]> rtime.felk.cvut.cz Git - hercules2020/kcf.git/commitdiff
Merge remote-tracking branch 'upstream/master' into rotation
authorShanigen <vkaraf@gmail.com>
Thu, 13 Sep 2018 18:38:06 +0000 (20:38 +0200)
committerShanigen <vkaraf@gmail.com>
Thu, 13 Sep 2018 18:38:06 +0000 (20:38 +0200)
Big batch does not work.

main_vot.cpp
src/CMakeLists.txt
src/fft_fftw.cpp
src/kcf.cpp
src/kcf.h
src/threadctx.hpp

index 4a8c99e38adffad8b9041712e7548339e37c4288..528d263e678a3fc3110856a1ae5bd53c13cc1530 100644 (file)
@@ -9,11 +9,11 @@
 double calcAccuracy(std::string line, cv::Rect bb_rect, cv::Rect &groundtruth_rect)
 {
     std::vector<float> numbers;
-    std::istringstream s( line );
+    std::istringstream s(line);
     float x;
     char ch;
 
-    while (s >> x){
+    while (s >> x) {
         numbers.push_back(x);
         s >> ch;
     }
@@ -22,52 +22,56 @@ double calcAccuracy(std::string line, cv::Rect bb_rect, cv::Rect &groundtruth_re
     double y1 = std::min(numbers[1], std::min(numbers[3], std::min(numbers[5], numbers[7])));
     double y2 = std::max(numbers[1], std::max(numbers[3], std::max(numbers[5], numbers[7])));
 
-    groundtruth_rect = cv::Rect(x1, y1, x2-x1, y2-y1);
+    groundtruth_rect = cv::Rect(x1, y1, x2 - x1, y2 - y1);
 
     double rects_intersection = (groundtruth_rect & bb_rect).area();
     double rects_union = (groundtruth_rect | bb_rect).area();
-    double accuracy = rects_intersection/rects_union;
+    double accuracy = rects_intersection / rects_union;
 
     return accuracy;
 }
 
 int main(int argc, char *argv[])
 {
-    //load region, images and prepare for output
+    // load region, images and prepare for output
     std::string region, images, output;
     int visualize_delay = -1, fit_size_x = -1, fit_size_y = -1;
     KCF_Tracker tracker;
 
     while (1) {
         int option_index = 0;
-        static struct option long_options[] = {
-            {"debug",     no_argument,       0,  'd' },
-            {"help",      no_argument,       0,  'h' },
-            {"output",    required_argument, 0,  'o' },
-            {"visualize", optional_argument, 0,  'v' },
-            {"fit",       optional_argument, 0,  'f' },
-            {0,           0,                 0,  0 }
-        };
-
-        int c = getopt_long(argc, argv, "dhv::f::o:",
-                        long_options, &option_index);
-        if (c == -1)
-            break;
+        static struct option long_options[] = {{"debug", no_argument, 0, 'd'},
+                                               {"visualDebug", no_argument, 0, 'p'},
+                                               {"help", no_argument, 0, 'h'},
+                                               {"output", required_argument, 0, 'o'},
+                                               {"visualize", optional_argument, 0, 'v'},
+                                               {"fit", optional_argument, 0, 'f'},
+                                               {0, 0, 0, 0}};
+
+        int c = getopt_long(argc, argv, "dphv::f::o:", long_options, &option_index);
+        if (c == -1) break;
 
         switch (c) {
         case 'd':
             tracker.m_debug = true;
             break;
+        case 'p':
+            tracker.m_visual_debug = true;
+            visualize_delay = 500;
+            break;
         case 'h':
-            std::cerr << "Usage: \n"
-                      << argv[0] << " [options]\n"
-                      << argv[0] << " [options] <directory>\n"
-                      << argv[0] << " [options] <path/to/region.txt or groundtruth.txt> <path/to/images.txt> [path/to/output.txt]\n"
-                      << "Options:\n"
-                      << " --visualize | -v[delay_ms]\n"
-                      << " --output    | -o <output.txt>\n"
-                      << " --debug     | -d\n"
-                      << " --fit       | -f[WxH]\n";
+            std::cerr
+                << "Usage: \n"
+                << argv[0] << " [options]\n"
+                << argv[0] << " [options] <directory>\n"
+                << argv[0]
+                << " [options] <path/to/region.txt or groundtruth.txt> <path/to/images.txt> [path/to/output.txt]\n"
+                << "Options:\n"
+                << " --visualize | -v[delay_ms]\n"
+                << " --output    | -o <output.txt>\n"
+                << " --debug     | -d\n"
+                << " --visualDebug | -p\n"
+                << " --fit       | -f[WxH]\n";
             exit(0);
             break;
         case 'o':
@@ -84,7 +88,7 @@ int main(int argc, char *argv[])
             sizes.erase(0, pos + delimiter.length());
 
             fit_size_x = stol(first_argument);
-           fit_size_y = stol(sizes);
+            fit_size_y = stol(sizes);
             break;
         }
     }
@@ -99,8 +103,7 @@ int main(int argc, char *argv[])
     case 0:
         region = access("groundtruth.txt", F_OK) == 0 ? "groundtruth.txt" : "region.txt";
         images = "images.txt";
-        if (output.empty())
-            output = "output.txt";
+        if (output.empty()) output = "output.txt";
         break;
     case 2:
         // Fall through
@@ -130,7 +133,7 @@ int main(int argc, char *argv[])
 
     cv::Mat image;
 
-    //img = firts frame, initPos = initial position in the first frame
+    // img = firts frame, initPos = initial position in the first frame
     cv::Rect init_rect = vot_io.getInitRectangle();
     vot_io.outputBoundingBox(init_rect);
     vot_io.getNextImage(image);
@@ -141,7 +144,7 @@ int main(int argc, char *argv[])
     cv::Rect bb_rect;
     double avg_time = 0., sum_accuracy = 0.;
     int frames = 0;
-    while (vot_io.getNextImage(image) == 1){
+    while (vot_io.getNextImage(image) == 1) {
         double time_profile_counter = cv::getCPUTickCount();
         tracker.track(image);
         time_profile_counter = cv::getCPUTickCount() - time_profile_counter;
@@ -151,7 +154,7 @@ int main(int argc, char *argv[])
         frames++;
 
         bb = tracker.getBBox();
-        bb_rect = cv::Rect(bb.cx - bb.w/2., bb.cy - bb.h/2., bb.w, bb.h);
+        bb_rect = cv::Rect(bb.cx - bb.w / 2., bb.cy - bb.h / 2., bb.w, bb.h);
         vot_io.outputBoundingBox(bb_rect);
 
         if (groundtruth_stream.is_open()) {
@@ -160,8 +163,7 @@ int main(int argc, char *argv[])
 
             cv::Rect groundtruthRect;
             double accuracy = calcAccuracy(line, bb_rect, groundtruthRect);
-            if (visualize_delay >= 0)
-                cv::rectangle(image, groundtruthRect, CV_RGB(255, 0,0), 1);
+            if (visualize_delay >= 0) cv::rectangle(image, groundtruthRect, CV_RGB(255, 0, 0), 1);
             std::cout << ", accuracy: " << accuracy;
             sum_accuracy += accuracy;
         }
@@ -169,32 +171,46 @@ int main(int argc, char *argv[])
         std::cout << std::endl;
 
         if (visualize_delay >= 0) {
-            cv::rectangle(image, bb_rect, CV_RGB(0,255,0), 2);
+            cv::Point pt(bb.cx, bb.cy);
+            cv::Size size(bb.w, bb.h);
+            cv::RotatedRect rotatedRectangle(pt, size, bb.a);
+
+            cv::Point2f vertices[4];
+            rotatedRectangle.points(vertices);
+
+            for (int i = 0; i < 4; i++)
+                cv::line(image, vertices[i], vertices[(i + 1) % 4], cv::Scalar(0, 255, 0), 2);
+            //             cv::rectangle(image, cv::Rect(bb.cx - bb.w/2., bb.cy - bb.h/2., bb.w, bb.h), CV_RGB(0,255,0),
+            //             2);
+            std::string angle = std::to_string(bb.a);
+            angle.erase(angle.find_last_not_of('0') + 1, std::string::npos);
+            angle.erase(angle.find_last_not_of('.') + 1, std::string::npos);
+            cv::putText(image, "Frame: " + std::to_string(frames) + " " + angle + " angle",
+                        cv::Point(0, image.rows - 1), cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 255, 0), 2);
             cv::imshow("output", image);
             int ret = cv::waitKey(visualize_delay);
-            if (visualize_delay > 0 && ret != -1 && ret != 255)
-                break;
+            if (visualize_delay > 0 && ret != -1 && ret != 255) break;
         }
 
-//        std::stringstream s;
-//        std::string ss;
-//        int countTmp = frames;
-//        s << "imgs" << "/img" << (countTmp/10000);
-//        countTmp = countTmp%10000;
-//        s << (countTmp/1000);
-//        countTmp = countTmp%1000;
-//        s << (countTmp/100);
-//        countTmp = countTmp%100;
-//        s << (countTmp/10);
-//        countTmp = countTmp%10;
-//        s << (countTmp);
-//        s << ".jpg";
-//        s >> ss;
-//        //set image output parameters
-//        std::vector<int> compression_params;
-//        compression_params.push_back(CV_IMWRITE_JPEG_QUALITY);
-//        compression_params.push_back(90);
-//        cv::imwrite(ss.c_str(), image, compression_params);
+        //        std::stringstream s;
+        //        std::string ss;
+        //        int countTmp = frames;
+        //        s << "imgs" << "/img" << (countTmp/10000);
+        //        countTmp = countTmp%10000;
+        //        s << (countTmp/1000);
+        //        countTmp = countTmp%1000;
+        //        s << (countTmp/100);
+        //        countTmp = countTmp%100;
+        //        s << (countTmp/10);
+        //        countTmp = countTmp%10;
+        //        s << (countTmp);
+        //        s << ".jpg";
+        //        s >> ss;
+        //        //set image output parameters
+        //        std::vector<int> compression_params;
+        //        compression_params.push_back(CV_IMWRITE_JPEG_QUALITY);
+        //        compression_params.push_back(90);
+        //        cv::imwrite(ss.c_str(), image, compression_params);
     }
 
     std::cout << "Average processing speed: " << avg_time/frames <<  "ms (" << 1./(avg_time/frames)*1000 << " fps)";
index 27ca0a93fddd9666d6fc60918784a4a41941b99c..901f0dcae82048da05644889a0e8a338a58e1152 100644 (file)
@@ -91,9 +91,9 @@ set_target_properties(kcf PROPERTIES VERSION 1.0.0 SOVERSION 1)
 IF(FFT STREQUAL "fftw")
   target_link_libraries(kcf ${FFTW_LDFLAGS})
   IF(OPENMP)
-    target_link_libraries(kcf fftw3_omp)
+    target_link_libraries(kcf fftw3f_omp)
   ELSEIF(NOT ASYNC)
-    target_link_libraries(kcf fftw3_threads)
+    target_link_libraries(kcf fftw3f_threads)
   ENDIF()
 ENDIF() #FFTW
 
index ee1335ba710ec252aead19045b582155a742aaeb..a3108844ad22a70394a46e72dbdc35563bda4621 100644 (file)
@@ -6,13 +6,17 @@
 #include <omp.h>
 #endif
 
-#if !defined(ASYNC) && !defined(OPENMP) && !defined(CUFFTW)
-#define FFTW_PLAN_WITH_THREADS() fftw_plan_with_nthreads(4);
+#if (defined(BIG_BATCH) && !defined(CUFFTW)) || (!defined(ASYNC) && !defined(OPENMP) && !defined(CUFFTW))
+#define FFTW_PLAN_WITH_THREADS() fftwf_plan_with_nthreads(4);
+#define FFTW_INIT_THREAD() fftwf_init_threads();
+#define FFTW_CLEAN_THREADS() fftwf_cleanup_threads();
 #else
 #define FFTW_PLAN_WITH_THREADS()
+#define FFTW_INIT_THREAD()
+#define FFTW_CLEAN_THREADS()
 #endif
 
-Fftw::Fftw(){}
+Fftw::Fftw() {}
 
 void Fftw::init(unsigned width, unsigned height, unsigned num_of_feats, unsigned num_of_scales, bool big_batch_mode)
 {
@@ -22,20 +26,20 @@ void Fftw::init(unsigned width, unsigned height, unsigned num_of_feats, unsigned
     m_num_of_scales = num_of_scales;
     m_big_batch_mode = big_batch_mode;
 
-#if (!defined(ASYNC) && !defined(CUFFTW)) && defined(OPENMP)
-    fftw_init_threads();
-#endif // OPENMP
-
 #ifndef CUFFTW
     std::cout << "FFT: FFTW" << std::endl;
 #else
     std::cout << "FFT: cuFFTW" << std::endl;
 #endif
-    fftwf_cleanup();
+
+     FFTW_INIT_THREAD();
+
     // FFT forward one scale
     {
         cv::Mat in_f = cv::Mat::zeros(int(m_height), int(m_width), CV_32FC1);
         ComplexMat out_f(int(m_height), m_width / 2 + 1, 1);
+
+        FFTW_PLAN_WITH_THREADS();
         plan_f = fftwf_plan_dft_r2c_2d(int(m_height), int(m_width), reinterpret_cast<float *>(in_f.data),
                                        reinterpret_cast<fftwf_complex *>(out_f.get_p_data()), FFTW_PATIENT);
     }
@@ -245,4 +249,5 @@ Fftw::~Fftw()
         fftwf_destroy_plan(plan_fw_all_scales);
         fftwf_destroy_plan(plan_i_1ch_all_scales);
     }
+    FFTW_CLEAN_THREADS();
 }
index c6b5f649932b552879909366597a77b8723400e1..b32532766901e76e536e9d7d7ca5f08e10518c03 100644 (file)
@@ -19,7 +19,7 @@
 #endif // OPENMP
 
 #define DEBUG_PRINT(obj)                                                                                               \
-    if (m_debug) {                                                                                                     \
+    if (m_debug || m_visual_debug) {                                                                                   \
         std::cout << #obj << " @" << __LINE__ << std::endl << (obj) << std::endl;                                      \
     }
 #define DEBUG_PRINTM(obj)                                                                                              \
@@ -122,24 +122,31 @@ void KCF_Tracker::init(cv::Mat &img, const cv::Rect &bbox, int fit_size_x, int f
     p_roi.width = p_windows_size.width / p_cell_size;
     p_roi.height = p_windows_size.height / p_cell_size;
 
-    p_num_of_feats = 31;
-    if (m_use_color) p_num_of_feats += 3;
-    if (m_use_cnfeat) p_num_of_feats += 10;
-
     p_scales.clear();
-    if (m_use_scale)
+    if (m_use_scale) {
         for (int i = -int(p_num_scales) / 2; i <= int(p_num_scales) / 2; ++i)
             p_scales.push_back(std::pow(p_scale_step, i));
-    else
+    } else {
         p_scales.push_back(1.);
+        p_num_scales = 1;
+    }
+
+    if (m_use_angle) {
+        for (int i = p_angle_min; i <= p_angle_max; i += p_angle_step)
+            p_angles.push_back(i);
+    } else {
+        p_angles.push_back(0);
+        p_num_angles = 1;
+    }
 
 #ifdef CUFFT
     if (p_roi.height * (p_roi.width / 2 + 1) > 1024) {
         std::cerr << "Window after forward FFT is too big for CUDA kernels. Plese use -f to set "
                      "the window dimensions so its size is less or equal to "
                   << 1024 * p_cell_size * p_cell_size * 2 + 1
-                  << " pixels . Currently the size of the window is: " << p_windows_size.width << "x" << p_windows_size.height
-                  << " which is  " << p_windows_size.width * p_windows_size.height << " pixels. " << std::endl;
+                  << " pixels . Currently the size of the window is: " << p_windows_size.width << "x"
+                  << p_windows_size.height << " which is  " << p_windows_size.width * p_windows_size.height
+                  << " pixels. " << std::endl;
         std::exit(EXIT_FAILURE);
     }
 
@@ -147,11 +154,11 @@ void KCF_Tracker::init(cv::Mat &img, const cv::Rect &bbox, int fit_size_x, int f
         std::cerr << "cuFFT supports only Gaussian kernel." << std::endl;
         std::exit(EXIT_FAILURE);
     }
+
     CudaSafeCall(cudaSetDeviceFlags(cudaDeviceMapHost));
+
     p_rot_labels_data = DynMem(p_roi.width * p_roi.height * sizeof(float));
     p_rot_labels = cv::Mat(p_roi, CV_32FC1, p_rot_labels_data.hostMem());
-#else
-    p_xf.create(p_roi.height, p_roi.height / 2 + 1, p_num_of_feats);
 #endif
 
 #if defined(CUFFT) || defined(FFTW)
@@ -163,12 +170,16 @@ void KCF_Tracker::init(cv::Mat &img, const cv::Rect &bbox, int fit_size_x, int f
     p_yf.create(p_roi.height, width, 1);
     p_xf.create(p_roi.height, width, p_num_of_feats);
 
-    int max = m_use_big_batch ? 2 : p_num_scales;
-    for (int i = 0; i < max; ++i) {
-        if (m_use_big_batch && i == 1)
-            p_threadctxs.emplace_back(p_roi, p_num_of_feats * p_num_scales, 1, p_num_scales);
-        else
-            p_threadctxs.emplace_back(p_roi, p_num_of_feats, p_scales[i], 1);
+    int max1 = m_use_big_batch ? 2 : p_num_scales;
+    int max2 = m_use_big_batch ? 1 : p_num_angles;
+    for (int i = 0; i < max1; ++i) {
+        for (int j = 0; j < max2; ++j) {
+            if (m_use_big_batch && i == 1)
+                p_threadctxs.emplace_back(p_roi, p_num_of_feats * p_num_scales * p_num_angles, 1, 0, p_num_scales,
+                                          p_num_angles);
+            else
+                p_threadctxs.emplace_back(p_roi, p_num_of_feats, p_scales[i], p_angles[j]);
+        }
     }
 
     p_current_scale = 1.;
@@ -186,23 +197,35 @@ void KCF_Tracker::init(cv::Mat &img, const cv::Rect &bbox, int fit_size_x, int f
 
     p_output_sigma = std::sqrt(p_pose.w * p_pose.h) * p_output_sigma_factor / static_cast<double>(p_cell_size);
 
-    fft.init(p_roi.width, p_roi.height, p_num_of_feats, p_num_scales, m_use_big_batch);
+    fft.init(p_roi.width, p_roi.height, p_num_of_feats, p_num_scales * p_num_angles, m_use_big_batch);
     fft.set_window(cosine_window_function(p_roi.width, p_roi.height));
 
     // window weights, i.e. labels
-    fft.forward(
-        gaussian_shaped_labels(p_output_sigma, p_roi.width, p_roi.height), p_yf,
-        m_use_cuda ? p_rot_labels_data.deviceMem() : nullptr, p_threadctxs.front().stream);
+    fft.forward(gaussian_shaped_labels(p_output_sigma, p_roi.width, p_roi.height), p_yf,
+                m_use_cuda ? p_rot_labels_data.deviceMem() : nullptr, p_threadctxs.front().stream);
     DEBUG_PRINTM(p_yf);
 
     // obtain a sub-window for training initial model
     p_threadctxs.front().patch_feats.clear();
-    get_features(input_rgb, input_gray, p_pose.cx, p_pose.cy, p_windows_size.width, p_windows_size.height,
-                 p_threadctxs.front());
+
+    int size_x_scaled = floor(p_windows_size.width);
+    int size_y_scaled = floor(p_windows_size.height);
+
+    cv::Mat patch_gray = get_subwindow(input_gray, this->p_pose.cx, this->p_pose.cy, size_x_scaled, size_y_scaled);
+    geometric_transformations(patch_gray, p_windows_size.width, p_windows_size.height, 0, false);
+
+    cv::Mat patch_rgb = cv::Mat::zeros(size_y_scaled, size_x_scaled, CV_32F);
+    if ((m_use_color || m_use_cnfeat) && input_rgb.channels() == 3) {
+        patch_rgb = get_subwindow(input_rgb, this->p_pose.cx, this->p_pose.cy, size_x_scaled, size_y_scaled);
+        geometric_transformations(patch_rgb, p_windows_size.width, p_windows_size.height, 0, false);
+    }
+
+    get_features(patch_rgb, patch_gray, p_threadctxs.front());
     fft.forward_window(p_threadctxs.front().patch_feats, p_model_xf, p_threadctxs.front().fw_all,
                        m_use_cuda ? p_threadctxs.front().data_features.deviceMem() : nullptr,
                        p_threadctxs.front().stream);
     DEBUG_PRINTM(p_model_xf);
+
 #if !defined(BIG_BATCH) && defined(CUFFT) && (defined(ASYNC) || defined(OPENMP))
     p_threadctxs.front().model_xf = p_model_xf;
     p_threadctxs.front().model_xf.set_stream(p_threadctxs.front().stream);
@@ -272,6 +295,7 @@ BBox_c KCF_Tracker::getBBox()
     BBox_c tmp = p_pose;
     tmp.w *= p_current_scale;
     tmp.h *= p_current_scale;
+    tmp.a = p_current_angle;
 
     if (p_resize_image) tmp.scale(1 / p_downscale_factor);
     if (p_fit_to_pw2) {
@@ -289,7 +313,7 @@ double KCF_Tracker::getFilterResponse() const
 
 void KCF_Tracker::track(cv::Mat &img)
 {
-    if (m_debug) std::cout << "NEW FRAME" << '\n';
+    if (m_debug || m_visual_debug) std::cout << "\nNEW FRAME" << std::endl;
     cv::Mat input_gray, input_rgb = img.clone();
     if (img.channels() == 3) {
         cv::cvtColor(img, input_gray, CV_BGR2GRAY);
@@ -311,7 +335,6 @@ void KCF_Tracker::track(cv::Mat &img)
             cv::resize(input_rgb, input_rgb, cv::Size(0, 0), p_scale_factor_x, p_scale_factor_y, cv::INTER_LINEAR);
         }
     }
-
     max_response = -1.;
     ThreadCtx *max = nullptr;
     cv::Point2i *max_response_pt = nullptr;
@@ -324,11 +347,9 @@ void KCF_Tracker::track(cv::Mat &img)
         });
     for (auto const &it : p_threadctxs)
         it.async_res.wait();
-
 #else  // !ASYNC
-    // FIXME: Iterate correctly in big batch mode - perhaps have only one element in the list
     NORMAL_OMP_PARALLEL_FOR
-    for (uint i = 0; i < p_threadctxs.size(); ++i)
+    for (uint i = m_use_big_batch ? 1 : 0; i < p_threadctxs.size(); ++i)
         scale_track(p_threadctxs[i], input_rgb, input_gray);
 #endif
 
@@ -342,16 +363,40 @@ void KCF_Tracker::track(cv::Mat &img)
         }
     }
 #else
-    // FIXME: Iterate correctly in big batch mode - perhaps have only one element in the list
-    for (uint j = 0; j < p_scales.size(); ++j) {
-        if (p_threadctxs[0].max_responses[j] > max_response) {
-            max_response = p_threadctxs[0].max_responses[j];
-            max_response_pt = &p_threadctxs[0].max_locs[j];
-            max_response_map = &p_threadctxs[0].response_maps[j];
-            max = &p_threadctxs[0];
+    for (uint j = 0; j < p_num_scales; ++j) {
+        for (uint k = 0; k < p_num_angles; ++k) {
+            if (p_threadctxs.back().max_responses[j + k] > max_response) {
+                max_response = p_threadctxs.back().max_responses[j + k];
+                max_response_pt = &p_threadctxs.back().max_locs[j + k];
+                max_response_map = &p_threadctxs.back().response_maps[j + k];
+            }
         }
     }
+    max = &p_threadctxs.back();
 #endif
+    if (m_visual_debug) {
+        cv::Mat all_responses(cv::Size(p_num_angles* p_debug_image_size, p_num_scales * p_debug_image_size),
+                              p_debug_scale_responses[0].type(), cv::Scalar::all(0));
+        cv::Mat all_subwindows(cv::Size(p_num_angles* p_debug_image_size, p_num_scales* p_debug_image_size),
+                               p_debug_subwindows[0].type(), cv::Scalar::all(0));
+        for (size_t i = 0; i < p_num_scales; ++i) {
+            for (size_t j = 0; j < p_num_angles; ++j) {
+                cv::Mat in_roi(all_responses, cv::Rect(j * p_debug_image_size, i * p_debug_image_size,
+                                                       p_debug_image_size, p_debug_image_size));
+                p_debug_scale_responses[5 * i + j].copyTo(in_roi);
+                in_roi = all_subwindows(
+                    cv::Rect(j * p_debug_image_size, i * p_debug_image_size, p_debug_image_size, p_debug_image_size));
+                p_debug_subwindows[5 * i + j].copyTo(in_roi);
+            }
+        }
+        cv::namedWindow("All subwindows", CV_WINDOW_AUTOSIZE);
+        cv::imshow("All subwindows", all_subwindows);
+        cv::namedWindow("All responses", CV_WINDOW_AUTOSIZE);
+        cv::imshow("All responses", all_responses);
+        cv::waitKey();
+        p_debug_scale_responses.clear();
+        p_debug_subwindows.clear();
+    }
 
     DEBUG_PRINTM(*max_response_map);
     DEBUG_PRINT(*max_response_pt);
@@ -369,8 +414,13 @@ void KCF_Tracker::track(cv::Mat &img)
         new_location = sub_pixel_peak(*max_response_pt, *max_response_map);
     DEBUG_PRINT(new_location);
 
+    if (m_visual_debug) std::cout << "Old p_pose, cx: " << p_pose.cx << " cy: " << p_pose.cy << std::endl;
+
     p_pose.cx += p_current_scale * p_cell_size * double(new_location.x);
     p_pose.cy += p_current_scale * p_cell_size * double(new_location.y);
+
+    if (m_visual_debug) std::cout << "New p_pose, cx: " << p_pose.cx << " cy: " << p_pose.cy << std::endl;
+
     if (p_fit_to_pw2) {
         if (p_pose.cx < 0) p_pose.cx = 0;
         if (p_pose.cx > (img.cols * p_scale_factor_x) - 1) p_pose.cx = (img.cols * p_scale_factor_x) - 1;
@@ -395,10 +445,25 @@ void KCF_Tracker::track(cv::Mat &img)
     if (p_current_scale < p_min_max_scale[0]) p_current_scale = p_min_max_scale[0];
     if (p_current_scale > p_min_max_scale[1]) p_current_scale = p_min_max_scale[1];
 
+    p_current_angle = (p_current_angle + max->angle) < 0
+                          ? -std::abs(p_current_angle + max->angle) % 360
+                          : (p_current_angle + max->angle) % 360;
+
     // obtain a subwindow for training at newly estimated target position
+    int size_x_scaled = floor(p_windows_size.width * p_current_scale);
+    int size_y_scaled = floor(p_windows_size.height * p_current_scale);
+
+    cv::Mat patch_gray = get_subwindow(input_gray, this->p_pose.cx, this->p_pose.cy, size_x_scaled, size_y_scaled);
+    geometric_transformations(patch_gray, p_windows_size.width, p_windows_size.height, p_current_angle, false);
+
+    cv::Mat patch_rgb = cv::Mat::zeros(size_y_scaled, size_x_scaled, CV_32F);
+    if ((m_use_color || m_use_cnfeat) && input_rgb.channels() == 3) {
+        patch_rgb = get_subwindow(input_rgb, this->p_pose.cx, this->p_pose.cy, size_x_scaled, size_y_scaled);
+        geometric_transformations(patch_rgb, p_windows_size.width, p_windows_size.height, p_current_angle, false);
+    }
+
     p_threadctxs.front().patch_feats.clear();
-    get_features(input_rgb, input_gray, p_pose.cx, p_pose.cy, p_windows_size.width, p_windows_size.height,
-                 p_threadctxs.front(), p_current_scale);
+    get_features(patch_rgb, patch_gray, p_threadctxs.front());
     fft.forward_window(p_threadctxs.front().patch_feats, p_xf, p_threadctxs.front().fw_all,
                        m_use_cuda ? p_threadctxs.front().data_features.deviceMem() : nullptr, p_threadctxs.front().stream);
 
@@ -440,13 +505,41 @@ void KCF_Tracker::scale_track(ThreadCtx &vars, cv::Mat &input_rgb, cv::Mat &inpu
     if (m_use_big_batch) {
         vars.patch_feats.clear();
         BIG_BATCH_OMP_PARALLEL_FOR
-        for (uint i = 0; i < p_num_scales; ++i) {
-            get_features(input_rgb, input_gray, this->p_pose.cx, this->p_pose.cy, this->p_windows_size.width,
-                         this->p_windows_size.height, vars, this->p_current_scale * this->p_scales[i]);
+        for (uint i = 0; i < this->p_scales.size(); ++i) {
+            for (uint j = 0; j < this->p_angles.size(); ++j) {
+                int size_x_scaled = floor(this->p_windows_size.width * this->p_current_scale * this->p_scales[i]);
+                int size_y_scaled = floor(this->p_windows_size.height * this->p_current_scale * this->p_scales[i]);
+
+                cv::Mat patch_gray =
+                    get_subwindow(input_gray, this->p_pose.cx, this->p_pose.cy, size_x_scaled, size_y_scaled);
+                geometric_transformations(patch_gray, p_windows_size.width, p_windows_size.height,
+                                          p_current_scale * this->p_scales[i], p_current_angle + this->p_angles[j]);
+
+                cv::Mat patch_rgb = cv::Mat::zeros(size_y_scaled, size_x_scaled, CV_32F);
+                if ((m_use_color || m_use_cnfeat) && input_rgb.channels() == 3) {
+                    patch_rgb =
+                        get_subwindow(input_rgb, this->p_pose.cx, this->p_pose.cy, size_x_scaled, size_y_scaled);
+                    geometric_transformations(patch_rgb, p_windows_size.width, p_windows_size.height,
+                                              p_current_scale * this->p_scales[i], p_current_angle + this->p_angles[j]);
+                }
+                get_features(patch_rgb, patch_gray, vars);
+            }
         }
     } else {
-        get_features(input_rgb, input_gray, this->p_pose.cx, this->p_pose.cy, this->p_windows_size.width,
-                     this->p_windows_size.height, vars, this->p_current_scale * vars.scale);
+        int size_x_scaled = floor(this->p_windows_size.width * this->p_current_scale * vars.scale);
+        int size_y_scaled = floor(this->p_windows_size.height * this->p_current_scale * vars.scale);
+
+        cv::Mat patch_gray = get_subwindow(input_gray, this->p_pose.cx, this->p_pose.cy, size_x_scaled, size_y_scaled);
+        geometric_transformations(patch_gray, p_windows_size.width, p_windows_size.height, p_current_scale * vars.scale);
+
+        cv::Mat patch_rgb = cv::Mat::zeros(size_y_scaled, size_x_scaled, CV_32F);
+        if ((m_use_color || m_use_cnfeat) && input_rgb.channels() == 3) {
+            patch_rgb = get_subwindow(input_rgb, this->p_pose.cx, this->p_pose.cy, size_x_scaled, size_y_scaled);
+            geometric_transformations(patch_rgb, p_windows_size.width, p_windows_size.height, p_current_scale * vars.scale,
+                                      p_current_angle + vars.angle);
+        }
+        vars.patch_feats.clear();
+        get_features(patch_rgb, patch_gray, vars);
     }
 
     fft.forward_window(vars.patch_feats, vars.zf, vars.fw_all, m_use_cuda ? vars.data_features.deviceMem() : nullptr,
@@ -503,41 +596,15 @@ void KCF_Tracker::scale_track(ThreadCtx &vars, cv::Mat &input_rgb, cv::Mat &inpu
 
 // ****************************************************************************
 
-void KCF_Tracker::get_features(cv::Mat &input_rgb, cv::Mat &input_gray, int cx, int cy, int size_x, int size_y,
-                               ThreadCtx &vars, double scale)
+void KCF_Tracker::get_features(cv::Mat &patch_rgb, cv::Mat &patch_gray, ThreadCtx &vars)
 {
-    int size_x_scaled = floor(size_x * scale);
-    int size_y_scaled = floor(size_y * scale);
-
-    cv::Mat patch_gray = get_subwindow(input_gray, cx, cy, size_x_scaled, size_y_scaled);
-    cv::Mat patch_rgb = get_subwindow(input_rgb, cx, cy, size_x_scaled, size_y_scaled);
-
-    // resize to default size
-    if (scale > 1.) {
-        // if we downsample use  INTER_AREA interpolation
-        cv::resize(patch_gray, patch_gray, cv::Size(size_x, size_y), 0., 0., cv::INTER_AREA);
-    } else {
-        cv::resize(patch_gray, patch_gray, cv::Size(size_x, size_y), 0., 0., cv::INTER_LINEAR);
-    }
-
     // get hog(Histogram of Oriented Gradients) features
     vars.patch_feats = FHoG::extract(patch_gray, 2, p_cell_size, 9);
 
     // get color rgb features (simple r,g,b channels)
     std::vector<cv::Mat> color_feat;
-    if ((m_use_color || m_use_cnfeat) && input_rgb.channels() == 3) {
-        // resize to default size
-        if (scale > 1.) {
-            // if we downsample use  INTER_AREA interpolation
-            cv::resize(patch_rgb, patch_rgb, cv::Size(size_x / p_cell_size, size_y / p_cell_size), 0., 0.,
-                       cv::INTER_AREA);
-        } else {
-            cv::resize(patch_rgb, patch_rgb, cv::Size(size_x / p_cell_size, size_y / p_cell_size), 0., 0.,
-                       cv::INTER_LINEAR);
-        }
-    }
 
-    if (m_use_color && input_rgb.channels() == 3) {
+    if (m_use_color && patch_rgb.channels() == 3) {
         // use rgb color space
         cv::Mat patch_rgb_norm;
         patch_rgb.convertTo(patch_rgb_norm, CV_32F, 1. / 255., -0.5);
@@ -549,7 +616,7 @@ void KCF_Tracker::get_features(cv::Mat &input_rgb, cv::Mat &input_gray, int cx,
         color_feat.insert(color_feat.end(), rgb.begin(), rgb.end());
     }
 
-    if (m_use_cnfeat && input_rgb.channels() == 3) {
+    if (m_use_cnfeat && patch_rgb.channels() == 3) {
         std::vector<cv::Mat> cn_feat = CNFeat::extract(patch_rgb);
         color_feat.insert(color_feat.end(), cn_feat.begin(), cn_feat.end());
     }
@@ -712,12 +779,9 @@ cv::Mat KCF_Tracker::get_subwindow(const cv::Mat &input, int cx, int cy, int wid
 
     if (x2 - x1 == 0 || y2 - y1 == 0)
         patch = cv::Mat::zeros(height, width, CV_32FC1);
-    else {
+    else
         cv::copyMakeBorder(input(cv::Range(y1, y2), cv::Range(x1, x2)), patch, top, bottom, left, right,
                            cv::BORDER_REPLICATE);
-        //      imshow( "copyMakeBorder", patch);
-        //      cv::waitKey();
-    }
 
     // sanity check
     assert(patch.cols == width && patch.rows == height);
@@ -725,8 +789,47 @@ cv::Mat KCF_Tracker::get_subwindow(const cv::Mat &input, int cx, int cy, int wid
     return patch;
 }
 
-void KCF_Tracker::gaussian_correlation(struct ThreadCtx &vars, const ComplexMat &xf, const ComplexMat &yf,
-                                       double sigma, bool auto_correlation)
+void KCF_Tracker::geometric_transformations(cv::Mat &patch, int size_x, int size_y, int angle, bool allow_debug)
+{
+    if (m_use_angle) {
+        cv::Point2f center((patch.cols - 1) / 2., (patch.rows - 1) / 2.);
+        cv::Mat r = cv::getRotationMatrix2D(center, angle, 1.0);
+
+        cv::warpAffine(patch, patch, r, cv::Size(patch.cols, patch.rows), cv::INTER_LINEAR, cv::BORDER_REPLICATE);
+    }
+
+    // resize to default size
+    if (patch.channels() != 3) {
+        if (patch.cols / size_x > 1.) {
+            // if we downsample use  INTER_AREA interpolation
+            cv::resize(patch, patch, cv::Size(size_x, size_y), 0., 0., cv::INTER_AREA);
+        } else {
+            cv::resize(patch, patch, cv::Size(size_x, size_y), 0., 0., cv::INTER_LINEAR);
+        }
+    } else {
+        if (patch.cols / size_x > 1.) {
+            // if we downsample use  INTER_AREA interpolation
+            cv::resize(patch, patch, cv::Size(size_x / p_cell_size, size_y / p_cell_size), 0., 0., cv::INTER_AREA);
+        } else {
+            cv::resize(patch, patch, cv::Size(size_x / p_cell_size, size_y / p_cell_size), 0., 0., cv::INTER_LINEAR);
+        }
+        if (m_visual_debug && allow_debug) {
+            cv::Mat input_clone = patch.clone();
+            cv::resize(input_clone, input_clone, cv::Size(p_debug_image_size, p_debug_image_size), 0., 0.,
+                       cv::INTER_LINEAR);
+
+            std::string angle_string = std::to_string(p_current_angle + angle);
+
+            cv::putText(input_clone, angle_string, cv::Point(1, input_clone.rows - 5), cv::FONT_HERSHEY_COMPLEX_SMALL,
+                        0.5, cv::Scalar(0, 255, 0), 1);
+
+            p_debug_subwindows.push_back(input_clone);
+        }
+    }
+}
+
+void KCF_Tracker::gaussian_correlation(struct ThreadCtx &vars, const ComplexMat &xf, const ComplexMat &yf, double sigma,
+                                       bool auto_correlation)
 {
 #ifdef CUFFT
     xf.sqr_norm(vars.xf_sqr_norm.deviceMem());
index ec0ab45ff57e2b37f60f2e092e032e8fee3f2d9c..825cfd6d983a080ae6876b64dcf823073dad6591 100644 (file)
--- a/src/kcf.h
+++ b/src/kcf.h
 #include "threadctx.hpp"
 #include "pragmas.h"
 
-struct BBox_c
-{
-    double cx, cy, w, h;
+struct BBox_c {
+    double cx, cy, w, h, a;
 
     inline void scale(double factor)
     {
         cx *= factor;
         cy *= factor;
-        w  *= factor;
-        h  *= factor;
+        w *= factor;
+        h *= factor;
     }
 
     inline void scale_x(double factor)
     {
         cx *= factor;
-        w  *= factor;
+        w *= factor;
     }
 
     inline void scale_y(double factor)
     {
         cy *= factor;
-        h  *= factor;
-    }
-
-    inline cv::Rect get_rect()
-    {
-        return cv::Rect(int(cx-w/2.), int(cy-h/2.), int(w), int(h));
+        h *= factor;
     }
 
+    inline cv::Rect get_rect() { return cv::Rect(int(cx - w / 2.), int(cy - h / 2.), int(w), int(h)); }
 };
 
-class KCF_Tracker
-{
-public:
-    bool m_debug     {false};
-    bool m_use_scale {true};
-    bool m_use_color {true};
+class KCF_Tracker {
+  public:
+    bool m_debug{false};
+    bool m_visual_debug{false};
+    bool m_use_scale{true};
+    bool m_use_angle{false}; // Doesn't work with FFTW-BIG version
+    bool m_use_color{true};
 #ifdef ASYNC
-    bool m_use_multithreading {true};
+    bool m_use_multithreading{true};
 #else
-    bool m_use_multithreading {false};
-#endif //ASYNC
-    bool m_use_subpixel_localization {true};
-    bool m_use_subgrid_scale {true};
-    bool m_use_cnfeat {true};
-    bool m_use_linearkernel {false};
+    bool m_use_multithreading{false};
+#endif // ASYNC
+    bool m_use_subpixel_localization{true};
+    bool m_use_subgrid_scale{true};
+    bool m_use_cnfeat{true};
+    bool m_use_linearkernel{false};
 #ifdef BIG_BATCH
-    bool m_use_big_batch {true};
+    bool m_use_big_batch{true};
 #else
-    bool m_use_big_batch {false};
+    bool m_use_big_batch{false};
 #endif
 #ifdef CUFFT
-    bool m_use_cuda {true};
+    bool m_use_cuda{true};
 #else
-    bool m_use_cuda {false};
+    bool m_use_cuda{false};
 #endif
 
     /*
@@ -85,21 +81,22 @@ public:
     output_sigma_factor ... spatial bandwidth (proportional to target)  (0.1)
     cell_size           ... hog cell size                               (4)
     */
-    KCF_Tracker(double padding, double kernel_sigma, double lambda, double interp_factor, double output_sigma_factor, int cell_size);
+    KCF_Tracker(double padding, double kernel_sigma, double lambda, double interp_factor, double output_sigma_factor,
+                int cell_size);
     KCF_Tracker();
     ~KCF_Tracker();
 
     // Init/re-init methods
-    void init(cv::Mat & img, const cv::Rect & bbox, int fit_size_x, int fit_size_y);
-    void setTrackerPose(BBox_c & bbox, cv::Mat & img, int fit_size_x, int fit_size_y);
-    void updateTrackerPosition(BBox_c & bbox);
+    void init(cv::Mat &img, const cv::Rect &bbox, int fit_size_x, int fit_size_y);
+    void setTrackerPose(BBox_c &bbox, cv::Mat &img, int fit_size_x, int fit_size_y);
+    void updateTrackerPosition(BBox_c &bbox);
 
     // frame-to-frame object tracking
-    void track(cv::Mat & img);
+    void track(cv::Mat &img);
     BBox_c getBBox();
     double getFilterResponse() const; // Measure of tracking accuracy
 
-private:
+  private:
     Fft &fft;
 
     BBox_c p_pose;
@@ -116,19 +113,30 @@ private:
     double p_padding = 1.5;
     double p_output_sigma_factor = 0.1;
     double p_output_sigma;
-    double p_kernel_sigma = 0.5;    //def = 0.5
-    double p_lambda = 1e-4;         //regularization in learning step
-    double p_interp_factor = 0.02;  //def = 0.02, linear interpolation factor for adaptation
-    int p_cell_size = 4;            //4 for hog (= bin_size)
+    double p_kernel_sigma = 0.5;   // def = 0.5
+    double p_lambda = 1e-4;        // regularization in learning step
+    double p_interp_factor = 0.02; // def = 0.02, linear interpolation factor for adaptation
+    int p_cell_size = 4;           // 4 for hog (= bin_size)
     cv::Size p_windows_size;
     uint p_num_scales {7};
     double p_scale_step = 1.02;
     double p_current_scale = 1.;
     double p_min_max_scale[2];
     std::vector<double> p_scales;
+    int p_current_angle = 0;
+    uint p_num_angles {5};
+    int p_angle_min = -20, p_angle_max = 20;
+    int p_angle_step = 10;
+    std::vector<int> p_angles;
+
+    // for visual debug
+    int p_debug_image_size = 100;
+    int p_count = 0;
+    std::vector<cv::Mat> p_debug_scale_responses;
+    std::vector<cv::Mat> p_debug_subwindows;
 
     //for big batch
-    int p_num_of_feats;
+    int p_num_of_feats = 31 + (m_use_color ? 3 : 0) + (m_use_cnfeat ? 10 : 0);
     cv::Size p_roi;
 
     std::vector<ThreadCtx> p_threadctxs;
@@ -137,7 +145,7 @@ private:
     cv::Mat p_rot_labels;
     DynMem p_rot_labels_data;
 
-    //model
+    // model
     ComplexMat p_yf;
     ComplexMat p_model_alphaf;
     ComplexMat p_model_alphaf_num;
@@ -148,13 +156,14 @@ private:
     void scale_track(ThreadCtx & vars, cv::Mat & input_rgb, cv::Mat & input_gray);
     cv::Mat get_subwindow(const cv::Mat & input, int cx, int cy, int size_x, int size_y);
     cv::Mat gaussian_shaped_labels(double sigma, int dim1, int dim2);
-    void gaussian_correlation(struct ThreadCtx &vars, const ComplexMat & xf, const ComplexMat & yf, double sigma, bool auto_correlation = false);
-    cv::Mat circshift(const cv::Mat & patch, int x_rot, int y_rot);
+    void gaussian_correlation(struct ThreadCtx &vars, const ComplexMat &xf, const ComplexMat &yf, double sigma,
+                              bool auto_correlation = false);
+    cv::Mat circshift(const cv::Mat &patch, int x_rot, int y_rot);
     cv::Mat cosine_window_function(int dim1, int dim2);
-    void get_features(cv::Mat & input_rgb, cv::Mat & input_gray, int cx, int cy, int size_x, int size_y, ThreadCtx & vars, double scale = 1.);
-    cv::Point2f sub_pixel_peak(cv::Point & max_loc, cv::Mat & response);
+    void get_features(cv::Mat &patch_rgb, cv::Mat &patch_gray, ThreadCtx &vars);
+    void geometric_transformations(cv::Mat &patch, int size_x, int size_y, int angle = 0, bool allow_debug = true);
+    cv::Point2f sub_pixel_peak(cv::Point &max_loc, cv::Mat &response);
     double sub_grid_scale(uint index);
-
 };
 
-#endif //KCF_HEADER_6565467831231
+#endif // KCF_HEADER_6565467831231
index 62aebec1b459775aaa8d87c6e0d6d0f4fd4f7afb..d6a2cbef807af3f92da76dae55e99512542abc51 100644 (file)
@@ -16,10 +16,10 @@ typedef int *cudaStream_t;
 
 struct ThreadCtx {
   public:
-    ThreadCtx(cv::Size roi, uint num_of_feats, double scale, uint num_of_scales)
-        : scale(scale)
+    ThreadCtx(cv::Size roi, uint num_of_feats, double scale, int angle, uint num_of_scales = 1, uint num_of_angles = 1)
+        : scale(scale), angle(angle)
     {
-        this->xf_sqr_norm = DynMem(num_of_scales * sizeof(float));
+        this->xf_sqr_norm = DynMem(num_of_scales * num_of_angles * sizeof(float));
         this->yf_sqr_norm = DynMem(sizeof(float));
         this->patch_feats.reserve(uint(num_of_feats));
 
@@ -30,12 +30,12 @@ struct ThreadCtx {
 #endif
 
 #if defined(CUFFT) || defined(FFTW)
-        this->gauss_corr_res = DynMem(cells_size * num_of_scales);
+        this->gauss_corr_res = DynMem(cells_size * num_of_scales * num_of_angles);
         this->data_features = DynMem(cells_size * num_of_feats);
 
         uint width_freq = roi.width / 2 + 1;
 
-        this->in_all = cv::Mat(roi.height * num_of_scales, roi.width, CV_32F, this->gauss_corr_res.hostMem());
+        this->in_all = cv::Mat(roi.height * num_of_scales * num_of_angles, roi.width, CV_32F, this->gauss_corr_res.hostMem());
         this->fw_all = cv::Mat(roi.height * num_of_feats, roi.width, CV_32F, this->data_features.hostMem());
 #else
         uint width_freq = roi.width;
@@ -44,27 +44,27 @@ struct ThreadCtx {
 #endif
 
         this->data_i_features = DynMem(cells_size * num_of_feats);
-        this->data_i_1ch = DynMem(cells_size * num_of_scales);
+        this->data_i_1ch = DynMem(cells_size * num_of_scales * num_of_angles);
 
         this->ifft2_res = cv::Mat(roi, CV_32FC(num_of_feats), this->data_i_features.hostMem());
-        this->response = cv::Mat(roi, CV_32FC(num_of_scales), this->data_i_1ch.hostMem());
+        this->response = cv::Mat(roi, CV_32FC(num_of_scales * num_of_angles), this->data_i_1ch.hostMem());
 
         this->patch_feats.reserve(num_of_feats);
 
 #ifdef CUFFT
-        this->zf.create(roi.height, width_freq, num_of_feats, num_of_scales, this->stream);
-        this->kzf.create(roi.height, width_freq, num_of_scales, this->stream);
-        this->kf.create(roi.height, width_freq, num_of_scales, this->stream);
+        this->zf.create(roi.height, width_freq, num_of_feats, num_of_scales * num_of_angles, this->stream);
+        this->kzf.create(roi.height, width_freq, num_of_scales * num_of_angles, this->stream);
+        this->kf.create(roi.height, width_freq, num_of_scales * num_of_angles, this->stream);
 #else
-        this->zf.create(roi.height, width_freq, num_of_feats, num_of_scales);
-        this->kzf.create(roi.height, width_freq, num_of_scales);
-        this->kf.create(roi.height, width_freq, num_of_scales);
+        this->zf.create(roi.height, width_freq, num_of_feats, num_of_scales * num_of_angles);
+        this->kzf.create(roi.height, width_freq, num_of_scales * num_of_angles);
+        this->kf.create(roi.height, width_freq, num_of_scales * num_of_angles);
 #endif
 
         if (num_of_scales > 1) {
-            this->max_responses.reserve(num_of_scales);
-            this->max_locs.reserve(num_of_scales);
-            this->response_maps.reserve(num_of_scales);
+            this->max_responses.reserve(num_of_scales * num_of_angles);
+            this->max_locs.reserve(num_of_scales * num_of_angles);
+            this->response_maps.reserve(num_of_scales * num_of_angles);
         }
     }
     ThreadCtx(ThreadCtx &&) = default;
@@ -76,6 +76,7 @@ struct ThreadCtx {
     }
 
     const double scale;
+    const int angle;
 #ifdef ASYNC
     std::future<void> async_res;
 #endif