]> rtime.felk.cvut.cz Git - l4.git/blob - l4/pkg/libjpeg/lib/contrib/jmemmgr.c
update
[l4.git] / l4 / pkg / libjpeg / lib / contrib / jmemmgr.c
1 /*
2  * jmemmgr.c
3  *
4  * Copyright (C) 1991-1997, Thomas G. Lane.
5  * Modified 2011-2012 by Guido Vollbeding.
6  * This file is part of the Independent JPEG Group's software.
7  * For conditions of distribution and use, see the accompanying README file.
8  *
9  * This file contains the JPEG system-independent memory management
10  * routines.  This code is usable across a wide variety of machines; most
11  * of the system dependencies have been isolated in a separate file.
12  * The major functions provided here are:
13  *   * pool-based allocation and freeing of memory;
14  *   * policy decisions about how to divide available memory among the
15  *     virtual arrays;
16  *   * control logic for swapping virtual arrays between main memory and
17  *     backing storage.
18  * The separate system-dependent file provides the actual backing-storage
19  * access code, and it contains the policy decision about how much total
20  * main memory to use.
21  * This file is system-dependent in the sense that some of its functions
22  * are unnecessary in some systems.  For example, if there is enough virtual
23  * memory so that backing storage will never be used, much of the virtual
24  * array control logic could be removed.  (Of course, if you have that much
25  * memory then you shouldn't care about a little bit of unused code...)
26  */
27
28 #define JPEG_INTERNALS
29 #define AM_MEMORY_MANAGER       /* we define jvirt_Xarray_control structs */
30 #include "jinclude.h"
31 #include "jpeglib.h"
32 #include "jmemsys.h"            /* import the system-dependent declarations */
33
34 #ifndef NO_GETENV
35 #ifndef HAVE_STDLIB_H           /* <stdlib.h> should declare getenv() */
36 extern char * getenv JPP((const char * name));
37 #endif
38 #endif
39
40
41 /*
42  * Some important notes:
43  *   The allocation routines provided here must never return NULL.
44  *   They should exit to error_exit if unsuccessful.
45  *
46  *   It's not a good idea to try to merge the sarray and barray routines,
47  *   even though they are textually almost the same, because samples are
48  *   usually stored as bytes while coefficients are shorts or ints.  Thus,
49  *   in machines where byte pointers have a different representation from
50  *   word pointers, the resulting machine code could not be the same.
51  */
52
53
54 /*
55  * Many machines require storage alignment: longs must start on 4-byte
56  * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
57  * always returns pointers that are multiples of the worst-case alignment
58  * requirement, and we had better do so too.
59  * There isn't any really portable way to determine the worst-case alignment
60  * requirement.  This module assumes that the alignment requirement is
61  * multiples of sizeof(ALIGN_TYPE).
62  * By default, we define ALIGN_TYPE as double.  This is necessary on some
63  * workstations (where doubles really do need 8-byte alignment) and will work
64  * fine on nearly everything.  If your machine has lesser alignment needs,
65  * you can save a few bytes by making ALIGN_TYPE smaller.
66  * The only place I know of where this will NOT work is certain Macintosh
67  * 680x0 compilers that define double as a 10-byte IEEE extended float.
68  * Doing 10-byte alignment is counterproductive because longwords won't be
69  * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have
70  * such a compiler.
71  */
72
73 #ifndef ALIGN_TYPE              /* so can override from jconfig.h */
74 #define ALIGN_TYPE  double
75 #endif
76
77
78 /*
79  * We allocate objects from "pools", where each pool is gotten with a single
80  * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
81  * overhead within a pool, except for alignment padding.  Each pool has a
82  * header with a link to the next pool of the same class.
83  * Small and large pool headers are identical except that the latter's
84  * link pointer must be FAR on 80x86 machines.
85  * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
86  * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
87  * of the alignment requirement of ALIGN_TYPE.
88  */
89
90 typedef union small_pool_struct * small_pool_ptr;
91
92 typedef union small_pool_struct {
93   struct {
94     small_pool_ptr next;        /* next in list of pools */
95     size_t bytes_used;          /* how many bytes already used within pool */
96     size_t bytes_left;          /* bytes still available in this pool */
97   } hdr;
98   ALIGN_TYPE dummy;             /* included in union to ensure alignment */
99 } small_pool_hdr;
100
101 typedef union large_pool_struct FAR * large_pool_ptr;
102
103 typedef union large_pool_struct {
104   struct {
105     large_pool_ptr next;        /* next in list of pools */
106     size_t bytes_used;          /* how many bytes already used within pool */
107     size_t bytes_left;          /* bytes still available in this pool */
108   } hdr;
109   ALIGN_TYPE dummy;             /* included in union to ensure alignment */
110 } large_pool_hdr;
111
112
113 /*
114  * Here is the full definition of a memory manager object.
115  */
116
117 typedef struct {
118   struct jpeg_memory_mgr pub;   /* public fields */
119
120   /* Each pool identifier (lifetime class) names a linked list of pools. */
121   small_pool_ptr small_list[JPOOL_NUMPOOLS];
122   large_pool_ptr large_list[JPOOL_NUMPOOLS];
123
124   /* Since we only have one lifetime class of virtual arrays, only one
125    * linked list is necessary (for each datatype).  Note that the virtual
126    * array control blocks being linked together are actually stored somewhere
127    * in the small-pool list.
128    */
129   jvirt_sarray_ptr virt_sarray_list;
130   jvirt_barray_ptr virt_barray_list;
131
132   /* This counts total space obtained from jpeg_get_small/large */
133   long total_space_allocated;
134
135   /* alloc_sarray and alloc_barray set this value for use by virtual
136    * array routines.
137    */
138   JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
139 } my_memory_mgr;
140
141 typedef my_memory_mgr * my_mem_ptr;
142
143
144 /*
145  * The control blocks for virtual arrays.
146  * Note that these blocks are allocated in the "small" pool area.
147  * System-dependent info for the associated backing store (if any) is hidden
148  * inside the backing_store_info struct.
149  */
150
151 struct jvirt_sarray_control {
152   JSAMPARRAY mem_buffer;        /* => the in-memory buffer */
153   JDIMENSION rows_in_array;     /* total virtual array height */
154   JDIMENSION samplesperrow;     /* width of array (and of memory buffer) */
155   JDIMENSION maxaccess;         /* max rows accessed by access_virt_sarray */
156   JDIMENSION rows_in_mem;       /* height of memory buffer */
157   JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
158   JDIMENSION cur_start_row;     /* first logical row # in the buffer */
159   JDIMENSION first_undef_row;   /* row # of first uninitialized row */
160   boolean pre_zero;             /* pre-zero mode requested? */
161   boolean dirty;                /* do current buffer contents need written? */
162   boolean b_s_open;             /* is backing-store data valid? */
163   jvirt_sarray_ptr next;        /* link to next virtual sarray control block */
164   backing_store_info b_s_info;  /* System-dependent control info */
165 };
166
167 struct jvirt_barray_control {
168   JBLOCKARRAY mem_buffer;       /* => the in-memory buffer */
169   JDIMENSION rows_in_array;     /* total virtual array height */
170   JDIMENSION blocksperrow;      /* width of array (and of memory buffer) */
171   JDIMENSION maxaccess;         /* max rows accessed by access_virt_barray */
172   JDIMENSION rows_in_mem;       /* height of memory buffer */
173   JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
174   JDIMENSION cur_start_row;     /* first logical row # in the buffer */
175   JDIMENSION first_undef_row;   /* row # of first uninitialized row */
176   boolean pre_zero;             /* pre-zero mode requested? */
177   boolean dirty;                /* do current buffer contents need written? */
178   boolean b_s_open;             /* is backing-store data valid? */
179   jvirt_barray_ptr next;        /* link to next virtual barray control block */
180   backing_store_info b_s_info;  /* System-dependent control info */
181 };
182
183
184 #ifdef MEM_STATS                /* optional extra stuff for statistics */
185
186 LOCAL(void)
187 print_mem_stats (j_common_ptr cinfo, int pool_id)
188 {
189   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
190   small_pool_ptr shdr_ptr;
191   large_pool_ptr lhdr_ptr;
192
193   /* Since this is only a debugging stub, we can cheat a little by using
194    * fprintf directly rather than going through the trace message code.
195    * This is helpful because message parm array can't handle longs.
196    */
197   fprintf(stderr, "Freeing pool %d, total space = %ld\n",
198           pool_id, mem->total_space_allocated);
199
200   for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
201        lhdr_ptr = lhdr_ptr->hdr.next) {
202     fprintf(stderr, "  Large chunk used %ld\n",
203             (long) lhdr_ptr->hdr.bytes_used);
204   }
205
206   for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
207        shdr_ptr = shdr_ptr->hdr.next) {
208     fprintf(stderr, "  Small chunk used %ld free %ld\n",
209             (long) shdr_ptr->hdr.bytes_used,
210             (long) shdr_ptr->hdr.bytes_left);
211   }
212 }
213
214 #endif /* MEM_STATS */
215
216
217 LOCAL(noreturn_t)
218 out_of_memory (j_common_ptr cinfo, int which)
219 /* Report an out-of-memory error and stop execution */
220 /* If we compiled MEM_STATS support, report alloc requests before dying */
221 {
222 #ifdef MEM_STATS
223   cinfo->err->trace_level = 2;  /* force self_destruct to report stats */
224 #endif
225   ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
226 }
227
228
229 /*
230  * Allocation of "small" objects.
231  *
232  * For these, we use pooled storage.  When a new pool must be created,
233  * we try to get enough space for the current request plus a "slop" factor,
234  * where the slop will be the amount of leftover space in the new pool.
235  * The speed vs. space tradeoff is largely determined by the slop values.
236  * A different slop value is provided for each pool class (lifetime),
237  * and we also distinguish the first pool of a class from later ones.
238  * NOTE: the values given work fairly well on both 16- and 32-bit-int
239  * machines, but may be too small if longs are 64 bits or more.
240  */
241
242 static const size_t first_pool_slop[JPOOL_NUMPOOLS] = 
243 {
244         1600,                   /* first PERMANENT pool */
245         16000                   /* first IMAGE pool */
246 };
247
248 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = 
249 {
250         0,                      /* additional PERMANENT pools */
251         5000                    /* additional IMAGE pools */
252 };
253
254 #define MIN_SLOP  50            /* greater than 0 to avoid futile looping */
255
256
257 METHODDEF(void *)
258 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
259 /* Allocate a "small" object */
260 {
261   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
262   small_pool_ptr hdr_ptr, prev_hdr_ptr;
263   char * data_ptr;
264   size_t odd_bytes, min_request, slop;
265
266   /* Check for unsatisfiable request (do now to ensure no overflow below) */
267   if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
268     out_of_memory(cinfo, 1);    /* request exceeds malloc's ability */
269
270   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
271   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
272   if (odd_bytes > 0)
273     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
274
275   /* See if space is available in any existing pool */
276   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
277     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
278   prev_hdr_ptr = NULL;
279   hdr_ptr = mem->small_list[pool_id];
280   while (hdr_ptr != NULL) {
281     if (hdr_ptr->hdr.bytes_left >= sizeofobject)
282       break;                    /* found pool with enough space */
283     prev_hdr_ptr = hdr_ptr;
284     hdr_ptr = hdr_ptr->hdr.next;
285   }
286
287   /* Time to make a new pool? */
288   if (hdr_ptr == NULL) {
289     /* min_request is what we need now, slop is what will be leftover */
290     min_request = sizeofobject + SIZEOF(small_pool_hdr);
291     if (prev_hdr_ptr == NULL)   /* first pool in class? */
292       slop = first_pool_slop[pool_id];
293     else
294       slop = extra_pool_slop[pool_id];
295     /* Don't ask for more than MAX_ALLOC_CHUNK */
296     if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
297       slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
298     /* Try to get space, if fail reduce slop and try again */
299     for (;;) {
300       hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
301       if (hdr_ptr != NULL)
302         break;
303       slop /= 2;
304       if (slop < MIN_SLOP)      /* give up when it gets real small */
305         out_of_memory(cinfo, 2); /* jpeg_get_small failed */
306     }
307     mem->total_space_allocated += min_request + slop;
308     /* Success, initialize the new pool header and add to end of list */
309     hdr_ptr->hdr.next = NULL;
310     hdr_ptr->hdr.bytes_used = 0;
311     hdr_ptr->hdr.bytes_left = sizeofobject + slop;
312     if (prev_hdr_ptr == NULL)   /* first pool in class? */
313       mem->small_list[pool_id] = hdr_ptr;
314     else
315       prev_hdr_ptr->hdr.next = hdr_ptr;
316   }
317
318   /* OK, allocate the object from the current pool */
319   data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
320   data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
321   hdr_ptr->hdr.bytes_used += sizeofobject;
322   hdr_ptr->hdr.bytes_left -= sizeofobject;
323
324   return (void *) data_ptr;
325 }
326
327
328 /*
329  * Allocation of "large" objects.
330  *
331  * The external semantics of these are the same as "small" objects,
332  * except that FAR pointers are used on 80x86.  However the pool
333  * management heuristics are quite different.  We assume that each
334  * request is large enough that it may as well be passed directly to
335  * jpeg_get_large; the pool management just links everything together
336  * so that we can free it all on demand.
337  * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
338  * structures.  The routines that create these structures (see below)
339  * deliberately bunch rows together to ensure a large request size.
340  */
341
342 METHODDEF(void FAR *)
343 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
344 /* Allocate a "large" object */
345 {
346   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
347   large_pool_ptr hdr_ptr;
348   size_t odd_bytes;
349
350   /* Check for unsatisfiable request (do now to ensure no overflow below) */
351   if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
352     out_of_memory(cinfo, 3);    /* request exceeds malloc's ability */
353
354   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
355   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
356   if (odd_bytes > 0)
357     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
358
359   /* Always make a new pool */
360   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
361     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
362
363   hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
364                                             SIZEOF(large_pool_hdr));
365   if (hdr_ptr == NULL)
366     out_of_memory(cinfo, 4);    /* jpeg_get_large failed */
367   mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
368
369   /* Success, initialize the new pool header and add to list */
370   hdr_ptr->hdr.next = mem->large_list[pool_id];
371   /* We maintain space counts in each pool header for statistical purposes,
372    * even though they are not needed for allocation.
373    */
374   hdr_ptr->hdr.bytes_used = sizeofobject;
375   hdr_ptr->hdr.bytes_left = 0;
376   mem->large_list[pool_id] = hdr_ptr;
377
378   return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
379 }
380
381
382 /*
383  * Creation of 2-D sample arrays.
384  * The pointers are in near heap, the samples themselves in FAR heap.
385  *
386  * To minimize allocation overhead and to allow I/O of large contiguous
387  * blocks, we allocate the sample rows in groups of as many rows as possible
388  * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
389  * NB: the virtual array control routines, later in this file, know about
390  * this chunking of rows.  The rowsperchunk value is left in the mem manager
391  * object so that it can be saved away if this sarray is the workspace for
392  * a virtual array.
393  */
394
395 METHODDEF(JSAMPARRAY)
396 alloc_sarray (j_common_ptr cinfo, int pool_id,
397               JDIMENSION samplesperrow, JDIMENSION numrows)
398 /* Allocate a 2-D sample array */
399 {
400   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
401   JSAMPARRAY result;
402   JSAMPROW workspace;
403   JDIMENSION rowsperchunk, currow, i;
404   long ltemp;
405
406   /* Calculate max # of rows allowed in one allocation chunk */
407   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
408           ((long) samplesperrow * SIZEOF(JSAMPLE));
409   if (ltemp <= 0)
410     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
411   if (ltemp < (long) numrows)
412     rowsperchunk = (JDIMENSION) ltemp;
413   else
414     rowsperchunk = numrows;
415   mem->last_rowsperchunk = rowsperchunk;
416
417   /* Get space for row pointers (small object) */
418   result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
419                                     (size_t) (numrows * SIZEOF(JSAMPROW)));
420
421   /* Get the rows themselves (large objects) */
422   currow = 0;
423   while (currow < numrows) {
424     rowsperchunk = MIN(rowsperchunk, numrows - currow);
425     workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
426         (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
427                   * SIZEOF(JSAMPLE)));
428     for (i = rowsperchunk; i > 0; i--) {
429       result[currow++] = workspace;
430       workspace += samplesperrow;
431     }
432   }
433
434   return result;
435 }
436
437
438 /*
439  * Creation of 2-D coefficient-block arrays.
440  * This is essentially the same as the code for sample arrays, above.
441  */
442
443 METHODDEF(JBLOCKARRAY)
444 alloc_barray (j_common_ptr cinfo, int pool_id,
445               JDIMENSION blocksperrow, JDIMENSION numrows)
446 /* Allocate a 2-D coefficient-block array */
447 {
448   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
449   JBLOCKARRAY result;
450   JBLOCKROW workspace;
451   JDIMENSION rowsperchunk, currow, i;
452   long ltemp;
453
454   /* Calculate max # of rows allowed in one allocation chunk */
455   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
456           ((long) blocksperrow * SIZEOF(JBLOCK));
457   if (ltemp <= 0)
458     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
459   if (ltemp < (long) numrows)
460     rowsperchunk = (JDIMENSION) ltemp;
461   else
462     rowsperchunk = numrows;
463   mem->last_rowsperchunk = rowsperchunk;
464
465   /* Get space for row pointers (small object) */
466   result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
467                                      (size_t) (numrows * SIZEOF(JBLOCKROW)));
468
469   /* Get the rows themselves (large objects) */
470   currow = 0;
471   while (currow < numrows) {
472     rowsperchunk = MIN(rowsperchunk, numrows - currow);
473     workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
474         (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
475                   * SIZEOF(JBLOCK)));
476     for (i = rowsperchunk; i > 0; i--) {
477       result[currow++] = workspace;
478       workspace += blocksperrow;
479     }
480   }
481
482   return result;
483 }
484
485
486 /*
487  * About virtual array management:
488  *
489  * The above "normal" array routines are only used to allocate strip buffers
490  * (as wide as the image, but just a few rows high).  Full-image-sized buffers
491  * are handled as "virtual" arrays.  The array is still accessed a strip at a
492  * time, but the memory manager must save the whole array for repeated
493  * accesses.  The intended implementation is that there is a strip buffer in
494  * memory (as high as is possible given the desired memory limit), plus a
495  * backing file that holds the rest of the array.
496  *
497  * The request_virt_array routines are told the total size of the image and
498  * the maximum number of rows that will be accessed at once.  The in-memory
499  * buffer must be at least as large as the maxaccess value.
500  *
501  * The request routines create control blocks but not the in-memory buffers.
502  * That is postponed until realize_virt_arrays is called.  At that time the
503  * total amount of space needed is known (approximately, anyway), so free
504  * memory can be divided up fairly.
505  *
506  * The access_virt_array routines are responsible for making a specific strip
507  * area accessible (after reading or writing the backing file, if necessary).
508  * Note that the access routines are told whether the caller intends to modify
509  * the accessed strip; during a read-only pass this saves having to rewrite
510  * data to disk.  The access routines are also responsible for pre-zeroing
511  * any newly accessed rows, if pre-zeroing was requested.
512  *
513  * In current usage, the access requests are usually for nonoverlapping
514  * strips; that is, successive access start_row numbers differ by exactly
515  * num_rows = maxaccess.  This means we can get good performance with simple
516  * buffer dump/reload logic, by making the in-memory buffer be a multiple
517  * of the access height; then there will never be accesses across bufferload
518  * boundaries.  The code will still work with overlapping access requests,
519  * but it doesn't handle bufferload overlaps very efficiently.
520  */
521
522
523 METHODDEF(jvirt_sarray_ptr)
524 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
525                      JDIMENSION samplesperrow, JDIMENSION numrows,
526                      JDIMENSION maxaccess)
527 /* Request a virtual 2-D sample array */
528 {
529   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
530   jvirt_sarray_ptr result;
531
532   /* Only IMAGE-lifetime virtual arrays are currently supported */
533   if (pool_id != JPOOL_IMAGE)
534     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
535
536   /* get control block */
537   result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
538                                           SIZEOF(struct jvirt_sarray_control));
539
540   result->mem_buffer = NULL;    /* marks array not yet realized */
541   result->rows_in_array = numrows;
542   result->samplesperrow = samplesperrow;
543   result->maxaccess = maxaccess;
544   result->pre_zero = pre_zero;
545   result->b_s_open = FALSE;     /* no associated backing-store object */
546   result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
547   mem->virt_sarray_list = result;
548
549   return result;
550 }
551
552
553 METHODDEF(jvirt_barray_ptr)
554 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
555                      JDIMENSION blocksperrow, JDIMENSION numrows,
556                      JDIMENSION maxaccess)
557 /* Request a virtual 2-D coefficient-block array */
558 {
559   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
560   jvirt_barray_ptr result;
561
562   /* Only IMAGE-lifetime virtual arrays are currently supported */
563   if (pool_id != JPOOL_IMAGE)
564     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
565
566   /* get control block */
567   result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
568                                           SIZEOF(struct jvirt_barray_control));
569
570   result->mem_buffer = NULL;    /* marks array not yet realized */
571   result->rows_in_array = numrows;
572   result->blocksperrow = blocksperrow;
573   result->maxaccess = maxaccess;
574   result->pre_zero = pre_zero;
575   result->b_s_open = FALSE;     /* no associated backing-store object */
576   result->next = mem->virt_barray_list; /* add to list of virtual arrays */
577   mem->virt_barray_list = result;
578
579   return result;
580 }
581
582
583 METHODDEF(void)
584 realize_virt_arrays (j_common_ptr cinfo)
585 /* Allocate the in-memory buffers for any unrealized virtual arrays */
586 {
587   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
588   long space_per_minheight, maximum_space, avail_mem;
589   long minheights, max_minheights;
590   jvirt_sarray_ptr sptr;
591   jvirt_barray_ptr bptr;
592
593   /* Compute the minimum space needed (maxaccess rows in each buffer)
594    * and the maximum space needed (full image height in each buffer).
595    * These may be of use to the system-dependent jpeg_mem_available routine.
596    */
597   space_per_minheight = 0;
598   maximum_space = 0;
599   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
600     if (sptr->mem_buffer == NULL) { /* if not realized yet */
601       space_per_minheight += (long) sptr->maxaccess *
602                              (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
603       maximum_space += (long) sptr->rows_in_array *
604                        (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
605     }
606   }
607   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
608     if (bptr->mem_buffer == NULL) { /* if not realized yet */
609       space_per_minheight += (long) bptr->maxaccess *
610                              (long) bptr->blocksperrow * SIZEOF(JBLOCK);
611       maximum_space += (long) bptr->rows_in_array *
612                        (long) bptr->blocksperrow * SIZEOF(JBLOCK);
613     }
614   }
615
616   if (space_per_minheight <= 0)
617     return;                     /* no unrealized arrays, no work */
618
619   /* Determine amount of memory to actually use; this is system-dependent. */
620   avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
621                                  mem->total_space_allocated);
622
623   /* If the maximum space needed is available, make all the buffers full
624    * height; otherwise parcel it out with the same number of minheights
625    * in each buffer.
626    */
627   if (avail_mem >= maximum_space)
628     max_minheights = 1000000000L;
629   else {
630     max_minheights = avail_mem / space_per_minheight;
631     /* If there doesn't seem to be enough space, try to get the minimum
632      * anyway.  This allows a "stub" implementation of jpeg_mem_available().
633      */
634     if (max_minheights <= 0)
635       max_minheights = 1;
636   }
637
638   /* Allocate the in-memory buffers and initialize backing store as needed. */
639
640   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
641     if (sptr->mem_buffer == NULL) { /* if not realized yet */
642       minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
643       if (minheights <= max_minheights) {
644         /* This buffer fits in memory */
645         sptr->rows_in_mem = sptr->rows_in_array;
646       } else {
647         /* It doesn't fit in memory, create backing store. */
648         sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
649         jpeg_open_backing_store(cinfo, & sptr->b_s_info,
650                                 (long) sptr->rows_in_array *
651                                 (long) sptr->samplesperrow *
652                                 (long) SIZEOF(JSAMPLE));
653         sptr->b_s_open = TRUE;
654       }
655       sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
656                                       sptr->samplesperrow, sptr->rows_in_mem);
657       sptr->rowsperchunk = mem->last_rowsperchunk;
658       sptr->cur_start_row = 0;
659       sptr->first_undef_row = 0;
660       sptr->dirty = FALSE;
661     }
662   }
663
664   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
665     if (bptr->mem_buffer == NULL) { /* if not realized yet */
666       minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
667       if (minheights <= max_minheights) {
668         /* This buffer fits in memory */
669         bptr->rows_in_mem = bptr->rows_in_array;
670       } else {
671         /* It doesn't fit in memory, create backing store. */
672         bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
673         jpeg_open_backing_store(cinfo, & bptr->b_s_info,
674                                 (long) bptr->rows_in_array *
675                                 (long) bptr->blocksperrow *
676                                 (long) SIZEOF(JBLOCK));
677         bptr->b_s_open = TRUE;
678       }
679       bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
680                                       bptr->blocksperrow, bptr->rows_in_mem);
681       bptr->rowsperchunk = mem->last_rowsperchunk;
682       bptr->cur_start_row = 0;
683       bptr->first_undef_row = 0;
684       bptr->dirty = FALSE;
685     }
686   }
687 }
688
689
690 LOCAL(void)
691 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
692 /* Do backing store read or write of a virtual sample array */
693 {
694   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
695
696   bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
697   file_offset = ptr->cur_start_row * bytesperrow;
698   /* Loop to read or write each allocation chunk in mem_buffer */
699   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
700     /* One chunk, but check for short chunk at end of buffer */
701     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
702     /* Transfer no more than is currently defined */
703     thisrow = (long) ptr->cur_start_row + i;
704     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
705     /* Transfer no more than fits in file */
706     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
707     if (rows <= 0)              /* this chunk might be past end of file! */
708       break;
709     byte_count = rows * bytesperrow;
710     if (writing)
711       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
712                                             (void FAR *) ptr->mem_buffer[i],
713                                             file_offset, byte_count);
714     else
715       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
716                                            (void FAR *) ptr->mem_buffer[i],
717                                            file_offset, byte_count);
718     file_offset += byte_count;
719   }
720 }
721
722
723 LOCAL(void)
724 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
725 /* Do backing store read or write of a virtual coefficient-block array */
726 {
727   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
728
729   bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
730   file_offset = ptr->cur_start_row * bytesperrow;
731   /* Loop to read or write each allocation chunk in mem_buffer */
732   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
733     /* One chunk, but check for short chunk at end of buffer */
734     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
735     /* Transfer no more than is currently defined */
736     thisrow = (long) ptr->cur_start_row + i;
737     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
738     /* Transfer no more than fits in file */
739     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
740     if (rows <= 0)              /* this chunk might be past end of file! */
741       break;
742     byte_count = rows * bytesperrow;
743     if (writing)
744       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
745                                             (void FAR *) ptr->mem_buffer[i],
746                                             file_offset, byte_count);
747     else
748       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
749                                            (void FAR *) ptr->mem_buffer[i],
750                                            file_offset, byte_count);
751     file_offset += byte_count;
752   }
753 }
754
755
756 METHODDEF(JSAMPARRAY)
757 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
758                     JDIMENSION start_row, JDIMENSION num_rows,
759                     boolean writable)
760 /* Access the part of a virtual sample array starting at start_row */
761 /* and extending for num_rows rows.  writable is true if  */
762 /* caller intends to modify the accessed area. */
763 {
764   JDIMENSION end_row = start_row + num_rows;
765   JDIMENSION undef_row;
766
767   /* debugging check */
768   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
769       ptr->mem_buffer == NULL)
770     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
771
772   /* Make the desired part of the virtual array accessible */
773   if (start_row < ptr->cur_start_row ||
774       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
775     if (! ptr->b_s_open)
776       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
777     /* Flush old buffer contents if necessary */
778     if (ptr->dirty) {
779       do_sarray_io(cinfo, ptr, TRUE);
780       ptr->dirty = FALSE;
781     }
782     /* Decide what part of virtual array to access.
783      * Algorithm: if target address > current window, assume forward scan,
784      * load starting at target address.  If target address < current window,
785      * assume backward scan, load so that target area is top of window.
786      * Note that when switching from forward write to forward read, will have
787      * start_row = 0, so the limiting case applies and we load from 0 anyway.
788      */
789     if (start_row > ptr->cur_start_row) {
790       ptr->cur_start_row = start_row;
791     } else {
792       /* use long arithmetic here to avoid overflow & unsigned problems */
793       long ltemp;
794
795       ltemp = (long) end_row - (long) ptr->rows_in_mem;
796       if (ltemp < 0)
797         ltemp = 0;              /* don't fall off front end of file */
798       ptr->cur_start_row = (JDIMENSION) ltemp;
799     }
800     /* Read in the selected part of the array.
801      * During the initial write pass, we will do no actual read
802      * because the selected part is all undefined.
803      */
804     do_sarray_io(cinfo, ptr, FALSE);
805   }
806   /* Ensure the accessed part of the array is defined; prezero if needed.
807    * To improve locality of access, we only prezero the part of the array
808    * that the caller is about to access, not the entire in-memory array.
809    */
810   if (ptr->first_undef_row < end_row) {
811     if (ptr->first_undef_row < start_row) {
812       if (writable)             /* writer skipped over a section of array */
813         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
814       undef_row = start_row;    /* but reader is allowed to read ahead */
815     } else {
816       undef_row = ptr->first_undef_row;
817     }
818     if (writable)
819       ptr->first_undef_row = end_row;
820     if (ptr->pre_zero) {
821       size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
822       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
823       end_row -= ptr->cur_start_row;
824       while (undef_row < end_row) {
825         FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
826         undef_row++;
827       }
828     } else {
829       if (! writable)           /* reader looking at undefined data */
830         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
831     }
832   }
833   /* Flag the buffer dirty if caller will write in it */
834   if (writable)
835     ptr->dirty = TRUE;
836   /* Return address of proper part of the buffer */
837   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
838 }
839
840
841 METHODDEF(JBLOCKARRAY)
842 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
843                     JDIMENSION start_row, JDIMENSION num_rows,
844                     boolean writable)
845 /* Access the part of a virtual block array starting at start_row */
846 /* and extending for num_rows rows.  writable is true if  */
847 /* caller intends to modify the accessed area. */
848 {
849   JDIMENSION end_row = start_row + num_rows;
850   JDIMENSION undef_row;
851
852   /* debugging check */
853   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
854       ptr->mem_buffer == NULL)
855     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
856
857   /* Make the desired part of the virtual array accessible */
858   if (start_row < ptr->cur_start_row ||
859       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
860     if (! ptr->b_s_open)
861       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
862     /* Flush old buffer contents if necessary */
863     if (ptr->dirty) {
864       do_barray_io(cinfo, ptr, TRUE);
865       ptr->dirty = FALSE;
866     }
867     /* Decide what part of virtual array to access.
868      * Algorithm: if target address > current window, assume forward scan,
869      * load starting at target address.  If target address < current window,
870      * assume backward scan, load so that target area is top of window.
871      * Note that when switching from forward write to forward read, will have
872      * start_row = 0, so the limiting case applies and we load from 0 anyway.
873      */
874     if (start_row > ptr->cur_start_row) {
875       ptr->cur_start_row = start_row;
876     } else {
877       /* use long arithmetic here to avoid overflow & unsigned problems */
878       long ltemp;
879
880       ltemp = (long) end_row - (long) ptr->rows_in_mem;
881       if (ltemp < 0)
882         ltemp = 0;              /* don't fall off front end of file */
883       ptr->cur_start_row = (JDIMENSION) ltemp;
884     }
885     /* Read in the selected part of the array.
886      * During the initial write pass, we will do no actual read
887      * because the selected part is all undefined.
888      */
889     do_barray_io(cinfo, ptr, FALSE);
890   }
891   /* Ensure the accessed part of the array is defined; prezero if needed.
892    * To improve locality of access, we only prezero the part of the array
893    * that the caller is about to access, not the entire in-memory array.
894    */
895   if (ptr->first_undef_row < end_row) {
896     if (ptr->first_undef_row < start_row) {
897       if (writable)             /* writer skipped over a section of array */
898         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
899       undef_row = start_row;    /* but reader is allowed to read ahead */
900     } else {
901       undef_row = ptr->first_undef_row;
902     }
903     if (writable)
904       ptr->first_undef_row = end_row;
905     if (ptr->pre_zero) {
906       size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
907       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
908       end_row -= ptr->cur_start_row;
909       while (undef_row < end_row) {
910         FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
911         undef_row++;
912       }
913     } else {
914       if (! writable)           /* reader looking at undefined data */
915         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
916     }
917   }
918   /* Flag the buffer dirty if caller will write in it */
919   if (writable)
920     ptr->dirty = TRUE;
921   /* Return address of proper part of the buffer */
922   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
923 }
924
925
926 /*
927  * Release all objects belonging to a specified pool.
928  */
929
930 METHODDEF(void)
931 free_pool (j_common_ptr cinfo, int pool_id)
932 {
933   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
934   small_pool_ptr shdr_ptr;
935   large_pool_ptr lhdr_ptr;
936   size_t space_freed;
937
938   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
939     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
940
941 #ifdef MEM_STATS
942   if (cinfo->err->trace_level > 1)
943     print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
944 #endif
945
946   /* If freeing IMAGE pool, close any virtual arrays first */
947   if (pool_id == JPOOL_IMAGE) {
948     jvirt_sarray_ptr sptr;
949     jvirt_barray_ptr bptr;
950
951     for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
952       if (sptr->b_s_open) {     /* there may be no backing store */
953         sptr->b_s_open = FALSE; /* prevent recursive close if error */
954         (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
955       }
956     }
957     mem->virt_sarray_list = NULL;
958     for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
959       if (bptr->b_s_open) {     /* there may be no backing store */
960         bptr->b_s_open = FALSE; /* prevent recursive close if error */
961         (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
962       }
963     }
964     mem->virt_barray_list = NULL;
965   }
966
967   /* Release large objects */
968   lhdr_ptr = mem->large_list[pool_id];
969   mem->large_list[pool_id] = NULL;
970
971   while (lhdr_ptr != NULL) {
972     large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
973     space_freed = lhdr_ptr->hdr.bytes_used +
974                   lhdr_ptr->hdr.bytes_left +
975                   SIZEOF(large_pool_hdr);
976     jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
977     mem->total_space_allocated -= space_freed;
978     lhdr_ptr = next_lhdr_ptr;
979   }
980
981   /* Release small objects */
982   shdr_ptr = mem->small_list[pool_id];
983   mem->small_list[pool_id] = NULL;
984
985   while (shdr_ptr != NULL) {
986     small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
987     space_freed = shdr_ptr->hdr.bytes_used +
988                   shdr_ptr->hdr.bytes_left +
989                   SIZEOF(small_pool_hdr);
990     jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
991     mem->total_space_allocated -= space_freed;
992     shdr_ptr = next_shdr_ptr;
993   }
994 }
995
996
997 /*
998  * Close up shop entirely.
999  * Note that this cannot be called unless cinfo->mem is non-NULL.
1000  */
1001
1002 METHODDEF(void)
1003 self_destruct (j_common_ptr cinfo)
1004 {
1005   int pool;
1006
1007   /* Close all backing store, release all memory.
1008    * Releasing pools in reverse order might help avoid fragmentation
1009    * with some (brain-damaged) malloc libraries.
1010    */
1011   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1012     free_pool(cinfo, pool);
1013   }
1014
1015   /* Release the memory manager control block too. */
1016   jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1017   cinfo->mem = NULL;            /* ensures I will be called only once */
1018
1019   jpeg_mem_term(cinfo);         /* system-dependent cleanup */
1020 }
1021
1022
1023 /*
1024  * Memory manager initialization.
1025  * When this is called, only the error manager pointer is valid in cinfo!
1026  */
1027
1028 GLOBAL(void)
1029 jinit_memory_mgr (j_common_ptr cinfo)
1030 {
1031   my_mem_ptr mem;
1032   long max_to_use;
1033   int pool;
1034   size_t test_mac;
1035
1036   cinfo->mem = NULL;            /* for safety if init fails */
1037
1038   /* Check for configuration errors.
1039    * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1040    * doesn't reflect any real hardware alignment requirement.
1041    * The test is a little tricky: for X>0, X and X-1 have no one-bits
1042    * in common if and only if X is a power of 2, ie has only one one-bit.
1043    * Some compilers may give an "unreachable code" warning here; ignore it.
1044    */
1045   if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
1046     ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1047   /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1048    * a multiple of SIZEOF(ALIGN_TYPE).
1049    * Again, an "unreachable code" warning may be ignored here.
1050    * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1051    */
1052   test_mac = (size_t) MAX_ALLOC_CHUNK;
1053   if ((long) test_mac != MAX_ALLOC_CHUNK ||
1054       (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
1055     ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1056
1057   max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1058
1059   /* Attempt to allocate memory manager's control block */
1060   mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
1061
1062   if (mem == NULL) {
1063     jpeg_mem_term(cinfo);       /* system-dependent cleanup */
1064     ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1065   }
1066
1067   /* OK, fill in the method pointers */
1068   mem->pub.alloc_small = alloc_small;
1069   mem->pub.alloc_large = alloc_large;
1070   mem->pub.alloc_sarray = alloc_sarray;
1071   mem->pub.alloc_barray = alloc_barray;
1072   mem->pub.request_virt_sarray = request_virt_sarray;
1073   mem->pub.request_virt_barray = request_virt_barray;
1074   mem->pub.realize_virt_arrays = realize_virt_arrays;
1075   mem->pub.access_virt_sarray = access_virt_sarray;
1076   mem->pub.access_virt_barray = access_virt_barray;
1077   mem->pub.free_pool = free_pool;
1078   mem->pub.self_destruct = self_destruct;
1079
1080   /* Make MAX_ALLOC_CHUNK accessible to other modules */
1081   mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1082
1083   /* Initialize working state */
1084   mem->pub.max_memory_to_use = max_to_use;
1085
1086   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1087     mem->small_list[pool] = NULL;
1088     mem->large_list[pool] = NULL;
1089   }
1090   mem->virt_sarray_list = NULL;
1091   mem->virt_barray_list = NULL;
1092
1093   mem->total_space_allocated = SIZEOF(my_memory_mgr);
1094
1095   /* Declare ourselves open for business */
1096   cinfo->mem = & mem->pub;
1097
1098   /* Check for an environment variable JPEGMEM; if found, override the
1099    * default max_memory setting from jpeg_mem_init.  Note that the
1100    * surrounding application may again override this value.
1101    * If your system doesn't support getenv(), define NO_GETENV to disable
1102    * this feature.
1103    */
1104 #ifndef NO_GETENV
1105   { char * memenv;
1106
1107     if ((memenv = getenv("JPEGMEM")) != NULL) {
1108       char ch = 'x';
1109
1110       if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1111         if (ch == 'm' || ch == 'M')
1112           max_to_use *= 1000L;
1113         mem->pub.max_memory_to_use = max_to_use * 1000L;
1114       }
1115     }
1116   }
1117 #endif
1118
1119 }