]> rtime.felk.cvut.cz Git - frescor/ffmpeg.git/blob - libavcodec/cook.c
Change license headers to say 'FFmpeg' instead of 'this program/this library'
[frescor/ffmpeg.git] / libavcodec / cook.c
1 /*
2  * COOK compatible decoder
3  * Copyright (c) 2003 Sascha Sommer
4  * Copyright (c) 2005 Benjamin Larsson
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  *
22  */
23
24 /**
25  * @file cook.c
26  * Cook compatible decoder.
27  * This decoder handles RealNetworks, RealAudio G2 data.
28  * Cook is identified by the codec name cook in RM files.
29  *
30  * To use this decoder, a calling application must supply the extradata
31  * bytes provided from the RM container; 8+ bytes for mono streams and
32  * 16+ for stereo streams (maybe more).
33  *
34  * Codec technicalities (all this assume a buffer length of 1024):
35  * Cook works with several different techniques to achieve its compression.
36  * In the timedomain the buffer is divided into 8 pieces and quantized. If
37  * two neighboring pieces have different quantization index a smooth
38  * quantization curve is used to get a smooth overlap between the different
39  * pieces.
40  * To get to the transformdomain Cook uses a modulated lapped transform.
41  * The transform domain has 50 subbands with 20 elements each. This
42  * means only a maximum of 50*20=1000 coefficients are used out of the 1024
43  * available.
44  */
45
46 #include <math.h>
47 #include <stddef.h>
48 #include <stdio.h>
49
50 #include "avcodec.h"
51 #include "bitstream.h"
52 #include "dsputil.h"
53
54 #include "cookdata.h"
55
56 /* the different Cook versions */
57 #define MONO_COOK1      0x1000001
58 #define MONO_COOK2      0x1000002
59 #define JOINT_STEREO    0x1000003
60 #define MC_COOK         0x2000000   //multichannel Cook, not supported
61
62 #define SUBBAND_SIZE    20
63 //#define COOKDEBUG
64
65 typedef struct {
66     int     size;
67     int     qidx_table1[8];
68     int     qidx_table2[8];
69 } COOKgain;
70
71 typedef struct __attribute__((__packed__)){
72     /* codec data start */
73     uint32_t cookversion;               //in network order, bigendian
74     uint16_t samples_per_frame;         //amount of samples per frame per channel, bigendian
75     uint16_t subbands;                  //amount of bands used in the frequency domain, bigendian
76     /* Mono extradata ends here. */
77     uint32_t unused;
78     uint16_t js_subband_start;          //bigendian
79     uint16_t js_vlc_bits;               //bigendian
80     /* Stereo extradata ends here. */
81 } COOKextradata;
82
83
84 typedef struct {
85     GetBitContext       gb;
86     /* stream data */
87     int                 nb_channels;
88     int                 joint_stereo;
89     int                 bit_rate;
90     int                 sample_rate;
91     int                 samples_per_channel;
92     int                 samples_per_frame;
93     int                 subbands;
94     int                 log2_numvector_size;
95     int                 numvector_size;                //1 << log2_numvector_size;
96     int                 js_subband_start;
97     int                 total_subbands;
98     int                 num_vectors;
99     int                 bits_per_subpacket;
100     /* states */
101     int                 random_state;
102
103     /* transform data */
104     FFTContext          fft_ctx;
105     FFTSample           mlt_tmp[1024] __attribute__((aligned(16))); /* temporary storage for imlt */
106     float*              mlt_window;
107     float*              mlt_precos;
108     float*              mlt_presin;
109     float*              mlt_postcos;
110     int                 fft_size;
111     int                 fft_order;
112     int                 mlt_size;       //modulated lapped transform size
113
114     /* gain buffers */
115     COOKgain*           gain_now_ptr;
116     COOKgain*           gain_previous_ptr;
117     COOKgain            gain_current;
118     COOKgain            gain_now;
119     COOKgain            gain_previous;
120     COOKgain            gain_channel1[2];
121     COOKgain            gain_channel2[2];
122
123     /* VLC data */
124     int                 js_vlc_bits;
125     VLC                 envelope_quant_index[13];
126     VLC                 sqvh[7];          //scalar quantization
127     VLC                 ccpl;             //channel coupling
128
129     /* generatable tables and related variables */
130     int                 gain_size_factor;
131     float               gain_table[23];
132     float               pow2tab[127];
133     float               rootpow2tab[127];
134
135     /* data buffers */
136
137     uint8_t*            decoded_bytes_buffer;
138     float               mono_mdct_output[2048] __attribute__((aligned(16)));
139     float*              previous_buffer_ptr[2];
140     float               mono_previous_buffer1[1024];
141     float               mono_previous_buffer2[1024];
142     float*              decode_buf_ptr[4];
143     float*              decode_buf_ptr2[2];
144     float               decode_buffer_1[1024];
145     float               decode_buffer_2[1024];
146     float               decode_buffer_3[1024];
147     float               decode_buffer_4[1024];
148 } COOKContext;
149
150 /* debug functions */
151
152 #ifdef COOKDEBUG
153 static void dump_float_table(float* table, int size, int delimiter) {
154     int i=0;
155     av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
156     for (i=0 ; i<size ; i++) {
157         av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
158         if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
159     }
160 }
161
162 static void dump_int_table(int* table, int size, int delimiter) {
163     int i=0;
164     av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
165     for (i=0 ; i<size ; i++) {
166         av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
167         if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
168     }
169 }
170
171 static void dump_short_table(short* table, int size, int delimiter) {
172     int i=0;
173     av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
174     for (i=0 ; i<size ; i++) {
175         av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
176         if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
177     }
178 }
179
180 #endif
181
182 /*************** init functions ***************/
183
184 /* table generator */
185 static void init_pow2table(COOKContext *q){
186     int i;
187     q->pow2tab[63] = 1.0;
188     for (i=1 ; i<64 ; i++){
189         q->pow2tab[63+i]=(float)((uint64_t)1<<i);
190         q->pow2tab[63-i]=1.0/(float)((uint64_t)1<<i);
191     }
192 }
193
194 /* table generator */
195 static void init_rootpow2table(COOKContext *q){
196     int i;
197     q->rootpow2tab[63] = 1.0;
198     for (i=1 ; i<64 ; i++){
199         q->rootpow2tab[63+i]=sqrt((float)((uint64_t)1<<i));
200         q->rootpow2tab[63-i]=sqrt(1.0/(float)((uint64_t)1<<i));
201     }
202 }
203
204 /* table generator */
205 static void init_gain_table(COOKContext *q) {
206     int i;
207     q->gain_size_factor = q->samples_per_channel/8;
208     for (i=0 ; i<23 ; i++) {
209         q->gain_table[i] = pow((double)q->pow2tab[i+52] ,
210                                (1.0/(double)q->gain_size_factor));
211     }
212 }
213
214
215 static int init_cook_vlc_tables(COOKContext *q) {
216     int i, result;
217
218     result = 0;
219     for (i=0 ; i<13 ; i++) {
220         result &= init_vlc (&q->envelope_quant_index[i], 9, 24,
221             envelope_quant_index_huffbits[i], 1, 1,
222             envelope_quant_index_huffcodes[i], 2, 2, 0);
223     }
224     av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n");
225     for (i=0 ; i<7 ; i++) {
226         result &= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
227             cvh_huffbits[i], 1, 1,
228             cvh_huffcodes[i], 2, 2, 0);
229     }
230
231     if (q->nb_channels==2 && q->joint_stereo==1){
232         result &= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
233             ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
234             ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
235         av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
236     }
237
238     av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n");
239     return result;
240 }
241
242 static int init_cook_mlt(COOKContext *q) {
243     int j;
244     float alpha;
245
246     /* Allocate the buffers, could be replaced with a static [512]
247        array if needed. */
248     q->mlt_size = q->samples_per_channel;
249     q->mlt_window = av_malloc(sizeof(float)*q->mlt_size);
250     q->mlt_precos = av_malloc(sizeof(float)*q->mlt_size/2);
251     q->mlt_presin = av_malloc(sizeof(float)*q->mlt_size/2);
252     q->mlt_postcos = av_malloc(sizeof(float)*q->mlt_size/2);
253
254     /* Initialize the MLT window: simple sine window. */
255     alpha = M_PI / (2.0 * (float)q->mlt_size);
256     for(j=0 ; j<q->mlt_size ; j++) {
257         q->mlt_window[j] = sin((j + 512.0/(float)q->mlt_size) * alpha);
258     }
259
260     /* pre/post twiddle factors */
261     for (j=0 ; j<q->mlt_size/2 ; j++){
262         q->mlt_precos[j] = cos( ((j+0.25)*M_PI)/q->mlt_size);
263         q->mlt_presin[j] = sin( ((j+0.25)*M_PI)/q->mlt_size);
264         q->mlt_postcos[j] = (float)sqrt(2.0/(float)q->mlt_size)*cos( ((float)j*M_PI) /q->mlt_size); //sqrt(2/MLT_size) = scalefactor
265     }
266
267     /* Initialize the FFT. */
268     ff_fft_init(&q->fft_ctx, av_log2(q->mlt_size)-1, 0);
269     av_log(NULL,AV_LOG_DEBUG,"FFT initialized, order = %d.\n",
270            av_log2(q->samples_per_channel)-1);
271
272     return (int)(q->mlt_window && q->mlt_precos && q->mlt_presin && q->mlt_postcos);
273 }
274
275 /*************** init functions end ***********/
276
277 /**
278  * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
279  * Why? No idea, some checksum/error detection method maybe.
280  * Nice way to waste CPU cycles.
281  *
282  * @param in        pointer to 32bit array of indata
283  * @param bits      amount of bits
284  * @param out       pointer to 32bit array of outdata
285  */
286
287 static inline void decode_bytes(uint8_t* inbuffer, uint8_t* out, int bytes){
288     int i;
289     uint32_t* buf = (uint32_t*) inbuffer;
290     uint32_t* obuf = (uint32_t*) out;
291     /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
292      * I'm too lazy though, should be something like
293      * for(i=0 ; i<bitamount/64 ; i++)
294      *     (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
295      * Buffer alignment needs to be checked. */
296
297
298     for(i=0 ; i<bytes/4 ; i++){
299 #ifdef WORDS_BIGENDIAN
300         obuf[i] = 0x37c511f2^buf[i];
301 #else
302         obuf[i] = 0xf211c537^buf[i];
303 #endif
304     }
305 }
306
307 /**
308  * Cook uninit
309  */
310
311 static int cook_decode_close(AVCodecContext *avctx)
312 {
313     int i;
314     COOKContext *q = avctx->priv_data;
315     av_log(NULL,AV_LOG_DEBUG, "Deallocating memory.\n");
316
317     /* Free allocated memory buffers. */
318     av_free(q->mlt_window);
319     av_free(q->mlt_precos);
320     av_free(q->mlt_presin);
321     av_free(q->mlt_postcos);
322     av_free(q->decoded_bytes_buffer);
323
324     /* Free the transform. */
325     ff_fft_end(&q->fft_ctx);
326
327     /* Free the VLC tables. */
328     for (i=0 ; i<13 ; i++) {
329         free_vlc(&q->envelope_quant_index[i]);
330     }
331     for (i=0 ; i<7 ; i++) {
332         free_vlc(&q->sqvh[i]);
333     }
334     if(q->nb_channels==2 && q->joint_stereo==1 ){
335         free_vlc(&q->ccpl);
336     }
337
338     av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n");
339
340     return 0;
341 }
342
343 /**
344  * Fill the COOKgain structure for the timedomain quantization.
345  *
346  * @param q                 pointer to the COOKContext
347  * @param gaininfo          pointer to the COOKgain
348  */
349
350 static void decode_gain_info(GetBitContext *gb, COOKgain* gaininfo) {
351     int i;
352
353     while (get_bits1(gb)) {}
354
355     gaininfo->size = get_bits_count(gb) - 1;     //amount of elements*2 to update
356
357     if (get_bits_count(gb) - 1 <= 0) return;
358
359     for (i=0 ; i<gaininfo->size ; i++){
360         gaininfo->qidx_table1[i] = get_bits(gb,3);
361         if (get_bits1(gb)) {
362             gaininfo->qidx_table2[i] = get_bits(gb,4) - 7;  //convert to signed
363         } else {
364             gaininfo->qidx_table2[i] = -1;
365         }
366     }
367 }
368
369 /**
370  * Create the quant index table needed for the envelope.
371  *
372  * @param q                 pointer to the COOKContext
373  * @param quant_index_table pointer to the array
374  */
375
376 static void decode_envelope(COOKContext *q, int* quant_index_table) {
377     int i,j, vlc_index;
378     int bitbias;
379
380     bitbias = get_bits_count(&q->gb);
381     quant_index_table[0]= get_bits(&q->gb,6) - 6;       //This is used later in categorize
382
383     for (i=1 ; i < q->total_subbands ; i++){
384         vlc_index=i;
385         if (i >= q->js_subband_start * 2) {
386             vlc_index-=q->js_subband_start;
387         } else {
388             vlc_index/=2;
389             if(vlc_index < 1) vlc_index = 1;
390         }
391         if (vlc_index>13) vlc_index = 13;           //the VLC tables >13 are identical to No. 13
392
393         j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
394                      q->envelope_quant_index[vlc_index-1].bits,2);
395         quant_index_table[i] = quant_index_table[i-1] + j - 12;    //differential encoding
396     }
397 }
398
399 /**
400  * Create the quant value table.
401  *
402  * @param q                 pointer to the COOKContext
403  * @param quant_value_table pointer to the array
404  */
405
406 static void inline dequant_envelope(COOKContext *q, int* quant_index_table,
407                                     float* quant_value_table){
408
409     int i;
410     for(i=0 ; i < q->total_subbands ; i++){
411         quant_value_table[i] = q->rootpow2tab[quant_index_table[i]+63];
412     }
413 }
414
415 /**
416  * Calculate the category and category_index vector.
417  *
418  * @param q                     pointer to the COOKContext
419  * @param quant_index_table     pointer to the array
420  * @param category              pointer to the category array
421  * @param category_index        pointer to the category_index array
422  */
423
424 static void categorize(COOKContext *q, int* quant_index_table,
425                        int* category, int* category_index){
426     int exp_idx, bias, tmpbias, bits_left, num_bits, index, v, i, j;
427     int exp_index2[102];
428     int exp_index1[102];
429
430     int tmp_categorize_array1[128];
431     int tmp_categorize_array1_idx=0;
432     int tmp_categorize_array2[128];
433     int tmp_categorize_array2_idx=0;
434     int category_index_size=0;
435
436     bits_left =  q->bits_per_subpacket - get_bits_count(&q->gb);
437
438     if(bits_left > q->samples_per_channel) {
439         bits_left = q->samples_per_channel +
440                     ((bits_left - q->samples_per_channel)*5)/8;
441         //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
442     }
443
444     memset(&exp_index1,0,102*sizeof(int));
445     memset(&exp_index2,0,102*sizeof(int));
446     memset(&tmp_categorize_array1,0,128*sizeof(int));
447     memset(&tmp_categorize_array2,0,128*sizeof(int));
448
449     bias=-32;
450
451     /* Estimate bias. */
452     for (i=32 ; i>0 ; i=i/2){
453         num_bits = 0;
454         index = 0;
455         for (j=q->total_subbands ; j>0 ; j--){
456             exp_idx = (i - quant_index_table[index] + bias) / 2;
457             if (exp_idx<0){
458                 exp_idx=0;
459             } else if(exp_idx >7) {
460                 exp_idx=7;
461             }
462             index++;
463             num_bits+=expbits_tab[exp_idx];
464         }
465         if(num_bits >= bits_left - 32){
466             bias+=i;
467         }
468     }
469
470     /* Calculate total number of bits. */
471     num_bits=0;
472     for (i=0 ; i<q->total_subbands ; i++) {
473         exp_idx = (bias - quant_index_table[i]) / 2;
474         if (exp_idx<0) {
475             exp_idx=0;
476         } else if(exp_idx >7) {
477             exp_idx=7;
478         }
479         num_bits += expbits_tab[exp_idx];
480         exp_index1[i] = exp_idx;
481         exp_index2[i] = exp_idx;
482     }
483     tmpbias = bias = num_bits;
484
485     for (j = 1 ; j < q->numvector_size ; j++) {
486         if (tmpbias + bias > 2*bits_left) {  /* ---> */
487             int max = -999999;
488             index=-1;
489             for (i=0 ; i<q->total_subbands ; i++){
490                 if (exp_index1[i] < 7) {
491                     v = (-2*exp_index1[i]) - quant_index_table[i] - 32;
492                     if ( v >= max) {
493                         max = v;
494                         index = i;
495                     }
496                 }
497             }
498             if(index==-1)break;
499             tmp_categorize_array1[tmp_categorize_array1_idx++] = index;
500             tmpbias -= expbits_tab[exp_index1[index]] -
501                        expbits_tab[exp_index1[index]+1];
502             ++exp_index1[index];
503         } else {  /* <--- */
504             int min = 999999;
505             index=-1;
506             for (i=0 ; i<q->total_subbands ; i++){
507                 if(exp_index2[i] > 0){
508                     v = (-2*exp_index2[i])-quant_index_table[i];
509                     if ( v < min) {
510                         min = v;
511                         index = i;
512                     }
513                 }
514             }
515             if(index == -1)break;
516             tmp_categorize_array2[tmp_categorize_array2_idx++] = index;
517             tmpbias -= expbits_tab[exp_index2[index]] -
518                        expbits_tab[exp_index2[index]-1];
519             --exp_index2[index];
520         }
521     }
522
523     for(i=0 ; i<q->total_subbands ; i++)
524         category[i] = exp_index2[i];
525
526     /* Concatenate the two arrays. */
527     for(i=tmp_categorize_array2_idx-1 ; i >= 0; i--)
528         category_index[category_index_size++] =  tmp_categorize_array2[i];
529
530     for(i=0;i<tmp_categorize_array1_idx;i++)
531         category_index[category_index_size++ ] =  tmp_categorize_array1[i];
532
533     /* FIXME: mc_sich_ra8_20.rm triggers this, not sure with what we
534        should fill the remaining bytes. */
535     for(i=category_index_size;i<q->numvector_size;i++)
536         category_index[i]=0;
537
538 }
539
540
541 /**
542  * Expand the category vector.
543  *
544  * @param q                     pointer to the COOKContext
545  * @param category              pointer to the category array
546  * @param category_index        pointer to the category_index array
547  */
548
549 static void inline expand_category(COOKContext *q, int* category,
550                                    int* category_index){
551     int i;
552     for(i=0 ; i<q->num_vectors ; i++){
553         ++category[category_index[i]];
554     }
555 }
556
557 /**
558  * The real requantization of the mltcoefs
559  *
560  * @param q                     pointer to the COOKContext
561  * @param index                 index
562  * @param band                  current subband
563  * @param quant_value_table     pointer to the array
564  * @param subband_coef_index    array of indexes to quant_centroid_tab
565  * @param subband_coef_noise    use random noise instead of predetermined value
566  * @param mlt_buffer            pointer to the mlt buffer
567  */
568
569
570 static void scalar_dequant(COOKContext *q, int index, int band,
571                            float* quant_value_table, int* subband_coef_index,
572                            int* subband_coef_noise, float* mlt_buffer){
573     int i;
574     float f1;
575
576     for(i=0 ; i<SUBBAND_SIZE ; i++) {
577         if (subband_coef_index[i]) {
578             if (subband_coef_noise[i]) {
579                 f1 = -quant_centroid_tab[index][subband_coef_index[i]];
580             } else {
581                 f1 = quant_centroid_tab[index][subband_coef_index[i]];
582             }
583         } else {
584             /* noise coding if subband_coef_noise[i] == 0 */
585             q->random_state = q->random_state * 214013 + 2531011;    //typical RNG numbers
586             f1 = randsign[(q->random_state/0x1000000)&1] * dither_tab[index]; //>>31
587         }
588         mlt_buffer[band*20+ i] = f1 * quant_value_table[band];
589     }
590 }
591 /**
592  * Unpack the subband_coef_index and subband_coef_noise vectors.
593  *
594  * @param q                     pointer to the COOKContext
595  * @param category              pointer to the category array
596  * @param subband_coef_index    array of indexes to quant_centroid_tab
597  * @param subband_coef_noise    use random noise instead of predetermined value
598  */
599
600 static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
601                        int* subband_coef_noise) {
602     int i,j;
603     int vlc, vd ,tmp, result;
604     int ub;
605     int cb;
606
607     vd = vd_tab[category];
608     result = 0;
609     for(i=0 ; i<vpr_tab[category] ; i++){
610         ub = get_bits_count(&q->gb);
611         vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
612         cb = get_bits_count(&q->gb);
613         if (q->bits_per_subpacket < get_bits_count(&q->gb)){
614             vlc = 0;
615             result = 1;
616         }
617         for(j=vd-1 ; j>=0 ; j--){
618             tmp = (vlc * invradix_tab[category])/0x100000;
619             subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
620             vlc = tmp;
621         }
622         for(j=0 ; j<vd ; j++){
623             if (subband_coef_index[i*vd + j]) {
624                 if(get_bits_count(&q->gb) < q->bits_per_subpacket){
625                     subband_coef_noise[i*vd+j] = get_bits1(&q->gb);
626                 } else {
627                     result=1;
628                     subband_coef_noise[i*vd+j]=0;
629                 }
630             } else {
631                 subband_coef_noise[i*vd+j]=0;
632             }
633         }
634     }
635     return result;
636 }
637
638
639 /**
640  * Fill the mlt_buffer with mlt coefficients.
641  *
642  * @param q                 pointer to the COOKContext
643  * @param category          pointer to the category array
644  * @param quant_value_table pointer to the array
645  * @param mlt_buffer        pointer to mlt coefficients
646  */
647
648
649 static void decode_vectors(COOKContext* q, int* category,
650                            float* quant_value_table, float* mlt_buffer){
651     /* A zero in this table means that the subband coefficient is
652        random noise coded. */
653     int subband_coef_noise[SUBBAND_SIZE];
654     /* A zero in this table means that the subband coefficient is a
655        positive multiplicator. */
656     int subband_coef_index[SUBBAND_SIZE];
657     int band, j;
658     int index=0;
659
660     for(band=0 ; band<q->total_subbands ; band++){
661         index = category[band];
662         if(category[band] < 7){
663             if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_noise)){
664                 index=7;
665                 for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
666             }
667         }
668         if(index==7) {
669             memset(subband_coef_index, 0, sizeof(subband_coef_index));
670             memset(subband_coef_noise, 0, sizeof(subband_coef_noise));
671         }
672         scalar_dequant(q, index, band, quant_value_table, subband_coef_index,
673                        subband_coef_noise, mlt_buffer);
674     }
675
676     if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
677         return;
678     }
679 }
680
681
682 /**
683  * function for decoding mono data
684  *
685  * @param q                 pointer to the COOKContext
686  * @param mlt_buffer1       pointer to left channel mlt coefficients
687  * @param mlt_buffer2       pointer to right channel mlt coefficients
688  */
689
690 static void mono_decode(COOKContext *q, float* mlt_buffer) {
691
692     int category_index[128];
693     float quant_value_table[102];
694     int quant_index_table[102];
695     int category[128];
696
697     memset(&category, 0, 128*sizeof(int));
698     memset(&quant_value_table, 0, 102*sizeof(int));
699     memset(&category_index, 0, 128*sizeof(int));
700
701     decode_envelope(q, quant_index_table);
702     q->num_vectors = get_bits(&q->gb,q->log2_numvector_size);
703     dequant_envelope(q, quant_index_table, quant_value_table);
704     categorize(q, quant_index_table, category, category_index);
705     expand_category(q, category, category_index);
706     decode_vectors(q, category, quant_value_table, mlt_buffer);
707 }
708
709
710 /**
711  * The modulated lapped transform, this takes transform coefficients
712  * and transforms them into timedomain samples. This is done through
713  * an FFT-based algorithm with pre- and postrotation steps.
714  * A window and reorder step is also included.
715  *
716  * @param q                 pointer to the COOKContext
717  * @param inbuffer          pointer to the mltcoefficients
718  * @param outbuffer         pointer to the timedomain buffer
719  * @param mlt_tmp           pointer to temporary storage space
720  */
721
722 static void cook_imlt(COOKContext *q, float* inbuffer, float* outbuffer,
723                       float* mlt_tmp){
724     int i;
725
726     /* prerotation */
727     for(i=0 ; i<q->mlt_size ; i+=2){
728         outbuffer[i] = (q->mlt_presin[i/2] * inbuffer[q->mlt_size-1-i]) +
729                        (q->mlt_precos[i/2] * inbuffer[i]);
730         outbuffer[i+1] = (q->mlt_precos[i/2] * inbuffer[q->mlt_size-1-i]) -
731                          (q->mlt_presin[i/2] * inbuffer[i]);
732     }
733
734     /* FFT */
735     ff_fft_permute(&q->fft_ctx, (FFTComplex *) outbuffer);
736     ff_fft_calc (&q->fft_ctx, (FFTComplex *) outbuffer);
737
738     /* postrotation */
739     for(i=0 ; i<q->mlt_size ; i+=2){
740         mlt_tmp[i] =               (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i+1]) +
741                                    (q->mlt_postcos[i/2] * outbuffer[i]);
742         mlt_tmp[q->mlt_size-1-i] = (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i]) -
743                                    (q->mlt_postcos[i/2] * outbuffer[i+1]);
744     }
745
746     /* window and reorder */
747     for(i=0 ; i<q->mlt_size/2 ; i++){
748         outbuffer[i] = mlt_tmp[q->mlt_size/2-1-i] * q->mlt_window[i];
749         outbuffer[q->mlt_size-1-i]= mlt_tmp[q->mlt_size/2-1-i] *
750                                     q->mlt_window[q->mlt_size-1-i];
751         outbuffer[q->mlt_size+i]= mlt_tmp[q->mlt_size/2+i] *
752                                   q->mlt_window[q->mlt_size-1-i];
753         outbuffer[2*q->mlt_size-1-i]= -(mlt_tmp[q->mlt_size/2+i] *
754                                       q->mlt_window[i]);
755     }
756 }
757
758
759 /**
760  * the actual requantization of the timedomain samples
761  *
762  * @param q                 pointer to the COOKContext
763  * @param buffer            pointer to the timedomain buffer
764  * @param gain_index        index for the block multiplier
765  * @param gain_index_next   index for the next block multiplier
766  */
767
768 static void interpolate(COOKContext *q, float* buffer,
769                         int gain_index, int gain_index_next){
770     int i;
771     float fc1, fc2;
772     fc1 = q->pow2tab[gain_index+63];
773
774     if(gain_index == gain_index_next){              //static gain
775         for(i=0 ; i<q->gain_size_factor ; i++){
776             buffer[i]*=fc1;
777         }
778         return;
779     } else {                                        //smooth gain
780         fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
781         for(i=0 ; i<q->gain_size_factor ; i++){
782             buffer[i]*=fc1;
783             fc1*=fc2;
784         }
785         return;
786     }
787 }
788
789 /**
790  * timedomain requantization of the timedomain samples
791  *
792  * @param q                 pointer to the COOKContext
793  * @param buffer            pointer to the timedomain buffer
794  * @param gain_now          current gain structure
795  * @param gain_previous     previous gain structure
796  */
797
798 static void gain_window(COOKContext *q, float* buffer, COOKgain* gain_now,
799                         COOKgain* gain_previous){
800     int i, index;
801     int gain_index[9];
802     int tmp_gain_index;
803
804     gain_index[8]=0;
805     index = gain_previous->size;
806     for (i=7 ; i>=0 ; i--) {
807         if(index && gain_previous->qidx_table1[index-1]==i) {
808             gain_index[i] = gain_previous->qidx_table2[index-1];
809             index--;
810         } else {
811             gain_index[i]=gain_index[i+1];
812         }
813     }
814     /* This is applied to the to be previous data buffer. */
815     for(i=0;i<8;i++){
816         interpolate(q, &buffer[q->samples_per_channel+q->gain_size_factor*i],
817                     gain_index[i], gain_index[i+1]);
818     }
819
820     tmp_gain_index = gain_index[0];
821     index = gain_now->size;
822     for (i=7 ; i>=0 ; i--) {
823         if(index && gain_now->qidx_table1[index-1]==i) {
824             gain_index[i]= gain_now->qidx_table2[index-1];
825             index--;
826         } else {
827             gain_index[i]=gain_index[i+1];
828         }
829     }
830
831     /* This is applied to the to be current block. */
832     for(i=0;i<8;i++){
833         interpolate(q, &buffer[i*q->gain_size_factor],
834                     tmp_gain_index+gain_index[i],
835                     tmp_gain_index+gain_index[i+1]);
836     }
837 }
838
839
840 /**
841  * mlt overlapping and buffer management
842  *
843  * @param q                 pointer to the COOKContext
844  * @param buffer            pointer to the timedomain buffer
845  * @param gain_now          current gain structure
846  * @param gain_previous     previous gain structure
847  * @param previous_buffer   pointer to the previous buffer to be used for overlapping
848  *
849  */
850
851 static void gain_compensate(COOKContext *q, float* buffer, COOKgain* gain_now,
852                             COOKgain* gain_previous, float* previous_buffer) {
853     int i;
854     if((gain_now->size  || gain_previous->size)) {
855         gain_window(q, buffer, gain_now, gain_previous);
856     }
857
858     /* Overlap with the previous block. */
859     for(i=0 ; i<q->samples_per_channel ; i++) buffer[i]+=previous_buffer[i];
860
861     /* Save away the current to be previous block. */
862     memcpy(previous_buffer, buffer+q->samples_per_channel,
863            sizeof(float)*q->samples_per_channel);
864 }
865
866
867 /**
868  * function for getting the jointstereo coupling information
869  *
870  * @param q                 pointer to the COOKContext
871  * @param decouple_tab      decoupling array
872  *
873  */
874
875 static void decouple_info(COOKContext *q, int* decouple_tab){
876     int length, i;
877
878     if(get_bits1(&q->gb)) {
879         if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
880
881         length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
882         for (i=0 ; i<length ; i++) {
883             decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
884         }
885         return;
886     }
887
888     if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
889
890     length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
891     for (i=0 ; i<length ; i++) {
892        decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
893     }
894     return;
895 }
896
897
898 /**
899  * function for decoding joint stereo data
900  *
901  * @param q                 pointer to the COOKContext
902  * @param mlt_buffer1       pointer to left channel mlt coefficients
903  * @param mlt_buffer2       pointer to right channel mlt coefficients
904  */
905
906 static void joint_decode(COOKContext *q, float* mlt_buffer1,
907                          float* mlt_buffer2) {
908     int i,j;
909     int decouple_tab[SUBBAND_SIZE];
910     float decode_buffer[1060];
911     int idx, cpl_tmp,tmp_idx;
912     float f1,f2;
913     float* cplscale;
914
915     memset(decouple_tab, 0, sizeof(decouple_tab));
916     memset(decode_buffer, 0, sizeof(decode_buffer));
917
918     /* Make sure the buffers are zeroed out. */
919     memset(mlt_buffer1,0, 1024*sizeof(float));
920     memset(mlt_buffer2,0, 1024*sizeof(float));
921     decouple_info(q, decouple_tab);
922     mono_decode(q, decode_buffer);
923
924     /* The two channels are stored interleaved in decode_buffer. */
925     for (i=0 ; i<q->js_subband_start ; i++) {
926         for (j=0 ; j<SUBBAND_SIZE ; j++) {
927             mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
928             mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
929         }
930     }
931
932     /* When we reach js_subband_start (the higher frequencies)
933        the coefficients are stored in a coupling scheme. */
934     idx = (1 << q->js_vlc_bits) - 1;
935     for (i=q->js_subband_start ; i<q->subbands ; i++) {
936         cpl_tmp = cplband[i];
937         idx -=decouple_tab[cpl_tmp];
938         cplscale = (float*)cplscales[q->js_vlc_bits-2];  //choose decoupler table
939         f1 = cplscale[decouple_tab[cpl_tmp]];
940         f2 = cplscale[idx-1];
941         for (j=0 ; j<SUBBAND_SIZE ; j++) {
942             tmp_idx = ((q->js_subband_start + i)*20)+j;
943             mlt_buffer1[20*i + j] = f1 * decode_buffer[tmp_idx];
944             mlt_buffer2[20*i + j] = f2 * decode_buffer[tmp_idx];
945         }
946         idx = (1 << q->js_vlc_bits) - 1;
947     }
948 }
949
950 /**
951  * Cook subpacket decoding. This function returns one decoded subpacket,
952  * usually 1024 samples per channel.
953  *
954  * @param q                 pointer to the COOKContext
955  * @param inbuffer          pointer to the inbuffer
956  * @param sub_packet_size   subpacket size
957  * @param outbuffer         pointer to the outbuffer
958  */
959
960
961 static int decode_subpacket(COOKContext *q, uint8_t *inbuffer,
962                             int sub_packet_size, int16_t *outbuffer) {
963     int i,j;
964     int value;
965     float* tmp_ptr;
966
967     /* packet dump */
968 //    for (i=0 ; i<sub_packet_size ; i++) {
969 //        av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
970 //    }
971 //    av_log(NULL, AV_LOG_ERROR, "\n");
972
973     decode_bytes(inbuffer, q->decoded_bytes_buffer, sub_packet_size);
974     init_get_bits(&q->gb, q->decoded_bytes_buffer, sub_packet_size*8);
975     decode_gain_info(&q->gb, &q->gain_current);
976
977     if(q->nb_channels==2 && q->joint_stereo==1){
978         joint_decode(q, q->decode_buf_ptr[0], q->decode_buf_ptr[2]);
979
980         /* Swap buffer pointers. */
981         tmp_ptr = q->decode_buf_ptr[1];
982         q->decode_buf_ptr[1] = q->decode_buf_ptr[0];
983         q->decode_buf_ptr[0] = tmp_ptr;
984         tmp_ptr = q->decode_buf_ptr[3];
985         q->decode_buf_ptr[3] = q->decode_buf_ptr[2];
986         q->decode_buf_ptr[2] = tmp_ptr;
987
988         /* FIXME: Rethink the gainbuffer handling, maybe a rename?
989            now/previous swap */
990         q->gain_now_ptr = &q->gain_now;
991         q->gain_previous_ptr = &q->gain_previous;
992         for (i=0 ; i<q->nb_channels ; i++){
993
994             cook_imlt(q, q->decode_buf_ptr[i*2], q->mono_mdct_output, q->mlt_tmp);
995             gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
996                             q->gain_previous_ptr, q->previous_buffer_ptr[0]);
997
998             /* Swap out the previous buffer. */
999             tmp_ptr = q->previous_buffer_ptr[0];
1000             q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
1001             q->previous_buffer_ptr[1] = tmp_ptr;
1002
1003             /* Clip and convert the floats to 16 bits. */
1004             for (j=0 ; j<q->samples_per_frame ; j++){
1005                 value = lrintf(q->mono_mdct_output[j]);
1006                 if(value < -32768) value = -32768;
1007                 else if(value > 32767) value = 32767;
1008                 outbuffer[2*j+i] = value;
1009             }
1010         }
1011
1012         memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
1013         memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
1014
1015     } else if (q->nb_channels==2 && q->joint_stereo==0) {
1016             /* channel 0 */
1017             mono_decode(q, q->decode_buf_ptr2[0]);
1018
1019             tmp_ptr = q->decode_buf_ptr2[0];
1020             q->decode_buf_ptr2[0] = q->decode_buf_ptr2[1];
1021             q->decode_buf_ptr2[1] = tmp_ptr;
1022
1023             memcpy(&q->gain_channel1[0], &q->gain_current ,sizeof(COOKgain));
1024             q->gain_now_ptr = &q->gain_channel1[0];
1025             q->gain_previous_ptr = &q->gain_channel1[1];
1026
1027             cook_imlt(q, q->decode_buf_ptr2[0], q->mono_mdct_output,q->mlt_tmp);
1028             gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1029                             q->gain_previous_ptr, q->mono_previous_buffer1);
1030
1031             memcpy(&q->gain_channel1[1], &q->gain_channel1[0],sizeof(COOKgain));
1032
1033
1034             for (j=0 ; j<q->samples_per_frame ; j++){
1035                 value = lrintf(q->mono_mdct_output[j]);
1036                 if(value < -32768) value = -32768;
1037                 else if(value > 32767) value = 32767;
1038                 outbuffer[2*j+1] = value;
1039             }
1040
1041             /* channel 1 */
1042             //av_log(NULL,AV_LOG_ERROR,"bits = %d\n",get_bits_count(&q->gb));
1043             init_get_bits(&q->gb, q->decoded_bytes_buffer, sub_packet_size*8+q->bits_per_subpacket);
1044
1045             q->gain_now_ptr = &q->gain_channel2[0];
1046             q->gain_previous_ptr = &q->gain_channel2[1];
1047
1048             decode_gain_info(&q->gb, &q->gain_channel2[0]);
1049             mono_decode(q, q->decode_buf_ptr[0]);
1050
1051             tmp_ptr = q->decode_buf_ptr[0];
1052             q->decode_buf_ptr[0] = q->decode_buf_ptr[1];
1053             q->decode_buf_ptr[1] = tmp_ptr;
1054
1055             cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
1056             gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1057                             q->gain_previous_ptr, q->mono_previous_buffer2);
1058
1059             /* Swap out the previous buffer. */
1060             tmp_ptr = q->previous_buffer_ptr[0];
1061             q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
1062             q->previous_buffer_ptr[1] = tmp_ptr;
1063
1064             memcpy(&q->gain_channel2[1], &q->gain_channel2[0] ,sizeof(COOKgain));
1065
1066             for (j=0 ; j<q->samples_per_frame ; j++){
1067                 value = lrintf(q->mono_mdct_output[j]);
1068                 if(value < -32768) value = -32768;
1069                 else if(value > 32767) value = 32767;
1070                 outbuffer[2*j] = value;
1071             }
1072
1073     } else {
1074         mono_decode(q, q->decode_buf_ptr[0]);
1075
1076         /* Swap buffer pointers. */
1077         tmp_ptr = q->decode_buf_ptr[1];
1078         q->decode_buf_ptr[1] = q->decode_buf_ptr[0];
1079         q->decode_buf_ptr[0] = tmp_ptr;
1080
1081         /* FIXME: Rethink the gainbuffer handling, maybe a rename?
1082            now/previous swap */
1083         q->gain_now_ptr = &q->gain_now;
1084         q->gain_previous_ptr = &q->gain_previous;
1085
1086         cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
1087         gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1088                         q->gain_previous_ptr, q->mono_previous_buffer1);
1089
1090         /* Clip and convert the floats to 16 bits */
1091         for (j=0 ; j<q->samples_per_frame ; j++){
1092             value = lrintf(q->mono_mdct_output[j]);
1093             if(value < -32768) value = -32768;
1094             else if(value > 32767) value = 32767;
1095             outbuffer[j] = value;
1096         }
1097         memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
1098         memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
1099     }
1100     return q->samples_per_frame * sizeof(int16_t);
1101 }
1102
1103
1104 /**
1105  * Cook frame decoding
1106  *
1107  * @param avctx     pointer to the AVCodecContext
1108  */
1109
1110 static int cook_decode_frame(AVCodecContext *avctx,
1111             void *data, int *data_size,
1112             uint8_t *buf, int buf_size) {
1113     COOKContext *q = avctx->priv_data;
1114
1115     if (buf_size < avctx->block_align)
1116         return buf_size;
1117
1118     *data_size = decode_subpacket(q, buf, avctx->block_align, data);
1119
1120     return avctx->block_align;
1121 }
1122
1123 #ifdef COOKDEBUG
1124 static void dump_cook_context(COOKContext *q, COOKextradata *e)
1125 {
1126     //int i=0;
1127 #define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
1128     av_log(NULL,AV_LOG_ERROR,"COOKextradata\n");
1129     av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",e->cookversion);
1130     if (e->cookversion > MONO_COOK2) {
1131         PRINT("js_subband_start",e->js_subband_start);
1132         PRINT("js_vlc_bits",e->js_vlc_bits);
1133     }
1134     av_log(NULL,AV_LOG_ERROR,"COOKContext\n");
1135     PRINT("nb_channels",q->nb_channels);
1136     PRINT("bit_rate",q->bit_rate);
1137     PRINT("sample_rate",q->sample_rate);
1138     PRINT("samples_per_channel",q->samples_per_channel);
1139     PRINT("samples_per_frame",q->samples_per_frame);
1140     PRINT("subbands",q->subbands);
1141     PRINT("random_state",q->random_state);
1142     PRINT("mlt_size",q->mlt_size);
1143     PRINT("js_subband_start",q->js_subband_start);
1144     PRINT("log2_numvector_size",q->log2_numvector_size);
1145     PRINT("numvector_size",q->numvector_size);
1146     PRINT("total_subbands",q->total_subbands);
1147 }
1148 #endif
1149
1150 /**
1151  * Cook initialization
1152  *
1153  * @param avctx     pointer to the AVCodecContext
1154  */
1155
1156 static int cook_decode_init(AVCodecContext *avctx)
1157 {
1158     COOKextradata *e = avctx->extradata;
1159     COOKContext *q = avctx->priv_data;
1160
1161     /* Take care of the codec specific extradata. */
1162     if (avctx->extradata_size <= 0) {
1163         av_log(NULL,AV_LOG_ERROR,"Necessary extradata missing!\n");
1164         return -1;
1165     } else {
1166         /* 8 for mono, 16 for stereo, ? for multichannel
1167            Swap to right endianness so we don't need to care later on. */
1168         av_log(NULL,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
1169         if (avctx->extradata_size >= 8){
1170             e->cookversion = be2me_32(e->cookversion);
1171             e->samples_per_frame = be2me_16(e->samples_per_frame);
1172             e->subbands = be2me_16(e->subbands);
1173         }
1174         if (avctx->extradata_size >= 16){
1175             e->js_subband_start = be2me_16(e->js_subband_start);
1176             e->js_vlc_bits = be2me_16(e->js_vlc_bits);
1177         }
1178     }
1179
1180     /* Take data from the AVCodecContext (RM container). */
1181     q->sample_rate = avctx->sample_rate;
1182     q->nb_channels = avctx->channels;
1183     q->bit_rate = avctx->bit_rate;
1184
1185     /* Initialize state. */
1186     q->random_state = 1;
1187
1188     /* Initialize extradata related variables. */
1189     q->samples_per_channel = e->samples_per_frame / q->nb_channels;
1190     q->samples_per_frame = e->samples_per_frame;
1191     q->subbands = e->subbands;
1192     q->bits_per_subpacket = avctx->block_align * 8;
1193
1194     /* Initialize default data states. */
1195     q->js_subband_start = 0;
1196     q->log2_numvector_size = 5;
1197     q->total_subbands = q->subbands;
1198
1199     /* Initialize version-dependent variables */
1200     av_log(NULL,AV_LOG_DEBUG,"e->cookversion=%x\n",e->cookversion);
1201     switch (e->cookversion) {
1202         case MONO_COOK1:
1203             if (q->nb_channels != 1) {
1204                 av_log(NULL,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1205                 return -1;
1206             }
1207             av_log(NULL,AV_LOG_DEBUG,"MONO_COOK1\n");
1208             break;
1209         case MONO_COOK2:
1210             if (q->nb_channels != 1) {
1211                 q->joint_stereo = 0;
1212                 q->bits_per_subpacket = q->bits_per_subpacket/2;
1213             }
1214             av_log(NULL,AV_LOG_DEBUG,"MONO_COOK2\n");
1215             break;
1216         case JOINT_STEREO:
1217             if (q->nb_channels != 2) {
1218                 av_log(NULL,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1219                 return -1;
1220             }
1221             av_log(NULL,AV_LOG_DEBUG,"JOINT_STEREO\n");
1222             if (avctx->extradata_size >= 16){
1223                 q->total_subbands = q->subbands + e->js_subband_start;
1224                 q->js_subband_start = e->js_subband_start;
1225                 q->joint_stereo = 1;
1226                 q->js_vlc_bits = e->js_vlc_bits;
1227             }
1228             if (q->samples_per_channel > 256) {
1229                 q->log2_numvector_size  = 6;
1230             }
1231             if (q->samples_per_channel > 512) {
1232                 q->log2_numvector_size  = 7;
1233             }
1234             break;
1235         case MC_COOK:
1236             av_log(NULL,AV_LOG_ERROR,"MC_COOK not supported!\n");
1237             return -1;
1238             break;
1239         default:
1240             av_log(NULL,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1241             return -1;
1242             break;
1243     }
1244
1245     /* Initialize variable relations */
1246     q->mlt_size = q->samples_per_channel;
1247     q->numvector_size = (1 << q->log2_numvector_size);
1248
1249     /* Generate tables */
1250     init_rootpow2table(q);
1251     init_pow2table(q);
1252     init_gain_table(q);
1253
1254     if (init_cook_vlc_tables(q) != 0)
1255         return -1;
1256
1257
1258     if(avctx->block_align >= UINT_MAX/2)
1259         return -1;
1260
1261     /* Pad the databuffer with FF_INPUT_BUFFER_PADDING_SIZE,
1262        this is for the bitstreamreader. */
1263     if ((q->decoded_bytes_buffer = av_mallocz((avctx->block_align+(4-avctx->block_align%4) + FF_INPUT_BUFFER_PADDING_SIZE)*sizeof(uint8_t)))  == NULL)
1264         return -1;
1265
1266     q->decode_buf_ptr[0] = q->decode_buffer_1;
1267     q->decode_buf_ptr[1] = q->decode_buffer_2;
1268     q->decode_buf_ptr[2] = q->decode_buffer_3;
1269     q->decode_buf_ptr[3] = q->decode_buffer_4;
1270
1271     q->decode_buf_ptr2[0] = q->decode_buffer_3;
1272     q->decode_buf_ptr2[1] = q->decode_buffer_4;
1273
1274     q->previous_buffer_ptr[0] = q->mono_previous_buffer1;
1275     q->previous_buffer_ptr[1] = q->mono_previous_buffer2;
1276
1277     /* Initialize transform. */
1278     if ( init_cook_mlt(q) == 0 )
1279         return -1;
1280
1281     /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1282     if (q->total_subbands > 53) {
1283         av_log(NULL,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
1284         return -1;
1285     }
1286     if (q->subbands > 50) {
1287         av_log(NULL,AV_LOG_ERROR,"subbands > 50, report sample!\n");
1288         return -1;
1289     }
1290     if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1291     } else {
1292         av_log(NULL,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
1293         return -1;
1294     }
1295
1296 #ifdef COOKDEBUG
1297     dump_cook_context(q,e);
1298 #endif
1299     return 0;
1300 }
1301
1302
1303 AVCodec cook_decoder =
1304 {
1305     .name = "cook",
1306     .type = CODEC_TYPE_AUDIO,
1307     .id = CODEC_ID_COOK,
1308     .priv_data_size = sizeof(COOKContext),
1309     .init = cook_decode_init,
1310     .close = cook_decode_close,
1311     .decode = cook_decode_frame,
1312 };