(mp->chunks)) ) {
364
365          // We'll need to record this chunk.
366          n_chunks++;
367
368          // Possibly invalidate the malloc holding the beginning of this chunk.
369          m = find_chunk_for(mc->data, mallocs, n_mallocs);
370          if (m != -1 && malloc_chunk_holds_a_pool_chunk[m] == False) {
371             tl_assert(n_chunks > 0);
372             n_chunks--;
373             malloc_chunk_holds_a_pool_chunk[m] = True;
374          }
375
376          // Possibly invalidate the malloc holding the end of this chunk.
377          if (mc->szB > 1) {
378             m = find_chunk_for(mc->data + (mc->szB - 1), mallocs, n_mallocs);
379             if (m != -1 && malloc_chunk_holds_a_pool_chunk[m] == False) {
380                tl_assert(n_chunks > 0);
381                n_chunks--;
382                malloc_chunk_holds_a_pool_chunk[m] = True;
383             }
384          }
385       }
386    }
387    tl_assert(n_chunks > 0);
388
389    // Create final chunk array.
390    chunks = VG_(malloc)("mc.fas.2", sizeof(VgHashNode*) * (n_chunks));
391    s = 0;
392
393    // Copy the mempool chunks and the non-marked malloc chunks into a
394    // combined array of chunks.
395    VG_(HT_ResetIter)(MC_(mempool_list));
396    while ( (mp = VG_(HT_Next)(MC_(mempool_list))) ) {
397       VG_(HT_ResetIter)(mp->chunks);
398       while ( (mc = VG_(HT_Next)(mp->chunks)) ) {
399          tl_assert(s < n_chunks);
400          chunks[s++] = mc;
401       }
402    }
403    for (m = 0; m < n_mallocs; ++m) {
404       if (!malloc_chunk_holds_a_pool_chunk[m]) {
405          tl_assert(s < n_chunks);
406          chunks[s++] = mallocs[m];
407       }
408    }
409    tl_assert(s == n_chunks);
410
411    // Free temporaries.
412    VG_(free)(mallocs);
413    VG_(free)(malloc_chunk_holds_a_pool_chunk);
414
415    *pn_chunks = n_chunks;
416
417    return chunks;
418 }
419
420 /*------------------------------------------------------------*/
421 /*--- The leak detector proper.                            ---*/
422 /*------------------------------------------------------------*/
423
424 // Holds extra info about each block during leak checking.
425 typedef 
426    struct {
427       UInt  state:2;    // Reachedness.
428       SizeT indirect_szB : (sizeof(SizeT)*8)-2; // If Unreached, how many bytes
429                                                 //   are unreachable from here.
430    } 
431    LC_Extra;
432
433 // An array holding pointers to every chunk we're checking.  Sorted by address.
434 static MC_Chunk** lc_chunks;
435 // How many chunks we're dealing with.
436 static Int        lc_n_chunks;
437
438 // This has the same number of entries as lc_chunks, and each entry
439 // in lc_chunks corresponds with the entry here (ie. lc_chunks[i] and
440 // lc_extras[i] describe the same block).
441 static LC_Extra* lc_extras;
442
443 // Records chunks that are currently being processed.  Each element in the
444 // stack is an index into lc_chunks and lc_extras.  Its size is
445 // 'lc_n_chunks' because in the worst case that's how many chunks could be
446 // pushed onto it (actually I think the maximum is lc_n_chunks-1 but let's
447 // be conservative).
448 static Int* lc_markstack;
449 // The index of the top element of the stack; -1 if the stack is empty, 0 if
450 // the stack has one element, 1 if it has two, etc.
451 static Int  lc_markstack_top;    
452
453 // Keeps track of how many bytes of memory we've scanned, for printing.
454 // (Nb: We don't keep track of how many register bytes we've scanned.)
455 static SizeT lc_scanned_szB;
456
457
458 SizeT MC_(bytes_leaked)     = 0;
459 SizeT MC_(bytes_indirect)   = 0;
460 SizeT MC_(bytes_dubious)    = 0;
461 SizeT MC_(bytes_reachable)  = 0;
462 SizeT MC_(bytes_suppressed) = 0;
463
464 SizeT MC_(blocks_leaked)     = 0;
465 SizeT MC_(blocks_indirect)   = 0;
466 SizeT MC_(blocks_dubious)    = 0;
467 SizeT MC_(blocks_reachable)  = 0;
468 SizeT MC_(blocks_suppressed) = 0;
469
470
471 // Determines if a pointer is to a chunk.  Returns the chunk number et al
472 // via call-by-reference.
473 static Bool
474 lc_is_a_chunk_ptr(Addr ptr, Int* pch_no, MC_Chunk** pch, LC_Extra** pex)
475 {
476    Int ch_no;
477    MC_Chunk* ch;
478    LC_Extra* ex;
479
480    // Quick filter.
481    if (!VG_(am_is_valid_for_client)(ptr, 1, VKI_PROT_READ)) {
482       return False;
483    } else {
484       ch_no = find_chunk_for(ptr, lc_chunks, lc_n_chunks);
485       tl_assert(ch_no >= -1 && ch_no < lc_n_chunks);
486
487       if (ch_no == -1) {
488          return False;
489       } else {
490          // Ok, we've found a pointer to a chunk.  Get the MC_Chunk and its
491          // LC_Extra.
492          ch = lc_chunks[ch_no];
493          ex = &(lc_extras[ch_no]);
494
495          tl_assert(ptr >= ch->data);
496          tl_assert(ptr < ch->data + ch->szB + (ch->szB==0  ? 1  : 0));
497
498          if (VG_DEBUG_LEAKCHECK)
499             VG_(printf)("ptr=%#lx -> block %d\n", ptr, ch_no);
500
501          *pch_no = ch_no;
502          *pch    = ch;
503          *pex    = ex;
504
505          return True;
506       }
507    }
508 }
509
510 // Push a chunk (well, just its index) onto the mark stack.
511 static void lc_push(Int ch_no, MC_Chunk* ch)
512 {
513    if (0) {
514       VG_(printf)("pushing %#lx-%#lx\n", ch->data, ch->data + ch->szB);
515    }
516    lc_markstack_top++;
517    tl_assert(lc_markstack_top < lc_n_chunks);
518    lc_markstack[lc_markstack_top] = ch_no;
519 }
520
521 // Return the index of the chunk on the top of the mark stack, or -1 if
522 // there isn't one.
523 static Bool lc_pop(Int* ret)
524 {
525    if (-1 == lc_markstack_top) {
526       return False;
527    } else {
528       tl_assert(0 <= lc_markstack_top && lc_markstack_top < lc_n_chunks);
529       *ret = lc_markstack[lc_markstack_top];
530       lc_markstack_top--;
531       return True;
532    }
533 }
534
535
536 // If 'ptr' is pointing to a heap-allocated block which hasn't been seen
537 // before, push it onto the mark stack.
538 static void
539 lc_push_without_clique_if_a_chunk_ptr(Addr ptr, Bool is_prior_definite)
540 {
541    Int ch_no;
542    MC_Chunk* ch;
543    LC_Extra* ex;
544
545    if ( ! lc_is_a_chunk_ptr(ptr, &ch_no, &ch, &ex) )
546       return;
547
548    // Only push it if it hasn't been seen previously.
549    if (ex->state == Unreached) {
550       lc_push(ch_no, ch);
551    }
552
553    // Possibly upgrade the state, ie. one of:
554    // - Unreached --> Possible
555    // - Unreached --> Reachable 
556    // - Possible  --> Reachable
557    if (ptr == ch->data && is_prior_definite) {
558       // 'ptr' points to the start of the block, and the prior node is
559       // definite, which means that this block is definitely reachable.
560       ex->state = Reachable;
561
562    } else if (ex->state == Unreached) {
563       // Either 'ptr' is a interior-pointer, or the prior node isn't definite,
564       // which means that we can only mark this block as possibly reachable.
565       ex->state = Possible;
566    }
567 }
568
569 static void
570 lc_push_if_a_chunk_ptr_register(Addr ptr)
571 {
572    lc_push_without_clique_if_a_chunk_ptr(ptr, /*is_prior_definite*/True);
573 }
574
575 // If ptr is pointing to a heap-allocated block which hasn't been seen
576 // before, push it onto the mark stack.  Clique is the index of the
577 // clique leader.
578 static void
579 lc_push_with_clique_if_a_chunk_ptr(Addr ptr, Int clique)
580 {
581    Int ch_no;
582    MC_Chunk* ch;
583    LC_Extra* ex;
584
585    tl_assert(0 <= clique && clique < lc_n_chunks);
586
587    if ( ! lc_is_a_chunk_ptr(ptr, &ch_no, &ch, &ex) )
588       return;
589
590    // If it's not Unreached, it's already been handled so ignore it.
591    // If ch_no==clique, it's the clique leader, which means this is a cyclic
592    // structure;  again ignore it because it's already been handled.
593    if (ex->state == Unreached && ch_no != clique) {
594       // Note that, unlike reachable blocks, we currently don't distinguish
595       // between start-pointers and interior-pointers here.  We probably
596       // should, though.
597       ex->state = IndirectLeak;
598       lc_push(ch_no, ch);
599
600       // Add the block to the clique, and add its size to the
601       // clique-leader's indirect size.  Also, if the new block was
602       // itself a clique leader, it isn't any more, so add its
603       // indirect_szB to the new clique leader.
604       if (VG_DEBUG_CLIQUE) {
605          if (ex->indirect_szB > 0)
606             VG_(printf)("  clique %d joining clique %d adding %lu+%lu\n", 
607                         ch_no, clique, (SizeT)ch->szB, (SizeT)ex->indirect_szB);
608          else
609             VG_(printf)("  block %d joining clique %d adding %lu\n", 
610                         ch_no, clique, (SizeT)ch->szB);
611       }
612
613       lc_extras[clique].indirect_szB += ch->szB;
614       lc_extras[clique].indirect_szB += ex->indirect_szB;
615       ex->indirect_szB = 0;    // Shouldn't matter.
616    }
617 }
618
619 static void
620 lc_push_if_a_chunk_ptr(Addr ptr, Int clique, Bool is_prior_definite)
621 {
622    if (-1 == clique) 
623       lc_push_without_clique_if_a_chunk_ptr(ptr, is_prior_definite);
624    else
625       lc_push_with_clique_if_a_chunk_ptr(ptr, clique);
626 }
627
628
629 static jmp_buf memscan_jmpbuf;
630
631 static
632 void scan_all_valid_memory_catcher ( Int sigNo, Addr addr )
633 {
634    if (0)
635       VG_(printf)("OUCH! sig=%d addr=%#lx\n", sigNo, addr);
636    if (sigNo == VKI_SIGSEGV || sigNo == VKI_SIGBUS)
637       __builtin_longjmp(memscan_jmpbuf, 1);
638 }
639
640 // Scan a block of memory between [start, start+len).  This range may
641 // be bogus, inaccessable, or otherwise strange; we deal with it.  For each
642 // valid aligned word we assume it's a pointer to a chunk a push the chunk
643 // onto the mark stack if so.
644 static void
645 lc_scan_memory(Addr start, SizeT len, Bool is_prior_definite, Int clique)
646 {
647    Addr ptr = VG_ROUNDUP(start,     sizeof(Addr));
648    Addr end = VG_ROUNDDN(start+len, sizeof(Addr));
649    vki_sigset_t sigmask;
650
651    if (VG_DEBUG_LEAKCHECK)
652       VG_(printf)("scan %#lx-%#lx (%lu)\n", start, end, len);
653
654    VG_(sigprocmask)(VKI_SIG_SETMASK, NULL, &sigmask);
655    VG_(set_fault_catcher)(scan_all_valid_memory_catcher);
656
657    // We might be in the middle of a page.  Do a cheap check to see if
658    // it's valid;  if not, skip onto the next page.
659    if (!VG_(am_is_valid_for_client)(ptr, sizeof(Addr), VKI_PROT_READ))
660       ptr = VG_PGROUNDUP(ptr+1);        // First page is bad - skip it.
661
662    while (ptr < end) {
663       Addr addr;
664
665       // Skip invalid chunks.
666       if ( ! MC_(is_within_valid_secondary)(ptr) ) {
667          ptr = VG_ROUNDUP(ptr+1, SM_SIZE);
668          continue;
669       }
670
671       // Look to see if this page seems reasonable.
672       if ((ptr % VKI_PAGE_SIZE) == 0) {
673          if (!VG_(am_is_valid_for_client)(ptr, sizeof(Addr), VKI_PROT_READ)) {
674             ptr += VKI_PAGE_SIZE;      // Bad page - skip it.
675             continue;
676          }
677       }
678
679       if (__builtin_setjmp(memscan_jmpbuf) == 0) {
680          if ( MC_(is_valid_aligned_word)(ptr) ) {
681             lc_scanned_szB += sizeof(Addr);
682             addr = *(Addr *)ptr;
683             // If we get here, the scanned word is in valid memory.  Now
684             // let's see if its contents point to a chunk.
685             lc_push_if_a_chunk_ptr(addr, clique, is_prior_definite);
686          } else if (0 && VG_DEBUG_LEAKCHECK) {
687             VG_(printf)("%#lx not valid\n", ptr);
688          }
689          ptr += sizeof(Addr);
690       } else {
691          // We need to restore the signal mask, because we were
692          // longjmped out of a signal handler.
693          VG_(sigprocmask)(VKI_SIG_SETMASK, &sigmask, NULL);
694
695          ptr = VG_PGROUNDUP(ptr+1);     // Bad page - skip it.
696       }
697    }
698
699    VG_(sigprocmask)(VKI_SIG_SETMASK, &sigmask, NULL);
700    VG_(set_fault_catcher)(NULL);
701 }
702
703
704 // Process the mark stack until empty.
705 static void lc_process_markstack(Int clique)
706 {
707    Int  top = -1;    // shut gcc up
708    Bool is_prior_definite;
709
710    while (lc_pop(&top)) {
711       tl_assert(top >= 0 && top < lc_n_chunks);      
712
713       // See comment about 'is_prior_definite' at the top to understand this.
714       is_prior_definite = ( Possible != lc_extras[top].state );
715
716       lc_scan_memory(lc_chunks[top]->data, lc_chunks[top]->szB,
717                      is_prior_definite, clique);
718    }
719 }
720
721 static Word cmp_LossRecordKey_LossRecord(const void* key, const void* elem)
722 {
723    LossRecordKey* a = (LossRecordKey*)key;
724    LossRecordKey* b = &(((LossRecord*)elem)->key);
725
726    // Compare on states first because that's fast.
727    if (a->state < b->state) return -1;
728    if (a->state > b->state) return  1;
729    // Ok, the states are equal.  Now compare the locations, which is slower.
730    if (VG_(eq_ExeContext)(
731             MC_(clo_leak_resolution), a->allocated_at, b->allocated_at))
732       return 0;
733    // Different locations.  Ordering is arbitrary, just use the ec pointer.
734    if (a->allocated_at < b->allocated_at) return -1;
735    if (a->allocated_at > b->allocated_at) return  1;
736    VG_(tool_panic)("bad LossRecord comparison");
737 }
738
739 static Int cmp_LossRecords(void* va, void* vb)
740 {
741    LossRecord* lr_a = *(LossRecord**)va;
742    LossRecord* lr_b = *(LossRecord**)vb;
743    SizeT total_szB_a = lr_a->szB + lr_a->indirect_szB;
744    SizeT total_szB_b = lr_b->szB + lr_b->indirect_szB;
745
746    // First compare by sizes.
747    if (total_szB_a < total_szB_b) return -1;
748    if (total_szB_a > total_szB_b) return  1;
749    // If size are equal, compare by states.
750    if (lr_a->key.state < lr_b->key.state) return -1;
751    if (lr_a->key.state > lr_b->key.state) return  1;
752    // If they're still equal here, it doesn't matter that much, but we keep
753    // comparing other things so that regtests are as deterministic as
754    // possible.  So:  compare num_blocks.
755    if (lr_a->num_blocks < lr_b->num_blocks) return -1;
756    if (lr_a->num_blocks > lr_b->num_blocks) return  1;
757    // Finally, compare ExeContext addresses... older ones are likely to have
758    // lower addresses.
759    if (lr_a->key.allocated_at < lr_b->key.allocated_at) return -1;
760    if (lr_a->key.allocated_at > lr_b->key.allocated_at) return  1;
761    return 0;
762 }
763
764 static void print_results(ThreadId tid, Bool is_full_check)
765 {
766    Int          i, n_lossrecords;
767    OSet*        lr_table;
768    LossRecord** lr_array;
769    LossRecord*  lr;
770    Bool         is_suppressed;
771
772    // Create the lr_table, which holds the loss records.
773    lr_table =
774       VG_(OSetGen_Create)(offsetof(LossRecord, key),
775                           cmp_LossRecordKey_LossRecord,
776                           VG_(malloc), "mc.pr.1",
777                           VG_(free)); 
778
779    // Convert the chunks into loss records, merging them where appropriate.
780    for (i = 0; i < lc_n_chunks; i++) {
781       MC_Chunk*     ch = lc_chunks[i];
782       LC_Extra*     ex = &(lc_extras)[i];
783       LossRecord*   old_lr;
784       LossRecordKey lrkey;
785       lrkey.state        = ex->state;
786       lrkey.allocated_at = ch->where;
787
788       old_lr = VG_(OSetGen_Lookup)(lr_table, &lrkey);
789       if (old_lr) {
790          // We found an existing loss record matching this chunk.  Update the
791          // loss record's details in-situ.  This is safe because we don't
792          // change the elements used as the OSet key.
793          old_lr->szB          += ch->szB;
794          old_lr->indirect_szB += ex->indirect_szB;
795          old_lr->num_blocks++;
796       } else {
797          // No existing loss record matches this chunk.  Create a new loss
798          // record, initialise it from the chunk, and insert it into lr_table.
799          lr = VG_(OSetGen_AllocNode)(lr_table, sizeof(LossRecord));
800          lr->key              = lrkey;
801          lr->szB              = ch->szB;
802          lr->indirect_szB     = ex->indirect_szB;
803          lr->num_blocks       = 1;
804          VG_(OSetGen_Insert)(lr_table, lr);
805       }
806    }
807    n_lossrecords = VG_(OSetGen_Size)(lr_table);
808
809    // Create an array of pointers to the loss records.
810    lr_array = VG_(malloc)("mc.pr.2", n_lossrecords * sizeof(LossRecord*));
811    i = 0;
812    VG_(OSetGen_ResetIter)(lr_table);
813    while ( (lr = VG_(OSetGen_Next)(lr_table)) ) {
814       lr_array[i++] = lr;
815    }
816    tl_assert(i == n_lossrecords);
817
818    // Sort the array by loss record sizes.
819    VG_(ssort)(lr_array, n_lossrecords, sizeof(LossRecord*),
820               cmp_LossRecords);
821
822    // Zero totals.
823    MC_(blocks_leaked)     = MC_(bytes_leaked)     = 0;
824    MC_(blocks_indirect)   = MC_(bytes_indirect)   = 0;
825    MC_(blocks_dubious)    = MC_(bytes_dubious)    = 0;
826    MC_(blocks_reachable)  = MC_(bytes_reachable)  = 0;
827    MC_(blocks_suppressed) = MC_(bytes_suppressed) = 0;
828
829    // Print the loss records (in size order) and collect summary stats.
830    for (i = 0; i < n_lossrecords; i++) {
831       Bool count_as_error, print_record;
832       // Rules for printing:
833       // - We don't show suppressed loss records ever (and that's controlled
834       //   within the error manager).
835       // - We show non-suppressed loss records that are not "reachable" if 
836       //   --leak-check=yes.
837       // - We show all non-suppressed loss records if --leak-check=yes and
838       //   --show-reachable=yes.
839       //
840       // Nb: here "reachable" means Reachable *or* IndirectLeak;  note that
841       // this is different to "still reachable" used elsewhere because it
842       // includes indirectly lost blocks!
843       //
844       lr = lr_array[i];
845       print_record = is_full_check &&
846                      ( MC_(clo_show_reachable) ||
847                        Unreached == lr->key.state || 
848                        Possible  == lr->key.state );
849       // We don't count a leaks as errors with --leak-check=summary.
850       // Otherwise you can get high error counts with few or no error
851       // messages, which can be confusing.  Also, you could argue that
852       // indirect leaks should be counted as errors, but it seems better to
853       // make the counting criteria similar to the printing criteria.  So we
854       // don't count them.
855       count_as_error = is_full_check && 
856                        ( Unreached == lr->key.state || 
857                          Possible  == lr->key.state );
858       is_suppressed = 
859          MC_(record_leak_error) ( tid, i+1, n_lossrecords, lr, print_record,
860                                   count_as_error );
861
862       if (is_suppressed) {
863          MC_(blocks_suppressed) += lr->num_blocks;
864          MC_(bytes_suppressed)  += lr->szB;
865
866       } else if (Unreached == lr->key.state) {
867          MC_(blocks_leaked)     += lr->num_blocks;
868          MC_(bytes_leaked)      += lr->szB;
869
870       } else if (IndirectLeak == lr->key.state) {
871          MC_(blocks_indirect)   += lr->num_blocks;
872          MC_(bytes_indirect)    += lr->szB;
873
874       } else if (Possible == lr->key.state) {
875          MC_(blocks_dubious)    += lr->num_blocks;
876          MC_(bytes_dubious)     += lr->szB;
877
878       } else if (Reachable == lr->key.state) {
879          MC_(blocks_reachable)  += lr->num_blocks;
880          MC_(bytes_reachable)   += lr->szB;
881
882       } else {
883          VG_(tool_panic)("unknown loss mode");
884       }
885    }
886
887    if (VG_(clo_verbosity) > 0 && !VG_(clo_xml)) {
888       VG_(umsg)("LEAK SUMMARY:\n");
889       VG_(umsg)("   definitely lost: %'lu bytes in %'lu blocks\n",
890                 MC_(bytes_leaked), MC_(blocks_leaked) );
891       VG_(umsg)("   indirectly lost: %'lu bytes in %'lu blocks\n",
892                 MC_(bytes_indirect), MC_(blocks_indirect) );
893       VG_(umsg)("     possibly lost: %'lu bytes in %'lu blocks\n",
894                 MC_(bytes_dubious), MC_(blocks_dubious) );
895       VG_(umsg)("   still reachable: %'lu bytes in %'lu blocks\n",
896                 MC_(bytes_reachable), MC_(blocks_reachable) );
897       VG_(umsg)("        suppressed: %'lu bytes in %'lu blocks\n",
898                 MC_(bytes_suppressed), MC_(blocks_suppressed) );
899       if (!is_full_check &&
900           (MC_(blocks_leaked) + MC_(blocks_indirect) +
901            MC_(blocks_dubious) + MC_(blocks_reachable)) > 0) {
902          VG_(umsg)("Rerun with --leak-check=full to see details "
903                    "of leaked memory\n");
904       }
905       if (is_full_check &&
906           MC_(blocks_reachable) > 0 && !MC_(clo_show_reachable))
907       {
908          VG_(umsg)("Reachable blocks (those to which a pointer "
909                    "was found) are not shown.\n");
910          VG_(umsg)("To see them, rerun with: --leak-check=full "
911                    "--show-reachable=yes\n");
912       }
913       VG_(umsg)("\n");
914    }
915 }
916
917 /*------------------------------------------------------------*/
918 /*--- Top-level entry point.                               ---*/
919 /*------------------------------------------------------------*/
920
921 void MC_(detect_memory_leaks) ( ThreadId tid, LeakCheckMode mode )
922 {
923    Int i, j;
924    
925    tl_assert(mode != LC_Off);
926
927    // Get the chunks, stop if there were none.
928    lc_chunks = find_active_chunks(&lc_n_chunks);
929    if (lc_n_chunks == 0) {
930       tl_assert(lc_chunks == NULL);
931       if (VG_(clo_verbosity) >= 1 && !VG_(clo_xml)) {
932          VG_(umsg)("All heap blocks were freed -- no leaks are possible\n");
933          VG_(umsg)("\n");
934       }
935       return;
936    }
937
938    // Sort the array so blocks are in ascending order in memory.
939    VG_(ssort)(lc_chunks, lc_n_chunks, sizeof(VgHashNode*), compare_MC_Chunks);
940
941    // Sanity check -- make sure they're in order.
942    for (i = 0; i < lc_n_chunks-1; i++) {
943       tl_assert( lc_chunks[i]->data <= lc_chunks[i+1]->data);
944    }
945
946    // Sanity check -- make sure they don't overlap.  The one exception is that
947    // we allow a MALLOCLIKE block to sit entirely within a malloc() block.
948    // This is for bug 100628.  If this occurs, we ignore the malloc() block
949    // for leak-checking purposes.  This is a hack and probably should be done
950    // better, but at least it's consistent with mempools (which are treated
951    // like this in find_active_chunks).  Mempools have a separate VgHashTable
952    // for mempool chunks, but if custom-allocated blocks are put in a separate
953    // table from normal heap blocks it makes free-mismatch checking more
954    // difficult.
955    //
956    // If this check fails, it probably means that the application
957    // has done something stupid with VALGRIND_MALLOCLIKE_BLOCK client
958    // requests, eg. has made overlapping requests (which are
959    // nonsensical), or used VALGRIND_MALLOCLIKE_BLOCK for stack locations;
960    // again nonsensical.
961    //
962    for (i = 0; i < lc_n_chunks-1; i++) {
963       MC_Chunk* ch1 = lc_chunks[i];
964       MC_Chunk* ch2 = lc_chunks[i+1];
965
966       Addr start1    = ch1->data;
967       Addr start2    = ch2->data;
968       Addr end1      = ch1->data + ch1->szB - 1;
969       Addr end2      = ch2->data + ch2->szB - 1;
970       Bool isCustom1 = ch1->allockind == MC_AllocCustom;
971       Bool isCustom2 = ch2->allockind == MC_AllocCustom;
972
973       if (end1 < start2) {
974          // Normal case - no overlap.
975
976       // We used to allow exact duplicates, I'm not sure why.  --njn
977       //} else if (start1 == start2 && end1 == end2) {
978          // Degenerate case: exact duplicates.
979
980       } else if (start1 >= start2 && end1 <= end2 && isCustom1 && !isCustom2) {
981          // Block i is MALLOCLIKE and entirely within block i+1.
982          // Remove block i+1.
983          for (j = i+1; j < lc_n_chunks-1; j++) {
984             lc_chunks[j] = lc_chunks[j+1];
985          }
986          lc_n_chunks--;
987
988       } else if (start2 >= start1 && end2 <= end1 && isCustom2 && !isCustom1) {
989          // Block i+1 is MALLOCLIKE and entirely within block i.
990          // Remove block i.
991          for (j = i; j < lc_n_chunks-1; j++) {
992             lc_chunks[j] = lc_chunks[j+1];
993          }
994          lc_n_chunks--;
995
996       } else {
997          VG_(umsg)("Block 0x%lx..0x%lx overlaps with block 0x%lx..0x%lx",
998                    start1, end1, start1, end2);
999          VG_(umsg)("This is usually caused by using VALGRIND_MALLOCLIKE_BLOCK");
1000          VG_(umsg)("in an inappropriate way.");
1001          tl_assert (0);
1002       }
1003    }
1004
1005    // Initialise lc_extras.
1006    lc_extras = VG_(malloc)( "mc.dml.2", lc_n_chunks * sizeof(LC_Extra) );
1007    for (i = 0; i < lc_n_chunks; i++) {
1008       lc_extras[i].state        = Unreached;
1009       lc_extras[i].indirect_szB = 0;
1010    }
1011
1012    // Initialise lc_markstack.
1013    lc_markstack = VG_(malloc)( "mc.dml.2", lc_n_chunks * sizeof(Int) );
1014    for (i = 0; i < lc_n_chunks; i++) {
1015       lc_markstack[i] = -1;
1016    }
1017    lc_markstack_top = -1;
1018
1019    // Verbosity.
1020    if (VG_(clo_verbosity) > 1 && !VG_(clo_xml)) {
1021       VG_(umsg)( "Searching for pointers to %'d not-freed blocks\n",
1022                  lc_n_chunks );
1023    }
1024
1025    // Scan the memory root-set, pushing onto the mark stack any blocks
1026    // pointed to.
1027    {
1028       Int   n_seg_starts;
1029       Addr* seg_starts = VG_(get_segment_starts)( &n_seg_starts );
1030
1031       tl_assert(seg_starts && n_seg_starts > 0);
1032
1033       lc_scanned_szB = 0;
1034
1035       // VG_(am_show_nsegments)( 0, "leakcheck");
1036       for (i = 0; i < n_seg_starts; i++) {
1037          SizeT seg_size;
1038          NSegment const* seg = VG_(am_find_nsegment)( seg_starts[i] );
1039          tl_assert(seg);
1040
1041          if (seg->kind != SkFileC && seg->kind != SkAnonC) continue;
1042          if (!(seg->hasR && seg->hasW))                    continue;
1043          if (seg->isCH)                                    continue;
1044
1045          // Don't poke around in device segments as this may cause
1046          // hangs.  Exclude /dev/zero just in case someone allocated
1047          // memory by explicitly mapping /dev/zero.
1048          if (seg->kind == SkFileC 
1049              && (VKI_S_ISCHR(seg->mode) || VKI_S_ISBLK(seg->mode))) {
1050             HChar* dev_name = VG_(am_get_filename)( (NSegment*)seg );
1051             if (dev_name && 0 == VG_(strcmp)(dev_name, "/dev/zero")) {
1052                // Don't skip /dev/zero.
1053             } else {
1054                // Skip this device mapping.
1055                continue;
1056             }
1057          }
1058
1059          if (0)
1060             VG_(printf)("ACCEPT %2d  %#lx %#lx\n", i, seg->start, seg->end);
1061
1062          // Scan the segment.  We use -1 for the clique number, because this
1063          // is a root-set.
1064          seg_size = seg->end - seg->start + 1;
1065          if (VG_(clo_verbosity) > 2) {
1066             VG_(message)(Vg_DebugMsg,
1067                          "  Scanning root segment: %#lx..%#lx (%lu)\n",
1068                          seg->start, seg->end, seg_size);
1069          }
1070          lc_scan_memory(seg->start, seg_size, /*is_prior_definite*/True, -1);
1071       }
1072    }
1073
1074    // Scan GP registers for chunk pointers.
1075    VG_(apply_to_GP_regs)(lc_push_if_a_chunk_ptr_register);
1076
1077    // Process the pushed blocks.  After this, every block that is reachable
1078    // from the root-set has been traced.
1079    lc_process_markstack(/*clique*/-1);
1080
1081    if (VG_(clo_verbosity) > 1 && !VG_(clo_xml)) {
1082       VG_(umsg)("Checked %'lu bytes\n", lc_scanned_szB);
1083       VG_(umsg)( "\n" );
1084    }
1085
1086    // Trace all the leaked blocks to determine which are directly leaked and
1087    // which are indirectly leaked.  For each Unreached block, push it onto
1088    // the mark stack, and find all the as-yet-Unreached blocks reachable
1089    // from it.  These form a clique and are marked IndirectLeak, and their
1090    // size is added to the clique leader's indirect size.  If one of the
1091    // found blocks was itself a clique leader (from a previous clique), then
1092    // the cliques are merged.
1093    for (i = 0; i < lc_n_chunks; i++) {
1094       MC_Chunk* ch = lc_chunks[i];
1095       LC_Extra* ex = &(lc_extras[i]);
1096
1097       if (VG_DEBUG_CLIQUE)
1098          VG_(printf)("cliques: %d at %#lx -> Loss state %d\n",
1099                      i, ch->data, ex->state);
1100
1101       tl_assert(lc_markstack_top == -1);
1102
1103       if (ex->state == Unreached) {
1104          if (VG_DEBUG_CLIQUE)
1105             VG_(printf)("%d: gathering clique %#lx\n", i, ch->data);
1106          
1107          // Push this Unreached block onto the stack and process it.
1108          lc_push(i, ch);
1109          lc_process_markstack(i);
1110
1111          tl_assert(lc_markstack_top == -1);
1112          tl_assert(ex->state == Unreached);
1113       }
1114    }
1115       
1116    print_results( tid, ( mode == LC_Full ? True : False ) );
1117
1118    VG_(free) ( lc_chunks );
1119    VG_(free) ( lc_extras );
1120    VG_(free) ( lc_markstack );
1121 }
1122
1123 /*--------------------------------------------------------------------*/
1124 /*--- end                                                          ---*/
1125 /*--------------------------------------------------------------------*/
1126