]> rtime.felk.cvut.cz Git - l4.git/blob - kernel/fiasco/src/lib/libk/quad/muldi3.c
Update
[l4.git] / kernel / fiasco / src / lib / libk / quad / muldi3.c
1 /*      $NetBSD: muldi3.c,v 1.3 2012/08/06 02:31:54 matt Exp $  */
2
3 /*-
4  * Copyright (c) 1992, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35
36 #include <cdefs.h>
37 #if defined(LIBC_SCCS) && !defined(lint)
38 #if 0
39 static char sccsid[] = "@(#)muldi3.c    8.1 (Berkeley) 6/4/93";
40 #else
41 __RCSID("$NetBSD: muldi3.c,v 1.3 2012/08/06 02:31:54 matt Exp $");
42 #endif
43 #endif /* LIBC_SCCS and not lint */
44
45 #include "quad.h"
46
47 ARM_EABI_ALIAS(__aeabi_lmul, __muldi3)  /* no semicolon */
48
49 /*
50  * Multiply two quads.
51  *
52  * Our algorithm is based on the following.  Split incoming quad values
53  * u and v (where u,v >= 0) into
54  *
55  *      u = 2^n u1  *  u0       (n = number of bits in `u_int', usu. 32)
56  *
57  * and 
58  *
59  *      v = 2^n v1  *  v0
60  *
61  * Then
62  *
63  *      uv = 2^2n u1 v1  +  2^n u1 v0  +  2^n v1 u0  +  u0 v0
64  *         = 2^2n u1 v1  +     2^n (u1 v0 + v1 u0)   +  u0 v0
65  *
66  * Now add 2^n u1 v1 to the first term and subtract it from the middle,
67  * and add 2^n u0 v0 to the last term and subtract it from the middle.
68  * This gives:
69  *
70  *      uv = (2^2n + 2^n) (u1 v1)  +
71  *               (2^n)    (u1 v0 - u1 v1 + u0 v1 - u0 v0)  +
72  *             (2^n + 1)  (u0 v0)
73  *
74  * Factoring the middle a bit gives us:
75  *
76  *      uv = (2^2n + 2^n) (u1 v1)  +                    [u1v1 = high]
77  *               (2^n)    (u1 - u0) (v0 - v1)  +        [(u1-u0)... = mid]
78  *             (2^n + 1)  (u0 v0)                       [u0v0 = low]
79  *
80  * The terms (u1 v1), (u1 - u0) (v0 - v1), and (u0 v0) can all be done
81  * in just half the precision of the original.  (Note that either or both
82  * of (u1 - u0) or (v0 - v1) may be negative.)
83  *
84  * This algorithm is from Knuth vol. 2 (2nd ed), section 4.3.3, p. 278.
85  *
86  * Since C does not give us a `int * int = quad' operator, we split
87  * our input quads into two ints, then split the two ints into two
88  * shorts.  We can then calculate `short * short = int' in native
89  * arithmetic.
90  *
91  * Our product should, strictly speaking, be a `long quad', with 128
92  * bits, but we are going to discard the upper 64.  In other words,
93  * we are not interested in uv, but rather in (uv mod 2^2n).  This
94  * makes some of the terms above vanish, and we get:
95  *
96  *      (2^n)(high) + (2^n)(mid) + (2^n + 1)(low)
97  *
98  * or
99  *
100  *      (2^n)(high + mid + low) + low
101  *
102  * Furthermore, `high' and `mid' can be computed mod 2^n, as any factor
103  * of 2^n in either one will also vanish.  Only `low' need be computed
104  * mod 2^2n, and only because of the final term above.
105  */
106 static quad_t __lmulq(u_int, u_int);
107
108 quad_t
109 __muldi3(quad_t a, quad_t b)
110 {
111         union uu u, v, low, prod;
112         u_int high, mid, udiff, vdiff;
113         int negall, negmid;
114 #define u1      u.ul[H]
115 #define u0      u.ul[L]
116 #define v1      v.ul[H]
117 #define v0      v.ul[L]
118
119         /*
120          * Get u and v such that u, v >= 0.  When this is finished,
121          * u1, u0, v1, and v0 will be directly accessible through the
122          * int fields.
123          */
124         if (a >= 0)
125                 u.q = a, negall = 0;
126         else
127                 u.q = -a, negall = 1;
128         if (b >= 0)
129                 v.q = b;
130         else
131                 v.q = -b, negall ^= 1;
132
133         if (u1 == 0 && v1 == 0) {
134                 /*
135                  * An (I hope) important optimization occurs when u1 and v1
136                  * are both 0.  This should be common since most numbers
137                  * are small.  Here the product is just u0*v0.
138                  */
139                 prod.q = __lmulq(u0, v0);
140         } else {
141                 /*
142                  * Compute the three intermediate products, remembering
143                  * whether the middle term is negative.  We can discard
144                  * any upper bits in high and mid, so we can use native
145                  * u_int * u_int => u_int arithmetic.
146                  */
147                 low.q = __lmulq(u0, v0);
148
149                 if (u1 >= u0)
150                         negmid = 0, udiff = u1 - u0;
151                 else
152                         negmid = 1, udiff = u0 - u1;
153                 if (v0 >= v1)
154                         vdiff = v0 - v1;
155                 else
156                         vdiff = v1 - v0, negmid ^= 1;
157                 mid = udiff * vdiff;
158
159                 high = u1 * v1;
160
161                 /*
162                  * Assemble the final product.
163                  */
164                 prod.ul[H] = high + (negmid ? -mid : mid) + low.ul[L] +
165                     low.ul[H];
166                 prod.ul[L] = low.ul[L];
167         }
168         return (negall ? -prod.q : prod.q);
169 #undef u1
170 #undef u0
171 #undef v1
172 #undef v0
173 }
174
175 /*
176  * Multiply two 2N-bit ints to produce a 4N-bit quad, where N is half
177  * the number of bits in an int (whatever that is---the code below
178  * does not care as long as quad.h does its part of the bargain---but
179  * typically N==16).
180  *
181  * We use the same algorithm from Knuth, but this time the modulo refinement
182  * does not apply.  On the other hand, since N is half the size of an int,
183  * we can get away with native multiplication---none of our input terms
184  * exceeds (UINT_MAX >> 1).
185  *
186  * Note that, for u_int l, the quad-precision result
187  *
188  *      l << N
189  *
190  * splits into high and low ints as HHALF(l) and LHUP(l) respectively.
191  */
192 static quad_t
193 __lmulq(u_int u, u_int v)
194 {
195         u_int u1, u0, v1, v0, udiff, vdiff, high, mid, low;
196         u_int prodh, prodl, was;
197         union uu prod;
198         int neg;
199
200         u1 = HHALF(u);
201         u0 = LHALF(u);
202         v1 = HHALF(v);
203         v0 = LHALF(v);
204
205         low = u0 * v0;
206
207         /* This is the same small-number optimization as before. */
208         if (u1 == 0 && v1 == 0)
209                 return (low);
210
211         if (u1 >= u0)
212                 udiff = u1 - u0, neg = 0;
213         else
214                 udiff = u0 - u1, neg = 1;
215         if (v0 >= v1)
216                 vdiff = v0 - v1;
217         else
218                 vdiff = v1 - v0, neg ^= 1;
219         mid = udiff * vdiff;
220
221         high = u1 * v1;
222
223         /* prod = (high << 2N) + (high << N); */
224         prodh = high + HHALF(high);
225         prodl = LHUP(high);
226
227         /* if (neg) prod -= mid << N; else prod += mid << N; */
228         if (neg) {
229                 was = prodl;
230                 prodl -= LHUP(mid);
231                 prodh -= HHALF(mid) + (prodl > was);
232         } else {
233                 was = prodl;
234                 prodl += LHUP(mid);
235                 prodh += HHALF(mid) + (prodl < was);
236         }
237
238         /* prod += low << N */
239         was = prodl;
240         prodl += LHUP(low);
241         prodh += HHALF(low) + (prodl < was);
242         /* ... + low; */
243         if ((prodl += low) < low)
244                 prodh++;
245
246         /* return 4N-bit product */
247         prod.ul[H] = prodh;
248         prod.ul[L] = prodl;
249         return (prod.q);
250 }