]> rtime.felk.cvut.cz Git - fpga/lx-cpu1/binutils-tumbl.git/blob - gold/target-reloc.h
Change cond. branching to BRC/BRCI and add CLZ instruction
[fpga/lx-cpu1/binutils-tumbl.git] / gold / target-reloc.h
1 // target-reloc.h -- target specific relocation support  -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #ifndef GOLD_TARGET_RELOC_H
25 #define GOLD_TARGET_RELOC_H
26
27 #include "elfcpp.h"
28 #include "symtab.h"
29 #include "object.h"
30 #include "reloc.h"
31 #include "reloc-types.h"
32
33 namespace gold
34 {
35
36 // This function implements the generic part of reloc scanning.  The
37 // template parameter Scan must be a class type which provides two
38 // functions: local() and global().  Those functions implement the
39 // machine specific part of scanning.  We do it this way to
40 // avoid making a function call for each relocation, and to avoid
41 // repeating the generic code for each target.
42
43 template<int size, bool big_endian, typename Target_type, int sh_type,
44          typename Scan>
45 inline void
46 scan_relocs(
47     Symbol_table* symtab,
48     Layout* layout,
49     Target_type* target,
50     Sized_relobj_file<size, big_endian>* object,
51     unsigned int data_shndx,
52     const unsigned char* prelocs,
53     size_t reloc_count,
54     Output_section* output_section,
55     bool needs_special_offset_handling,
56     size_t local_count,
57     const unsigned char* plocal_syms)
58 {
59   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
60   const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
61   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
62   Scan scan;
63
64   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
65     {
66       Reltype reloc(prelocs);
67
68       if (needs_special_offset_handling
69           && !output_section->is_input_address_mapped(object, data_shndx,
70                                                       reloc.get_r_offset()))
71         continue;
72
73       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
74       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
75       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
76
77       if (r_sym < local_count)
78         {
79           gold_assert(plocal_syms != NULL);
80           typename elfcpp::Sym<size, big_endian> lsym(plocal_syms
81                                                       + r_sym * sym_size);
82           unsigned int shndx = lsym.get_st_shndx();
83           bool is_ordinary;
84           shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
85           if (is_ordinary
86               && shndx != elfcpp::SHN_UNDEF
87               && !object->is_section_included(shndx)
88               && !symtab->is_section_folded(object, shndx))
89             {
90               // RELOC is a relocation against a local symbol in a
91               // section we are discarding.  We can ignore this
92               // relocation.  It will eventually become a reloc
93               // against the value zero.
94               //
95               // FIXME: We should issue a warning if this is an
96               // allocated section; is this the best place to do it?
97               //
98               // FIXME: The old GNU linker would in some cases look
99               // for the linkonce section which caused this section to
100               // be discarded, and, if the other section was the same
101               // size, change the reloc to refer to the other section.
102               // That seems risky and weird to me, and I don't know of
103               // any case where it is actually required.
104
105               continue;
106             }
107           scan.local(symtab, layout, target, object, data_shndx,
108                      output_section, reloc, r_type, lsym);
109         }
110       else
111         {
112           Symbol* gsym = object->global_symbol(r_sym);
113           gold_assert(gsym != NULL);
114           if (gsym->is_forwarder())
115             gsym = symtab->resolve_forwards(gsym);
116
117           scan.global(symtab, layout, target, object, data_shndx,
118                       output_section, reloc, r_type, gsym);
119         }
120     }
121 }
122
123 // Behavior for relocations to discarded comdat sections.
124
125 enum Comdat_behavior
126 {
127   CB_UNDETERMINED,   // Not yet determined -- need to look at section name.
128   CB_PRETEND,        // Attempt to map to the corresponding kept section.
129   CB_IGNORE,         // Ignore the relocation.
130   CB_WARNING         // Print a warning.
131 };
132
133 // Decide what the linker should do for relocations that refer to discarded
134 // comdat sections.  This decision is based on the name of the section being
135 // relocated.
136
137 inline Comdat_behavior
138 get_comdat_behavior(const char* name)
139 {
140   if (Layout::is_debug_info_section(name))
141     return CB_PRETEND;
142   if (strcmp(name, ".eh_frame") == 0
143       || strcmp(name, ".gcc_except_table") == 0)
144     return CB_IGNORE;
145   return CB_WARNING;
146 }
147
148 // Give an error for a symbol with non-default visibility which is not
149 // defined locally.
150
151 inline void
152 visibility_error(const Symbol* sym)
153 {
154   const char* v;
155   switch (sym->visibility())
156     {
157     case elfcpp::STV_INTERNAL:
158       v = _("internal");
159       break;
160     case elfcpp::STV_HIDDEN:
161       v = _("hidden");
162       break;
163     case elfcpp::STV_PROTECTED:
164       v = _("protected");
165       break;
166     default:
167       gold_unreachable();
168     }
169   gold_error(_("%s symbol '%s' is not defined locally"),
170              v, sym->name());
171 }
172
173 // Return true if we are should issue an error saying that SYM is an
174 // undefined symbol.  This is called if there is a relocation against
175 // SYM.
176
177 inline bool
178 issue_undefined_symbol_error(const Symbol* sym)
179 {
180   // We only report global symbols.
181   if (sym == NULL)
182     return false;
183
184   // We only report undefined symbols.
185   if (!sym->is_undefined() && !sym->is_placeholder())
186     return false;
187
188   // We don't report weak symbols.
189   if (sym->binding() == elfcpp::STB_WEAK)
190     return false;
191
192   // We don't report symbols defined in discarded sections.
193   if (sym->is_defined_in_discarded_section())
194     return false;
195
196   // If the target defines this symbol, don't report it here.
197   if (parameters->target().is_defined_by_abi(sym))
198     return false;
199
200   // See if we've been told to ignore whether this symbol is
201   // undefined.
202   const char* const u = parameters->options().unresolved_symbols();
203   if (u != NULL)
204     {
205       if (strcmp(u, "ignore-all") == 0)
206         return false;
207       if (strcmp(u, "report-all") == 0)
208         return true;
209       if (strcmp(u, "ignore-in-object-files") == 0 && !sym->in_dyn())
210         return false;
211       if (strcmp(u, "ignore-in-shared-libs") == 0 && !sym->in_reg())
212         return false;
213     }
214
215   // When creating a shared library, only report unresolved symbols if
216   // -z defs was used.
217   if (parameters->options().shared() && !parameters->options().defs())
218     return false;
219
220   // Otherwise issue a warning.
221   return true;
222 }
223
224 // This function implements the generic part of relocation processing.
225 // The template parameter Relocate must be a class type which provides
226 // a single function, relocate(), which implements the machine
227 // specific part of a relocation.
228
229 // SIZE is the ELF size: 32 or 64.  BIG_ENDIAN is the endianness of
230 // the data.  SH_TYPE is the section type: SHT_REL or SHT_RELA.
231 // RELOCATE implements operator() to do a relocation.
232
233 // PRELOCS points to the relocation data.  RELOC_COUNT is the number
234 // of relocs.  OUTPUT_SECTION is the output section.
235 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
236 // mapped to output offsets.
237
238 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
239 // VIEW_SIZE is the size.  These refer to the input section, unless
240 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
241 // the output section.
242
243 // RELOC_SYMBOL_CHANGES is used for -fsplit-stack support.  If it is
244 // not NULL, it is a vector indexed by relocation index.  If that
245 // entry is not NULL, it points to a global symbol which used as the
246 // symbol for the relocation, ignoring the symbol index in the
247 // relocation.
248
249 template<int size, bool big_endian, typename Target_type, int sh_type,
250          typename Relocate>
251 inline void
252 relocate_section(
253     const Relocate_info<size, big_endian>* relinfo,
254     Target_type* target,
255     const unsigned char* prelocs,
256     size_t reloc_count,
257     Output_section* output_section,
258     bool needs_special_offset_handling,
259     unsigned char* view,
260     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
261     section_size_type view_size,
262     const Reloc_symbol_changes* reloc_symbol_changes)
263 {
264   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
265   const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
266   Relocate relocate;
267
268   Sized_relobj_file<size, big_endian>* object = relinfo->object;
269   unsigned int local_count = object->local_symbol_count();
270
271   Comdat_behavior comdat_behavior = CB_UNDETERMINED;
272
273   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
274     {
275       Reltype reloc(prelocs);
276
277       section_offset_type offset =
278         convert_to_section_size_type(reloc.get_r_offset());
279
280       if (needs_special_offset_handling)
281         {
282           offset = output_section->output_offset(relinfo->object,
283                                                  relinfo->data_shndx,
284                                                  offset);
285           if (offset == -1)
286             continue;
287         }
288
289       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
290       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
291       unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
292
293       const Sized_symbol<size>* sym;
294
295       Symbol_value<size> symval;
296       const Symbol_value<size> *psymval;
297       bool is_defined_in_discarded_section;
298       unsigned int shndx;
299       if (r_sym < local_count
300           && (reloc_symbol_changes == NULL
301               || (*reloc_symbol_changes)[i] == NULL))
302         {
303           sym = NULL;
304           psymval = object->local_symbol(r_sym);
305
306           // If the local symbol belongs to a section we are discarding,
307           // and that section is a debug section, try to find the
308           // corresponding kept section and map this symbol to its
309           // counterpart in the kept section.  The symbol must not
310           // correspond to a section we are folding.
311           bool is_ordinary;
312           shndx = psymval->input_shndx(&is_ordinary);
313           is_defined_in_discarded_section =
314             (is_ordinary
315              && shndx != elfcpp::SHN_UNDEF
316              && !object->is_section_included(shndx)
317              && !relinfo->symtab->is_section_folded(object, shndx));
318         }
319       else
320         {
321           const Symbol* gsym;
322           if (reloc_symbol_changes != NULL
323               && (*reloc_symbol_changes)[i] != NULL)
324             gsym = (*reloc_symbol_changes)[i];
325           else
326             {
327               gsym = object->global_symbol(r_sym);
328               gold_assert(gsym != NULL);
329               if (gsym->is_forwarder())
330                 gsym = relinfo->symtab->resolve_forwards(gsym);
331             }
332
333           sym = static_cast<const Sized_symbol<size>*>(gsym);
334           if (sym->has_symtab_index() && sym->symtab_index() != -1U)
335             symval.set_output_symtab_index(sym->symtab_index());
336           else
337             symval.set_no_output_symtab_entry();
338           symval.set_output_value(sym->value());
339           if (gsym->type() == elfcpp::STT_TLS)
340             symval.set_is_tls_symbol();
341           else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
342             symval.set_is_ifunc_symbol();
343           psymval = &symval;
344
345           is_defined_in_discarded_section =
346             (gsym->is_defined_in_discarded_section()
347              && gsym->is_undefined());
348           shndx = 0;
349         }
350
351       Symbol_value<size> symval2;
352       if (is_defined_in_discarded_section)
353         {
354           if (comdat_behavior == CB_UNDETERMINED)
355             {
356               std::string name = object->section_name(relinfo->data_shndx);
357               comdat_behavior = get_comdat_behavior(name.c_str());
358             }
359           if (comdat_behavior == CB_PRETEND)
360             {
361               // FIXME: This case does not work for global symbols.
362               // We have no place to store the original section index.
363               // Fortunately this does not matter for comdat sections,
364               // only for sections explicitly discarded by a linker
365               // script.
366               bool found;
367               typename elfcpp::Elf_types<size>::Elf_Addr value =
368                 object->map_to_kept_section(shndx, &found);
369               if (found)
370                 symval2.set_output_value(value + psymval->input_value());
371               else
372                 symval2.set_output_value(0);
373             }
374           else
375             {
376               if (comdat_behavior == CB_WARNING)
377                 gold_warning_at_location(relinfo, i, offset,
378                                          _("relocation refers to discarded "
379                                            "section"));
380               symval2.set_output_value(0);
381             }
382           symval2.set_no_output_symtab_entry();
383           psymval = &symval2;
384         }
385
386       if (!relocate.relocate(relinfo, target, output_section, i, reloc,
387                              r_type, sym, psymval, view + offset,
388                              view_address + offset, view_size))
389         continue;
390
391       if (offset < 0 || static_cast<section_size_type>(offset) >= view_size)
392         {
393           gold_error_at_location(relinfo, i, offset,
394                                  _("reloc has bad offset %zu"),
395                                  static_cast<size_t>(offset));
396           continue;
397         }
398
399       if (issue_undefined_symbol_error(sym))
400         gold_undefined_symbol_at_location(sym, relinfo, i, offset);
401       else if (sym != NULL
402                && sym->visibility() != elfcpp::STV_DEFAULT
403                && (sym->is_undefined() || sym->is_from_dynobj()))
404         visibility_error(sym);
405
406       if (sym != NULL && sym->has_warning())
407         relinfo->symtab->issue_warning(sym, relinfo, i, offset);
408     }
409 }
410
411 // Apply an incremental relocation.
412
413 template<int size, bool big_endian, typename Target_type,
414          typename Relocate>
415 void
416 apply_relocation(const Relocate_info<size, big_endian>* relinfo,
417                  Target_type* target,
418                  typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
419                  unsigned int r_type,
420                  typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
421                  const Symbol* gsym,
422                  unsigned char* view,
423                  typename elfcpp::Elf_types<size>::Elf_Addr address,
424                  section_size_type view_size)
425 {
426   // Construct the ELF relocation in a temporary buffer.
427   const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
428   unsigned char relbuf[reloc_size];
429   elfcpp::Rela<size, big_endian> rel(relbuf);
430   elfcpp::Rela_write<size, big_endian> orel(relbuf);
431   orel.put_r_offset(r_offset);
432   orel.put_r_info(elfcpp::elf_r_info<size>(0, r_type));
433   orel.put_r_addend(r_addend);
434
435   // Setup a Symbol_value for the global symbol.
436   const Sized_symbol<size>* sym = static_cast<const Sized_symbol<size>*>(gsym);
437   Symbol_value<size> symval;
438   gold_assert(sym->has_symtab_index() && sym->symtab_index() != -1U);
439   symval.set_output_symtab_index(sym->symtab_index());
440   symval.set_output_value(sym->value());
441   if (gsym->type() == elfcpp::STT_TLS)
442     symval.set_is_tls_symbol();
443   else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
444     symval.set_is_ifunc_symbol();
445
446   Relocate relocate;
447   relocate.relocate(relinfo, target, NULL, -1U, rel, r_type, sym, &symval,
448                     view + r_offset, address + r_offset, view_size);
449 }
450
451 // This class may be used as a typical class for the
452 // Scan_relocatable_reloc parameter to scan_relocatable_relocs.  The
453 // template parameter Classify_reloc must be a class type which
454 // provides a function get_size_for_reloc which returns the number of
455 // bytes to which a reloc applies.  This class is intended to capture
456 // the most typical target behaviour, while still permitting targets
457 // to define their own independent class for Scan_relocatable_reloc.
458
459 template<int sh_type, typename Classify_reloc>
460 class Default_scan_relocatable_relocs
461 {
462  public:
463   // Return the strategy to use for a local symbol which is not a
464   // section symbol, given the relocation type.
465   inline Relocatable_relocs::Reloc_strategy
466   local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
467   {
468     // We assume that relocation type 0 is NONE.  Targets which are
469     // different must override.
470     if (r_type == 0 && r_sym == 0)
471       return Relocatable_relocs::RELOC_DISCARD;
472     return Relocatable_relocs::RELOC_COPY;
473   }
474
475   // Return the strategy to use for a local symbol which is a section
476   // symbol, given the relocation type.
477   inline Relocatable_relocs::Reloc_strategy
478   local_section_strategy(unsigned int r_type, Relobj* object)
479   {
480     if (sh_type == elfcpp::SHT_RELA)
481       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
482     else
483       {
484         Classify_reloc classify;
485         switch (classify.get_size_for_reloc(r_type, object))
486           {
487           case 0:
488             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
489           case 1:
490             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1;
491           case 2:
492             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2;
493           case 4:
494             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
495           case 8:
496             return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8;
497           default:
498             gold_unreachable();
499           }
500       }
501   }
502
503   // Return the strategy to use for a global symbol, given the
504   // relocation type, the object, and the symbol index.
505   inline Relocatable_relocs::Reloc_strategy
506   global_strategy(unsigned int, Relobj*, unsigned int)
507   { return Relocatable_relocs::RELOC_COPY; }
508 };
509
510 // Scan relocs during a relocatable link.  This is a default
511 // definition which should work for most targets.
512 // Scan_relocatable_reloc must name a class type which provides three
513 // functions which return a Relocatable_relocs::Reloc_strategy code:
514 // global_strategy, local_non_section_strategy, and
515 // local_section_strategy.  Most targets should be able to use
516 // Default_scan_relocatable_relocs as this class.
517
518 template<int size, bool big_endian, int sh_type,
519          typename Scan_relocatable_reloc>
520 void
521 scan_relocatable_relocs(
522     Symbol_table*,
523     Layout*,
524     Sized_relobj_file<size, big_endian>* object,
525     unsigned int data_shndx,
526     const unsigned char* prelocs,
527     size_t reloc_count,
528     Output_section* output_section,
529     bool needs_special_offset_handling,
530     size_t local_symbol_count,
531     const unsigned char* plocal_syms,
532     Relocatable_relocs* rr)
533 {
534   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
535   const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
536   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
537   Scan_relocatable_reloc scan;
538
539   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
540     {
541       Reltype reloc(prelocs);
542
543       Relocatable_relocs::Reloc_strategy strategy;
544
545       if (needs_special_offset_handling
546           && !output_section->is_input_address_mapped(object, data_shndx,
547                                                       reloc.get_r_offset()))
548         strategy = Relocatable_relocs::RELOC_DISCARD;
549       else
550         {
551           typename elfcpp::Elf_types<size>::Elf_WXword r_info =
552             reloc.get_r_info();
553           const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
554           const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
555
556           if (r_sym >= local_symbol_count)
557             strategy = scan.global_strategy(r_type, object, r_sym);
558           else
559             {
560               gold_assert(plocal_syms != NULL);
561               typename elfcpp::Sym<size, big_endian> lsym(plocal_syms
562                                                           + r_sym * sym_size);
563               unsigned int shndx = lsym.get_st_shndx();
564               bool is_ordinary;
565               shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
566               if (is_ordinary
567                   && shndx != elfcpp::SHN_UNDEF
568                   && !object->is_section_included(shndx))
569                 {
570                   // RELOC is a relocation against a local symbol
571                   // defined in a section we are discarding.  Discard
572                   // the reloc.  FIXME: Should we issue a warning?
573                   strategy = Relocatable_relocs::RELOC_DISCARD;
574                 }
575               else if (lsym.get_st_type() != elfcpp::STT_SECTION)
576                 strategy = scan.local_non_section_strategy(r_type, object,
577                                                            r_sym);
578               else
579                 {
580                   strategy = scan.local_section_strategy(r_type, object);
581                   if (strategy != Relocatable_relocs::RELOC_DISCARD)
582                     object->output_section(shndx)->set_needs_symtab_index();
583                 }
584
585               if (strategy == Relocatable_relocs::RELOC_COPY)
586                 object->set_must_have_output_symtab_entry(r_sym);
587             }
588         }
589
590       rr->set_next_reloc_strategy(strategy);
591     }
592 }
593
594 // Relocate relocs during a relocatable link.  This is a default
595 // definition which should work for most targets.
596
597 template<int size, bool big_endian, int sh_type>
598 void
599 relocate_for_relocatable(
600     const Relocate_info<size, big_endian>* relinfo,
601     const unsigned char* prelocs,
602     size_t reloc_count,
603     Output_section* output_section,
604     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
605     const Relocatable_relocs* rr,
606     unsigned char* view,
607     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
608     section_size_type view_size,
609     unsigned char* reloc_view,
610     section_size_type reloc_view_size)
611 {
612   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
613   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
614   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc_write
615     Reltype_write;
616   const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
617   const Address invalid_address = static_cast<Address>(0) - 1;
618
619   Sized_relobj_file<size, big_endian>* const object = relinfo->object;
620   const unsigned int local_count = object->local_symbol_count();
621
622   unsigned char* pwrite = reloc_view;
623
624   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
625     {
626       Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
627       if (strategy == Relocatable_relocs::RELOC_DISCARD)
628         continue;
629
630       if (strategy == Relocatable_relocs::RELOC_SPECIAL)
631         {
632           // Target wants to handle this relocation.
633           Sized_target<size, big_endian>* target =
634             parameters->sized_target<size, big_endian>();
635           target->relocate_special_relocatable(relinfo, sh_type, prelocs,
636                                                i, output_section,
637                                                offset_in_output_section,
638                                                view, view_address,
639                                                view_size, pwrite);
640           pwrite += reloc_size;
641           continue;
642         }
643       Reltype reloc(prelocs);
644       Reltype_write reloc_write(pwrite);
645
646       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
647       const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
648       const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
649
650       // Get the new symbol index.
651
652       unsigned int new_symndx;
653       if (r_sym < local_count)
654         {
655           switch (strategy)
656             {
657             case Relocatable_relocs::RELOC_COPY:
658               if (r_sym == 0)
659                 new_symndx = 0;
660               else
661                 {
662                   new_symndx = object->symtab_index(r_sym);
663                   gold_assert(new_symndx != -1U);
664                 }
665               break;
666
667             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
668             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0:
669             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1:
670             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2:
671             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4:
672             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8:
673             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED:
674               {
675                 // We are adjusting a section symbol.  We need to find
676                 // the symbol table index of the section symbol for
677                 // the output section corresponding to input section
678                 // in which this symbol is defined.
679                 gold_assert(r_sym < local_count);
680                 bool is_ordinary;
681                 unsigned int shndx =
682                   object->local_symbol_input_shndx(r_sym, &is_ordinary);
683                 gold_assert(is_ordinary);
684                 Output_section* os = object->output_section(shndx);
685                 gold_assert(os != NULL);
686                 gold_assert(os->needs_symtab_index());
687                 new_symndx = os->symtab_index();
688               }
689               break;
690
691             default:
692               gold_unreachable();
693             }
694         }
695       else
696         {
697           const Symbol* gsym = object->global_symbol(r_sym);
698           gold_assert(gsym != NULL);
699           if (gsym->is_forwarder())
700             gsym = relinfo->symtab->resolve_forwards(gsym);
701
702           gold_assert(gsym->has_symtab_index());
703           new_symndx = gsym->symtab_index();
704         }
705
706       // Get the new offset--the location in the output section where
707       // this relocation should be applied.
708
709       Address offset = reloc.get_r_offset();
710       Address new_offset;
711       if (offset_in_output_section != invalid_address)
712         new_offset = offset + offset_in_output_section;
713       else
714         {
715           section_offset_type sot_offset =
716               convert_types<section_offset_type, Address>(offset);
717           section_offset_type new_sot_offset =
718               output_section->output_offset(object, relinfo->data_shndx,
719                                             sot_offset);
720           gold_assert(new_sot_offset != -1);
721           new_offset = new_sot_offset;
722         }
723
724       // In an object file, r_offset is an offset within the section.
725       // In an executable or dynamic object, generated by
726       // --emit-relocs, r_offset is an absolute address.
727       if (!parameters->options().relocatable())
728         {
729           new_offset += view_address;
730           if (offset_in_output_section != invalid_address)
731             new_offset -= offset_in_output_section;
732         }
733
734       reloc_write.put_r_offset(new_offset);
735       reloc_write.put_r_info(elfcpp::elf_r_info<size>(new_symndx, r_type));
736
737       // Handle the reloc addend based on the strategy.
738
739       if (strategy == Relocatable_relocs::RELOC_COPY)
740         {
741           if (sh_type == elfcpp::SHT_RELA)
742             Reloc_types<sh_type, size, big_endian>::
743               copy_reloc_addend(&reloc_write,
744                                 &reloc);
745         }
746       else
747         {
748           // The relocation uses a section symbol in the input file.
749           // We are adjusting it to use a section symbol in the output
750           // file.  The input section symbol refers to some address in
751           // the input section.  We need the relocation in the output
752           // file to refer to that same address.  This adjustment to
753           // the addend is the same calculation we use for a simple
754           // absolute relocation for the input section symbol.
755
756           const Symbol_value<size>* psymval = object->local_symbol(r_sym);
757
758           unsigned char* padd = view + offset;
759           switch (strategy)
760             {
761             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
762               {
763                 typename elfcpp::Elf_types<size>::Elf_Swxword addend;
764                 addend = Reloc_types<sh_type, size, big_endian>::
765                            get_reloc_addend(&reloc);
766                 addend = psymval->value(object, addend);
767                 Reloc_types<sh_type, size, big_endian>::
768                   set_reloc_addend(&reloc_write, addend);
769               }
770               break;
771
772             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0:
773               break;
774
775             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1:
776               Relocate_functions<size, big_endian>::rel8(padd, object,
777                                                          psymval);
778               break;
779
780             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2:
781               Relocate_functions<size, big_endian>::rel16(padd, object,
782                                                           psymval);
783               break;
784
785             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4:
786               Relocate_functions<size, big_endian>::rel32(padd, object,
787                                                           psymval);
788               break;
789
790             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8:
791               Relocate_functions<size, big_endian>::rel64(padd, object,
792                                                           psymval);
793               break;
794
795             case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED:
796               Relocate_functions<size, big_endian>::rel32_unaligned(padd,
797                                                                     object,
798                                                                     psymval);
799               break;
800
801             default:
802               gold_unreachable();
803             }
804         }
805
806       pwrite += reloc_size;
807     }
808
809   gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
810               == reloc_view_size);
811 }
812
813 } // End namespace gold.
814
815 #endif // !defined(GOLD_TARGET_RELOC_H)