]> rtime.felk.cvut.cz Git - hubacji1/psp.git/blob - src/psp.cc
Fix inits direction
[hubacji1/psp.git] / src / psp.cc
1 #include <cmath>
2 #include <list>
3 #include <queue>
4 #include "psp.h"
5
6 bool PSPlanner::collide()
7 {
8         std::vector<std::tuple<double, double>> bc;
9         bc.push_back(std::make_tuple(this->cc().lfx(), this->cc().lfy()));
10         bc.push_back(std::make_tuple(this->cc().lrx(), this->cc().lry()));
11         bc.push_back(std::make_tuple(this->cc().rrx(), this->cc().rry()));
12         bc.push_back(std::make_tuple(this->cc().rfx(), this->cc().rfy()));
13         bc.push_back(std::make_tuple(this->cc().lfx(), this->cc().lfy()));
14         std::vector<std::tuple<double, double>> ps;
15         ps.push_back(std::make_tuple(this->ps().x1(), this->ps().y1()));
16         ps.push_back(std::make_tuple(this->ps().x2(), this->ps().y2()));
17         ps.push_back(std::make_tuple(this->ps().x3(), this->ps().y3()));
18         ps.push_back(std::make_tuple(this->ps().x4(), this->ps().y4()));
19         return std::get<0>(::collide(bc, ps));
20 }
21
22 bool PSPlanner::forward()
23 {
24         double heading = this->ps().heading();
25         while (heading < 0) heading += 2 * M_PI;
26         if (!this->ps().parallel())
27                 heading -= M_PI / 2;
28         double h = this->gc().h();
29         while (h < 0) h += 2 * M_PI;
30         if (-0.00001 < heading - h && heading - h < 0.00001)
31                 return true;
32         else
33                 return false;
34 }
35
36 void PSPlanner::guess_gc()
37 {
38         double x = this->ps().x1();
39         double y = this->ps().y1();
40         double h = this->ps().heading();
41         double dts = + M_PI / 2; // direction to slot
42         if (this->ps().right())
43                 dts = - M_PI / 2;
44         if (this->ps().parallel()) {
45                 x += (this->gc().w() + 0.01) * cos(h + dts);
46                 x += (this->gc().dr() + 0.01) * cos(h);
47                 y += (this->gc().w() + 0.01) * sin(h + dts);
48                 y += (this->gc().dr() + 0.01) * sin(h);
49         } else {
50                 x += (this->ps().x4() - this->ps().x1()) / 2;
51                 x += (this->gc().df() + 0.01) * cos(h + dts);
52                 y += (this->ps().y4() - this->ps().y1()) / 2;
53                 y += (this->gc().df() + 0.01) * sin(h + dts);
54                 if (this->ps().right())
55                         h += M_PI / 2;
56                 else
57                         h -= M_PI / 2;
58         }
59         while (h > M_PI)
60                 h -= 2 * M_PI;
61         while (h <= -M_PI)
62                 h += 2 * M_PI;
63         this->gc().x(x);
64         this->gc().y(y);
65         this->gc().h(h);
66 }
67
68 bool PSPlanner::left()
69 {
70         double lfx = this->cc().lfx();
71         double lfy = this->cc().lfy();
72         double lrx = this->cc().lrx();
73         double lry = this->cc().lry();
74         double rrx = this->cc().rrx();
75         double rry = this->cc().rry();
76         double rfx = this->cc().rfx();
77         double rfy = this->cc().rfy();
78         double lfs = sgn(
79                 (lfx - this->ps().x1()) * (this->ps().y4() - this->ps().y1())
80                 - (lfy - this->ps().y1()) * (this->ps().x4() - this->ps().x1())
81         );
82         double lrs = sgn(
83                 (lrx - this->ps().x1()) * (this->ps().y4() - this->ps().y1())
84                 - (lry - this->ps().y1()) * (this->ps().x4() - this->ps().x1())
85         );
86         double rrs = sgn(
87                 (rrx - this->ps().x1()) * (this->ps().y4() - this->ps().y1())
88                 - (rry - this->ps().y1()) * (this->ps().x4() - this->ps().x1())
89         );
90         double rfs = sgn(
91                 (rfx - this->ps().x1()) * (this->ps().y4() - this->ps().y1())
92                 - (rfy - this->ps().y1()) * (this->ps().x4() - this->ps().x1())
93         );
94         if (this->ps().parallel())
95                 return lfs == rfs && (lfs != lrs || lfs != rrs);
96         else if (!this->forward())
97                 return lfs == rfs && (lfs != lrs || lfs != rrs);
98         else
99                 return lrs == rrs && (lrs != lfs || lrs != rfs);
100 }
101
102 bool PSPlanner::parked()
103 {
104         std::vector<std::tuple<double, double>> slot;
105         slot.push_back(std::make_tuple(this->ps().x1(), this->ps().y1()));
106         slot.push_back(std::make_tuple(this->ps().x2(), this->ps().y2()));
107         slot.push_back(std::make_tuple(this->ps().x3(), this->ps().y3()));
108         slot.push_back(std::make_tuple(this->ps().x4(), this->ps().y4()));
109         return inside(this->gc().lfx(), this->gc().lfy(), slot)
110                 && inside(this->gc().lrx(), this->gc().lry(), slot)
111                 && inside(this->gc().rrx(), this->gc().rry(), slot)
112                 && inside(this->gc().rfx(), this->gc().rfy(), slot);
113 }
114
115 std::vector<BicycleCar> PSPlanner::possible_inits()
116 {
117         std::vector<BicycleCar> pi;
118         this->cc().sp(this->cc().sp() * -1);
119         this->cc().st(this->cc().st() * -1);
120         BicycleCar orig_cc(this->cc());
121         for (unsigned int i = 0; i < 20; i++) {
122                 this->cc().next();
123                 pi.push_back(BicycleCar(this->cc()));
124         }
125         this->cc() = BicycleCar(orig_cc);
126         return pi;
127 }
128
129 // find entry
130 void PSPlanner::fe()
131 {
132         if (this->ps().parallel())
133                 return this->fe_parallel();
134         else
135                 return this->fe_perpendicular();
136 }
137
138 void PSPlanner::fe_parallel()
139 {
140         // angle for distance from "entry" corner
141         double dist_angl = this->ps().heading() + M_PI;
142         dist_angl += (this->ps().right()) ? - M_PI / 4 : + M_PI / 4;
143         // set bicycle car `bci` basic dimensions and heading
144         BicycleCar bci = BicycleCar(this->gc());
145         BicycleCar bco = BicycleCar(this->gc());
146         bci.h(this->ps().heading());
147         // move 0.01 from the "entry" corner
148         bci.x(this->ps().x4() + 0.01 * cos(dist_angl));
149         bci.y(this->ps().y4() + 0.01 * sin(dist_angl));
150         // align with parking "top" of slot (move backward)
151         dist_angl = bci.h() + M_PI;
152         bci.x(bci.x() + bci.df() * cos(dist_angl));
153         bci.y(bci.y() + bci.df() * sin(dist_angl));
154         // align with "entry" to pakring slot (move outside)
155         dist_angl = this->ps().heading();
156         dist_angl += (this->ps().right()) ? + M_PI / 2 : - M_PI / 2;
157         bci.x(bci.x() + bci.w() / 2 * cos(dist_angl));
158         bci.y(bci.y() + bci.w() / 2 * sin(dist_angl));
159         // BFS - init all starts
160         // see https://courses.cs.washington.edu/courses/cse326/03su/homework/hw3/bfs.html
161         double dist_diag = sqrt(pow(bci.w() / 2, 2) + pow(bci.df(), 2));
162         if (this->ps().right())
163                 dist_angl = atan2(bci.y() - bci.rfy(), bci.x() - bci.rfx());
164         else
165                 dist_angl = atan2(bci.y() - bci.lfy(), bci.x() - bci.lfx());
166         double DIST_ANGL = dist_angl;
167         std::queue<BicycleCar, std::list<BicycleCar>> q;
168         while (
169                 (
170                         this->ps().right()
171                         && dist_angl < DIST_ANGL + 3 * M_PI / 4
172                 )
173                 || (
174                         !this->ps().right()
175                         && dist_angl > DIST_ANGL - 3 * M_PI / 4
176                 )
177         ) {
178                 this->cc() = BicycleCar(bci);
179                 if (this->ps().right()) {
180                         this->cc().x(bci.rfx() + dist_diag * cos(dist_angl));
181                         this->cc().y(bci.rfy() + dist_diag * sin(dist_angl));
182                 } else {
183                         this->cc().x(bci.lfx() + dist_diag * cos(dist_angl));
184                         this->cc().y(bci.lfy() + dist_diag * sin(dist_angl));
185                 }
186                 this->cc().h(this->ps().heading() + dist_angl - DIST_ANGL);
187                 if (!this->collide()) {
188                         this->cc().st(this->cc().wb() / this->cc().mtr());
189                         if (!this->ps().right())
190                                 this->cc().st(this->cc().st() * -1);
191                         this->cc().sp(-0.01);
192                         q.push(BicycleCar(this->cc()));
193                 }
194                 dist_angl += (this->ps().right()) ? + 0.01 : - 0.01;
195         }
196         // BFS - find entry current car `cc` and corresponding goal car `gc`
197         unsigned int iter_cntr;
198         while (!q.empty() && iter_cntr < 9) {
199                 this->cc() = BicycleCar(q.front());
200                 q.pop();
201                 while (
202                         !this->collide()
203                         && (std::abs(
204                                 this->cc().h() - this->ps().heading()
205                         ) < M_PI / 2)
206                 )
207                         this->cc().next();
208                 this->cc().sp(this->cc().sp() * -1);
209                 this->cc().next();
210                 this->gc() = BicycleCar(this->cc());
211                 if (this->parked())
212                         goto successfinish;
213                 this->cc().st(this->cc().st() * -1);
214                 q.push(BicycleCar(this->cc()));
215                 if (sgn(this->cc().st()) == sgn(q.front().st()))
216                         iter_cntr++;
217         }
218         // fallback to fer
219         this->gc() = BicycleCar(bco);
220 successfinish:
221         return this->fer_parallel();
222 }
223
224 void PSPlanner::fe_perpendicular()
225 {
226         // TODO Try multiple angles when going from parking slot.
227         //
228         //      Do not use just the maximum steer angle. Test angles
229         //      until the whole current car `cc` is out of the parking
230         //      slot `ps`.
231         //
232         //      Another approach could be testing angles from the
233         //      beginning of the escape parkig slot maneuver.
234         return fer_perpendicular();
235 }
236
237 void PSPlanner::fer()
238 {
239         if (this->ps().parallel())
240                 return this->fer_parallel();
241         else
242                 return this->fer_perpendicular();
243 }
244
245 void PSPlanner::fer_parallel()
246 {
247         this->cc().st(this->cc().wb() / this->cc().mtr());
248         if (!this->ps().right())
249                 this->cc().st(this->cc().st() * -1);
250         this->cc().sp(0.01);
251         while (!this->left()) {
252                 while (!this->collide() && !this->left())
253                         this->cc().next();
254                 if (this->left() && !this->collide()) {
255                         break;
256                 } else {
257                         this->cc().sp(this->cc().sp() * -1);
258                         this->cc().next();
259                         this->cc().st(this->cc().st() * -1);
260                 }
261         }
262 }
263
264 void PSPlanner::fer_perpendicular()
265 {
266         bool delta_use[] = {true, true, true};
267         double cc_h = this->cc().h();
268         double x;
269         double y;
270         // check inner radius
271         if (this->forward()) {
272                 x = this->ps().x1();
273                 y = this->ps().y1();
274         } else {
275                 x = this->ps().x4();
276                 y = this->ps().y4();
277         }
278         double x1;
279         double y1;
280         if (this->ps().right()) {
281                 x1 = this->cc().ccr().x();
282                 y1 = this->cc().ccr().y();
283         } else {
284                 x1 = this->cc().ccl().x();
285                 y1 = this->cc().ccl().y();
286         }
287         double IR = this->cc().iradi();
288         double a = 1;
289         double b;
290         if (this->forward())
291                 b = (x - x1) * 2 * cos(cc_h) + (y - y1) * 2 * sin(cc_h);
292         else
293                 b = (x1 - x) * 2 * cos(cc_h) + (y1 - y) * 2 * sin(cc_h);
294         double c = pow(x - x1, 2) + pow(y - y1, 2) - pow(IR, 2);
295         double D = pow(b, 2) - 4 * a * c;
296         double delta;
297         delta = -b - sqrt(D);
298         delta /= 2 * a;
299         double delta_1 = delta;
300         if (D < 0)
301                 delta_use[0] = false;
302         // check outer radius
303         if (this->forward()) {
304                 x = this->ps().x4();
305                 y = this->ps().y4();
306         } else {
307                 x = this->ps().x1();
308                 y = this->ps().y1();
309         }
310         IR = this->cc().ofradi();
311         a = 1;
312         if (this->forward())
313                 b = (x - x1) * 2 * cos(cc_h) + (y - y1) * 2 * sin(cc_h);
314         else
315                 b = (x1 - x) * 2 * cos(cc_h) + (y1 - y) * 2 * sin(cc_h);
316         c = pow(x - x1, 2) + pow(y - y1, 2) - pow(IR, 2);
317         D = pow(b, 2) - 4 * a * c;
318         if (this->forward()) {
319                 delta = -b + sqrt(D);
320                 delta /= 2 * a;
321         }
322         double delta_2 = delta;
323         if (D < 0)
324                 delta_use[1] = false;
325         delta = -b - sqrt(D);
326         delta /= 2 * a;
327         double delta_3 = delta;
328         if (D < 0)
329                 delta_use[2] = false;
330         if (delta_use[0] && delta_use[1] && delta_use[22])
331                 delta = std::max(delta_1, std::max(delta_2, delta_3));
332         else if (delta_use[0] && delta_use[1])
333                 delta = std::max(delta_1, delta_2);
334         else if (delta_use[0] && delta_use[2])
335                 delta = std::max(delta_1, delta_3);
336         else if (delta_use[1] && delta_use[2])
337                 delta = std::max(delta_2, delta_3);
338         else if (delta_use[0])
339                 delta = delta_1;
340         else if (delta_use[1])
341                 delta = delta_2;
342         else if (delta_use[2])
343                 delta = delta_3;
344         else
345                 return;
346         // current car `cc` can get out of slot with max steer
347         this->cc().x(this->cc().x() + delta * cos(cc_h));
348         this->cc().y(this->cc().y() + delta * sin(cc_h));
349         this->cc().h(cc_h);
350         // get current car `cc` out of slot
351         if (this->forward())
352                 this->cc().sp(-0.1);
353         else
354                 this->cc().sp(0.1);
355         this->cc().st(this->cc().wb() / this->cc().mtr());
356         if (this->ps().right())
357                 this->cc().st(this->cc().st() * -1);
358         while (!this->left()) {
359                 while (!this->collide() && !this->left())
360                         this->cc().next();
361                 if (this->left() && !this->collide()) {
362                         break;
363                 } else {
364                         this->cc().sp(this->cc().sp() * -1);
365                         this->cc().next();
366                         this->cc().st(this->cc().st() * -1);
367                 }
368         }
369 }
370
371 PSPlanner::PSPlanner()
372 {
373 }