]> rtime.felk.cvut.cz Git - hubacji1/iamcar.git/blob - decision_control/slotplanner.cc
Update fipr
[hubacji1/iamcar.git] / decision_control / slotplanner.cc
1 /*
2 This file is part of I am car.
3
4 I am car is free software: you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation, either version 3 of the License, or
7 (at your option) any later version.
8
9 I am car is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 GNU General Public License for more details.
13
14 You should have received a copy of the GNU General Public License
15 along with I am car. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <algorithm>
19 #include <cmath>
20 #include <list>
21 #include <queue>
22 #include "slotplanner.h"
23
24 ParallelSlot::ParallelSlot()
25 {}
26
27 // getter
28 std::vector<std::vector<RRTNode *>> &ParallelSlot::cusp()
29 {
30         return this->cusp_;
31 }
32
33 float ParallelSlot::DH() const
34 {
35         return this->DH_;
36 }
37
38 PolygonObstacle &ParallelSlot::slot()
39 {
40         return this->slot_;
41 }
42
43 float ParallelSlot::slotHeading()
44 {
45         float y0 = this->slot().bnodes()[0]->y();
46         float x0 = this->slot().bnodes()[0]->x();
47         float y3 = this->slot().bnodes()[3]->y();
48         float x3 = this->slot().bnodes()[3]->x();
49         float dy = y0 - y3;
50         float dx = x0 - x3;
51         return atan2(dy, dx);
52 }
53
54 SlotSide ParallelSlot::slotSide()
55 {
56         if (!this->slotSide_) {
57                 float y0 = this->slot().bnodes()[0]->y();
58                 float x0 = this->slot().bnodes()[0]->x();
59                 float y1 = this->slot().bnodes()[1]->y();
60                 float x1 = this->slot().bnodes()[1]->x();
61                 float y3 = this->slot().bnodes()[3]->y();
62                 float x3 = this->slot().bnodes()[3]->x();
63                 if (sgn((x1 - x3) * (y0 - y3) - (y1 - y3) * (x0 - x3)) < 0)
64                         this->slotSide_ = LEFT;
65                 else
66                         this->slotSide_ = RIGHT;
67         }
68         return this->slotSide_;
69 }
70
71 SlotType ParallelSlot::slotType()
72 {
73         if (!this->slotType_) {
74                 float d1 = EDIST(
75                         this->slot().bnodes()[0],
76                         this->slot().bnodes()[1]
77                 );
78                 float d2 = EDIST(
79                         this->slot().bnodes()[1],
80                         this->slot().bnodes()[2]
81                 );
82                 if (d1 > d2)
83                         this->slotType_ = PERPENDICULAR;
84                 else
85                         this->slotType_ = PARALLEL;
86         }
87         return this->slotType_;
88 }
89
90 // setter
91 void ParallelSlot::DH(float dh)
92 {
93         this->DH_ = dh;
94 }
95
96 // other
97 void ParallelSlot::fip()
98 {
99         // see https://courses.cs.washington.edu/courses/cse326/03su/homework/hw3/bfs.html
100         // RRTNode.s() works as iteration level
101         std::queue<BicycleCar *, std::list<BicycleCar *>> q;
102
103         // TODO add init nodes
104         // for now just copy fpose()
105         bool left = false; // right parking slot
106         float di = -1;
107         // new pose for parallel parking to right slot
108         float tnx;
109         float tny;
110         float nx;
111         float ny;
112         // temporary tnx is angle
113         tnx = this->slotHeading() + M_PI;
114         if (this->slotSide() == RIGHT)
115                 tnx -= M_PI / 4;
116         else
117                 tnx += M_PI / 4;
118         nx = this->fposecenter()->x() + 0.01 * cos(tnx);
119         ny = this->fposecenter()->y() + 0.01 * sin(tnx);
120         BicycleCar *CC = new BicycleCar(nx, ny, this->slotHeading());
121         // move left by car width / 2
122         tnx = CC->x() + CC->width() / 2 * cos(CC->h() + M_PI / 2);
123         tny = CC->y() + CC->width() / 2 * sin(CC->h() + M_PI / 2);
124         // move down
125         nx = tnx - (CC->length() + CC->wheelbase()) / 2 * cos(CC->h());
126         ny = tny - (CC->length() + CC->wheelbase()) / 2 * sin(CC->h());
127         if (this->slotSide() == LEFT) {
128                 std::cerr << "left PS" << std::endl;
129                 left = true;
130                 di = 1;
131                 // move right by car width / 2
132                 tnx = CC->x() + CC->width() / 2 * cos(CC->h() - M_PI / 2);
133                 tny = CC->y() + CC->width() / 2 * sin(CC->h() - M_PI / 2);
134                 // move down
135                 nx = tnx - (CC->length() + CC->wheelbase()) / 2 * cos(CC->h());
136                 ny = tny - (CC->length() + CC->wheelbase()) / 2 * sin(CC->h());
137         }
138         BicycleCar *B = new BicycleCar(nx, ny, CC->h());
139         this->DH(di * 0.01 / CC->out_radi());
140         BicycleCar *c;
141         int i = 0;
142         c = B->move(CC, -i * di * 0.01 / CC->diag_radi());
143         while (!this->slot().collide(c->frame())) {
144                 q.push(c);
145                 c = B->move(CC, -i * di * 0.01 / CC->diag_radi());
146                 i += 1;
147         }
148         delete c; // not in q and collide
149         // BFS
150         while (!q.empty()) {
151                 c = q.front();
152                 q.pop();
153                 if (this->isInside(c)) {
154                         goto createcuspandfinish;
155                 } else if (c->s() < 9) {
156                         BicycleCar *cc = this->flnc(c);
157                         cc->s(c->s() + 1);
158                         cc->bcparent(c);
159                         q.push(cc);
160                 } else {
161                         delete c; // not in q and collide
162                 }
163         }
164         return;
165 createcuspandfinish:
166         std::vector<RRTNode *> cusp;
167         while (c) {
168                 cusp.push_back(new RRTNode(c->x(), c->y(), c->h()));
169                 c = c->bcparent();
170         }
171         std::reverse(cusp.begin(), cusp.end());
172         this->cusp().push_back(cusp);
173         std::queue<BicycleCar *, std::list<BicycleCar *>> empty;
174         std::swap(q, empty);
175 }
176
177 void ParallelSlot::fipr(BicycleCar *B)
178 {
179         // TODO for right parallel parking also
180         // it's only for lpar scenario now
181         std::vector<RRTNode *> cusp;
182         cusp.push_back(new RRTNode(B->x(), B->y(), B->h()));
183         // just copied from fip()
184         int di = 1;
185         if (this->slotSide() == LEFT)
186                 di = -1;
187         this->DH(di * 0.01 / B->out_radi());
188         BicycleCar *c;
189         c = this->flncr(B);
190         while (this->slot().collide(new RRTNode(c->lfx(), c->lfy(), 0))) {
191                 cusp.push_back(new RRTNode(c->x(), c->y(), c->h()));
192                 BicycleCar *cc = this->flncr(c);
193                 cc->s(c->s() + 1);
194                 delete c;
195                 c = cc;
196         }
197         cusp.push_back(new RRTNode(c->x(), c->y(), c->h()));
198         std::reverse(cusp.begin(), cusp.end());
199         this->cusp().push_back(cusp);
200 }
201
202 BicycleCar *ParallelSlot::flnc(BicycleCar *B)
203 {
204         // TODO find last not colliding
205         // for now just copy flast()
206         RRTNode *cc;
207         if (int(B->s()) % 2 == 0) {
208                 cc = BicycleCar(B->x(), B->y(), B->h()).ccr();
209         } else {
210                 cc = BicycleCar(B->x(), B->y(), B->h()).ccl();
211         }
212         float di = -1;
213         if (this->slotSide() == LEFT)
214                 di = 1;
215         BicycleCar *p;
216         int i = 1;
217         p = B->move(cc, i * di * this->DH());
218         while (!this->slot().collide(p->frame())) {
219                 delete p;
220                 i += 10;
221                 p = B->move(cc, i * this->DH());
222         }
223         i -= 10;
224         p = B->move(cc, i * di * this->DH());
225         while (!this->slot().collide(p->frame())) {
226                 if (this->isInside(p)) {
227                         i += 1;
228                         break;
229                 }
230                 delete p;
231                 i += 1;
232                 p = B->move(cc, i * this->DH());
233         }
234         delete p;
235         return B->move(cc, (i - 1) * this->DH());
236 }
237
238 BicycleCar *ParallelSlot::flncr(BicycleCar *B)
239 {
240         // TODO find last not colliding
241         // for now just copy flast()
242         RRTNode *cc;
243         if (int(B->s()) % 2 == 0)
244                 cc = BicycleCar(B->x(), B->y(), B->h()).ccr();
245         else
246                 cc = BicycleCar(B->x(), B->y(), B->h()).ccl();
247         BicycleCar *p;
248         int i = 1;
249         p = B->move(cc, i * this->DH());
250         while (
251                 !this->slot().collide(p->frame())
252                 && this->slot().collide(new RRTNode(p->lfx(), p->lfy(), 0))
253         ) {
254                 delete p;
255                 i += 10;
256                 p = B->move(cc, i * this->DH());
257         }
258         i -= 10;
259         p = B->move(cc, i * this->DH());
260         while (!this->slot().collide(p->frame())) {
261                 if(!this->slot().collide(new RRTNode(p->lfx(), p->lfy(), 0))) {
262                         i += 1;
263                         break;
264                 }
265                 //if (this->DH() < 0 && p->lfx() >= 0) {
266                 //        i += 1;
267                 //        break;
268                 //}
269                 delete p;
270                 i += 1;
271                 p = B->move(cc, i * this->DH());
272         }
273         delete p;
274         return B->move(cc, (i - 1) * this->DH());
275 }
276
277 RRTNode *ParallelSlot::fposecenter()
278 {
279         return this->slot().bnodes().front();
280 }
281
282 bool ParallelSlot::flast(
283         RRTNode *P,
284         bool right,
285         int il,
286         std::vector<RRTNode *> &cusp
287 )
288 {
289         BicycleCar *B = new BicycleCar(P->x(), P->y(), P->h());
290         RRTNode *cc;
291         if (right)
292                 cc = BicycleCar(B->x(), B->y(), B->h()).ccr();
293         else
294                 cc = BicycleCar(B->x(), B->y(), B->h()).ccl();
295         BicycleCar *p;
296         int i = 1;
297         p = B->move(cc, i * this->DH());
298         while (!this->slot().collide(p->frame())
299                         && (
300                                 (this->DH() > 0 && p->x() <= 0)
301                                 || (this->DH() < 0 && p->x() >= 0)
302                         )) {
303                 delete p;
304                 i += 10;
305                 p = B->move(cc, i * this->DH());
306         }
307         i -= 10;
308         p = B->move(cc, i * this->DH());
309         while (!this->slot().collide(p->frame())
310                         && (
311                                 (this->DH() > 0 && p->x() <= 0)
312                                 || (this->DH() < 0 && p->x() >= 0)
313                         )) {
314                 if (this->DH() > 0 && p->rfx() <= 0 && p->rrx() <= 0) {
315                         i += 1;
316                         break;
317                 }
318                 if (this->DH() < 0 && p->lfx() >= 0 && p->lrx() >= 0) {
319                         i += 1;
320                         break;
321                 }
322                 delete p;
323                 i += 1;
324                 p = B->move(cc, i * this->DH());
325         }
326         delete p;
327         p = B->move(cc, (i - 1) * this->DH());
328         if (this->DH() > 0 && p->rfx() <= 0 && p->rrx() <= 0) {
329                 cusp.push_back(p);
330                 return true;
331         } else if (this->DH() < 0 && p->lfx() >= 0 && p->lrx() >= 0) {
332                 cusp.push_back(p);
333                 return true;
334         } else if (il < 8) {
335                 cusp.push_back(p);
336                 return this->flast(p, !right, il + 1, cusp);
337         }
338         return false;
339 }
340
341 void ParallelSlot::fpose()
342 {
343         bool left = false; // right parking slot
344         float di = -1;
345         BicycleCar *CC = new BicycleCar(
346                 this->fposecenter()->x(),
347                 this->fposecenter()->y() - 0.01,
348                 this->slotHeading()
349         );
350         BicycleCar *B = new BicycleCar(
351                 CC->x() - CC->width() / 2,
352                 CC->y() - (CC->length() + CC->wheelbase()) / 2,
353                 this->slotHeading()
354         );
355         if (this->slot().bnodes()[0]->x() > this->slot().bnodes()[1]->x()) {
356                 left = true;
357                 di = 1;
358                 delete B;
359                 B = new BicycleCar(
360                         CC->x() + CC->width() / 2,
361                         CC->y() - (CC->length() + CC->wheelbase()) / 2,
362                         this->slotHeading()
363                 );
364         }
365         this->DH(di * 0.01 / CC->out_radi());
366         BicycleCar *p;
367         int i = 0;
368         p = B->move(CC, -i * di * 0.01 / CC->diag_radi());
369         while (!this->slot().collide(p->frame())) {
370                 std::vector<RRTNode *> tmpcusp;
371                 tmpcusp.push_back(new BicycleCar(p->x(), p->y(), p->h()));
372                 if (this->flast(p, left, 0, tmpcusp)) {
373                         this->cusp().push_back(tmpcusp);
374                         return;
375                 }
376                 i += 1;
377                 delete p;
378                 p = B->move(CC, -i * di * 0.01 / CC->diag_radi());
379         }
380 }
381
382 BicycleCar *ParallelSlot::getFP()
383 {
384         float x = this->slot().bnodes()[3]->x();
385         float y = this->slot().bnodes()[3]->y();
386         float h = this->slotHeading();
387         float nx;
388         float ny;
389         if (this->slotSide() == LEFT) {
390                 nx = x + BCAR_WIDTH / 2 * cos(h + M_PI / 2);
391                 ny = y + BCAR_WIDTH / 2 * sin(h + M_PI / 2);
392         } else {
393                 nx = x + BCAR_WIDTH / 2 * cos(h - M_PI / 2);
394                 ny = y + BCAR_WIDTH / 2 * sin(h - M_PI / 2);
395         }
396         x = nx + ((BCAR_LENGTH - BCAR_WHEEL_BASE) / 2 + 0.01) * cos(h);
397         y = ny + ((BCAR_LENGTH - BCAR_WHEEL_BASE) / 2 + 0.01) * sin(h);
398         return new BicycleCar(x, y, h);
399 }
400
401 bool ParallelSlot::isInside(BicycleCar *c)
402 {
403         bool inside = true;
404         RRTNode *tmpn;
405         tmpn = new RRTNode(c->lfx(), c->lfy(), 0);
406         if (!this->slot().collide(tmpn))
407                 inside = false;
408         delete tmpn;
409         tmpn = new RRTNode(c->lrx(), c->lry(), 0);
410         if (!this->slot().collide(tmpn))
411                 inside = false;
412         delete tmpn;
413         tmpn = new RRTNode(c->rrx(), c->rry(), 0);
414         if (!this->slot().collide(tmpn))
415                 inside = false;
416         delete tmpn;
417         tmpn = new RRTNode(c->rfx(), c->rfy(), 0);
418         if (!this->slot().collide(tmpn))
419                 inside = false;
420         delete tmpn;
421         return inside;
422 }
423
424 struct SamplingInfo ParallelSlot::getSamplingInfo()
425 {
426         struct SamplingInfo si;
427         BicycleCar *CC = new BicycleCar(
428                 this->fposecenter()->x(),
429                 this->fposecenter()->y() - 0.01,
430                 this->slotHeading()
431         );
432         si.x = this->slot().bnodes()[0]->x();
433         si.y = this->slot().bnodes()[0]->y();
434         si.r = CC->diag_radi();
435         si.h = this->slotHeading() - acos(EDIST( // TODO generalize
436                 this->slot().bnodes()[0],
437                 this->slot().bnodes()[1]
438         ) / BCAR_LENGTH);
439         return si;
440 }