]> rtime.felk.cvut.cz Git - l4.git/blob - l4/pkg/libstdc++-v3/contrib/libstdc++-v3-4.8/include/tr1/poly_laguerre.tcc
update
[l4.git] / l4 / pkg / libstdc++-v3 / contrib / libstdc++-v3-4.8 / include / tr1 / poly_laguerre.tcc
1 // Special functions -*- C++ -*-
2
3 // Copyright (C) 2006-2013 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 //
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 //
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24
25 /** @file tr1/poly_laguerre.tcc
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly. @headername{tr1/cmath}
28  */
29
30 //
31 // ISO C++ 14882 TR1: 5.2  Special functions
32 //
33
34 // Written by Edward Smith-Rowland based on:
35 //   (1) Handbook of Mathematical Functions,
36 //       Ed. Milton Abramowitz and Irene A. Stegun,
37 //       Dover Publications,
38 //       Section 13, pp. 509-510, Section 22 pp. 773-802
39 //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
40
41 #ifndef _GLIBCXX_TR1_POLY_LAGUERRE_TCC
42 #define _GLIBCXX_TR1_POLY_LAGUERRE_TCC 1
43
44 namespace std _GLIBCXX_VISIBILITY(default)
45 {
46 namespace tr1
47 {
48   // [5.2] Special functions
49
50   // Implementation-space details.
51   namespace __detail
52   {
53   _GLIBCXX_BEGIN_NAMESPACE_VERSION
54
55     /**
56      *   @brief This routine returns the associated Laguerre polynomial 
57      *          of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
58      *   Abramowitz & Stegun, 13.5.21
59      *
60      *   @param __n The order of the Laguerre function.
61      *   @param __alpha The degree of the Laguerre function.
62      *   @param __x The argument of the Laguerre function.
63      *   @return The value of the Laguerre function of order n,
64      *           degree @f$ \alpha @f$, and argument x.
65      *
66      *  This is from the GNU Scientific Library.
67      */
68     template<typename _Tpa, typename _Tp>
69     _Tp
70     __poly_laguerre_large_n(unsigned __n, _Tpa __alpha1, _Tp __x)
71     {
72       const _Tp __a = -_Tp(__n);
73       const _Tp __b = _Tp(__alpha1) + _Tp(1);
74       const _Tp __eta = _Tp(2) * __b - _Tp(4) * __a;
75       const _Tp __cos2th = __x / __eta;
76       const _Tp __sin2th = _Tp(1) - __cos2th;
77       const _Tp __th = std::acos(std::sqrt(__cos2th));
78       const _Tp __pre_h = __numeric_constants<_Tp>::__pi_2()
79                         * __numeric_constants<_Tp>::__pi_2()
80                         * __eta * __eta * __cos2th * __sin2th;
81
82 #if _GLIBCXX_USE_C99_MATH_TR1
83       const _Tp __lg_b = std::tr1::lgamma(_Tp(__n) + __b);
84       const _Tp __lnfact = std::tr1::lgamma(_Tp(__n + 1));
85 #else
86       const _Tp __lg_b = __log_gamma(_Tp(__n) + __b);
87       const _Tp __lnfact = __log_gamma(_Tp(__n + 1));
88 #endif
89
90       _Tp __pre_term1 = _Tp(0.5L) * (_Tp(1) - __b)
91                       * std::log(_Tp(0.25L) * __x * __eta);
92       _Tp __pre_term2 = _Tp(0.25L) * std::log(__pre_h);
93       _Tp __lnpre = __lg_b - __lnfact + _Tp(0.5L) * __x
94                       + __pre_term1 - __pre_term2;
95       _Tp __ser_term1 = std::sin(__a * __numeric_constants<_Tp>::__pi());
96       _Tp __ser_term2 = std::sin(_Tp(0.25L) * __eta
97                               * (_Tp(2) * __th
98                                - std::sin(_Tp(2) * __th))
99                                + __numeric_constants<_Tp>::__pi_4());
100       _Tp __ser = __ser_term1 + __ser_term2;
101
102       return std::exp(__lnpre) * __ser;
103     }
104
105
106     /**
107      *  @brief  Evaluate the polynomial based on the confluent hypergeometric
108      *          function in a safe way, with no restriction on the arguments.
109      *
110      *   The associated Laguerre function is defined by
111      *   @f[
112      *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
113      *                       _1F_1(-n; \alpha + 1; x)
114      *   @f]
115      *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
116      *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
117      *
118      *  This function assumes x != 0.
119      *
120      *  This is from the GNU Scientific Library.
121      */
122     template<typename _Tpa, typename _Tp>
123     _Tp
124     __poly_laguerre_hyperg(unsigned int __n, _Tpa __alpha1, _Tp __x)
125     {
126       const _Tp __b = _Tp(__alpha1) + _Tp(1);
127       const _Tp __mx = -__x;
128       const _Tp __tc_sgn = (__x < _Tp(0) ? _Tp(1)
129                          : ((__n % 2 == 1) ? -_Tp(1) : _Tp(1)));
130       //  Get |x|^n/n!
131       _Tp __tc = _Tp(1);
132       const _Tp __ax = std::abs(__x);
133       for (unsigned int __k = 1; __k <= __n; ++__k)
134         __tc *= (__ax / __k);
135
136       _Tp __term = __tc * __tc_sgn;
137       _Tp __sum = __term;
138       for (int __k = int(__n) - 1; __k >= 0; --__k)
139         {
140           __term *= ((__b + _Tp(__k)) / _Tp(int(__n) - __k))
141                   * _Tp(__k + 1) / __mx;
142           __sum += __term;
143         }
144
145       return __sum;
146     }
147
148
149     /**
150      *   @brief This routine returns the associated Laguerre polynomial 
151      *          of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
152      *          by recursion.
153      *
154      *   The associated Laguerre function is defined by
155      *   @f[
156      *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
157      *                       _1F_1(-n; \alpha + 1; x)
158      *   @f]
159      *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
160      *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
161      *
162      *   The associated Laguerre polynomial is defined for integral
163      *   @f$ \alpha = m @f$ by:
164      *   @f[
165      *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
166      *   @f]
167      *   where the Laguerre polynomial is defined by:
168      *   @f[
169      *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
170      *   @f]
171      *
172      *   @param __n The order of the Laguerre function.
173      *   @param __alpha The degree of the Laguerre function.
174      *   @param __x The argument of the Laguerre function.
175      *   @return The value of the Laguerre function of order n,
176      *           degree @f$ \alpha @f$, and argument x.
177      */
178     template<typename _Tpa, typename _Tp>
179     _Tp
180     __poly_laguerre_recursion(unsigned int __n, _Tpa __alpha1, _Tp __x)
181     {
182       //   Compute l_0.
183       _Tp __l_0 = _Tp(1);
184       if  (__n == 0)
185         return __l_0;
186
187       //  Compute l_1^alpha.
188       _Tp __l_1 = -__x + _Tp(1) + _Tp(__alpha1);
189       if  (__n == 1)
190         return __l_1;
191
192       //  Compute l_n^alpha by recursion on n.
193       _Tp __l_n2 = __l_0;
194       _Tp __l_n1 = __l_1;
195       _Tp __l_n = _Tp(0);
196       for  (unsigned int __nn = 2; __nn <= __n; ++__nn)
197         {
198             __l_n = (_Tp(2 * __nn - 1) + _Tp(__alpha1) - __x)
199                   * __l_n1 / _Tp(__nn)
200                   - (_Tp(__nn - 1) + _Tp(__alpha1)) * __l_n2 / _Tp(__nn);
201             __l_n2 = __l_n1;
202             __l_n1 = __l_n;
203         }
204
205       return __l_n;
206     }
207
208
209     /**
210      *   @brief This routine returns the associated Laguerre polynomial
211      *          of order n, degree @f$ \alpha @f$: @f$ L_n^alpha(x) @f$.
212      *
213      *   The associated Laguerre function is defined by
214      *   @f[
215      *       L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
216      *                       _1F_1(-n; \alpha + 1; x)
217      *   @f]
218      *   where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
219      *   @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
220      *
221      *   The associated Laguerre polynomial is defined for integral
222      *   @f$ \alpha = m @f$ by:
223      *   @f[
224      *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
225      *   @f]
226      *   where the Laguerre polynomial is defined by:
227      *   @f[
228      *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
229      *   @f]
230      *
231      *   @param __n The order of the Laguerre function.
232      *   @param __alpha The degree of the Laguerre function.
233      *   @param __x The argument of the Laguerre function.
234      *   @return The value of the Laguerre function of order n,
235      *           degree @f$ \alpha @f$, and argument x.
236      */
237     template<typename _Tpa, typename _Tp>
238     _Tp
239     __poly_laguerre(unsigned int __n, _Tpa __alpha1, _Tp __x)
240     {
241       if (__x < _Tp(0))
242         std::__throw_domain_error(__N("Negative argument "
243                                       "in __poly_laguerre."));
244       //  Return NaN on NaN input.
245       else if (__isnan(__x))
246         return std::numeric_limits<_Tp>::quiet_NaN();
247       else if (__n == 0)
248         return _Tp(1);
249       else if (__n == 1)
250         return _Tp(1) + _Tp(__alpha1) - __x;
251       else if (__x == _Tp(0))
252         {
253           _Tp __prod = _Tp(__alpha1) + _Tp(1);
254           for (unsigned int __k = 2; __k <= __n; ++__k)
255             __prod *= (_Tp(__alpha1) + _Tp(__k)) / _Tp(__k);
256           return __prod;
257         }
258       else if (__n > 10000000 && _Tp(__alpha1) > -_Tp(1)
259             && __x < _Tp(2) * (_Tp(__alpha1) + _Tp(1)) + _Tp(4 * __n))
260         return __poly_laguerre_large_n(__n, __alpha1, __x);
261       else if (_Tp(__alpha1) >= _Tp(0)
262            || (__x > _Tp(0) && _Tp(__alpha1) < -_Tp(__n + 1)))
263         return __poly_laguerre_recursion(__n, __alpha1, __x);
264       else
265         return __poly_laguerre_hyperg(__n, __alpha1, __x);
266     }
267
268
269     /**
270      *   @brief This routine returns the associated Laguerre polynomial
271      *          of order n, degree m: @f$ L_n^m(x) @f$.
272      *
273      *   The associated Laguerre polynomial is defined for integral
274      *   @f$ \alpha = m @f$ by:
275      *   @f[
276      *       L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
277      *   @f]
278      *   where the Laguerre polynomial is defined by:
279      *   @f[
280      *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
281      *   @f]
282      *
283      *   @param __n The order of the Laguerre polynomial.
284      *   @param __m The degree of the Laguerre polynomial.
285      *   @param __x The argument of the Laguerre polynomial.
286      *   @return The value of the associated Laguerre polynomial of order n,
287      *           degree m, and argument x.
288      */
289     template<typename _Tp>
290     inline _Tp
291     __assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x)
292     { return __poly_laguerre<unsigned int, _Tp>(__n, __m, __x); }
293
294
295     /**
296      *   @brief This routine returns the Laguerre polynomial
297      *          of order n: @f$ L_n(x) @f$.
298      *
299      *   The Laguerre polynomial is defined by:
300      *   @f[
301      *       L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
302      *   @f]
303      *
304      *   @param __n The order of the Laguerre polynomial.
305      *   @param __x The argument of the Laguerre polynomial.
306      *   @return The value of the Laguerre polynomial of order n
307      *           and argument x.
308      */
309     template<typename _Tp>
310     inline _Tp
311     __laguerre(unsigned int __n, _Tp __x)
312     { return __poly_laguerre<unsigned int, _Tp>(__n, 0, __x); }
313
314   _GLIBCXX_END_NAMESPACE_VERSION
315   } // namespace std::tr1::__detail
316 }
317 }
318
319 #endif // _GLIBCXX_TR1_POLY_LAGUERRE_TCC