]> rtime.felk.cvut.cz Git - git.git/blob - notes.c
Merge branch 'fl/askpass'
[git.git] / notes.c
1 #include "cache.h"
2 #include "notes.h"
3 #include "blob.h"
4 #include "tree.h"
5 #include "utf8.h"
6 #include "strbuf.h"
7 #include "tree-walk.h"
8
9 /*
10  * Use a non-balancing simple 16-tree structure with struct int_node as
11  * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
12  * 16-array of pointers to its children.
13  * The bottom 2 bits of each pointer is used to identify the pointer type
14  * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
15  * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
16  * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
17  * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
18  *
19  * The root node is a statically allocated struct int_node.
20  */
21 struct int_node {
22         void *a[16];
23 };
24
25 /*
26  * Leaf nodes come in two variants, note entries and subtree entries,
27  * distinguished by the LSb of the leaf node pointer (see above).
28  * As a note entry, the key is the SHA1 of the referenced object, and the
29  * value is the SHA1 of the note object.
30  * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
31  * referenced object, using the last byte of the key to store the length of
32  * the prefix. The value is the SHA1 of the tree object containing the notes
33  * subtree.
34  */
35 struct leaf_node {
36         unsigned char key_sha1[20];
37         unsigned char val_sha1[20];
38 };
39
40 /*
41  * A notes tree may contain entries that are not notes, and that do not follow
42  * the naming conventions of notes. There are typically none/few of these, but
43  * we still need to keep track of them. Keep a simple linked list sorted alpha-
44  * betically on the non-note path. The list is populated when parsing tree
45  * objects in load_subtree(), and the non-notes are correctly written back into
46  * the tree objects produced by write_notes_tree().
47  */
48 struct non_note {
49         struct non_note *next; /* grounded (last->next == NULL) */
50         char *path;
51         unsigned int mode;
52         unsigned char sha1[20];
53 };
54
55 #define PTR_TYPE_NULL     0
56 #define PTR_TYPE_INTERNAL 1
57 #define PTR_TYPE_NOTE     2
58 #define PTR_TYPE_SUBTREE  3
59
60 #define GET_PTR_TYPE(ptr)       ((uintptr_t) (ptr) & 3)
61 #define CLR_PTR_TYPE(ptr)       ((void *) ((uintptr_t) (ptr) & ~3))
62 #define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
63
64 #define GET_NIBBLE(n, sha1) (((sha1[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f)
65
66 #define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
67         (memcmp(key_sha1, subtree_sha1, subtree_sha1[19]))
68
69 struct notes_tree default_notes_tree;
70
71 static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
72                 struct int_node *node, unsigned int n);
73
74 /*
75  * Search the tree until the appropriate location for the given key is found:
76  * 1. Start at the root node, with n = 0
77  * 2. If a[0] at the current level is a matching subtree entry, unpack that
78  *    subtree entry and remove it; restart search at the current level.
79  * 3. Use the nth nibble of the key as an index into a:
80  *    - If a[n] is an int_node, recurse from #2 into that node and increment n
81  *    - If a matching subtree entry, unpack that subtree entry (and remove it);
82  *      restart search at the current level.
83  *    - Otherwise, we have found one of the following:
84  *      - a subtree entry which does not match the key
85  *      - a note entry which may or may not match the key
86  *      - an unused leaf node (NULL)
87  *      In any case, set *tree and *n, and return pointer to the tree location.
88  */
89 static void **note_tree_search(struct notes_tree *t, struct int_node **tree,
90                 unsigned char *n, const unsigned char *key_sha1)
91 {
92         struct leaf_node *l;
93         unsigned char i;
94         void *p = (*tree)->a[0];
95
96         if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
97                 l = (struct leaf_node *) CLR_PTR_TYPE(p);
98                 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
99                         /* unpack tree and resume search */
100                         (*tree)->a[0] = NULL;
101                         load_subtree(t, l, *tree, *n);
102                         free(l);
103                         return note_tree_search(t, tree, n, key_sha1);
104                 }
105         }
106
107         i = GET_NIBBLE(*n, key_sha1);
108         p = (*tree)->a[i];
109         switch (GET_PTR_TYPE(p)) {
110         case PTR_TYPE_INTERNAL:
111                 *tree = CLR_PTR_TYPE(p);
112                 (*n)++;
113                 return note_tree_search(t, tree, n, key_sha1);
114         case PTR_TYPE_SUBTREE:
115                 l = (struct leaf_node *) CLR_PTR_TYPE(p);
116                 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
117                         /* unpack tree and resume search */
118                         (*tree)->a[i] = NULL;
119                         load_subtree(t, l, *tree, *n);
120                         free(l);
121                         return note_tree_search(t, tree, n, key_sha1);
122                 }
123                 /* fall through */
124         default:
125                 return &((*tree)->a[i]);
126         }
127 }
128
129 /*
130  * To find a leaf_node:
131  * Search to the tree location appropriate for the given key:
132  * If a note entry with matching key, return the note entry, else return NULL.
133  */
134 static struct leaf_node *note_tree_find(struct notes_tree *t,
135                 struct int_node *tree, unsigned char n,
136                 const unsigned char *key_sha1)
137 {
138         void **p = note_tree_search(t, &tree, &n, key_sha1);
139         if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
140                 struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
141                 if (!hashcmp(key_sha1, l->key_sha1))
142                         return l;
143         }
144         return NULL;
145 }
146
147 /*
148  * To insert a leaf_node:
149  * Search to the tree location appropriate for the given leaf_node's key:
150  * - If location is unused (NULL), store the tweaked pointer directly there
151  * - If location holds a note entry that matches the note-to-be-inserted, then
152  *   combine the two notes (by calling the given combine_notes function).
153  * - If location holds a note entry that matches the subtree-to-be-inserted,
154  *   then unpack the subtree-to-be-inserted into the location.
155  * - If location holds a matching subtree entry, unpack the subtree at that
156  *   location, and restart the insert operation from that level.
157  * - Else, create a new int_node, holding both the node-at-location and the
158  *   node-to-be-inserted, and store the new int_node into the location.
159  */
160 static void note_tree_insert(struct notes_tree *t, struct int_node *tree,
161                 unsigned char n, struct leaf_node *entry, unsigned char type,
162                 combine_notes_fn combine_notes)
163 {
164         struct int_node *new_node;
165         struct leaf_node *l;
166         void **p = note_tree_search(t, &tree, &n, entry->key_sha1);
167
168         assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
169         l = (struct leaf_node *) CLR_PTR_TYPE(*p);
170         switch (GET_PTR_TYPE(*p)) {
171         case PTR_TYPE_NULL:
172                 assert(!*p);
173                 *p = SET_PTR_TYPE(entry, type);
174                 return;
175         case PTR_TYPE_NOTE:
176                 switch (type) {
177                 case PTR_TYPE_NOTE:
178                         if (!hashcmp(l->key_sha1, entry->key_sha1)) {
179                                 /* skip concatenation if l == entry */
180                                 if (!hashcmp(l->val_sha1, entry->val_sha1))
181                                         return;
182
183                                 if (combine_notes(l->val_sha1, entry->val_sha1))
184                                         die("failed to combine notes %s and %s"
185                                             " for object %s",
186                                             sha1_to_hex(l->val_sha1),
187                                             sha1_to_hex(entry->val_sha1),
188                                             sha1_to_hex(l->key_sha1));
189                                 free(entry);
190                                 return;
191                         }
192                         break;
193                 case PTR_TYPE_SUBTREE:
194                         if (!SUBTREE_SHA1_PREFIXCMP(l->key_sha1,
195                                                     entry->key_sha1)) {
196                                 /* unpack 'entry' */
197                                 load_subtree(t, entry, tree, n);
198                                 free(entry);
199                                 return;
200                         }
201                         break;
202                 }
203                 break;
204         case PTR_TYPE_SUBTREE:
205                 if (!SUBTREE_SHA1_PREFIXCMP(entry->key_sha1, l->key_sha1)) {
206                         /* unpack 'l' and restart insert */
207                         *p = NULL;
208                         load_subtree(t, l, tree, n);
209                         free(l);
210                         note_tree_insert(t, tree, n, entry, type,
211                                          combine_notes);
212                         return;
213                 }
214                 break;
215         }
216
217         /* non-matching leaf_node */
218         assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
219                GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
220         new_node = (struct int_node *) xcalloc(sizeof(struct int_node), 1);
221         note_tree_insert(t, new_node, n + 1, l, GET_PTR_TYPE(*p),
222                          combine_notes);
223         *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
224         note_tree_insert(t, new_node, n + 1, entry, type, combine_notes);
225 }
226
227 /*
228  * How to consolidate an int_node:
229  * If there are > 1 non-NULL entries, give up and return non-zero.
230  * Otherwise replace the int_node at the given index in the given parent node
231  * with the only entry (or a NULL entry if no entries) from the given tree,
232  * and return 0.
233  */
234 static int note_tree_consolidate(struct int_node *tree,
235         struct int_node *parent, unsigned char index)
236 {
237         unsigned int i;
238         void *p = NULL;
239
240         assert(tree && parent);
241         assert(CLR_PTR_TYPE(parent->a[index]) == tree);
242
243         for (i = 0; i < 16; i++) {
244                 if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) {
245                         if (p) /* more than one entry */
246                                 return -2;
247                         p = tree->a[i];
248                 }
249         }
250
251         /* replace tree with p in parent[index] */
252         parent->a[index] = p;
253         free(tree);
254         return 0;
255 }
256
257 /*
258  * To remove a leaf_node:
259  * Search to the tree location appropriate for the given leaf_node's key:
260  * - If location does not hold a matching entry, abort and do nothing.
261  * - Replace the matching leaf_node with a NULL entry (and free the leaf_node).
262  * - Consolidate int_nodes repeatedly, while walking up the tree towards root.
263  */
264 static void note_tree_remove(struct notes_tree *t, struct int_node *tree,
265                 unsigned char n, struct leaf_node *entry)
266 {
267         struct leaf_node *l;
268         struct int_node *parent_stack[20];
269         unsigned char i, j;
270         void **p = note_tree_search(t, &tree, &n, entry->key_sha1);
271
272         assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
273         if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE)
274                 return; /* type mismatch, nothing to remove */
275         l = (struct leaf_node *) CLR_PTR_TYPE(*p);
276         if (hashcmp(l->key_sha1, entry->key_sha1))
277                 return; /* key mismatch, nothing to remove */
278
279         /* we have found a matching entry */
280         free(l);
281         *p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL);
282
283         /* consolidate this tree level, and parent levels, if possible */
284         if (!n)
285                 return; /* cannot consolidate top level */
286         /* first, build stack of ancestors between root and current node */
287         parent_stack[0] = t->root;
288         for (i = 0; i < n; i++) {
289                 j = GET_NIBBLE(i, entry->key_sha1);
290                 parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]);
291         }
292         assert(i == n && parent_stack[i] == tree);
293         /* next, unwind stack until note_tree_consolidate() is done */
294         while (i > 0 &&
295                !note_tree_consolidate(parent_stack[i], parent_stack[i - 1],
296                                       GET_NIBBLE(i - 1, entry->key_sha1)))
297                 i--;
298 }
299
300 /* Free the entire notes data contained in the given tree */
301 static void note_tree_free(struct int_node *tree)
302 {
303         unsigned int i;
304         for (i = 0; i < 16; i++) {
305                 void *p = tree->a[i];
306                 switch (GET_PTR_TYPE(p)) {
307                 case PTR_TYPE_INTERNAL:
308                         note_tree_free(CLR_PTR_TYPE(p));
309                         /* fall through */
310                 case PTR_TYPE_NOTE:
311                 case PTR_TYPE_SUBTREE:
312                         free(CLR_PTR_TYPE(p));
313                 }
314         }
315 }
316
317 /*
318  * Convert a partial SHA1 hex string to the corresponding partial SHA1 value.
319  * - hex      - Partial SHA1 segment in ASCII hex format
320  * - hex_len  - Length of above segment. Must be multiple of 2 between 0 and 40
321  * - sha1     - Partial SHA1 value is written here
322  * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20
323  * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)).
324  * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2).
325  * Pads sha1 with NULs up to sha1_len (not included in returned length).
326  */
327 static int get_sha1_hex_segment(const char *hex, unsigned int hex_len,
328                 unsigned char *sha1, unsigned int sha1_len)
329 {
330         unsigned int i, len = hex_len >> 1;
331         if (hex_len % 2 != 0 || len > sha1_len)
332                 return -1;
333         for (i = 0; i < len; i++) {
334                 unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]);
335                 if (val & ~0xff)
336                         return -1;
337                 *sha1++ = val;
338                 hex += 2;
339         }
340         for (; i < sha1_len; i++)
341                 *sha1++ = 0;
342         return len;
343 }
344
345 static int non_note_cmp(const struct non_note *a, const struct non_note *b)
346 {
347         return strcmp(a->path, b->path);
348 }
349
350 static void add_non_note(struct notes_tree *t, const char *path,
351                 unsigned int mode, const unsigned char *sha1)
352 {
353         struct non_note *p = t->prev_non_note, *n;
354         n = (struct non_note *) xmalloc(sizeof(struct non_note));
355         n->next = NULL;
356         n->path = xstrdup(path);
357         n->mode = mode;
358         hashcpy(n->sha1, sha1);
359         t->prev_non_note = n;
360
361         if (!t->first_non_note) {
362                 t->first_non_note = n;
363                 return;
364         }
365
366         if (non_note_cmp(p, n) < 0)
367                 ; /* do nothing  */
368         else if (non_note_cmp(t->first_non_note, n) <= 0)
369                 p = t->first_non_note;
370         else {
371                 /* n sorts before t->first_non_note */
372                 n->next = t->first_non_note;
373                 t->first_non_note = n;
374                 return;
375         }
376
377         /* n sorts equal or after p */
378         while (p->next && non_note_cmp(p->next, n) <= 0)
379                 p = p->next;
380
381         if (non_note_cmp(p, n) == 0) { /* n ~= p; overwrite p with n */
382                 assert(strcmp(p->path, n->path) == 0);
383                 p->mode = n->mode;
384                 hashcpy(p->sha1, n->sha1);
385                 free(n);
386                 t->prev_non_note = p;
387                 return;
388         }
389
390         /* n sorts between p and p->next */
391         n->next = p->next;
392         p->next = n;
393 }
394
395 static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
396                 struct int_node *node, unsigned int n)
397 {
398         unsigned char object_sha1[20];
399         unsigned int prefix_len;
400         void *buf;
401         struct tree_desc desc;
402         struct name_entry entry;
403         int len, path_len;
404         unsigned char type;
405         struct leaf_node *l;
406
407         buf = fill_tree_descriptor(&desc, subtree->val_sha1);
408         if (!buf)
409                 die("Could not read %s for notes-index",
410                      sha1_to_hex(subtree->val_sha1));
411
412         prefix_len = subtree->key_sha1[19];
413         assert(prefix_len * 2 >= n);
414         memcpy(object_sha1, subtree->key_sha1, prefix_len);
415         while (tree_entry(&desc, &entry)) {
416                 path_len = strlen(entry.path);
417                 len = get_sha1_hex_segment(entry.path, path_len,
418                                 object_sha1 + prefix_len, 20 - prefix_len);
419                 if (len < 0)
420                         goto handle_non_note; /* entry.path is not a SHA1 */
421                 len += prefix_len;
422
423                 /*
424                  * If object SHA1 is complete (len == 20), assume note object
425                  * If object SHA1 is incomplete (len < 20), and current
426                  * component consists of 2 hex chars, assume note subtree
427                  */
428                 if (len <= 20) {
429                         type = PTR_TYPE_NOTE;
430                         l = (struct leaf_node *)
431                                 xcalloc(sizeof(struct leaf_node), 1);
432                         hashcpy(l->key_sha1, object_sha1);
433                         hashcpy(l->val_sha1, entry.sha1);
434                         if (len < 20) {
435                                 if (!S_ISDIR(entry.mode) || path_len != 2)
436                                         goto handle_non_note; /* not subtree */
437                                 l->key_sha1[19] = (unsigned char) len;
438                                 type = PTR_TYPE_SUBTREE;
439                         }
440                         note_tree_insert(t, node, n, l, type,
441                                          combine_notes_concatenate);
442                 }
443                 continue;
444
445 handle_non_note:
446                 /*
447                  * Determine full path for this non-note entry:
448                  * The filename is already found in entry.path, but the
449                  * directory part of the path must be deduced from the subtree
450                  * containing this entry. We assume here that the overall notes
451                  * tree follows a strict byte-based progressive fanout
452                  * structure (i.e. using 2/38, 2/2/36, etc. fanouts, and not
453                  * e.g. 4/36 fanout). This means that if a non-note is found at
454                  * path "dead/beef", the following code will register it as
455                  * being found on "de/ad/beef".
456                  * On the other hand, if you use such non-obvious non-note
457                  * paths in the middle of a notes tree, you deserve what's
458                  * coming to you ;). Note that for non-notes that are not
459                  * SHA1-like at the top level, there will be no problems.
460                  *
461                  * To conclude, it is strongly advised to make sure non-notes
462                  * have at least one non-hex character in the top-level path
463                  * component.
464                  */
465                 {
466                         char non_note_path[PATH_MAX];
467                         char *p = non_note_path;
468                         const char *q = sha1_to_hex(subtree->key_sha1);
469                         int i;
470                         for (i = 0; i < prefix_len; i++) {
471                                 *p++ = *q++;
472                                 *p++ = *q++;
473                                 *p++ = '/';
474                         }
475                         strcpy(p, entry.path);
476                         add_non_note(t, non_note_path, entry.mode, entry.sha1);
477                 }
478         }
479         free(buf);
480 }
481
482 /*
483  * Determine optimal on-disk fanout for this part of the notes tree
484  *
485  * Given a (sub)tree and the level in the internal tree structure, determine
486  * whether or not the given existing fanout should be expanded for this
487  * (sub)tree.
488  *
489  * Values of the 'fanout' variable:
490  * - 0: No fanout (all notes are stored directly in the root notes tree)
491  * - 1: 2/38 fanout
492  * - 2: 2/2/36 fanout
493  * - 3: 2/2/2/34 fanout
494  * etc.
495  */
496 static unsigned char determine_fanout(struct int_node *tree, unsigned char n,
497                 unsigned char fanout)
498 {
499         /*
500          * The following is a simple heuristic that works well in practice:
501          * For each even-numbered 16-tree level (remember that each on-disk
502          * fanout level corresponds to _two_ 16-tree levels), peek at all 16
503          * entries at that tree level. If all of them are either int_nodes or
504          * subtree entries, then there are likely plenty of notes below this
505          * level, so we return an incremented fanout.
506          */
507         unsigned int i;
508         if ((n % 2) || (n > 2 * fanout))
509                 return fanout;
510         for (i = 0; i < 16; i++) {
511                 switch (GET_PTR_TYPE(tree->a[i])) {
512                 case PTR_TYPE_SUBTREE:
513                 case PTR_TYPE_INTERNAL:
514                         continue;
515                 default:
516                         return fanout;
517                 }
518         }
519         return fanout + 1;
520 }
521
522 static void construct_path_with_fanout(const unsigned char *sha1,
523                 unsigned char fanout, char *path)
524 {
525         unsigned int i = 0, j = 0;
526         const char *hex_sha1 = sha1_to_hex(sha1);
527         assert(fanout < 20);
528         while (fanout) {
529                 path[i++] = hex_sha1[j++];
530                 path[i++] = hex_sha1[j++];
531                 path[i++] = '/';
532                 fanout--;
533         }
534         strcpy(path + i, hex_sha1 + j);
535 }
536
537 static int for_each_note_helper(struct notes_tree *t, struct int_node *tree,
538                 unsigned char n, unsigned char fanout, int flags,
539                 each_note_fn fn, void *cb_data)
540 {
541         unsigned int i;
542         void *p;
543         int ret = 0;
544         struct leaf_node *l;
545         static char path[40 + 19 + 1];  /* hex SHA1 + 19 * '/' + NUL */
546
547         fanout = determine_fanout(tree, n, fanout);
548         for (i = 0; i < 16; i++) {
549 redo:
550                 p = tree->a[i];
551                 switch (GET_PTR_TYPE(p)) {
552                 case PTR_TYPE_INTERNAL:
553                         /* recurse into int_node */
554                         ret = for_each_note_helper(t, CLR_PTR_TYPE(p), n + 1,
555                                 fanout, flags, fn, cb_data);
556                         break;
557                 case PTR_TYPE_SUBTREE:
558                         l = (struct leaf_node *) CLR_PTR_TYPE(p);
559                         /*
560                          * Subtree entries in the note tree represent parts of
561                          * the note tree that have not yet been explored. There
562                          * is a direct relationship between subtree entries at
563                          * level 'n' in the tree, and the 'fanout' variable:
564                          * Subtree entries at level 'n <= 2 * fanout' should be
565                          * preserved, since they correspond exactly to a fanout
566                          * directory in the on-disk structure. However, subtree
567                          * entries at level 'n > 2 * fanout' should NOT be
568                          * preserved, but rather consolidated into the above
569                          * notes tree level. We achieve this by unconditionally
570                          * unpacking subtree entries that exist below the
571                          * threshold level at 'n = 2 * fanout'.
572                          */
573                         if (n <= 2 * fanout &&
574                             flags & FOR_EACH_NOTE_YIELD_SUBTREES) {
575                                 /* invoke callback with subtree */
576                                 unsigned int path_len =
577                                         l->key_sha1[19] * 2 + fanout;
578                                 assert(path_len < 40 + 19);
579                                 construct_path_with_fanout(l->key_sha1, fanout,
580                                                            path);
581                                 /* Create trailing slash, if needed */
582                                 if (path[path_len - 1] != '/')
583                                         path[path_len++] = '/';
584                                 path[path_len] = '\0';
585                                 ret = fn(l->key_sha1, l->val_sha1, path,
586                                          cb_data);
587                         }
588                         if (n > fanout * 2 ||
589                             !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) {
590                                 /* unpack subtree and resume traversal */
591                                 tree->a[i] = NULL;
592                                 load_subtree(t, l, tree, n);
593                                 free(l);
594                                 goto redo;
595                         }
596                         break;
597                 case PTR_TYPE_NOTE:
598                         l = (struct leaf_node *) CLR_PTR_TYPE(p);
599                         construct_path_with_fanout(l->key_sha1, fanout, path);
600                         ret = fn(l->key_sha1, l->val_sha1, path, cb_data);
601                         break;
602                 }
603                 if (ret)
604                         return ret;
605         }
606         return 0;
607 }
608
609 struct tree_write_stack {
610         struct tree_write_stack *next;
611         struct strbuf buf;
612         char path[2]; /* path to subtree in next, if any */
613 };
614
615 static inline int matches_tree_write_stack(struct tree_write_stack *tws,
616                 const char *full_path)
617 {
618         return  full_path[0] == tws->path[0] &&
619                 full_path[1] == tws->path[1] &&
620                 full_path[2] == '/';
621 }
622
623 static void write_tree_entry(struct strbuf *buf, unsigned int mode,
624                 const char *path, unsigned int path_len, const
625                 unsigned char *sha1)
626 {
627         strbuf_addf(buf, "%o %.*s%c", mode, path_len, path, '\0');
628         strbuf_add(buf, sha1, 20);
629 }
630
631 static void tree_write_stack_init_subtree(struct tree_write_stack *tws,
632                 const char *path)
633 {
634         struct tree_write_stack *n;
635         assert(!tws->next);
636         assert(tws->path[0] == '\0' && tws->path[1] == '\0');
637         n = (struct tree_write_stack *)
638                 xmalloc(sizeof(struct tree_write_stack));
639         n->next = NULL;
640         strbuf_init(&n->buf, 256 * (32 + 40)); /* assume 256 entries per tree */
641         n->path[0] = n->path[1] = '\0';
642         tws->next = n;
643         tws->path[0] = path[0];
644         tws->path[1] = path[1];
645 }
646
647 static int tree_write_stack_finish_subtree(struct tree_write_stack *tws)
648 {
649         int ret;
650         struct tree_write_stack *n = tws->next;
651         unsigned char s[20];
652         if (n) {
653                 ret = tree_write_stack_finish_subtree(n);
654                 if (ret)
655                         return ret;
656                 ret = write_sha1_file(n->buf.buf, n->buf.len, tree_type, s);
657                 if (ret)
658                         return ret;
659                 strbuf_release(&n->buf);
660                 free(n);
661                 tws->next = NULL;
662                 write_tree_entry(&tws->buf, 040000, tws->path, 2, s);
663                 tws->path[0] = tws->path[1] = '\0';
664         }
665         return 0;
666 }
667
668 static int write_each_note_helper(struct tree_write_stack *tws,
669                 const char *path, unsigned int mode,
670                 const unsigned char *sha1)
671 {
672         size_t path_len = strlen(path);
673         unsigned int n = 0;
674         int ret;
675
676         /* Determine common part of tree write stack */
677         while (tws && 3 * n < path_len &&
678                matches_tree_write_stack(tws, path + 3 * n)) {
679                 n++;
680                 tws = tws->next;
681         }
682
683         /* tws point to last matching tree_write_stack entry */
684         ret = tree_write_stack_finish_subtree(tws);
685         if (ret)
686                 return ret;
687
688         /* Start subtrees needed to satisfy path */
689         while (3 * n + 2 < path_len && path[3 * n + 2] == '/') {
690                 tree_write_stack_init_subtree(tws, path + 3 * n);
691                 n++;
692                 tws = tws->next;
693         }
694
695         /* There should be no more directory components in the given path */
696         assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL);
697
698         /* Finally add given entry to the current tree object */
699         write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n),
700                          sha1);
701
702         return 0;
703 }
704
705 struct write_each_note_data {
706         struct tree_write_stack *root;
707         struct non_note *next_non_note;
708 };
709
710 static int write_each_non_note_until(const char *note_path,
711                 struct write_each_note_data *d)
712 {
713         struct non_note *n = d->next_non_note;
714         int cmp, ret;
715         while (n && (!note_path || (cmp = strcmp(n->path, note_path)) <= 0)) {
716                 if (note_path && cmp == 0)
717                         ; /* do nothing, prefer note to non-note */
718                 else {
719                         ret = write_each_note_helper(d->root, n->path, n->mode,
720                                                      n->sha1);
721                         if (ret)
722                                 return ret;
723                 }
724                 n = n->next;
725         }
726         d->next_non_note = n;
727         return 0;
728 }
729
730 static int write_each_note(const unsigned char *object_sha1,
731                 const unsigned char *note_sha1, char *note_path,
732                 void *cb_data)
733 {
734         struct write_each_note_data *d =
735                 (struct write_each_note_data *) cb_data;
736         size_t note_path_len = strlen(note_path);
737         unsigned int mode = 0100644;
738
739         if (note_path[note_path_len - 1] == '/') {
740                 /* subtree entry */
741                 note_path_len--;
742                 note_path[note_path_len] = '\0';
743                 mode = 040000;
744         }
745         assert(note_path_len <= 40 + 19);
746
747         /* Weave non-note entries into note entries */
748         return  write_each_non_note_until(note_path, d) ||
749                 write_each_note_helper(d->root, note_path, mode, note_sha1);
750 }
751
752 struct note_delete_list {
753         struct note_delete_list *next;
754         const unsigned char *sha1;
755 };
756
757 static int prune_notes_helper(const unsigned char *object_sha1,
758                 const unsigned char *note_sha1, char *note_path,
759                 void *cb_data)
760 {
761         struct note_delete_list **l = (struct note_delete_list **) cb_data;
762         struct note_delete_list *n;
763
764         if (has_sha1_file(object_sha1))
765                 return 0; /* nothing to do for this note */
766
767         /* failed to find object => prune this note */
768         n = (struct note_delete_list *) xmalloc(sizeof(*n));
769         n->next = *l;
770         n->sha1 = object_sha1;
771         *l = n;
772         return 0;
773 }
774
775 int combine_notes_concatenate(unsigned char *cur_sha1,
776                 const unsigned char *new_sha1)
777 {
778         char *cur_msg = NULL, *new_msg = NULL, *buf;
779         unsigned long cur_len, new_len, buf_len;
780         enum object_type cur_type, new_type;
781         int ret;
782
783         /* read in both note blob objects */
784         if (!is_null_sha1(new_sha1))
785                 new_msg = read_sha1_file(new_sha1, &new_type, &new_len);
786         if (!new_msg || !new_len || new_type != OBJ_BLOB) {
787                 free(new_msg);
788                 return 0;
789         }
790         if (!is_null_sha1(cur_sha1))
791                 cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len);
792         if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
793                 free(cur_msg);
794                 free(new_msg);
795                 hashcpy(cur_sha1, new_sha1);
796                 return 0;
797         }
798
799         /* we will separate the notes by a newline anyway */
800         if (cur_msg[cur_len - 1] == '\n')
801                 cur_len--;
802
803         /* concatenate cur_msg and new_msg into buf */
804         buf_len = cur_len + 1 + new_len;
805         buf = (char *) xmalloc(buf_len);
806         memcpy(buf, cur_msg, cur_len);
807         buf[cur_len] = '\n';
808         memcpy(buf + cur_len + 1, new_msg, new_len);
809         free(cur_msg);
810         free(new_msg);
811
812         /* create a new blob object from buf */
813         ret = write_sha1_file(buf, buf_len, blob_type, cur_sha1);
814         free(buf);
815         return ret;
816 }
817
818 int combine_notes_overwrite(unsigned char *cur_sha1,
819                 const unsigned char *new_sha1)
820 {
821         hashcpy(cur_sha1, new_sha1);
822         return 0;
823 }
824
825 int combine_notes_ignore(unsigned char *cur_sha1,
826                 const unsigned char *new_sha1)
827 {
828         return 0;
829 }
830
831 void init_notes(struct notes_tree *t, const char *notes_ref,
832                 combine_notes_fn combine_notes, int flags)
833 {
834         unsigned char sha1[20], object_sha1[20];
835         unsigned mode;
836         struct leaf_node root_tree;
837
838         if (!t)
839                 t = &default_notes_tree;
840         assert(!t->initialized);
841
842         if (!notes_ref)
843                 notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT);
844         if (!notes_ref)
845                 notes_ref = notes_ref_name; /* value of core.notesRef config */
846         if (!notes_ref)
847                 notes_ref = GIT_NOTES_DEFAULT_REF;
848
849         if (!combine_notes)
850                 combine_notes = combine_notes_concatenate;
851
852         t->root = (struct int_node *) xcalloc(sizeof(struct int_node), 1);
853         t->first_non_note = NULL;
854         t->prev_non_note = NULL;
855         t->ref = notes_ref ? xstrdup(notes_ref) : NULL;
856         t->combine_notes = combine_notes;
857         t->initialized = 1;
858
859         if (flags & NOTES_INIT_EMPTY || !notes_ref ||
860             read_ref(notes_ref, object_sha1))
861                 return;
862         if (get_tree_entry(object_sha1, "", sha1, &mode))
863                 die("Failed to read notes tree referenced by %s (%s)",
864                     notes_ref, object_sha1);
865
866         hashclr(root_tree.key_sha1);
867         hashcpy(root_tree.val_sha1, sha1);
868         load_subtree(t, &root_tree, t->root, 0);
869 }
870
871 void add_note(struct notes_tree *t, const unsigned char *object_sha1,
872                 const unsigned char *note_sha1, combine_notes_fn combine_notes)
873 {
874         struct leaf_node *l;
875
876         if (!t)
877                 t = &default_notes_tree;
878         assert(t->initialized);
879         if (!combine_notes)
880                 combine_notes = t->combine_notes;
881         l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node));
882         hashcpy(l->key_sha1, object_sha1);
883         hashcpy(l->val_sha1, note_sha1);
884         note_tree_insert(t, t->root, 0, l, PTR_TYPE_NOTE, combine_notes);
885 }
886
887 void remove_note(struct notes_tree *t, const unsigned char *object_sha1)
888 {
889         struct leaf_node l;
890
891         if (!t)
892                 t = &default_notes_tree;
893         assert(t->initialized);
894         hashcpy(l.key_sha1, object_sha1);
895         hashclr(l.val_sha1);
896         note_tree_remove(t, t->root, 0, &l);
897 }
898
899 const unsigned char *get_note(struct notes_tree *t,
900                 const unsigned char *object_sha1)
901 {
902         struct leaf_node *found;
903
904         if (!t)
905                 t = &default_notes_tree;
906         assert(t->initialized);
907         found = note_tree_find(t, t->root, 0, object_sha1);
908         return found ? found->val_sha1 : NULL;
909 }
910
911 int for_each_note(struct notes_tree *t, int flags, each_note_fn fn,
912                 void *cb_data)
913 {
914         if (!t)
915                 t = &default_notes_tree;
916         assert(t->initialized);
917         return for_each_note_helper(t, t->root, 0, 0, flags, fn, cb_data);
918 }
919
920 int write_notes_tree(struct notes_tree *t, unsigned char *result)
921 {
922         struct tree_write_stack root;
923         struct write_each_note_data cb_data;
924         int ret;
925
926         if (!t)
927                 t = &default_notes_tree;
928         assert(t->initialized);
929
930         /* Prepare for traversal of current notes tree */
931         root.next = NULL; /* last forward entry in list is grounded */
932         strbuf_init(&root.buf, 256 * (32 + 40)); /* assume 256 entries */
933         root.path[0] = root.path[1] = '\0';
934         cb_data.root = &root;
935         cb_data.next_non_note = t->first_non_note;
936
937         /* Write tree objects representing current notes tree */
938         ret = for_each_note(t, FOR_EACH_NOTE_DONT_UNPACK_SUBTREES |
939                                 FOR_EACH_NOTE_YIELD_SUBTREES,
940                         write_each_note, &cb_data) ||
941                 write_each_non_note_until(NULL, &cb_data) ||
942                 tree_write_stack_finish_subtree(&root) ||
943                 write_sha1_file(root.buf.buf, root.buf.len, tree_type, result);
944         strbuf_release(&root.buf);
945         return ret;
946 }
947
948 void prune_notes(struct notes_tree *t)
949 {
950         struct note_delete_list *l = NULL;
951
952         if (!t)
953                 t = &default_notes_tree;
954         assert(t->initialized);
955
956         for_each_note(t, 0, prune_notes_helper, &l);
957
958         while (l) {
959                 remove_note(t, l->sha1);
960                 l = l->next;
961         }
962 }
963
964 void free_notes(struct notes_tree *t)
965 {
966         if (!t)
967                 t = &default_notes_tree;
968         if (t->root)
969                 note_tree_free(t->root);
970         free(t->root);
971         while (t->first_non_note) {
972                 t->prev_non_note = t->first_non_note->next;
973                 free(t->first_non_note->path);
974                 free(t->first_non_note);
975                 t->first_non_note = t->prev_non_note;
976         }
977         free(t->ref);
978         memset(t, 0, sizeof(struct notes_tree));
979 }
980
981 void format_note(struct notes_tree *t, const unsigned char *object_sha1,
982                 struct strbuf *sb, const char *output_encoding, int flags)
983 {
984         static const char utf8[] = "utf-8";
985         const unsigned char *sha1;
986         char *msg, *msg_p;
987         unsigned long linelen, msglen;
988         enum object_type type;
989
990         if (!t)
991                 t = &default_notes_tree;
992         if (!t->initialized)
993                 init_notes(t, NULL, NULL, 0);
994
995         sha1 = get_note(t, object_sha1);
996         if (!sha1)
997                 return;
998
999         if (!(msg = read_sha1_file(sha1, &type, &msglen)) || !msglen ||
1000                         type != OBJ_BLOB) {
1001                 free(msg);
1002                 return;
1003         }
1004
1005         if (output_encoding && *output_encoding &&
1006                         strcmp(utf8, output_encoding)) {
1007                 char *reencoded = reencode_string(msg, output_encoding, utf8);
1008                 if (reencoded) {
1009                         free(msg);
1010                         msg = reencoded;
1011                         msglen = strlen(msg);
1012                 }
1013         }
1014
1015         /* we will end the annotation by a newline anyway */
1016         if (msglen && msg[msglen - 1] == '\n')
1017                 msglen--;
1018
1019         if (flags & NOTES_SHOW_HEADER)
1020                 strbuf_addstr(sb, "\nNotes:\n");
1021
1022         for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) {
1023                 linelen = strchrnul(msg_p, '\n') - msg_p;
1024
1025                 if (flags & NOTES_INDENT)
1026                         strbuf_addstr(sb, "    ");
1027                 strbuf_add(sb, msg_p, linelen);
1028                 strbuf_addch(sb, '\n');
1029         }
1030
1031         free(msg);
1032 }