]> rtime.felk.cvut.cz Git - l4.git/blob - l4/pkg/valgrind/src/valgrind-3.6.0-svn/cachegrind/docs/cg-manual.xml
update
[l4.git] / l4 / pkg / valgrind / src / valgrind-3.6.0-svn / cachegrind / docs / cg-manual.xml
1 <?xml version="1.0"?> <!-- -*- sgml -*- -->
2 <!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
3   "http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
4 [ <!ENTITY % vg-entities SYSTEM "../../docs/xml/vg-entities.xml"> %vg-entities; ]>
5
6
7 <chapter id="cg-manual" xreflabel="Cachegrind: a cache and branch-prediction profiler">
8 <title>Cachegrind: a cache and branch-prediction profiler</title>
9
10 <para>To use this tool, you must specify
11 <option>--tool=cachegrind</option> on the
12 Valgrind command line.</para>
13
14 <sect1 id="cg-manual.overview" xreflabel="Overview">
15 <title>Overview</title>
16
17 <para>Cachegrind simulates how your program interacts with a machine's cache
18 hierarchy and (optionally) branch predictor.  It simulates a machine with
19 independent first-level instruction and data caches (I1 and D1), backed by a
20 unified second-level cache (L2).  This exactly matches the configuration of
21 many modern machines.</para>
22
23 <para>However, some modern machines have three levels of cache.  For these
24 machines (in the cases where Cachegrind can auto-detect the cache
25 configuration) Cachegrind simulates the first-level and third-level caches.
26 The reason for this choice is that the L3 cache has the most influence on
27 runtime, as it masks accesses to main memory.  Furthermore, the L1 caches
28 often have low associativity, so simulating them can detect cases where the
29 code interacts badly with this cache (eg. traversing a matrix column-wise
30 with the row length being a power of 2).</para>
31
32 <para>Therefore, Cachegrind always refers to the I1, D1 and LL (last-level)
33 caches.</para>
34
35 <para>
36 Cachegrind gathers the following statistics (abbreviations used for each statistic
37 is given in parentheses):</para>
38 <itemizedlist>
39   <listitem>
40     <para>I cache reads (<computeroutput>Ir</computeroutput>,
41     which equals the number of instructions executed),
42     I1 cache read misses (<computeroutput>I1mr</computeroutput>) and
43     LL cache instruction read misses (<computeroutput>ILmr</computeroutput>).
44     </para>
45   </listitem>
46   <listitem>
47     <para>D cache reads (<computeroutput>Dr</computeroutput>, which
48     equals the number of memory reads),
49     D1 cache read misses (<computeroutput>D1mr</computeroutput>), and
50     LL cache data read misses (<computeroutput>DLmr</computeroutput>).
51     </para>
52   </listitem>
53   <listitem>
54     <para>D cache writes (<computeroutput>Dw</computeroutput>, which equals
55     the number of memory writes),
56     D1 cache write misses (<computeroutput>D1mw</computeroutput>), and
57     LL cache data write misses (<computeroutput>DLmw</computeroutput>).
58     </para>
59   </listitem>
60   <listitem>
61     <para>Conditional branches executed (<computeroutput>Bc</computeroutput>) and
62     conditional branches mispredicted (<computeroutput>Bcm</computeroutput>).
63     </para>
64   </listitem>
65   <listitem>
66     <para>Indirect branches executed (<computeroutput>Bi</computeroutput>) and
67     indirect branches mispredicted (<computeroutput>Bim</computeroutput>).
68     </para>
69   </listitem>
70 </itemizedlist>
71
72 <para>Note that D1 total accesses is given by
73 <computeroutput>D1mr</computeroutput> +
74 <computeroutput>D1mw</computeroutput>, and that LL total
75 accesses is given by <computeroutput>ILmr</computeroutput> +
76 <computeroutput>DLmr</computeroutput> +
77 <computeroutput>DLmw</computeroutput>.
78 </para>
79
80 <para>These statistics are presented for the entire program and for each
81 function in the program.  You can also annotate each line of source code in
82 the program with the counts that were caused directly by it.</para>
83
84 <para>On a modern machine, an L1 miss will typically cost
85 around 10 cycles, an LL miss can cost as much as 200
86 cycles, and a mispredicted branch costs in the region of 10
87 to 30 cycles.  Detailed cache and branch profiling can be very useful
88 for understanding how your program interacts with the machine and thus how
89 to make it faster.</para>
90
91 <para>Also, since one instruction cache read is performed per
92 instruction executed, you can find out how many instructions are
93 executed per line, which can be useful for traditional profiling.</para>
94
95 </sect1>
96
97
98
99 <sect1 id="cg-manual.profile"
100        xreflabel="Using Cachegrind, cg_annotate and cg_merge">
101 <title>Using Cachegrind, cg_annotate and cg_merge</title>
102
103 <para>First off, as for normal Valgrind use, you probably want to
104 compile with debugging info (the
105 <option>-g</option> option).  But by contrast with
106 normal Valgrind use, you probably do want to turn
107 optimisation on, since you should profile your program as it will
108 be normally run.</para>
109
110 <para>Then, you need to run Cachegrind itself to gather the profiling
111 information, and then run cg_annotate to get a detailed presentation of that
112 information.  As an optional intermediate step, you can use cg_merge to sum
113 together the outputs of multiple Cachegrind runs into a single file which
114 you then use as the input for cg_annotate.  Alternatively, you can use
115 cg_diff to difference the outputs of two Cachegrind runs into a signel file
116 which you then use as the input for cg_annotate.</para>
117
118
119 <sect2 id="cg-manual.running-cachegrind" xreflabel="Running Cachegrind">
120 <title>Running Cachegrind</title>
121
122 <para>To run Cachegrind on a program <filename>prog</filename>, run:</para>
123 <screen><![CDATA[
124 valgrind --tool=cachegrind prog
125 ]]></screen>
126
127 <para>The program will execute (slowly).  Upon completion,
128 summary statistics that look like this will be printed:</para>
129
130 <programlisting><![CDATA[
131 ==31751== I   refs:      27,742,716
132 ==31751== I1  misses:           276
133 ==31751== LLi misses:           275
134 ==31751== I1  miss rate:        0.0%
135 ==31751== LLi miss rate:        0.0%
136 ==31751== 
137 ==31751== D   refs:      15,430,290  (10,955,517 rd + 4,474,773 wr)
138 ==31751== D1  misses:        41,185  (    21,905 rd +    19,280 wr)
139 ==31751== LLd misses:        23,085  (     3,987 rd +    19,098 wr)
140 ==31751== D1  miss rate:        0.2% (       0.1%   +       0.4%)
141 ==31751== LLd miss rate:        0.1% (       0.0%   +       0.4%)
142 ==31751== 
143 ==31751== LL misses:         23,360  (     4,262 rd +    19,098 wr)
144 ==31751== LL miss rate:         0.0% (       0.0%   +       0.4%)]]></programlisting>
145
146 <para>Cache accesses for instruction fetches are summarised
147 first, giving the number of fetches made (this is the number of
148 instructions executed, which can be useful to know in its own
149 right), the number of I1 misses, and the number of LL instruction
150 (<computeroutput>LLi</computeroutput>) misses.</para>
151
152 <para>Cache accesses for data follow. The information is similar
153 to that of the instruction fetches, except that the values are
154 also shown split between reads and writes (note each row's
155 <computeroutput>rd</computeroutput> and
156 <computeroutput>wr</computeroutput> values add up to the row's
157 total).</para>
158
159 <para>Combined instruction and data figures for the LL cache
160 follow that.  Note that the LL miss rate is computed relative to the total
161 number of memory accesses, not the number of L1 misses.  I.e.  it is
162 <computeroutput>(ILmr + DLmr + DLmw) / (Ir + Dr + Dw)</computeroutput>
163 not
164 <computeroutput>(ILmr + DLmr + DLmw) / (I1mr + D1mr + D1mw)</computeroutput>
165 </para>
166
167 <para>Branch prediction statistics are not collected by default.
168 To do so, add the option <option>--branch-sim=yes</option>.</para>
169
170 </sect2>
171
172
173 <sect2 id="cg-manual.outputfile" xreflabel="Output File">
174 <title>Output File</title>
175
176 <para>As well as printing summary information, Cachegrind also writes
177 more detailed profiling information to a file.  By default this file is named
178 <filename>cachegrind.out.&lt;pid&gt;</filename> (where
179 <filename>&lt;pid&gt;</filename> is the program's process ID), but its name
180 can be changed with the <option>--cachegrind-out-file</option> option.  This
181 file is human-readable, but is intended to be interpreted by the
182 accompanying program cg_annotate, described in the next section.</para>
183
184 <para>The default <computeroutput>.&lt;pid&gt;</computeroutput> suffix
185 on the output file name serves two purposes.  Firstly, it means you 
186 don't have to rename old log files that you don't want to overwrite.  
187 Secondly, and more importantly, it allows correct profiling with the
188 <option>--trace-children=yes</option> option of
189 programs that spawn child processes.</para>
190
191 <para>The output file can be big, many megabytes for large applications
192 built with full debugging information.</para>
193
194 </sect2>
195
196
197   
198 <sect2 id="cg-manual.running-cg_annotate" xreflabel="Running cg_annotate">
199 <title>Running cg_annotate</title>
200
201 <para>Before using cg_annotate,
202 it is worth widening your window to be at least 120-characters
203 wide if possible, as the output lines can be quite long.</para>
204
205 <para>To get a function-by-function summary, run:</para>
206
207 <screen>cg_annotate &lt;filename&gt;</screen>
208
209 <para>on a Cachegrind output file.</para>
210
211 </sect2>
212
213
214 <sect2 id="cg-manual.the-output-preamble" xreflabel="The Output Preamble">
215 <title>The Output Preamble</title>
216
217 <para>The first part of the output looks like this:</para>
218
219 <programlisting><![CDATA[
220 --------------------------------------------------------------------------------
221 I1 cache:              65536 B, 64 B, 2-way associative
222 D1 cache:              65536 B, 64 B, 2-way associative
223 LL cache:              262144 B, 64 B, 8-way associative
224 Command:               concord vg_to_ucode.c
225 Events recorded:       Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw
226 Events shown:          Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw
227 Event sort order:      Ir I1mr ILmr Dr D1mr DLmr Dw D1mw DLmw
228 Threshold:             99%
229 Chosen for annotation:
230 Auto-annotation:       off
231 ]]></programlisting>
232
233
234 <para>This is a summary of the annotation options:</para>
235                     
236 <itemizedlist>
237
238   <listitem>
239     <para>I1 cache, D1 cache, LL cache: cache configuration.  So
240     you know the configuration with which these results were
241     obtained.</para>
242   </listitem>
243
244   <listitem>
245     <para>Command: the command line invocation of the program
246       under examination.</para>
247   </listitem>
248
249   <listitem>
250    <para>Events recorded: which events were recorded.</para>
251
252  </listitem>
253
254  <listitem>
255    <para>Events shown: the events shown, which is a subset of the events
256    gathered.  This can be adjusted with the
257    <option>--show</option> option.</para>
258   </listitem>
259
260   <listitem>
261     <para>Event sort order: the sort order in which functions are
262     shown.  For example, in this case the functions are sorted
263     from highest <computeroutput>Ir</computeroutput> counts to
264     lowest.  If two functions have identical
265     <computeroutput>Ir</computeroutput> counts, they will then be
266     sorted by <computeroutput>I1mr</computeroutput> counts, and
267     so on.  This order can be adjusted with the
268     <option>--sort</option> option.</para>
269
270     <para>Note that this dictates the order the functions appear.
271     It is <emphasis>not</emphasis> the order in which the columns
272     appear; that is dictated by the "events shown" line (and can
273     be changed with the <option>--show</option>
274     option).</para>
275   </listitem>
276
277   <listitem>
278     <para>Threshold: cg_annotate
279     by default omits functions that cause very low counts
280     to avoid drowning you in information.  In this case,
281     cg_annotate shows summaries the functions that account for
282     99% of the <computeroutput>Ir</computeroutput> counts;
283     <computeroutput>Ir</computeroutput> is chosen as the
284     threshold event since it is the primary sort event.  The
285     threshold can be adjusted with the
286     <option>--threshold</option>
287     option.</para>
288   </listitem>
289
290   <listitem>
291     <para>Chosen for annotation: names of files specified
292     manually for annotation; in this case none.</para>
293   </listitem>
294
295   <listitem>
296     <para>Auto-annotation: whether auto-annotation was requested
297     via the <option>--auto=yes</option>
298     option. In this case no.</para>
299   </listitem>
300
301 </itemizedlist>
302
303 </sect2>
304
305
306 <sect2 id="cg-manual.the-global"
307        xreflabel="The Global and Function-level Counts">
308 <title>The Global and Function-level Counts</title>
309
310 <para>Then follows summary statistics for the whole
311 program:</para>
312   
313 <programlisting><![CDATA[
314 --------------------------------------------------------------------------------
315 Ir         I1mr ILmr Dr         D1mr   DLmr  Dw        D1mw   DLmw
316 --------------------------------------------------------------------------------
317 27,742,716  276  275 10,955,517 21,905 3,987 4,474,773 19,280 19,098  PROGRAM TOTALS]]></programlisting>
318
319 <para>
320 These are similar to the summary provided when Cachegrind finishes running.
321 </para>
322
323 <para>Then comes function-by-function statistics:</para>
324
325 <programlisting><![CDATA[
326 --------------------------------------------------------------------------------
327 Ir        I1mr ILmr Dr        D1mr  DLmr  Dw        D1mw   DLmw    file:function
328 --------------------------------------------------------------------------------
329 8,821,482    5    5 2,242,702 1,621    73 1,794,230      0      0  getc.c:_IO_getc
330 5,222,023    4    4 2,276,334    16    12   875,959      1      1  concord.c:get_word
331 2,649,248    2    2 1,344,810 7,326 1,385         .      .      .  vg_main.c:strcmp
332 2,521,927    2    2   591,215     0     0   179,398      0      0  concord.c:hash
333 2,242,740    2    2 1,046,612   568    22   448,548      0      0  ctype.c:tolower
334 1,496,937    4    4   630,874 9,000 1,400   279,388      0      0  concord.c:insert
335   897,991   51   51   897,831    95    30        62      1      1  ???:???
336   598,068    1    1   299,034     0     0   149,517      0      0  ../sysdeps/generic/lockfile.c:__flockfile
337   598,068    0    0   299,034     0     0   149,517      0      0  ../sysdeps/generic/lockfile.c:__funlockfile
338   598,024    4    4   213,580    35    16   149,506      0      0  vg_clientmalloc.c:malloc
339   446,587    1    1   215,973 2,167   430   129,948 14,057 13,957  concord.c:add_existing
340   341,760    2    2   128,160     0     0   128,160      0      0  vg_clientmalloc.c:vg_trap_here_WRAPPER
341   320,782    4    4   150,711   276     0    56,027     53     53  concord.c:init_hash_table
342   298,998    1    1   106,785     0     0    64,071      1      1  concord.c:create
343   149,518    0    0   149,516     0     0         1      0      0  ???:tolower@@GLIBC_2.0
344   149,518    0    0   149,516     0     0         1      0      0  ???:fgetc@@GLIBC_2.0
345    95,983    4    4    38,031     0     0    34,409  3,152  3,150  concord.c:new_word_node
346    85,440    0    0    42,720     0     0    21,360      0      0  vg_clientmalloc.c:vg_bogus_epilogue]]></programlisting>
347
348 <para>Each function
349 is identified by a
350 <computeroutput>file_name:function_name</computeroutput> pair. If
351 a column contains only a dot it means the function never performs
352 that event (e.g. the third row shows that
353 <computeroutput>strcmp()</computeroutput> contains no
354 instructions that write to memory). The name
355 <computeroutput>???</computeroutput> is used if the the file name
356 and/or function name could not be determined from debugging
357 information. If most of the entries have the form
358 <computeroutput>???:???</computeroutput> the program probably
359 wasn't compiled with <option>-g</option>.</para>
360
361 <para>It is worth noting that functions will come both from
362 the profiled program (e.g. <filename>concord.c</filename>)
363 and from libraries (e.g. <filename>getc.c</filename>)</para>
364
365 </sect2>
366
367
368 <sect2 id="cg-manual.line-by-line" xreflabel="Line-by-line Counts">
369 <title>Line-by-line Counts</title>
370
371 <para>There are two ways to annotate source files -- by specifying them
372 manually as arguments to cg_annotate, or with the
373 <option>--auto=yes</option> option.  For example, the output from running
374 <filename>cg_annotate &lt;filename&gt; concord.c</filename> for our example
375 produces the same output as above followed by an annotated version of
376 <filename>concord.c</filename>, a section of which looks like:</para>
377
378 <programlisting><![CDATA[
379 --------------------------------------------------------------------------------
380 -- User-annotated source: concord.c
381 --------------------------------------------------------------------------------
382 Ir        I1mr ILmr Dr      D1mr  DLmr  Dw      D1mw   DLmw
383
384         .    .    .       .     .     .       .      .      .  void init_hash_table(char *file_name, Word_Node *table[])
385         3    1    1       .     .     .       1      0      0  {
386         .    .    .       .     .     .       .      .      .      FILE *file_ptr;
387         .    .    .       .     .     .       .      .      .      Word_Info *data;
388         1    0    0       .     .     .       1      1      1      int line = 1, i;
389         .    .    .       .     .     .       .      .      .
390         5    0    0       .     .     .       3      0      0      data = (Word_Info *) create(sizeof(Word_Info));
391         .    .    .       .     .     .       .      .      .
392     4,991    0    0   1,995     0     0     998      0      0      for (i = 0; i < TABLE_SIZE; i++)
393     3,988    1    1   1,994     0     0     997     53     52          table[i] = NULL;
394         .    .    .       .     .     .       .      .      .
395         .    .    .       .     .     .       .      .      .      /* Open file, check it. */
396         6    0    0       1     0     0       4      0      0      file_ptr = fopen(file_name, "r");
397         2    0    0       1     0     0       .      .      .      if (!(file_ptr)) {
398         .    .    .       .     .     .       .      .      .          fprintf(stderr, "Couldn't open '%s'.\n", file_name);
399         1    1    1       .     .     .       .      .      .          exit(EXIT_FAILURE);
400         .    .    .       .     .     .       .      .      .      }
401         .    .    .       .     .     .       .      .      .
402   165,062    1    1  73,360     0     0  91,700      0      0      while ((line = get_word(data, line, file_ptr)) != EOF)
403   146,712    0    0  73,356     0     0  73,356      0      0          insert(data->;word, data->line, table);
404         .    .    .       .     .     .       .      .      .
405         4    0    0       1     0     0       2      0      0      free(data);
406         4    0    0       1     0     0       2      0      0      fclose(file_ptr);
407         3    0    0       2     0     0       .      .      .  }]]></programlisting>
408
409 <para>(Although column widths are automatically minimised, a wide
410 terminal is clearly useful.)</para>
411   
412 <para>Each source file is clearly marked
413 (<computeroutput>User-annotated source</computeroutput>) as
414 having been chosen manually for annotation.  If the file was
415 found in one of the directories specified with the
416 <option>-I</option>/<option>--include</option> option, the directory
417 and file are both given.</para>
418
419 <para>Each line is annotated with its event counts.  Events not
420 applicable for a line are represented by a dot.  This is useful
421 for distinguishing between an event which cannot happen, and one
422 which can but did not.</para>
423
424 <para>Sometimes only a small section of a source file is
425 executed.  To minimise uninteresting output, Cachegrind only shows
426 annotated lines and lines within a small distance of annotated
427 lines.  Gaps are marked with the line numbers so you know which
428 part of a file the shown code comes from, eg:</para>
429
430 <programlisting><![CDATA[
431 (figures and code for line 704)
432 -- line 704 ----------------------------------------
433 -- line 878 ----------------------------------------
434 (figures and code for line 878)]]></programlisting>
435
436 <para>The amount of context to show around annotated lines is
437 controlled by the <option>--context</option>
438 option.</para>
439
440 <para>To get automatic annotation, use the <option>--auto=yes</option> option.
441 cg_annotate will automatically annotate every source file it can
442 find that is mentioned in the function-by-function summary.
443 Therefore, the files chosen for auto-annotation are affected by
444 the <option>--sort</option> and
445 <option>--threshold</option> options.  Each
446 source file is clearly marked (<computeroutput>Auto-annotated
447 source</computeroutput>) as being chosen automatically.  Any
448 files that could not be found are mentioned at the end of the
449 output, eg:</para>
450
451 <programlisting><![CDATA[
452 ------------------------------------------------------------------
453 The following files chosen for auto-annotation could not be found:
454 ------------------------------------------------------------------
455   getc.c
456   ctype.c
457   ../sysdeps/generic/lockfile.c]]></programlisting>
458
459 <para>This is quite common for library files, since libraries are
460 usually compiled with debugging information, but the source files
461 are often not present on a system.  If a file is chosen for
462 annotation both manually and automatically, it
463 is marked as <computeroutput>User-annotated
464 source</computeroutput>. Use the
465 <option>-I</option>/<option>--include</option> option to tell Valgrind where
466 to look for source files if the filenames found from the debugging
467 information aren't specific enough.</para>
468
469 <para>Beware that cg_annotate can take some time to digest large
470 <filename>cachegrind.out.&lt;pid&gt;</filename> files,
471 e.g. 30 seconds or more.  Also beware that auto-annotation can
472 produce a lot of output if your program is large!</para>
473
474 </sect2>
475
476
477 <sect2 id="cg-manual.assembler" xreflabel="Annotating Assembly Code Programs">
478 <title>Annotating Assembly Code Programs</title>
479
480 <para>Valgrind can annotate assembly code programs too, or annotate
481 the assembly code generated for your C program.  Sometimes this is
482 useful for understanding what is really happening when an
483 interesting line of C code is translated into multiple
484 instructions.</para>
485
486 <para>To do this, you just need to assemble your
487 <computeroutput>.s</computeroutput> files with assembly-level debug
488 information.  You can use compile with the <option>-S</option> to compile C/C++
489 programs to assembly code, and then assemble the assembly code files with
490 <option>-g</option> to achieve this.  You can then profile and annotate the
491 assembly code source files in the same way as C/C++ source files.</para>
492
493 </sect2>
494
495 <sect2 id="ms-manual.forkingprograms" xreflabel="Forking Programs">
496 <title>Forking Programs</title>
497 <para>If your program forks, the child will inherit all the profiling data that
498 has been gathered for the parent.</para>
499
500 <para>If the output file format string (controlled by
501 <option>--cachegrind-out-file</option>) does not contain <option>%p</option>,
502 then the outputs from the parent and child will be intermingled in a single
503 output file, which will almost certainly make it unreadable by
504 cg_annotate.</para>
505 </sect2>
506
507
508 <sect2 id="cg-manual.annopts.warnings" xreflabel="cg_annotate Warnings">
509 <title>cg_annotate Warnings</title>
510
511 <para>There are a couple of situations in which
512 cg_annotate issues warnings.</para>
513
514 <itemizedlist>
515   <listitem>
516     <para>If a source file is more recent than the
517     <filename>cachegrind.out.&lt;pid&gt;</filename> file.
518     This is because the information in
519     <filename>cachegrind.out.&lt;pid&gt;</filename> is only
520     recorded with line numbers, so if the line numbers change at
521     all in the source (e.g.  lines added, deleted, swapped), any
522     annotations will be incorrect.</para>
523   </listitem>
524   <listitem>
525     <para>If information is recorded about line numbers past the
526     end of a file.  This can be caused by the above problem,
527     i.e. shortening the source file while using an old
528     <filename>cachegrind.out.&lt;pid&gt;</filename> file.  If
529     this happens, the figures for the bogus lines are printed
530     anyway (clearly marked as bogus) in case they are
531     important.</para>
532   </listitem>
533 </itemizedlist>
534
535 </sect2>
536
537
538
539 <sect2 id="cg-manual.annopts.things-to-watch-out-for"
540        xreflabel="Unusual Annotation Cases">
541 <title>Unusual Annotation Cases</title>
542
543 <para>Some odd things that can occur during annotation:</para>
544
545 <itemizedlist>
546   <listitem>
547     <para>If annotating at the assembler level, you might see
548     something like this:</para>
549 <programlisting><![CDATA[
550       1    0    0  .    .    .  .    .    .          leal -12(%ebp),%eax
551       1    0    0  .    .    .  1    0    0          movl %eax,84(%ebx)
552       2    0    0  0    0    0  1    0    0          movl $1,-20(%ebp)
553       .    .    .  .    .    .  .    .    .          .align 4,0x90
554       1    0    0  .    .    .  .    .    .          movl $.LnrB,%eax
555       1    0    0  .    .    .  1    0    0          movl %eax,-16(%ebp)]]></programlisting>
556
557     <para>How can the third instruction be executed twice when
558     the others are executed only once?  As it turns out, it
559     isn't.  Here's a dump of the executable, using
560     <computeroutput>objdump -d</computeroutput>:</para>
561 <programlisting><![CDATA[
562       8048f25:       8d 45 f4                lea    0xfffffff4(%ebp),%eax
563       8048f28:       89 43 54                mov    %eax,0x54(%ebx)
564       8048f2b:       c7 45 ec 01 00 00 00    movl   $0x1,0xffffffec(%ebp)
565       8048f32:       89 f6                   mov    %esi,%esi
566       8048f34:       b8 08 8b 07 08          mov    $0x8078b08,%eax
567       8048f39:       89 45 f0                mov    %eax,0xfffffff0(%ebp)]]></programlisting>
568
569     <para>Notice the extra <computeroutput>mov
570     %esi,%esi</computeroutput> instruction.  Where did this come
571     from?  The GNU assembler inserted it to serve as the two
572     bytes of padding needed to align the <computeroutput>movl
573     $.LnrB,%eax</computeroutput> instruction on a four-byte
574     boundary, but pretended it didn't exist when adding debug
575     information.  Thus when Valgrind reads the debug info it
576     thinks that the <computeroutput>movl
577     $0x1,0xffffffec(%ebp)</computeroutput> instruction covers the
578     address range 0x8048f2b--0x804833 by itself, and attributes
579     the counts for the <computeroutput>mov
580     %esi,%esi</computeroutput> to it.</para>
581   </listitem>
582
583   <!--
584   I think this isn't true any more, not since cost centres were moved from
585   being associated with instruction addresses to being associated with
586   source line numbers.
587   <listitem>
588     <para>Inlined functions can cause strange results in the
589     function-by-function summary.  If a function
590     <computeroutput>inline_me()</computeroutput> is defined in
591     <filename>foo.h</filename> and inlined in the functions
592     <computeroutput>f1()</computeroutput>,
593     <computeroutput>f2()</computeroutput> and
594     <computeroutput>f3()</computeroutput> in
595     <filename>bar.c</filename>, there will not be a
596     <computeroutput>foo.h:inline_me()</computeroutput> function
597     entry.  Instead, there will be separate function entries for
598     each inlining site, i.e.
599     <computeroutput>foo.h:f1()</computeroutput>,
600     <computeroutput>foo.h:f2()</computeroutput> and
601     <computeroutput>foo.h:f3()</computeroutput>.  To find the
602     total counts for
603     <computeroutput>foo.h:inline_me()</computeroutput>, add up
604     the counts from each entry.</para>
605
606     <para>The reason for this is that although the debug info
607     output by GCC indicates the switch from
608     <filename>bar.c</filename> to <filename>foo.h</filename>, it
609     doesn't indicate the name of the function in
610     <filename>foo.h</filename>, so Valgrind keeps using the old
611     one.</para>
612   </listitem>
613   -->
614
615   <listitem>
616     <para>Sometimes, the same filename might be represented with
617     a relative name and with an absolute name in different parts
618     of the debug info, eg:
619     <filename>/home/user/proj/proj.h</filename> and
620     <filename>../proj.h</filename>.  In this case, if you use
621     auto-annotation, the file will be annotated twice with the
622     counts split between the two.</para>
623   </listitem>
624
625   <listitem>
626     <para>Files with more than 65,535 lines cause difficulties
627     for the Stabs-format debug info reader.  This is because the line
628     number in the <computeroutput>struct nlist</computeroutput>
629     defined in <filename>a.out.h</filename> under Linux is only a
630     16-bit value.  Valgrind can handle some files with more than
631     65,535 lines correctly by making some guesses to identify
632     line number overflows.  But some cases are beyond it, in
633     which case you'll get a warning message explaining that
634     annotations for the file might be incorrect.</para>
635     
636     <para>If you are using GCC 3.1 or later, this is most likely
637     irrelevant, since GCC switched to using the more modern DWARF2 
638     format by default at version 3.1.  DWARF2 does not have any such
639     limitations on line numbers.</para>
640   </listitem>
641
642   <listitem>
643     <para>If you compile some files with
644     <option>-g</option> and some without, some
645     events that take place in a file without debug info could be
646     attributed to the last line of a file with debug info
647     (whichever one gets placed before the non-debug-info file in
648     the executable).</para>
649   </listitem>
650
651 </itemizedlist>
652
653 <para>This list looks long, but these cases should be fairly
654 rare.</para>
655
656 </sect2>
657
658
659 <sect2 id="cg-manual.cg_merge" xreflabel="cg_merge">
660 <title>Merging Profiles with cg_merge</title>
661
662 <para>
663 cg_merge is a simple program which
664 reads multiple profile files, as created by Cachegrind, merges them
665 together, and writes the results into another file in the same format.
666 You can then examine the merged results using
667 <computeroutput>cg_annotate &lt;filename&gt;</computeroutput>, as
668 described above.  The merging functionality might be useful if you
669 want to aggregate costs over multiple runs of the same program, or
670 from a single parallel run with multiple instances of the same
671 program.</para>
672
673 <para>
674 cg_merge is invoked as follows:
675 </para>
676
677 <programlisting><![CDATA[
678 cg_merge -o outputfile file1 file2 file3 ...]]></programlisting>
679
680 <para>
681 It reads and checks <computeroutput>file1</computeroutput>, then read
682 and checks <computeroutput>file2</computeroutput> and merges it into
683 the running totals, then the same with
684 <computeroutput>file3</computeroutput>, etc.  The final results are
685 written to <computeroutput>outputfile</computeroutput>, or to standard
686 out if no output file is specified.</para>
687
688 <para>
689 Costs are summed on a per-function, per-line and per-instruction
690 basis.  Because of this, the order in which the input files does not
691 matter, although you should take care to only mention each file once,
692 since any file mentioned twice will be added in twice.</para>
693
694 <para>
695 cg_merge does not attempt to check
696 that the input files come from runs of the same executable.  It will
697 happily merge together profile files from completely unrelated
698 programs.  It does however check that the
699 <computeroutput>Events:</computeroutput> lines of all the inputs are
700 identical, so as to ensure that the addition of costs makes sense.
701 For example, it would be nonsensical for it to add a number indicating
702 D1 read references to a number from a different file indicating LL
703 write misses.</para>
704
705 <para>
706 A number of other syntax and sanity checks are done whilst reading the
707 inputs.  cg_merge will stop and
708 attempt to print a helpful error message if any of the input files
709 fail these checks.</para>
710
711 </sect2>
712
713
714 <sect2 id="cg-manual.cg_diff" xreflabel="cg_diff">
715 <title>Differencing Profiles with cg_diff</title>
716
717 <para>
718 cg_diff is a simple program which
719 reads two profile files, as created by Cachegrind, finds the difference
720 between them, and writes the results into another file in the same format.
721 You can then examine the merged results using
722 <computeroutput>cg_annotate &lt;filename&gt;</computeroutput>, as
723 described above.  This is very useful if you want to measure how a change to
724 a program affected its performance.
725 </para>
726
727 <para>
728 cg_diff is invoked as follows:
729 </para>
730
731 <programlisting><![CDATA[
732 cg_diff file1 file2]]></programlisting>
733
734 <para>
735 It reads and checks <computeroutput>file1</computeroutput>, then read
736 and checks <computeroutput>file2</computeroutput>, then computes the
737 difference (effectively <computeroutput>file1</computeroutput> -
738 <computeroutput>file2</computeroutput>).  The final results are written to
739 standard output.</para>
740
741 <para>
742 Costs are summed on a per-function basis.  Per-line costs are not summed,
743 because doing so is too difficult.  For example, consider differencing two
744 profiles, one from a single-file program A, and one from the same program A
745 where a single blank line was inserted at the top of the file.  Every single
746 per-line count has changed.  In comparison, the per-function counts have not
747 changed.  The per-function count differences are still very useful for
748 determining differences between programs.  Note that because the result is
749 the difference of two profiles, many of the counts will be negative;  this
750 indicates that the counts for the relevant function are fewer in the second
751 version than those in the first version.</para>
752
753 <para>
754 cg_diff does not attempt to check
755 that the input files come from runs of the same executable.  It will
756 happily merge together profile files from completely unrelated
757 programs.  It does however check that the
758 <computeroutput>Events:</computeroutput> lines of all the inputs are
759 identical, so as to ensure that the addition of costs makes sense.
760 For example, it would be nonsensical for it to add a number indicating
761 D1 read references to a number from a different file indicating LL
762 write misses.</para>
763
764 <para>
765 A number of other syntax and sanity checks are done whilst reading the
766 inputs.  cg_diff will stop and
767 attempt to print a helpful error message if any of the input files
768 fail these checks.</para>
769
770 <para>
771 Sometimes you will want to compare Cachegrind profiles of two versions of a
772 program that you have sitting side-by-side.  For example, you might have
773 <computeroutput>version1/prog.c</computeroutput> and
774 <computeroutput>version2/prog.c</computeroutput>, where the second is
775 slightly different to the first.  A straight comparison of the two will not
776 be useful -- because functions are qualified with filenames, a function
777 <function>f</function> will be listed as
778 <computeroutput>version1/prog.c:f</computeroutput> for the first version but
779 <computeroutput>version2/prog.c:f</computeroutput> for the second
780 version.</para>
781
782 <para>
783 When this happens, you can use the <option>--mod-filename</option> option.
784 Its argument is a Perl search-and-replace expression that will be applied
785 to all the filenames in both Cachegrind output files.  It can be used to
786 remove minor differences in filenames.  For example, the option
787 <option>--mod-filename='s/version[0-9]/versionN/'</option> will suffice for
788 this case.</para>
789
790 <para>
791 Similarly, sometimes compilers auto-generate certain functions and give them
792 randomized names.  For example, GCC sometimes auto-generates functions with
793 names like <function>T.1234</function>, and the suffixes vary from build to
794 build.  You can use the <option>--mod-funcname</option> option to remove
795 small differences like these;  it works in the same way as
796 <option>--mod-filename</option>.</para>
797
798 </sect2>
799
800
801 </sect1>
802
803
804
805 <sect1 id="cg-manual.cgopts" xreflabel="Cachegrind Command-line Options">
806 <title>Cachegrind Command-line Options</title>
807
808 <!-- start of xi:include in the manpage -->
809 <para>Cachegrind-specific options are:</para>
810
811 <variablelist id="cg.opts.list">
812
813   <varlistentry id="opt.I1" xreflabel="--I1">
814     <term>
815       <option><![CDATA[--I1=<size>,<associativity>,<line size> ]]></option>
816     </term>
817     <listitem>
818       <para>Specify the size, associativity and line size of the level 1
819       instruction cache.  </para>
820     </listitem>
821   </varlistentry>
822
823   <varlistentry id="opt.D1" xreflabel="--D1">
824     <term>
825       <option><![CDATA[--D1=<size>,<associativity>,<line size> ]]></option>
826     </term>
827     <listitem>
828       <para>Specify the size, associativity and line size of the level 1
829       data cache.</para>
830     </listitem>
831   </varlistentry>
832
833   <varlistentry id="opt.LL" xreflabel="--LL">
834     <term>
835       <option><![CDATA[--LL=<size>,<associativity>,<line size> ]]></option>
836     </term>
837     <listitem>
838       <para>Specify the size, associativity and line size of the last-level
839       cache.</para>
840     </listitem>
841   </varlistentry>
842
843   <varlistentry id="opt.cache-sim" xreflabel="--cache-sim">
844     <term>
845       <option><![CDATA[--cache-sim=no|yes [yes] ]]></option>
846     </term>
847     <listitem>
848       <para>Enables or disables collection of cache access and miss
849             counts.</para>
850     </listitem>
851   </varlistentry>
852
853   <varlistentry id="opt.branch-sim" xreflabel="--branch-sim">
854     <term>
855       <option><![CDATA[--branch-sim=no|yes [no] ]]></option>
856     </term>
857     <listitem>
858       <para>Enables or disables collection of branch instruction and
859             misprediction counts.  By default this is disabled as it
860             slows Cachegrind down by approximately 25%.  Note that you
861             cannot specify <option>--cache-sim=no</option>
862             and <option>--branch-sim=no</option>
863             together, as that would leave Cachegrind with no
864             information to collect.</para>
865     </listitem>
866   </varlistentry>
867
868   <varlistentry id="opt.cachegrind-out-file" xreflabel="--cachegrind-out-file">
869     <term>
870       <option><![CDATA[--cachegrind-out-file=<file> ]]></option>
871     </term>
872     <listitem>
873       <para>Write the profile data to 
874             <computeroutput>file</computeroutput> rather than to the default
875             output file,
876             <filename>cachegrind.out.&lt;pid&gt;</filename>.  The
877             <option>%p</option> and <option>%q</option> format specifiers
878             can be used to embed the process ID and/or the contents of an
879             environment variable in the name, as is the case for the core
880             option <option><xref linkend="opt.log-file"/></option>.
881       </para>
882     </listitem>
883   </varlistentry>
884
885 </variablelist>
886 <!-- end of xi:include in the manpage -->
887
888 </sect1>
889
890
891
892 <sect1 id="cg-manual.annopts" xreflabel="cg_annotate Command-line Options">
893 <title>cg_annotate Command-line Options</title>
894
895 <!-- start of xi:include in the manpage -->
896 <variablelist id="cg_annotate.opts.list">
897
898   <varlistentry>
899     <term>
900       <option><![CDATA[-h --help ]]></option>
901     </term>
902     <listitem>
903       <para>Show the help message.</para>
904     </listitem>
905   </varlistentry>
906
907   <varlistentry>
908     <term>
909       <option><![CDATA[--version ]]></option>
910     </term>
911     <listitem>
912       <para>Show the version number.</para>
913     </listitem>
914   </varlistentry>
915
916   <varlistentry>
917     <term>
918       <option><![CDATA[--show=A,B,C [default: all, using order in
919       cachegrind.out.<pid>] ]]></option>
920     </term>
921     <listitem>
922       <para>Specifies which events to show (and the column
923       order). Default is to use all present in the
924       <filename>cachegrind.out.&lt;pid&gt;</filename> file (and
925       use the order in the file).  Useful if you want to concentrate on, for
926       example, I cache misses (<option>--show=I1mr,ILmr</option>), or data
927       read misses (<option>--show=D1mr,DLmr</option>), or LL data misses
928       (<option>--show=DLmr,DLmw</option>).  Best used in conjunction with
929       <option>--sort</option>.</para>
930     </listitem>
931   </varlistentry>
932
933   <varlistentry>
934     <term>
935       <option><![CDATA[--sort=A,B,C [default: order in
936       cachegrind.out.<pid>] ]]></option>
937     </term>
938     <listitem>
939       <para>Specifies the events upon which the sorting of the
940       function-by-function entries will be based.</para>
941     </listitem>
942   </varlistentry>
943
944   <varlistentry>
945     <term>
946       <option><![CDATA[--threshold=X [default: 0.1%] ]]></option>
947     </term>
948     <listitem>
949       <para>Sets the threshold for the function-by-function
950       summary.  A function is shown if it accounts for more than X%
951       of the counts for the primary sort event.  If auto-annotating, also
952       affects which files are annotated.</para>
953         
954       <para>Note: thresholds can be set for more than one of the
955       events by appending any events for the
956       <option>--sort</option> option with a colon
957       and a number (no spaces, though).  E.g. if you want to see
958       each function that covers more than 1% of LL read misses or 1% of LL
959       write misses, use this option:</para>
960       <para><option>--sort=DLmr:1,DLmw:1</option></para>
961     </listitem>
962   </varlistentry>
963
964   <varlistentry>
965     <term>
966       <option><![CDATA[--auto=<no|yes> [default: no] ]]></option>
967     </term>
968     <listitem>
969       <para>When enabled, automatically annotates every file that
970       is mentioned in the function-by-function summary that can be
971       found.  Also gives a list of those that couldn't be found.</para>
972     </listitem>
973   </varlistentry>
974
975   <varlistentry>
976     <term>
977       <option><![CDATA[--context=N [default: 8] ]]></option>
978     </term>
979     <listitem>
980       <para>Print N lines of context before and after each
981       annotated line.  Avoids printing large sections of source
982       files that were not executed.  Use a large number
983       (e.g. 100000) to show all source lines.</para>
984     </listitem>
985   </varlistentry>
986
987   <varlistentry>
988     <term>
989       <option><![CDATA[-I<dir> --include=<dir> [default: none] ]]></option>
990     </term>
991     <listitem>
992       <para>Adds a directory to the list in which to search for
993       files.  Multiple <option>-I</option>/<option>--include</option>
994       options can be given to add multiple directories.</para>
995     </listitem>
996   </varlistentry>
997
998 </variablelist>
999 <!-- end of xi:include in the manpage -->
1000   
1001 </sect1>
1002
1003
1004 <sect1 id="cg-manual.diffopts" xreflabel="cg_diff Command-line Options">
1005 <title>cg_diff Command-line Options</title>
1006
1007 <!-- start of xi:include in the manpage -->
1008 <variablelist id="cg_diff.opts.list">
1009
1010   <varlistentry>
1011     <term>
1012       <option><![CDATA[-h --help ]]></option>
1013     </term>
1014     <listitem>
1015       <para>Show the help message.</para>
1016     </listitem>
1017   </varlistentry>
1018
1019   <varlistentry>
1020     <term>
1021       <option><![CDATA[--version ]]></option>
1022     </term>
1023     <listitem>
1024       <para>Show the version number.</para>
1025     </listitem>
1026   </varlistentry>
1027
1028   <varlistentry>
1029     <term>
1030       <option><![CDATA[--mod-filename=<expr> [default: none]]]></option>
1031     </term>
1032     <listitem>
1033       <para>Specifies a Perl search-and-replace expression that is applied
1034       to all filenames.  Useful for removing minor differences in paths
1035       between two different versions of a program that are sitting in
1036       different directories.</para>
1037     </listitem>
1038   </varlistentry>
1039
1040   <varlistentry>
1041     <term>
1042       <option><![CDATA[--mod-funcname=<expr> [default: none]]]></option>
1043     </term>
1044     <listitem>
1045       <para>Like <option>--mod-filename</option>, but for filenames.
1046       Useful for removing minor differences in randomized names of
1047       auto-generated functions generated by some compilers.</para>
1048     </listitem>
1049   </varlistentry>
1050
1051 </variablelist>
1052 <!-- end of xi:include in the manpage -->
1053   
1054 </sect1>
1055
1056
1057
1058
1059 <sect1 id="cg-manual.acting-on"
1060        xreflabel="Acting on Cachegrind's Information">
1061 <title>Acting on Cachegrind's Information</title>
1062 <para>
1063 Cachegrind gives you lots of information, but acting on that information
1064 isn't always easy.  Here are some rules of thumb that we have found to be
1065 useful.</para>
1066
1067 <para>
1068 First of all, the global hit/miss counts and miss rates are not that useful.
1069 If you have multiple programs or multiple runs of a program, comparing the
1070 numbers might identify if any are outliers and worthy of closer
1071 investigation.  Otherwise, they're not enough to act on.</para>
1072
1073 <para>
1074 The function-by-function counts are more useful to look at, as they pinpoint
1075 which functions are causing large numbers of counts.  However, beware that
1076 inlining can make these counts misleading.  If a function
1077 <function>f</function> is always inlined, counts will be attributed to the
1078 functions it is inlined into, rather than itself.  However, if you look at
1079 the line-by-line annotations for <function>f</function> you'll see the
1080 counts that belong to <function>f</function>.  (This is hard to avoid, it's
1081 how the debug info is structured.)  So it's worth looking for large numbers
1082 in the line-by-line annotations.</para>
1083
1084 <para>
1085 The line-by-line source code annotations are much more useful.  In our
1086 experience, the best place to start is by looking at the
1087 <computeroutput>Ir</computeroutput> numbers.  They simply measure how many
1088 instructions were executed for each line, and don't include any cache
1089 information, but they can still be very useful for identifying
1090 bottlenecks.</para>
1091
1092 <para>
1093 After that, we have found that LL misses are typically a much bigger source
1094 of slow-downs than L1 misses.  So it's worth looking for any snippets of
1095 code with high <computeroutput>DLmr</computeroutput> or
1096 <computeroutput>DLmw</computeroutput> counts.  (You can use
1097 <option>--show=DLmr
1098 --sort=DLmr</option> with cg_annotate to focus just on
1099 <literal>DLmr</literal> counts, for example.) If you find any, it's still
1100 not always easy to work out how to improve things.  You need to have a
1101 reasonable understanding of how caches work, the principles of locality, and
1102 your program's data access patterns.  Improving things may require
1103 redesigning a data structure, for example.</para>
1104
1105 <para>
1106 Looking at the <computeroutput>Bcm</computeroutput> and
1107 <computeroutput>Bim</computeroutput> misses can also be helpful.
1108 In particular, <computeroutput>Bim</computeroutput> misses are often caused
1109 by <literal>switch</literal> statements, and in some cases these
1110 <literal>switch</literal> statements can be replaced with table-driven code.
1111 For example, you might replace code like this:</para>
1112
1113 <programlisting><![CDATA[
1114 enum E { A, B, C };
1115 enum E e;
1116 int i;
1117 ...
1118 switch (e)
1119 {
1120     case A: i += 1;
1121     case B: i += 2;
1122     case C: i += 3;
1123 }
1124 ]]></programlisting>
1125
1126 <para>with code like this:</para>
1127
1128 <programlisting><![CDATA[
1129 enum E { A, B, C };
1130 enum E e;
1131 enum E table[] = { 1, 2, 3 };
1132 int i;
1133 ...
1134 i += table[e];
1135 ]]></programlisting>
1136
1137 <para>
1138 This is obviously a contrived example, but the basic principle applies in a
1139 wide variety of situations.</para>
1140
1141 <para>
1142 In short, Cachegrind can tell you where some of the bottlenecks in your code
1143 are, but it can't tell you how to fix them.  You have to work that out for
1144 yourself.  But at least you have the information!
1145 </para>
1146
1147 </sect1>
1148
1149
1150 <sect1 id="cg-manual.sim-details"
1151        xreflabel="Simulation Details">
1152 <title>Simulation Details</title>
1153 <para>
1154 This section talks about details you don't need to know about in order to
1155 use Cachegrind, but may be of interest to some people.
1156 </para>
1157
1158 <sect2 id="cache-sim" xreflabel="Cache Simulation Specifics">
1159 <title>Cache Simulation Specifics</title>
1160
1161 <para>Specific characteristics of the cache simulation are as
1162 follows:</para>
1163
1164 <itemizedlist>
1165
1166   <listitem>
1167     <para>Write-allocate: when a write miss occurs, the block
1168     written to is brought into the D1 cache.  Most modern caches
1169     have this property.</para>
1170   </listitem>
1171
1172   <listitem>
1173     <para>Bit-selection hash function: the set of line(s) in the cache
1174     to which a memory block maps is chosen by the middle bits
1175     M--(M+N-1) of the byte address, where:</para>
1176     <itemizedlist>
1177       <listitem>
1178         <para>line size = 2^M bytes</para>
1179       </listitem>
1180       <listitem>
1181         <para>(cache size / line size / associativity) = 2^N bytes</para>
1182       </listitem>
1183     </itemizedlist> 
1184   </listitem>
1185
1186   <listitem>
1187     <para>Inclusive LL cache: the LL cache typically replicates all
1188     the entries of the L1 caches, because fetching into L1 involves
1189     fetching into LL first (this does not guarantee strict inclusiveness,
1190     as lines evicted from LL still could reside in L1).  This is
1191     standard on Pentium chips, but AMD Opterons, Athlons and Durons
1192     use an exclusive LL cache that only holds
1193     blocks evicted from L1.  Ditto most modern VIA CPUs.</para>
1194   </listitem>
1195
1196 </itemizedlist>
1197
1198 <para>The cache configuration simulated (cache size,
1199 associativity and line size) is determined automatically using
1200 the x86 CPUID instruction.  If you have a machine that (a)
1201 doesn't support the CPUID instruction, or (b) supports it in an
1202 early incarnation that doesn't give any cache information, then
1203 Cachegrind will fall back to using a default configuration (that
1204 of a model 3/4 Athlon).  Cachegrind will tell you if this
1205 happens.  You can manually specify one, two or all three levels
1206 (I1/D1/LL) of the cache from the command line using the
1207 <option>--I1</option>,
1208 <option>--D1</option> and
1209 <option>--LL</option> options.
1210 For cache parameters to be valid for simulation, the number
1211 of sets (with associativity being the number of cache lines in
1212 each set) has to be a power of two.</para>
1213
1214 <para>On PowerPC platforms
1215 Cachegrind cannot automatically 
1216 determine the cache configuration, so you will 
1217 need to specify it with the
1218 <option>--I1</option>,
1219 <option>--D1</option> and
1220 <option>--LL</option> options.</para>
1221
1222
1223 <para>Other noteworthy behaviour:</para>
1224
1225 <itemizedlist>
1226   <listitem>
1227     <para>References that straddle two cache lines are treated as
1228     follows:</para>
1229     <itemizedlist>
1230       <listitem>
1231         <para>If both blocks hit --&gt; counted as one hit</para>
1232       </listitem>
1233       <listitem>
1234         <para>If one block hits, the other misses --&gt; counted
1235         as one miss.</para>
1236       </listitem>
1237       <listitem>
1238         <para>If both blocks miss --&gt; counted as one miss (not
1239         two)</para>
1240       </listitem>
1241     </itemizedlist>
1242   </listitem>
1243
1244   <listitem>
1245     <para>Instructions that modify a memory location
1246     (e.g. <computeroutput>inc</computeroutput> and
1247     <computeroutput>dec</computeroutput>) are counted as doing
1248     just a read, i.e. a single data reference.  This may seem
1249     strange, but since the write can never cause a miss (the read
1250     guarantees the block is in the cache) it's not very
1251     interesting.</para>
1252
1253     <para>Thus it measures not the number of times the data cache
1254     is accessed, but the number of times a data cache miss could
1255     occur.</para>
1256   </listitem>
1257
1258 </itemizedlist>
1259
1260 <para>If you are interested in simulating a cache with different
1261 properties, it is not particularly hard to write your own cache
1262 simulator, or to modify the existing ones in
1263 <computeroutput>cg_sim.c</computeroutput>. We'd be
1264 interested to hear from anyone who does.</para>
1265
1266 </sect2>
1267
1268
1269 <sect2 id="branch-sim" xreflabel="Branch Simulation Specifics">
1270 <title>Branch Simulation Specifics</title>
1271
1272 <para>Cachegrind simulates branch predictors intended to be
1273 typical of mainstream desktop/server processors of around 2004.</para>
1274
1275 <para>Conditional branches are predicted using an array of 16384 2-bit
1276 saturating counters.  The array index used for a branch instruction is
1277 computed partly from the low-order bits of the branch instruction's
1278 address and partly using the taken/not-taken behaviour of the last few
1279 conditional branches.  As a result the predictions for any specific
1280 branch depend both on its own history and the behaviour of previous
1281 branches.  This is a standard technique for improving prediction
1282 accuracy.</para>
1283
1284 <para>For indirect branches (that is, jumps to unknown destinations)
1285 Cachegrind uses a simple branch target address predictor.  Targets are
1286 predicted using an array of 512 entries indexed by the low order 9
1287 bits of the branch instruction's address.  Each branch is predicted to
1288 jump to the same address it did last time.  Any other behaviour causes
1289 a mispredict.</para>
1290
1291 <para>More recent processors have better branch predictors, in
1292 particular better indirect branch predictors.  Cachegrind's predictor
1293 design is deliberately conservative so as to be representative of the
1294 large installed base of processors which pre-date widespread
1295 deployment of more sophisticated indirect branch predictors.  In
1296 particular, late model Pentium 4s (Prescott), Pentium M, Core and Core
1297 2 have more sophisticated indirect branch predictors than modelled by
1298 Cachegrind.  </para>
1299
1300 <para>Cachegrind does not simulate a return stack predictor.  It
1301 assumes that processors perfectly predict function return addresses,
1302 an assumption which is probably close to being true.</para>
1303
1304 <para>See Hennessy and Patterson's classic text "Computer
1305 Architecture: A Quantitative Approach", 4th edition (2007), Section
1306 2.3 (pages 80-89) for background on modern branch predictors.</para>
1307
1308 </sect2>
1309
1310 <sect2 id="cg-manual.annopts.accuracy" xreflabel="Accuracy">
1311 <title>Accuracy</title>
1312
1313 <para>Valgrind's cache profiling has a number of
1314 shortcomings:</para>
1315
1316 <itemizedlist>
1317   <listitem>
1318     <para>It doesn't account for kernel activity -- the effect of system
1319     calls on the cache and branch predictor contents is ignored.</para>
1320   </listitem>
1321
1322   <listitem>
1323     <para>It doesn't account for other process activity.
1324     This is probably desirable when considering a single
1325     program.</para>
1326   </listitem>
1327
1328   <listitem>
1329     <para>It doesn't account for virtual-to-physical address
1330     mappings.  Hence the simulation is not a true
1331     representation of what's happening in the
1332     cache.  Most caches and branch predictors are physically indexed, but
1333     Cachegrind simulates caches using virtual addresses.</para>
1334   </listitem>
1335
1336   <listitem>
1337     <para>It doesn't account for cache misses not visible at the
1338     instruction level, e.g. those arising from TLB misses, or
1339     speculative execution.</para>
1340   </listitem>
1341
1342   <listitem>
1343     <para>Valgrind will schedule
1344     threads differently from how they would be when running natively.
1345     This could warp the results for threaded programs.</para>
1346   </listitem>
1347
1348   <listitem>
1349     <para>The x86/amd64 instructions <computeroutput>bts</computeroutput>,
1350     <computeroutput>btr</computeroutput> and
1351     <computeroutput>btc</computeroutput> will incorrectly be
1352     counted as doing a data read if both the arguments are
1353     registers, eg:</para>
1354 <programlisting><![CDATA[
1355     btsl %eax, %edx]]></programlisting>
1356
1357     <para>This should only happen rarely.</para>
1358   </listitem>
1359
1360   <listitem>
1361     <para>x86/amd64 FPU instructions with data sizes of 28 and 108 bytes
1362     (e.g.  <computeroutput>fsave</computeroutput>) are treated as
1363     though they only access 16 bytes.  These instructions seem to
1364     be rare so hopefully this won't affect accuracy much.</para>
1365   </listitem>
1366
1367 </itemizedlist>
1368
1369 <para>Another thing worth noting is that results are very sensitive.
1370 Changing the size of the the executable being profiled, or the sizes
1371 of any of the shared libraries it uses, or even the length of their
1372 file names, can perturb the results.  Variations will be small, but
1373 don't expect perfectly repeatable results if your program changes at
1374 all.</para>
1375
1376 <para>More recent GNU/Linux distributions do address space
1377 randomisation, in which identical runs of the same program have their
1378 shared libraries loaded at different locations, as a security measure.
1379 This also perturbs the results.</para>
1380
1381 <para>While these factors mean you shouldn't trust the results to
1382 be super-accurate, they should be close enough to be useful.</para>
1383
1384 </sect2>
1385
1386 </sect1>
1387
1388
1389
1390 <sect1 id="cg-manual.impl-details"
1391        xreflabel="Implementation Details">
1392 <title>Implementation Details</title>
1393 <para>
1394 This section talks about details you don't need to know about in order to
1395 use Cachegrind, but may be of interest to some people.
1396 </para>
1397
1398 <sect2 id="cg-manual.impl-details.how-cg-works"
1399        xreflabel="How Cachegrind Works">
1400 <title>How Cachegrind Works</title>
1401 <para>The best reference for understanding how Cachegrind works is chapter 3 of
1402 "Dynamic Binary Analysis and Instrumentation", by Nicholas Nethercote.  It
1403 is available on the <ulink url="&vg-pubs-url;">Valgrind publications
1404 page</ulink>.</para>
1405 </sect2>
1406
1407 <sect2 id="cg-manual.impl-details.file-format"
1408        xreflabel="Cachegrind Output File Format">
1409 <title>Cachegrind Output File Format</title>
1410 <para>The file format is fairly straightforward, basically giving the
1411 cost centre for every line, grouped by files and
1412 functions.  It's also totally generic and self-describing, in the sense that
1413 it can be used for any events that can be counted on a line-by-line basis,
1414 not just cache and branch predictor events.  For example, earlier versions
1415 of Cachegrind didn't have a branch predictor simulation.  When this was
1416 added, the file format didn't need to change at all.  So the format (and
1417 consequently, cg_annotate) could be used by other tools.</para>
1418
1419 <para>The file format:</para>
1420 <programlisting><![CDATA[
1421 file         ::= desc_line* cmd_line events_line data_line+ summary_line
1422 desc_line    ::= "desc:" ws? non_nl_string
1423 cmd_line     ::= "cmd:" ws? cmd
1424 events_line  ::= "events:" ws? (event ws)+
1425 data_line    ::= file_line | fn_line | count_line
1426 file_line    ::= "fl=" filename
1427 fn_line      ::= "fn=" fn_name
1428 count_line   ::= line_num ws? (count ws)+
1429 summary_line ::= "summary:" ws? (count ws)+
1430 count        ::= num | "."]]></programlisting>
1431
1432 <para>Where:</para>
1433 <itemizedlist>
1434   <listitem>
1435     <para><computeroutput>non_nl_string</computeroutput> is any
1436     string not containing a newline.</para>
1437   </listitem>
1438   <listitem>
1439     <para><computeroutput>cmd</computeroutput> is a string holding the
1440     command line of the profiled program.</para>
1441   </listitem>
1442   <listitem>
1443     <para><computeroutput>event</computeroutput> is a string containing
1444     no whitespace.</para>
1445   </listitem>
1446   <listitem>
1447     <para><computeroutput>filename</computeroutput> and
1448     <computeroutput>fn_name</computeroutput> are strings.</para>
1449   </listitem>
1450   <listitem>
1451     <para><computeroutput>num</computeroutput> and
1452     <computeroutput>line_num</computeroutput> are decimal
1453     numbers.</para>
1454   </listitem>
1455   <listitem>
1456     <para><computeroutput>ws</computeroutput> is whitespace.</para>
1457   </listitem>
1458 </itemizedlist>
1459
1460 <para>The contents of the "desc:" lines are printed out at the top
1461 of the summary.  This is a generic way of providing simulation
1462 specific information, e.g. for giving the cache configuration for
1463 cache simulation.</para>
1464
1465 <para>More than one line of info can be presented for each file/fn/line number.
1466 In such cases, the counts for the named events will be accumulated.</para>
1467
1468 <para>Counts can be "." to represent zero.  This makes the files easier for
1469 humans to read.</para>
1470
1471 <para>The number of counts in each
1472 <computeroutput>line</computeroutput> and the
1473 <computeroutput>summary_line</computeroutput> should not exceed
1474 the number of events in the
1475 <computeroutput>event_line</computeroutput>.  If the number in
1476 each <computeroutput>line</computeroutput> is less, cg_annotate
1477 treats those missing as though they were a "." entry.  This saves space.
1478 </para>
1479
1480 <para>A <computeroutput>file_line</computeroutput> changes the
1481 current file name.  A <computeroutput>fn_line</computeroutput>
1482 changes the current function name.  A
1483 <computeroutput>count_line</computeroutput> contains counts that
1484 pertain to the current filename/fn_name.  A "fn="
1485 <computeroutput>file_line</computeroutput> and a
1486 <computeroutput>fn_line</computeroutput> must appear before any
1487 <computeroutput>count_line</computeroutput>s to give the context
1488 of the first <computeroutput>count_line</computeroutput>s.</para>
1489
1490 <para>Each <computeroutput>file_line</computeroutput> will normally be
1491 immediately followed by a <computeroutput>fn_line</computeroutput>.  But it
1492 doesn't have to be.</para>
1493
1494 <para>The summary line is redundant, because it just holds the total counts
1495 for each event.  But this serves as a useful sanity check of the data;  if
1496 the totals for each event don't match the summary line, something has gone
1497 wrong.</para>
1498
1499 </sect2>
1500
1501 </sect1>
1502 </chapter>