]> rtime.felk.cvut.cz Git - hubacji1/psp.git/blob - src/psp.cc
Move start gc by half of width only
[hubacji1/psp.git] / src / psp.cc
1 #include <cmath>
2 #include <list>
3 #include <queue>
4 #include "psp.h"
5
6 bool PSPlanner::collide()
7 {
8         std::vector<std::tuple<double, double>> bc;
9         bc.push_back(std::make_tuple(this->cc().lfx(), this->cc().lfy()));
10         bc.push_back(std::make_tuple(this->cc().lrx(), this->cc().lry()));
11         bc.push_back(std::make_tuple(this->cc().rrx(), this->cc().rry()));
12         bc.push_back(std::make_tuple(this->cc().rfx(), this->cc().rfy()));
13         bc.push_back(std::make_tuple(this->cc().lfx(), this->cc().lfy()));
14         std::vector<std::tuple<double, double>> ps;
15         ps.push_back(std::make_tuple(this->ps().x1(), this->ps().y1()));
16         ps.push_back(std::make_tuple(this->ps().x2(), this->ps().y2()));
17         ps.push_back(std::make_tuple(this->ps().x3(), this->ps().y3()));
18         ps.push_back(std::make_tuple(this->ps().x4(), this->ps().y4()));
19         return std::get<0>(::collide(bc, ps));
20 }
21
22 bool PSPlanner::forward()
23 {
24         double heading = this->ps().heading();
25         while (heading < 0) heading += 2 * M_PI;
26         if (!this->ps().parallel())
27                 heading -= M_PI / 2;
28         double h = this->gc().h();
29         while (h < 0) h += 2 * M_PI;
30         if (-0.00001 < heading - h && heading - h < 0.00001)
31                 return true;
32         else
33                 return false;
34 }
35
36 void PSPlanner::guess_gc()
37 {
38         double x = this->ps().x1();
39         double y = this->ps().y1();
40         double h = this->ps().heading();
41         double dts = + M_PI / 2; // direction to slot
42         if (this->ps().right())
43                 dts = - M_PI / 2;
44         if (this->ps().parallel()) {
45                 x += (this->gc().w() / 2 + 0.01) * cos(h + dts);
46                 x += (this->gc().dr() + 0.01) * cos(h);
47                 y += (this->gc().w() / 2 + 0.01) * sin(h + dts);
48                 y += (this->gc().dr() + 0.01) * sin(h);
49         } else {
50                 x += (this->ps().x4() - this->ps().x1()) / 2;
51                 x += (this->gc().df() + 0.01) * cos(h + dts);
52                 y += (this->ps().y4() - this->ps().y1()) / 2;
53                 y += (this->gc().df() + 0.01) * sin(h + dts);
54                 if (this->ps().right())
55                         h += M_PI / 2;
56                 else
57                         h -= M_PI / 2;
58         }
59         while (h > M_PI)
60                 h -= 2 * M_PI;
61         while (h <= -M_PI)
62                 h += 2 * M_PI;
63         this->gc().x(x);
64         this->gc().y(y);
65         this->gc().h(h);
66 }
67
68 bool PSPlanner::left()
69 {
70         double lfx = this->cc().lfx();
71         double lfy = this->cc().lfy();
72         double lrx = this->cc().lrx();
73         double lry = this->cc().lry();
74         double rrx = this->cc().rrx();
75         double rry = this->cc().rry();
76         double rfx = this->cc().rfx();
77         double rfy = this->cc().rfy();
78         double lfs = sgn(
79                 (lfx - this->ps().x1()) * (this->ps().y4() - this->ps().y1())
80                 - (lfy - this->ps().y1()) * (this->ps().x4() - this->ps().x1())
81         );
82         double lrs = sgn(
83                 (lrx - this->ps().x1()) * (this->ps().y4() - this->ps().y1())
84                 - (lry - this->ps().y1()) * (this->ps().x4() - this->ps().x1())
85         );
86         double rrs = sgn(
87                 (rrx - this->ps().x1()) * (this->ps().y4() - this->ps().y1())
88                 - (rry - this->ps().y1()) * (this->ps().x4() - this->ps().x1())
89         );
90         double rfs = sgn(
91                 (rfx - this->ps().x1()) * (this->ps().y4() - this->ps().y1())
92                 - (rfy - this->ps().y1()) * (this->ps().x4() - this->ps().x1())
93         );
94         if (this->ps().parallel())
95                 return lfs == rfs && (lfs != lrs || lfs != rrs);
96         else if (!this->forward())
97                 return lfs == rfs && (lfs != lrs || lfs != rrs);
98         else
99                 return lrs == rrs && (lrs != lfs || lrs != rfs);
100 }
101
102 bool PSPlanner::parked()
103 {
104         std::vector<std::tuple<double, double>> slot;
105         slot.push_back(std::make_tuple(this->ps().x1(), this->ps().y1()));
106         slot.push_back(std::make_tuple(this->ps().x2(), this->ps().y2()));
107         slot.push_back(std::make_tuple(this->ps().x3(), this->ps().y3()));
108         slot.push_back(std::make_tuple(this->ps().x4(), this->ps().y4()));
109         return inside(this->gc().lfx(), this->gc().lfy(), slot)
110                 && inside(this->gc().lrx(), this->gc().lry(), slot)
111                 && inside(this->gc().rrx(), this->gc().rry(), slot)
112                 && inside(this->gc().rfx(), this->gc().rfy(), slot);
113 }
114
115 std::vector<BicycleCar> PSPlanner::possible_inits(
116         unsigned int cnt,
117         double dist
118 )
119 {
120         std::vector<BicycleCar> pi;
121         this->cc().sp(this->cc().sp() * -dist);
122         this->cc().st(this->cc().st() * -1);
123         BicycleCar orig_cc(this->cc());
124         for (unsigned int i = 0; i < cnt; i++) {
125                 this->cc().next();
126                 pi.push_back(BicycleCar(this->cc()));
127         }
128         this->cc() = BicycleCar(orig_cc);
129         return pi;
130 }
131
132 // find entry
133 void PSPlanner::fe()
134 {
135         if (this->ps().parallel())
136                 return this->fe_parallel();
137         else
138                 return this->fe_perpendicular();
139 }
140
141 void PSPlanner::fe_parallel()
142 {
143         // angle for distance from "entry" corner
144         double dist_angl = this->ps().heading() + M_PI;
145         dist_angl += (this->ps().right()) ? - M_PI / 4 : + M_PI / 4;
146         // set bicycle car `bci` basic dimensions and heading
147         BicycleCar bci = BicycleCar(this->gc());
148         BicycleCar bco = BicycleCar(this->gc());
149         bci.h(this->ps().heading());
150         // move 0.01 from the "entry" corner
151         bci.x(this->ps().x4() + 0.01 * cos(dist_angl));
152         bci.y(this->ps().y4() + 0.01 * sin(dist_angl));
153         // align with parking "top" of slot (move backward)
154         dist_angl = bci.h() + M_PI;
155         bci.x(bci.x() + bci.df() * cos(dist_angl));
156         bci.y(bci.y() + bci.df() * sin(dist_angl));
157         // align with "entry" to pakring slot (move outside)
158         dist_angl = this->ps().heading();
159         dist_angl += (this->ps().right()) ? + M_PI / 2 : - M_PI / 2;
160         bci.x(bci.x() + bci.w() / 2 * cos(dist_angl));
161         bci.y(bci.y() + bci.w() / 2 * sin(dist_angl));
162         // BFS - init all starts
163         // see https://courses.cs.washington.edu/courses/cse326/03su/homework/hw3/bfs.html
164         double dist_diag = sqrt(pow(bci.w() / 2, 2) + pow(bci.df(), 2));
165         if (this->ps().right())
166                 dist_angl = atan2(bci.y() - bci.rfy(), bci.x() - bci.rfx());
167         else
168                 dist_angl = atan2(bci.y() - bci.lfy(), bci.x() - bci.lfx());
169         double DIST_ANGL = dist_angl;
170         std::queue<BicycleCar, std::list<BicycleCar>> q;
171         while (
172                 (
173                         this->ps().right()
174                         && dist_angl < DIST_ANGL + 3 * M_PI / 4
175                 )
176                 || (
177                         !this->ps().right()
178                         && dist_angl > DIST_ANGL - 3 * M_PI / 4
179                 )
180         ) {
181                 this->cc() = BicycleCar(bci);
182                 if (this->ps().right()) {
183                         this->cc().x(bci.rfx() + dist_diag * cos(dist_angl));
184                         this->cc().y(bci.rfy() + dist_diag * sin(dist_angl));
185                 } else {
186                         this->cc().x(bci.lfx() + dist_diag * cos(dist_angl));
187                         this->cc().y(bci.lfy() + dist_diag * sin(dist_angl));
188                 }
189                 this->cc().h(this->ps().heading() + dist_angl - DIST_ANGL);
190                 if (!this->collide()) {
191                         this->cc().st(this->cc().wb() / this->cc().mtr());
192                         if (!this->ps().right())
193                                 this->cc().st(this->cc().st() * -1);
194                         this->cc().sp(-0.01);
195                         q.push(BicycleCar(this->cc()));
196                 }
197                 dist_angl += (this->ps().right()) ? + 0.01 : - 0.01;
198         }
199         // BFS - find entry current car `cc` and corresponding goal car `gc`
200         unsigned int iter_cntr;
201         while (!q.empty() && iter_cntr < 9) {
202                 this->cc() = BicycleCar(q.front());
203                 q.pop();
204                 while (
205                         !this->collide()
206                         && (std::abs(
207                                 this->cc().h() - this->ps().heading()
208                         ) < M_PI / 2)
209                 )
210                         this->cc().next();
211                 this->cc().sp(this->cc().sp() * -1);
212                 this->cc().next();
213                 this->gc() = BicycleCar(this->cc());
214                 if (this->parked())
215                         goto successfinish;
216                 this->cc().st(this->cc().st() * -1);
217                 q.push(BicycleCar(this->cc()));
218                 if (sgn(this->cc().st()) == sgn(q.front().st()))
219                         iter_cntr++;
220         }
221         // fallback to fer
222         this->gc() = BicycleCar(bco);
223 successfinish:
224         return this->fer_parallel();
225 }
226
227 void PSPlanner::fe_perpendicular()
228 {
229         // TODO Try multiple angles when going from parking slot.
230         //
231         //      Do not use just the maximum steer angle. Test angles
232         //      until the whole current car `cc` is out of the parking
233         //      slot `ps`.
234         //
235         //      Another approach could be testing angles from the
236         //      beginning of the escape parkig slot maneuver.
237         return fer_perpendicular();
238 }
239
240 void PSPlanner::fer()
241 {
242         if (this->ps().parallel())
243                 return this->fer_parallel();
244         else
245                 return this->fer_perpendicular();
246 }
247
248 void PSPlanner::fer_parallel()
249 {
250         this->cc().st(this->cc().wb() / this->cc().mtr());
251         if (!this->ps().right())
252                 this->cc().st(this->cc().st() * -1);
253         this->cc().sp(0.01);
254         while (!this->left()) {
255                 while (!this->collide() && !this->left())
256                         this->cc().next();
257                 if (this->left() && !this->collide()) {
258                         break;
259                 } else {
260                         this->cc().sp(this->cc().sp() * -1);
261                         this->cc().next();
262                         this->cc().st(this->cc().st() * -1);
263                 }
264         }
265 }
266
267 void PSPlanner::fer_perpendicular()
268 {
269         bool delta_use[] = {true, true, true};
270         double cc_h = this->cc().h();
271         double x;
272         double y;
273         // check inner radius
274         if (this->forward()) {
275                 x = this->ps().x1();
276                 y = this->ps().y1();
277         } else {
278                 x = this->ps().x4();
279                 y = this->ps().y4();
280         }
281         double x1;
282         double y1;
283         if (this->ps().right()) {
284                 x1 = this->cc().ccr().x();
285                 y1 = this->cc().ccr().y();
286         } else {
287                 x1 = this->cc().ccl().x();
288                 y1 = this->cc().ccl().y();
289         }
290         double IR = this->cc().iradi();
291         double a = 1;
292         double b;
293         if (this->forward())
294                 b = (x - x1) * 2 * cos(cc_h) + (y - y1) * 2 * sin(cc_h);
295         else
296                 b = (x1 - x) * 2 * cos(cc_h) + (y1 - y) * 2 * sin(cc_h);
297         double c = pow(x - x1, 2) + pow(y - y1, 2) - pow(IR, 2);
298         double D = pow(b, 2) - 4 * a * c;
299         double delta;
300         delta = -b - sqrt(D);
301         delta /= 2 * a;
302         double delta_1 = delta;
303         if (D < 0)
304                 delta_use[0] = false;
305         // check outer radius
306         if (this->forward()) {
307                 x = this->ps().x4();
308                 y = this->ps().y4();
309         } else {
310                 x = this->ps().x1();
311                 y = this->ps().y1();
312         }
313         IR = this->cc().ofradi();
314         a = 1;
315         if (this->forward())
316                 b = (x - x1) * 2 * cos(cc_h) + (y - y1) * 2 * sin(cc_h);
317         else
318                 b = (x1 - x) * 2 * cos(cc_h) + (y1 - y) * 2 * sin(cc_h);
319         c = pow(x - x1, 2) + pow(y - y1, 2) - pow(IR, 2);
320         D = pow(b, 2) - 4 * a * c;
321         if (this->forward()) {
322                 delta = -b + sqrt(D);
323                 delta /= 2 * a;
324         }
325         double delta_2 = delta;
326         if (D < 0)
327                 delta_use[1] = false;
328         delta = -b - sqrt(D);
329         delta /= 2 * a;
330         double delta_3 = delta;
331         if (D < 0)
332                 delta_use[2] = false;
333         if (delta_use[0] && delta_use[1] && delta_use[22])
334                 delta = std::max(delta_1, std::max(delta_2, delta_3));
335         else if (delta_use[0] && delta_use[1])
336                 delta = std::max(delta_1, delta_2);
337         else if (delta_use[0] && delta_use[2])
338                 delta = std::max(delta_1, delta_3);
339         else if (delta_use[1] && delta_use[2])
340                 delta = std::max(delta_2, delta_3);
341         else if (delta_use[0])
342                 delta = delta_1;
343         else if (delta_use[1])
344                 delta = delta_2;
345         else if (delta_use[2])
346                 delta = delta_3;
347         else
348                 return;
349         // current car `cc` can get out of slot with max steer
350         this->cc().x(this->cc().x() + delta * cos(cc_h));
351         this->cc().y(this->cc().y() + delta * sin(cc_h));
352         this->cc().h(cc_h);
353         // get current car `cc` out of slot
354         if (this->forward())
355                 this->cc().sp(-0.1);
356         else
357                 this->cc().sp(0.1);
358         this->cc().st(this->cc().wb() / this->cc().mtr());
359         if (this->ps().right())
360                 this->cc().st(this->cc().st() * -1);
361         while (!this->left()) {
362                 while (!this->collide() && !this->left())
363                         this->cc().next();
364                 if (this->left() && !this->collide()) {
365                         break;
366                 } else {
367                         this->cc().sp(this->cc().sp() * -1);
368                         this->cc().next();
369                         this->cc().st(this->cc().st() * -1);
370                 }
371         }
372 }
373
374 PSPlanner::PSPlanner()
375 {
376 }