]> rtime.felk.cvut.cz Git - can-eth-gw-linux.git/blob - drivers/net/ethernet/microchip/enc28j60.c
Merge branch 'akpm' (Andrew's patch-bomb)
[can-eth-gw-linux.git] / drivers / net / ethernet / microchip / enc28j60.c
1 /*
2  * Microchip ENC28J60 ethernet driver (MAC + PHY)
3  *
4  * Copyright (C) 2007 Eurek srl
5  * Author: Claudio Lanconelli <lanconelli.claudio@eptar.com>
6  * based on enc28j60.c written by David Anders for 2.4 kernel version
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * $Id: enc28j60.c,v 1.22 2007/12/20 10:47:01 claudio Exp $
14  */
15
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/fcntl.h>
20 #include <linux/interrupt.h>
21 #include <linux/string.h>
22 #include <linux/errno.h>
23 #include <linux/init.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/ethtool.h>
27 #include <linux/tcp.h>
28 #include <linux/skbuff.h>
29 #include <linux/delay.h>
30 #include <linux/spi/spi.h>
31
32 #include "enc28j60_hw.h"
33
34 #define DRV_NAME        "enc28j60"
35 #define DRV_VERSION     "1.01"
36
37 #define SPI_OPLEN       1
38
39 #define ENC28J60_MSG_DEFAULT    \
40         (NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN | NETIF_MSG_LINK)
41
42 /* Buffer size required for the largest SPI transfer (i.e., reading a
43  * frame). */
44 #define SPI_TRANSFER_BUF_LEN    (4 + MAX_FRAMELEN)
45
46 #define TX_TIMEOUT      (4 * HZ)
47
48 /* Max TX retries in case of collision as suggested by errata datasheet */
49 #define MAX_TX_RETRYCOUNT       16
50
51 enum {
52         RXFILTER_NORMAL,
53         RXFILTER_MULTI,
54         RXFILTER_PROMISC
55 };
56
57 /* Driver local data */
58 struct enc28j60_net {
59         struct net_device *netdev;
60         struct spi_device *spi;
61         struct mutex lock;
62         struct sk_buff *tx_skb;
63         struct work_struct tx_work;
64         struct work_struct irq_work;
65         struct work_struct setrx_work;
66         struct work_struct restart_work;
67         u8 bank;                /* current register bank selected */
68         u16 next_pk_ptr;        /* next packet pointer within FIFO */
69         u16 max_pk_counter;     /* statistics: max packet counter */
70         u16 tx_retry_count;
71         bool hw_enable;
72         bool full_duplex;
73         int rxfilter;
74         u32 msg_enable;
75         u8 spi_transfer_buf[SPI_TRANSFER_BUF_LEN];
76 };
77
78 /* use ethtool to change the level for any given device */
79 static struct {
80         u32 msg_enable;
81 } debug = { -1 };
82
83 /*
84  * SPI read buffer
85  * wait for the SPI transfer and copy received data to destination
86  */
87 static int
88 spi_read_buf(struct enc28j60_net *priv, int len, u8 *data)
89 {
90         u8 *rx_buf = priv->spi_transfer_buf + 4;
91         u8 *tx_buf = priv->spi_transfer_buf;
92         struct spi_transfer t = {
93                 .tx_buf = tx_buf,
94                 .rx_buf = rx_buf,
95                 .len = SPI_OPLEN + len,
96         };
97         struct spi_message msg;
98         int ret;
99
100         tx_buf[0] = ENC28J60_READ_BUF_MEM;
101         tx_buf[1] = tx_buf[2] = tx_buf[3] = 0;  /* don't care */
102
103         spi_message_init(&msg);
104         spi_message_add_tail(&t, &msg);
105         ret = spi_sync(priv->spi, &msg);
106         if (ret == 0) {
107                 memcpy(data, &rx_buf[SPI_OPLEN], len);
108                 ret = msg.status;
109         }
110         if (ret && netif_msg_drv(priv))
111                 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
112                         __func__, ret);
113
114         return ret;
115 }
116
117 /*
118  * SPI write buffer
119  */
120 static int spi_write_buf(struct enc28j60_net *priv, int len,
121                          const u8 *data)
122 {
123         int ret;
124
125         if (len > SPI_TRANSFER_BUF_LEN - 1 || len <= 0)
126                 ret = -EINVAL;
127         else {
128                 priv->spi_transfer_buf[0] = ENC28J60_WRITE_BUF_MEM;
129                 memcpy(&priv->spi_transfer_buf[1], data, len);
130                 ret = spi_write(priv->spi, priv->spi_transfer_buf, len + 1);
131                 if (ret && netif_msg_drv(priv))
132                         printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
133                                 __func__, ret);
134         }
135         return ret;
136 }
137
138 /*
139  * basic SPI read operation
140  */
141 static u8 spi_read_op(struct enc28j60_net *priv, u8 op,
142                            u8 addr)
143 {
144         u8 tx_buf[2];
145         u8 rx_buf[4];
146         u8 val = 0;
147         int ret;
148         int slen = SPI_OPLEN;
149
150         /* do dummy read if needed */
151         if (addr & SPRD_MASK)
152                 slen++;
153
154         tx_buf[0] = op | (addr & ADDR_MASK);
155         ret = spi_write_then_read(priv->spi, tx_buf, 1, rx_buf, slen);
156         if (ret)
157                 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
158                         __func__, ret);
159         else
160                 val = rx_buf[slen - 1];
161
162         return val;
163 }
164
165 /*
166  * basic SPI write operation
167  */
168 static int spi_write_op(struct enc28j60_net *priv, u8 op,
169                         u8 addr, u8 val)
170 {
171         int ret;
172
173         priv->spi_transfer_buf[0] = op | (addr & ADDR_MASK);
174         priv->spi_transfer_buf[1] = val;
175         ret = spi_write(priv->spi, priv->spi_transfer_buf, 2);
176         if (ret && netif_msg_drv(priv))
177                 printk(KERN_DEBUG DRV_NAME ": %s() failed: ret = %d\n",
178                         __func__, ret);
179         return ret;
180 }
181
182 static void enc28j60_soft_reset(struct enc28j60_net *priv)
183 {
184         if (netif_msg_hw(priv))
185                 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__);
186
187         spi_write_op(priv, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET);
188         /* Errata workaround #1, CLKRDY check is unreliable,
189          * delay at least 1 mS instead */
190         udelay(2000);
191 }
192
193 /*
194  * select the current register bank if necessary
195  */
196 static void enc28j60_set_bank(struct enc28j60_net *priv, u8 addr)
197 {
198         u8 b = (addr & BANK_MASK) >> 5;
199
200         /* These registers (EIE, EIR, ESTAT, ECON2, ECON1)
201          * are present in all banks, no need to switch bank
202          */
203         if (addr >= EIE && addr <= ECON1)
204                 return;
205
206         /* Clear or set each bank selection bit as needed */
207         if ((b & ECON1_BSEL0) != (priv->bank & ECON1_BSEL0)) {
208                 if (b & ECON1_BSEL0)
209                         spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1,
210                                         ECON1_BSEL0);
211                 else
212                         spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1,
213                                         ECON1_BSEL0);
214         }
215         if ((b & ECON1_BSEL1) != (priv->bank & ECON1_BSEL1)) {
216                 if (b & ECON1_BSEL1)
217                         spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1,
218                                         ECON1_BSEL1);
219                 else
220                         spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1,
221                                         ECON1_BSEL1);
222         }
223         priv->bank = b;
224 }
225
226 /*
227  * Register access routines through the SPI bus.
228  * Every register access comes in two flavours:
229  * - nolock_xxx: caller needs to invoke mutex_lock, usually to access
230  *   atomically more than one register
231  * - locked_xxx: caller doesn't need to invoke mutex_lock, single access
232  *
233  * Some registers can be accessed through the bit field clear and
234  * bit field set to avoid a read modify write cycle.
235  */
236
237 /*
238  * Register bit field Set
239  */
240 static void nolock_reg_bfset(struct enc28j60_net *priv,
241                                       u8 addr, u8 mask)
242 {
243         enc28j60_set_bank(priv, addr);
244         spi_write_op(priv, ENC28J60_BIT_FIELD_SET, addr, mask);
245 }
246
247 static void locked_reg_bfset(struct enc28j60_net *priv,
248                                       u8 addr, u8 mask)
249 {
250         mutex_lock(&priv->lock);
251         nolock_reg_bfset(priv, addr, mask);
252         mutex_unlock(&priv->lock);
253 }
254
255 /*
256  * Register bit field Clear
257  */
258 static void nolock_reg_bfclr(struct enc28j60_net *priv,
259                                       u8 addr, u8 mask)
260 {
261         enc28j60_set_bank(priv, addr);
262         spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, addr, mask);
263 }
264
265 static void locked_reg_bfclr(struct enc28j60_net *priv,
266                                       u8 addr, u8 mask)
267 {
268         mutex_lock(&priv->lock);
269         nolock_reg_bfclr(priv, addr, mask);
270         mutex_unlock(&priv->lock);
271 }
272
273 /*
274  * Register byte read
275  */
276 static int nolock_regb_read(struct enc28j60_net *priv,
277                                      u8 address)
278 {
279         enc28j60_set_bank(priv, address);
280         return spi_read_op(priv, ENC28J60_READ_CTRL_REG, address);
281 }
282
283 static int locked_regb_read(struct enc28j60_net *priv,
284                                      u8 address)
285 {
286         int ret;
287
288         mutex_lock(&priv->lock);
289         ret = nolock_regb_read(priv, address);
290         mutex_unlock(&priv->lock);
291
292         return ret;
293 }
294
295 /*
296  * Register word read
297  */
298 static int nolock_regw_read(struct enc28j60_net *priv,
299                                      u8 address)
300 {
301         int rl, rh;
302
303         enc28j60_set_bank(priv, address);
304         rl = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address);
305         rh = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address + 1);
306
307         return (rh << 8) | rl;
308 }
309
310 static int locked_regw_read(struct enc28j60_net *priv,
311                                      u8 address)
312 {
313         int ret;
314
315         mutex_lock(&priv->lock);
316         ret = nolock_regw_read(priv, address);
317         mutex_unlock(&priv->lock);
318
319         return ret;
320 }
321
322 /*
323  * Register byte write
324  */
325 static void nolock_regb_write(struct enc28j60_net *priv,
326                                        u8 address, u8 data)
327 {
328         enc28j60_set_bank(priv, address);
329         spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, data);
330 }
331
332 static void locked_regb_write(struct enc28j60_net *priv,
333                                        u8 address, u8 data)
334 {
335         mutex_lock(&priv->lock);
336         nolock_regb_write(priv, address, data);
337         mutex_unlock(&priv->lock);
338 }
339
340 /*
341  * Register word write
342  */
343 static void nolock_regw_write(struct enc28j60_net *priv,
344                                        u8 address, u16 data)
345 {
346         enc28j60_set_bank(priv, address);
347         spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, (u8) data);
348         spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address + 1,
349                      (u8) (data >> 8));
350 }
351
352 static void locked_regw_write(struct enc28j60_net *priv,
353                                        u8 address, u16 data)
354 {
355         mutex_lock(&priv->lock);
356         nolock_regw_write(priv, address, data);
357         mutex_unlock(&priv->lock);
358 }
359
360 /*
361  * Buffer memory read
362  * Select the starting address and execute a SPI buffer read
363  */
364 static void enc28j60_mem_read(struct enc28j60_net *priv,
365                                      u16 addr, int len, u8 *data)
366 {
367         mutex_lock(&priv->lock);
368         nolock_regw_write(priv, ERDPTL, addr);
369 #ifdef CONFIG_ENC28J60_WRITEVERIFY
370         if (netif_msg_drv(priv)) {
371                 u16 reg;
372                 reg = nolock_regw_read(priv, ERDPTL);
373                 if (reg != addr)
374                         printk(KERN_DEBUG DRV_NAME ": %s() error writing ERDPT "
375                                 "(0x%04x - 0x%04x)\n", __func__, reg, addr);
376         }
377 #endif
378         spi_read_buf(priv, len, data);
379         mutex_unlock(&priv->lock);
380 }
381
382 /*
383  * Write packet to enc28j60 TX buffer memory
384  */
385 static void
386 enc28j60_packet_write(struct enc28j60_net *priv, int len, const u8 *data)
387 {
388         mutex_lock(&priv->lock);
389         /* Set the write pointer to start of transmit buffer area */
390         nolock_regw_write(priv, EWRPTL, TXSTART_INIT);
391 #ifdef CONFIG_ENC28J60_WRITEVERIFY
392         if (netif_msg_drv(priv)) {
393                 u16 reg;
394                 reg = nolock_regw_read(priv, EWRPTL);
395                 if (reg != TXSTART_INIT)
396                         printk(KERN_DEBUG DRV_NAME
397                                 ": %s() ERWPT:0x%04x != 0x%04x\n",
398                                 __func__, reg, TXSTART_INIT);
399         }
400 #endif
401         /* Set the TXND pointer to correspond to the packet size given */
402         nolock_regw_write(priv, ETXNDL, TXSTART_INIT + len);
403         /* write per-packet control byte */
404         spi_write_op(priv, ENC28J60_WRITE_BUF_MEM, 0, 0x00);
405         if (netif_msg_hw(priv))
406                 printk(KERN_DEBUG DRV_NAME
407                         ": %s() after control byte ERWPT:0x%04x\n",
408                         __func__, nolock_regw_read(priv, EWRPTL));
409         /* copy the packet into the transmit buffer */
410         spi_write_buf(priv, len, data);
411         if (netif_msg_hw(priv))
412                 printk(KERN_DEBUG DRV_NAME
413                          ": %s() after write packet ERWPT:0x%04x, len=%d\n",
414                          __func__, nolock_regw_read(priv, EWRPTL), len);
415         mutex_unlock(&priv->lock);
416 }
417
418 static unsigned long msec20_to_jiffies;
419
420 static int poll_ready(struct enc28j60_net *priv, u8 reg, u8 mask, u8 val)
421 {
422         unsigned long timeout = jiffies + msec20_to_jiffies;
423
424         /* 20 msec timeout read */
425         while ((nolock_regb_read(priv, reg) & mask) != val) {
426                 if (time_after(jiffies, timeout)) {
427                         if (netif_msg_drv(priv))
428                                 dev_dbg(&priv->spi->dev,
429                                         "reg %02x ready timeout!\n", reg);
430                         return -ETIMEDOUT;
431                 }
432                 cpu_relax();
433         }
434         return 0;
435 }
436
437 /*
438  * Wait until the PHY operation is complete.
439  */
440 static int wait_phy_ready(struct enc28j60_net *priv)
441 {
442         return poll_ready(priv, MISTAT, MISTAT_BUSY, 0) ? 0 : 1;
443 }
444
445 /*
446  * PHY register read
447  * PHY registers are not accessed directly, but through the MII
448  */
449 static u16 enc28j60_phy_read(struct enc28j60_net *priv, u8 address)
450 {
451         u16 ret;
452
453         mutex_lock(&priv->lock);
454         /* set the PHY register address */
455         nolock_regb_write(priv, MIREGADR, address);
456         /* start the register read operation */
457         nolock_regb_write(priv, MICMD, MICMD_MIIRD);
458         /* wait until the PHY read completes */
459         wait_phy_ready(priv);
460         /* quit reading */
461         nolock_regb_write(priv, MICMD, 0x00);
462         /* return the data */
463         ret  = nolock_regw_read(priv, MIRDL);
464         mutex_unlock(&priv->lock);
465
466         return ret;
467 }
468
469 static int enc28j60_phy_write(struct enc28j60_net *priv, u8 address, u16 data)
470 {
471         int ret;
472
473         mutex_lock(&priv->lock);
474         /* set the PHY register address */
475         nolock_regb_write(priv, MIREGADR, address);
476         /* write the PHY data */
477         nolock_regw_write(priv, MIWRL, data);
478         /* wait until the PHY write completes and return */
479         ret = wait_phy_ready(priv);
480         mutex_unlock(&priv->lock);
481
482         return ret;
483 }
484
485 /*
486  * Program the hardware MAC address from dev->dev_addr.
487  */
488 static int enc28j60_set_hw_macaddr(struct net_device *ndev)
489 {
490         int ret;
491         struct enc28j60_net *priv = netdev_priv(ndev);
492
493         mutex_lock(&priv->lock);
494         if (!priv->hw_enable) {
495                 if (netif_msg_drv(priv))
496                         printk(KERN_INFO DRV_NAME
497                                 ": %s: Setting MAC address to %pM\n",
498                                 ndev->name, ndev->dev_addr);
499                 /* NOTE: MAC address in ENC28J60 is byte-backward */
500                 nolock_regb_write(priv, MAADR5, ndev->dev_addr[0]);
501                 nolock_regb_write(priv, MAADR4, ndev->dev_addr[1]);
502                 nolock_regb_write(priv, MAADR3, ndev->dev_addr[2]);
503                 nolock_regb_write(priv, MAADR2, ndev->dev_addr[3]);
504                 nolock_regb_write(priv, MAADR1, ndev->dev_addr[4]);
505                 nolock_regb_write(priv, MAADR0, ndev->dev_addr[5]);
506                 ret = 0;
507         } else {
508                 if (netif_msg_drv(priv))
509                         printk(KERN_DEBUG DRV_NAME
510                                 ": %s() Hardware must be disabled to set "
511                                 "Mac address\n", __func__);
512                 ret = -EBUSY;
513         }
514         mutex_unlock(&priv->lock);
515         return ret;
516 }
517
518 /*
519  * Store the new hardware address in dev->dev_addr, and update the MAC.
520  */
521 static int enc28j60_set_mac_address(struct net_device *dev, void *addr)
522 {
523         struct sockaddr *address = addr;
524
525         if (netif_running(dev))
526                 return -EBUSY;
527         if (!is_valid_ether_addr(address->sa_data))
528                 return -EADDRNOTAVAIL;
529
530         dev->addr_assign_type &= ~NET_ADDR_RANDOM;
531         memcpy(dev->dev_addr, address->sa_data, dev->addr_len);
532         return enc28j60_set_hw_macaddr(dev);
533 }
534
535 /*
536  * Debug routine to dump useful register contents
537  */
538 static void enc28j60_dump_regs(struct enc28j60_net *priv, const char *msg)
539 {
540         mutex_lock(&priv->lock);
541         printk(KERN_DEBUG DRV_NAME " %s\n"
542                 "HwRevID: 0x%02x\n"
543                 "Cntrl: ECON1 ECON2 ESTAT  EIR  EIE\n"
544                 "       0x%02x  0x%02x  0x%02x  0x%02x  0x%02x\n"
545                 "MAC  : MACON1 MACON3 MACON4\n"
546                 "       0x%02x   0x%02x   0x%02x\n"
547                 "Rx   : ERXST  ERXND  ERXWRPT ERXRDPT ERXFCON EPKTCNT MAMXFL\n"
548                 "       0x%04x 0x%04x 0x%04x  0x%04x  "
549                 "0x%02x    0x%02x    0x%04x\n"
550                 "Tx   : ETXST  ETXND  MACLCON1 MACLCON2 MAPHSUP\n"
551                 "       0x%04x 0x%04x 0x%02x     0x%02x     0x%02x\n",
552                 msg, nolock_regb_read(priv, EREVID),
553                 nolock_regb_read(priv, ECON1), nolock_regb_read(priv, ECON2),
554                 nolock_regb_read(priv, ESTAT), nolock_regb_read(priv, EIR),
555                 nolock_regb_read(priv, EIE), nolock_regb_read(priv, MACON1),
556                 nolock_regb_read(priv, MACON3), nolock_regb_read(priv, MACON4),
557                 nolock_regw_read(priv, ERXSTL), nolock_regw_read(priv, ERXNDL),
558                 nolock_regw_read(priv, ERXWRPTL),
559                 nolock_regw_read(priv, ERXRDPTL),
560                 nolock_regb_read(priv, ERXFCON),
561                 nolock_regb_read(priv, EPKTCNT),
562                 nolock_regw_read(priv, MAMXFLL), nolock_regw_read(priv, ETXSTL),
563                 nolock_regw_read(priv, ETXNDL),
564                 nolock_regb_read(priv, MACLCON1),
565                 nolock_regb_read(priv, MACLCON2),
566                 nolock_regb_read(priv, MAPHSUP));
567         mutex_unlock(&priv->lock);
568 }
569
570 /*
571  * ERXRDPT need to be set always at odd addresses, refer to errata datasheet
572  */
573 static u16 erxrdpt_workaround(u16 next_packet_ptr, u16 start, u16 end)
574 {
575         u16 erxrdpt;
576
577         if ((next_packet_ptr - 1 < start) || (next_packet_ptr - 1 > end))
578                 erxrdpt = end;
579         else
580                 erxrdpt = next_packet_ptr - 1;
581
582         return erxrdpt;
583 }
584
585 /*
586  * Calculate wrap around when reading beyond the end of the RX buffer
587  */
588 static u16 rx_packet_start(u16 ptr)
589 {
590         if (ptr + RSV_SIZE > RXEND_INIT)
591                 return (ptr + RSV_SIZE) - (RXEND_INIT - RXSTART_INIT + 1);
592         else
593                 return ptr + RSV_SIZE;
594 }
595
596 static void nolock_rxfifo_init(struct enc28j60_net *priv, u16 start, u16 end)
597 {
598         u16 erxrdpt;
599
600         if (start > 0x1FFF || end > 0x1FFF || start > end) {
601                 if (netif_msg_drv(priv))
602                         printk(KERN_ERR DRV_NAME ": %s(%d, %d) RXFIFO "
603                                 "bad parameters!\n", __func__, start, end);
604                 return;
605         }
606         /* set receive buffer start + end */
607         priv->next_pk_ptr = start;
608         nolock_regw_write(priv, ERXSTL, start);
609         erxrdpt = erxrdpt_workaround(priv->next_pk_ptr, start, end);
610         nolock_regw_write(priv, ERXRDPTL, erxrdpt);
611         nolock_regw_write(priv, ERXNDL, end);
612 }
613
614 static void nolock_txfifo_init(struct enc28j60_net *priv, u16 start, u16 end)
615 {
616         if (start > 0x1FFF || end > 0x1FFF || start > end) {
617                 if (netif_msg_drv(priv))
618                         printk(KERN_ERR DRV_NAME ": %s(%d, %d) TXFIFO "
619                                 "bad parameters!\n", __func__, start, end);
620                 return;
621         }
622         /* set transmit buffer start + end */
623         nolock_regw_write(priv, ETXSTL, start);
624         nolock_regw_write(priv, ETXNDL, end);
625 }
626
627 /*
628  * Low power mode shrinks power consumption about 100x, so we'd like
629  * the chip to be in that mode whenever it's inactive.  (However, we
630  * can't stay in lowpower mode during suspend with WOL active.)
631  */
632 static void enc28j60_lowpower(struct enc28j60_net *priv, bool is_low)
633 {
634         if (netif_msg_drv(priv))
635                 dev_dbg(&priv->spi->dev, "%s power...\n",
636                                 is_low ? "low" : "high");
637
638         mutex_lock(&priv->lock);
639         if (is_low) {
640                 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN);
641                 poll_ready(priv, ESTAT, ESTAT_RXBUSY, 0);
642                 poll_ready(priv, ECON1, ECON1_TXRTS, 0);
643                 /* ECON2_VRPS was set during initialization */
644                 nolock_reg_bfset(priv, ECON2, ECON2_PWRSV);
645         } else {
646                 nolock_reg_bfclr(priv, ECON2, ECON2_PWRSV);
647                 poll_ready(priv, ESTAT, ESTAT_CLKRDY, ESTAT_CLKRDY);
648                 /* caller sets ECON1_RXEN */
649         }
650         mutex_unlock(&priv->lock);
651 }
652
653 static int enc28j60_hw_init(struct enc28j60_net *priv)
654 {
655         u8 reg;
656
657         if (netif_msg_drv(priv))
658                 printk(KERN_DEBUG DRV_NAME ": %s() - %s\n", __func__,
659                         priv->full_duplex ? "FullDuplex" : "HalfDuplex");
660
661         mutex_lock(&priv->lock);
662         /* first reset the chip */
663         enc28j60_soft_reset(priv);
664         /* Clear ECON1 */
665         spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, ECON1, 0x00);
666         priv->bank = 0;
667         priv->hw_enable = false;
668         priv->tx_retry_count = 0;
669         priv->max_pk_counter = 0;
670         priv->rxfilter = RXFILTER_NORMAL;
671         /* enable address auto increment and voltage regulator powersave */
672         nolock_regb_write(priv, ECON2, ECON2_AUTOINC | ECON2_VRPS);
673
674         nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT);
675         nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT);
676         mutex_unlock(&priv->lock);
677
678         /*
679          * Check the RevID.
680          * If it's 0x00 or 0xFF probably the enc28j60 is not mounted or
681          * damaged
682          */
683         reg = locked_regb_read(priv, EREVID);
684         if (netif_msg_drv(priv))
685                 printk(KERN_INFO DRV_NAME ": chip RevID: 0x%02x\n", reg);
686         if (reg == 0x00 || reg == 0xff) {
687                 if (netif_msg_drv(priv))
688                         printk(KERN_DEBUG DRV_NAME ": %s() Invalid RevId %d\n",
689                                 __func__, reg);
690                 return 0;
691         }
692
693         /* default filter mode: (unicast OR broadcast) AND crc valid */
694         locked_regb_write(priv, ERXFCON,
695                             ERXFCON_UCEN | ERXFCON_CRCEN | ERXFCON_BCEN);
696
697         /* enable MAC receive */
698         locked_regb_write(priv, MACON1,
699                             MACON1_MARXEN | MACON1_TXPAUS | MACON1_RXPAUS);
700         /* enable automatic padding and CRC operations */
701         if (priv->full_duplex) {
702                 locked_regb_write(priv, MACON3,
703                                     MACON3_PADCFG0 | MACON3_TXCRCEN |
704                                     MACON3_FRMLNEN | MACON3_FULDPX);
705                 /* set inter-frame gap (non-back-to-back) */
706                 locked_regb_write(priv, MAIPGL, 0x12);
707                 /* set inter-frame gap (back-to-back) */
708                 locked_regb_write(priv, MABBIPG, 0x15);
709         } else {
710                 locked_regb_write(priv, MACON3,
711                                     MACON3_PADCFG0 | MACON3_TXCRCEN |
712                                     MACON3_FRMLNEN);
713                 locked_regb_write(priv, MACON4, 1 << 6);        /* DEFER bit */
714                 /* set inter-frame gap (non-back-to-back) */
715                 locked_regw_write(priv, MAIPGL, 0x0C12);
716                 /* set inter-frame gap (back-to-back) */
717                 locked_regb_write(priv, MABBIPG, 0x12);
718         }
719         /*
720          * MACLCON1 (default)
721          * MACLCON2 (default)
722          * Set the maximum packet size which the controller will accept
723          */
724         locked_regw_write(priv, MAMXFLL, MAX_FRAMELEN);
725
726         /* Configure LEDs */
727         if (!enc28j60_phy_write(priv, PHLCON, ENC28J60_LAMPS_MODE))
728                 return 0;
729
730         if (priv->full_duplex) {
731                 if (!enc28j60_phy_write(priv, PHCON1, PHCON1_PDPXMD))
732                         return 0;
733                 if (!enc28j60_phy_write(priv, PHCON2, 0x00))
734                         return 0;
735         } else {
736                 if (!enc28j60_phy_write(priv, PHCON1, 0x00))
737                         return 0;
738                 if (!enc28j60_phy_write(priv, PHCON2, PHCON2_HDLDIS))
739                         return 0;
740         }
741         if (netif_msg_hw(priv))
742                 enc28j60_dump_regs(priv, "Hw initialized.");
743
744         return 1;
745 }
746
747 static void enc28j60_hw_enable(struct enc28j60_net *priv)
748 {
749         /* enable interrupts */
750         if (netif_msg_hw(priv))
751                 printk(KERN_DEBUG DRV_NAME ": %s() enabling interrupts.\n",
752                         __func__);
753
754         enc28j60_phy_write(priv, PHIE, PHIE_PGEIE | PHIE_PLNKIE);
755
756         mutex_lock(&priv->lock);
757         nolock_reg_bfclr(priv, EIR, EIR_DMAIF | EIR_LINKIF |
758                          EIR_TXIF | EIR_TXERIF | EIR_RXERIF | EIR_PKTIF);
759         nolock_regb_write(priv, EIE, EIE_INTIE | EIE_PKTIE | EIE_LINKIE |
760                           EIE_TXIE | EIE_TXERIE | EIE_RXERIE);
761
762         /* enable receive logic */
763         nolock_reg_bfset(priv, ECON1, ECON1_RXEN);
764         priv->hw_enable = true;
765         mutex_unlock(&priv->lock);
766 }
767
768 static void enc28j60_hw_disable(struct enc28j60_net *priv)
769 {
770         mutex_lock(&priv->lock);
771         /* disable interrutps and packet reception */
772         nolock_regb_write(priv, EIE, 0x00);
773         nolock_reg_bfclr(priv, ECON1, ECON1_RXEN);
774         priv->hw_enable = false;
775         mutex_unlock(&priv->lock);
776 }
777
778 static int
779 enc28j60_setlink(struct net_device *ndev, u8 autoneg, u16 speed, u8 duplex)
780 {
781         struct enc28j60_net *priv = netdev_priv(ndev);
782         int ret = 0;
783
784         if (!priv->hw_enable) {
785                 /* link is in low power mode now; duplex setting
786                  * will take effect on next enc28j60_hw_init().
787                  */
788                 if (autoneg == AUTONEG_DISABLE && speed == SPEED_10)
789                         priv->full_duplex = (duplex == DUPLEX_FULL);
790                 else {
791                         if (netif_msg_link(priv))
792                                 dev_warn(&ndev->dev,
793                                         "unsupported link setting\n");
794                         ret = -EOPNOTSUPP;
795                 }
796         } else {
797                 if (netif_msg_link(priv))
798                         dev_warn(&ndev->dev, "Warning: hw must be disabled "
799                                 "to set link mode\n");
800                 ret = -EBUSY;
801         }
802         return ret;
803 }
804
805 /*
806  * Read the Transmit Status Vector
807  */
808 static void enc28j60_read_tsv(struct enc28j60_net *priv, u8 tsv[TSV_SIZE])
809 {
810         int endptr;
811
812         endptr = locked_regw_read(priv, ETXNDL);
813         if (netif_msg_hw(priv))
814                 printk(KERN_DEBUG DRV_NAME ": reading TSV at addr:0x%04x\n",
815                          endptr + 1);
816         enc28j60_mem_read(priv, endptr + 1, TSV_SIZE, tsv);
817 }
818
819 static void enc28j60_dump_tsv(struct enc28j60_net *priv, const char *msg,
820                                 u8 tsv[TSV_SIZE])
821 {
822         u16 tmp1, tmp2;
823
824         printk(KERN_DEBUG DRV_NAME ": %s - TSV:\n", msg);
825         tmp1 = tsv[1];
826         tmp1 <<= 8;
827         tmp1 |= tsv[0];
828
829         tmp2 = tsv[5];
830         tmp2 <<= 8;
831         tmp2 |= tsv[4];
832
833         printk(KERN_DEBUG DRV_NAME ": ByteCount: %d, CollisionCount: %d,"
834                 " TotByteOnWire: %d\n", tmp1, tsv[2] & 0x0f, tmp2);
835         printk(KERN_DEBUG DRV_NAME ": TxDone: %d, CRCErr:%d, LenChkErr: %d,"
836                 " LenOutOfRange: %d\n", TSV_GETBIT(tsv, TSV_TXDONE),
837                 TSV_GETBIT(tsv, TSV_TXCRCERROR),
838                 TSV_GETBIT(tsv, TSV_TXLENCHKERROR),
839                 TSV_GETBIT(tsv, TSV_TXLENOUTOFRANGE));
840         printk(KERN_DEBUG DRV_NAME ": Multicast: %d, Broadcast: %d, "
841                 "PacketDefer: %d, ExDefer: %d\n",
842                 TSV_GETBIT(tsv, TSV_TXMULTICAST),
843                 TSV_GETBIT(tsv, TSV_TXBROADCAST),
844                 TSV_GETBIT(tsv, TSV_TXPACKETDEFER),
845                 TSV_GETBIT(tsv, TSV_TXEXDEFER));
846         printk(KERN_DEBUG DRV_NAME ": ExCollision: %d, LateCollision: %d, "
847                  "Giant: %d, Underrun: %d\n",
848                  TSV_GETBIT(tsv, TSV_TXEXCOLLISION),
849                  TSV_GETBIT(tsv, TSV_TXLATECOLLISION),
850                  TSV_GETBIT(tsv, TSV_TXGIANT), TSV_GETBIT(tsv, TSV_TXUNDERRUN));
851         printk(KERN_DEBUG DRV_NAME ": ControlFrame: %d, PauseFrame: %d, "
852                  "BackPressApp: %d, VLanTagFrame: %d\n",
853                  TSV_GETBIT(tsv, TSV_TXCONTROLFRAME),
854                  TSV_GETBIT(tsv, TSV_TXPAUSEFRAME),
855                  TSV_GETBIT(tsv, TSV_BACKPRESSUREAPP),
856                  TSV_GETBIT(tsv, TSV_TXVLANTAGFRAME));
857 }
858
859 /*
860  * Receive Status vector
861  */
862 static void enc28j60_dump_rsv(struct enc28j60_net *priv, const char *msg,
863                               u16 pk_ptr, int len, u16 sts)
864 {
865         printk(KERN_DEBUG DRV_NAME ": %s - NextPk: 0x%04x - RSV:\n",
866                 msg, pk_ptr);
867         printk(KERN_DEBUG DRV_NAME ": ByteCount: %d, DribbleNibble: %d\n", len,
868                  RSV_GETBIT(sts, RSV_DRIBBLENIBBLE));
869         printk(KERN_DEBUG DRV_NAME ": RxOK: %d, CRCErr:%d, LenChkErr: %d,"
870                  " LenOutOfRange: %d\n", RSV_GETBIT(sts, RSV_RXOK),
871                  RSV_GETBIT(sts, RSV_CRCERROR),
872                  RSV_GETBIT(sts, RSV_LENCHECKERR),
873                  RSV_GETBIT(sts, RSV_LENOUTOFRANGE));
874         printk(KERN_DEBUG DRV_NAME ": Multicast: %d, Broadcast: %d, "
875                  "LongDropEvent: %d, CarrierEvent: %d\n",
876                  RSV_GETBIT(sts, RSV_RXMULTICAST),
877                  RSV_GETBIT(sts, RSV_RXBROADCAST),
878                  RSV_GETBIT(sts, RSV_RXLONGEVDROPEV),
879                  RSV_GETBIT(sts, RSV_CARRIEREV));
880         printk(KERN_DEBUG DRV_NAME ": ControlFrame: %d, PauseFrame: %d,"
881                  " UnknownOp: %d, VLanTagFrame: %d\n",
882                  RSV_GETBIT(sts, RSV_RXCONTROLFRAME),
883                  RSV_GETBIT(sts, RSV_RXPAUSEFRAME),
884                  RSV_GETBIT(sts, RSV_RXUNKNOWNOPCODE),
885                  RSV_GETBIT(sts, RSV_RXTYPEVLAN));
886 }
887
888 static void dump_packet(const char *msg, int len, const char *data)
889 {
890         printk(KERN_DEBUG DRV_NAME ": %s - packet len:%d\n", msg, len);
891         print_hex_dump(KERN_DEBUG, "pk data: ", DUMP_PREFIX_OFFSET, 16, 1,
892                         data, len, true);
893 }
894
895 /*
896  * Hardware receive function.
897  * Read the buffer memory, update the FIFO pointer to free the buffer,
898  * check the status vector and decrement the packet counter.
899  */
900 static void enc28j60_hw_rx(struct net_device *ndev)
901 {
902         struct enc28j60_net *priv = netdev_priv(ndev);
903         struct sk_buff *skb = NULL;
904         u16 erxrdpt, next_packet, rxstat;
905         u8 rsv[RSV_SIZE];
906         int len;
907
908         if (netif_msg_rx_status(priv))
909                 printk(KERN_DEBUG DRV_NAME ": RX pk_addr:0x%04x\n",
910                         priv->next_pk_ptr);
911
912         if (unlikely(priv->next_pk_ptr > RXEND_INIT)) {
913                 if (netif_msg_rx_err(priv))
914                         dev_err(&ndev->dev,
915                                 "%s() Invalid packet address!! 0x%04x\n",
916                                 __func__, priv->next_pk_ptr);
917                 /* packet address corrupted: reset RX logic */
918                 mutex_lock(&priv->lock);
919                 nolock_reg_bfclr(priv, ECON1, ECON1_RXEN);
920                 nolock_reg_bfset(priv, ECON1, ECON1_RXRST);
921                 nolock_reg_bfclr(priv, ECON1, ECON1_RXRST);
922                 nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT);
923                 nolock_reg_bfclr(priv, EIR, EIR_RXERIF);
924                 nolock_reg_bfset(priv, ECON1, ECON1_RXEN);
925                 mutex_unlock(&priv->lock);
926                 ndev->stats.rx_errors++;
927                 return;
928         }
929         /* Read next packet pointer and rx status vector */
930         enc28j60_mem_read(priv, priv->next_pk_ptr, sizeof(rsv), rsv);
931
932         next_packet = rsv[1];
933         next_packet <<= 8;
934         next_packet |= rsv[0];
935
936         len = rsv[3];
937         len <<= 8;
938         len |= rsv[2];
939
940         rxstat = rsv[5];
941         rxstat <<= 8;
942         rxstat |= rsv[4];
943
944         if (netif_msg_rx_status(priv))
945                 enc28j60_dump_rsv(priv, __func__, next_packet, len, rxstat);
946
947         if (!RSV_GETBIT(rxstat, RSV_RXOK) || len > MAX_FRAMELEN) {
948                 if (netif_msg_rx_err(priv))
949                         dev_err(&ndev->dev, "Rx Error (%04x)\n", rxstat);
950                 ndev->stats.rx_errors++;
951                 if (RSV_GETBIT(rxstat, RSV_CRCERROR))
952                         ndev->stats.rx_crc_errors++;
953                 if (RSV_GETBIT(rxstat, RSV_LENCHECKERR))
954                         ndev->stats.rx_frame_errors++;
955                 if (len > MAX_FRAMELEN)
956                         ndev->stats.rx_over_errors++;
957         } else {
958                 skb = netdev_alloc_skb(ndev, len + NET_IP_ALIGN);
959                 if (!skb) {
960                         if (netif_msg_rx_err(priv))
961                                 dev_err(&ndev->dev,
962                                         "out of memory for Rx'd frame\n");
963                         ndev->stats.rx_dropped++;
964                 } else {
965                         skb_reserve(skb, NET_IP_ALIGN);
966                         /* copy the packet from the receive buffer */
967                         enc28j60_mem_read(priv,
968                                 rx_packet_start(priv->next_pk_ptr),
969                                 len, skb_put(skb, len));
970                         if (netif_msg_pktdata(priv))
971                                 dump_packet(__func__, skb->len, skb->data);
972                         skb->protocol = eth_type_trans(skb, ndev);
973                         /* update statistics */
974                         ndev->stats.rx_packets++;
975                         ndev->stats.rx_bytes += len;
976                         netif_rx_ni(skb);
977                 }
978         }
979         /*
980          * Move the RX read pointer to the start of the next
981          * received packet.
982          * This frees the memory we just read out
983          */
984         erxrdpt = erxrdpt_workaround(next_packet, RXSTART_INIT, RXEND_INIT);
985         if (netif_msg_hw(priv))
986                 printk(KERN_DEBUG DRV_NAME ": %s() ERXRDPT:0x%04x\n",
987                         __func__, erxrdpt);
988
989         mutex_lock(&priv->lock);
990         nolock_regw_write(priv, ERXRDPTL, erxrdpt);
991 #ifdef CONFIG_ENC28J60_WRITEVERIFY
992         if (netif_msg_drv(priv)) {
993                 u16 reg;
994                 reg = nolock_regw_read(priv, ERXRDPTL);
995                 if (reg != erxrdpt)
996                         printk(KERN_DEBUG DRV_NAME ": %s() ERXRDPT verify "
997                                 "error (0x%04x - 0x%04x)\n", __func__,
998                                 reg, erxrdpt);
999         }
1000 #endif
1001         priv->next_pk_ptr = next_packet;
1002         /* we are done with this packet, decrement the packet counter */
1003         nolock_reg_bfset(priv, ECON2, ECON2_PKTDEC);
1004         mutex_unlock(&priv->lock);
1005 }
1006
1007 /*
1008  * Calculate free space in RxFIFO
1009  */
1010 static int enc28j60_get_free_rxfifo(struct enc28j60_net *priv)
1011 {
1012         int epkcnt, erxst, erxnd, erxwr, erxrd;
1013         int free_space;
1014
1015         mutex_lock(&priv->lock);
1016         epkcnt = nolock_regb_read(priv, EPKTCNT);
1017         if (epkcnt >= 255)
1018                 free_space = -1;
1019         else {
1020                 erxst = nolock_regw_read(priv, ERXSTL);
1021                 erxnd = nolock_regw_read(priv, ERXNDL);
1022                 erxwr = nolock_regw_read(priv, ERXWRPTL);
1023                 erxrd = nolock_regw_read(priv, ERXRDPTL);
1024
1025                 if (erxwr > erxrd)
1026                         free_space = (erxnd - erxst) - (erxwr - erxrd);
1027                 else if (erxwr == erxrd)
1028                         free_space = (erxnd - erxst);
1029                 else
1030                         free_space = erxrd - erxwr - 1;
1031         }
1032         mutex_unlock(&priv->lock);
1033         if (netif_msg_rx_status(priv))
1034                 printk(KERN_DEBUG DRV_NAME ": %s() free_space = %d\n",
1035                         __func__, free_space);
1036         return free_space;
1037 }
1038
1039 /*
1040  * Access the PHY to determine link status
1041  */
1042 static void enc28j60_check_link_status(struct net_device *ndev)
1043 {
1044         struct enc28j60_net *priv = netdev_priv(ndev);
1045         u16 reg;
1046         int duplex;
1047
1048         reg = enc28j60_phy_read(priv, PHSTAT2);
1049         if (netif_msg_hw(priv))
1050                 printk(KERN_DEBUG DRV_NAME ": %s() PHSTAT1: %04x, "
1051                         "PHSTAT2: %04x\n", __func__,
1052                         enc28j60_phy_read(priv, PHSTAT1), reg);
1053         duplex = reg & PHSTAT2_DPXSTAT;
1054
1055         if (reg & PHSTAT2_LSTAT) {
1056                 netif_carrier_on(ndev);
1057                 if (netif_msg_ifup(priv))
1058                         dev_info(&ndev->dev, "link up - %s\n",
1059                                 duplex ? "Full duplex" : "Half duplex");
1060         } else {
1061                 if (netif_msg_ifdown(priv))
1062                         dev_info(&ndev->dev, "link down\n");
1063                 netif_carrier_off(ndev);
1064         }
1065 }
1066
1067 static void enc28j60_tx_clear(struct net_device *ndev, bool err)
1068 {
1069         struct enc28j60_net *priv = netdev_priv(ndev);
1070
1071         if (err)
1072                 ndev->stats.tx_errors++;
1073         else
1074                 ndev->stats.tx_packets++;
1075
1076         if (priv->tx_skb) {
1077                 if (!err)
1078                         ndev->stats.tx_bytes += priv->tx_skb->len;
1079                 dev_kfree_skb(priv->tx_skb);
1080                 priv->tx_skb = NULL;
1081         }
1082         locked_reg_bfclr(priv, ECON1, ECON1_TXRTS);
1083         netif_wake_queue(ndev);
1084 }
1085
1086 /*
1087  * RX handler
1088  * ignore PKTIF because is unreliable! (look at the errata datasheet)
1089  * check EPKTCNT is the suggested workaround.
1090  * We don't need to clear interrupt flag, automatically done when
1091  * enc28j60_hw_rx() decrements the packet counter.
1092  * Returns how many packet processed.
1093  */
1094 static int enc28j60_rx_interrupt(struct net_device *ndev)
1095 {
1096         struct enc28j60_net *priv = netdev_priv(ndev);
1097         int pk_counter, ret;
1098
1099         pk_counter = locked_regb_read(priv, EPKTCNT);
1100         if (pk_counter && netif_msg_intr(priv))
1101                 printk(KERN_DEBUG DRV_NAME ": intRX, pk_cnt: %d\n", pk_counter);
1102         if (pk_counter > priv->max_pk_counter) {
1103                 /* update statistics */
1104                 priv->max_pk_counter = pk_counter;
1105                 if (netif_msg_rx_status(priv) && priv->max_pk_counter > 1)
1106                         printk(KERN_DEBUG DRV_NAME ": RX max_pk_cnt: %d\n",
1107                                 priv->max_pk_counter);
1108         }
1109         ret = pk_counter;
1110         while (pk_counter-- > 0)
1111                 enc28j60_hw_rx(ndev);
1112
1113         return ret;
1114 }
1115
1116 static void enc28j60_irq_work_handler(struct work_struct *work)
1117 {
1118         struct enc28j60_net *priv =
1119                 container_of(work, struct enc28j60_net, irq_work);
1120         struct net_device *ndev = priv->netdev;
1121         int intflags, loop;
1122
1123         if (netif_msg_intr(priv))
1124                 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__);
1125         /* disable further interrupts */
1126         locked_reg_bfclr(priv, EIE, EIE_INTIE);
1127
1128         do {
1129                 loop = 0;
1130                 intflags = locked_regb_read(priv, EIR);
1131                 /* DMA interrupt handler (not currently used) */
1132                 if ((intflags & EIR_DMAIF) != 0) {
1133                         loop++;
1134                         if (netif_msg_intr(priv))
1135                                 printk(KERN_DEBUG DRV_NAME
1136                                         ": intDMA(%d)\n", loop);
1137                         locked_reg_bfclr(priv, EIR, EIR_DMAIF);
1138                 }
1139                 /* LINK changed handler */
1140                 if ((intflags & EIR_LINKIF) != 0) {
1141                         loop++;
1142                         if (netif_msg_intr(priv))
1143                                 printk(KERN_DEBUG DRV_NAME
1144                                         ": intLINK(%d)\n", loop);
1145                         enc28j60_check_link_status(ndev);
1146                         /* read PHIR to clear the flag */
1147                         enc28j60_phy_read(priv, PHIR);
1148                 }
1149                 /* TX complete handler */
1150                 if ((intflags & EIR_TXIF) != 0) {
1151                         bool err = false;
1152                         loop++;
1153                         if (netif_msg_intr(priv))
1154                                 printk(KERN_DEBUG DRV_NAME
1155                                         ": intTX(%d)\n", loop);
1156                         priv->tx_retry_count = 0;
1157                         if (locked_regb_read(priv, ESTAT) & ESTAT_TXABRT) {
1158                                 if (netif_msg_tx_err(priv))
1159                                         dev_err(&ndev->dev,
1160                                                 "Tx Error (aborted)\n");
1161                                 err = true;
1162                         }
1163                         if (netif_msg_tx_done(priv)) {
1164                                 u8 tsv[TSV_SIZE];
1165                                 enc28j60_read_tsv(priv, tsv);
1166                                 enc28j60_dump_tsv(priv, "Tx Done", tsv);
1167                         }
1168                         enc28j60_tx_clear(ndev, err);
1169                         locked_reg_bfclr(priv, EIR, EIR_TXIF);
1170                 }
1171                 /* TX Error handler */
1172                 if ((intflags & EIR_TXERIF) != 0) {
1173                         u8 tsv[TSV_SIZE];
1174
1175                         loop++;
1176                         if (netif_msg_intr(priv))
1177                                 printk(KERN_DEBUG DRV_NAME
1178                                         ": intTXErr(%d)\n", loop);
1179                         locked_reg_bfclr(priv, ECON1, ECON1_TXRTS);
1180                         enc28j60_read_tsv(priv, tsv);
1181                         if (netif_msg_tx_err(priv))
1182                                 enc28j60_dump_tsv(priv, "Tx Error", tsv);
1183                         /* Reset TX logic */
1184                         mutex_lock(&priv->lock);
1185                         nolock_reg_bfset(priv, ECON1, ECON1_TXRST);
1186                         nolock_reg_bfclr(priv, ECON1, ECON1_TXRST);
1187                         nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT);
1188                         mutex_unlock(&priv->lock);
1189                         /* Transmit Late collision check for retransmit */
1190                         if (TSV_GETBIT(tsv, TSV_TXLATECOLLISION)) {
1191                                 if (netif_msg_tx_err(priv))
1192                                         printk(KERN_DEBUG DRV_NAME
1193                                                 ": LateCollision TXErr (%d)\n",
1194                                                 priv->tx_retry_count);
1195                                 if (priv->tx_retry_count++ < MAX_TX_RETRYCOUNT)
1196                                         locked_reg_bfset(priv, ECON1,
1197                                                            ECON1_TXRTS);
1198                                 else
1199                                         enc28j60_tx_clear(ndev, true);
1200                         } else
1201                                 enc28j60_tx_clear(ndev, true);
1202                         locked_reg_bfclr(priv, EIR, EIR_TXERIF);
1203                 }
1204                 /* RX Error handler */
1205                 if ((intflags & EIR_RXERIF) != 0) {
1206                         loop++;
1207                         if (netif_msg_intr(priv))
1208                                 printk(KERN_DEBUG DRV_NAME
1209                                         ": intRXErr(%d)\n", loop);
1210                         /* Check free FIFO space to flag RX overrun */
1211                         if (enc28j60_get_free_rxfifo(priv) <= 0) {
1212                                 if (netif_msg_rx_err(priv))
1213                                         printk(KERN_DEBUG DRV_NAME
1214                                                 ": RX Overrun\n");
1215                                 ndev->stats.rx_dropped++;
1216                         }
1217                         locked_reg_bfclr(priv, EIR, EIR_RXERIF);
1218                 }
1219                 /* RX handler */
1220                 if (enc28j60_rx_interrupt(ndev))
1221                         loop++;
1222         } while (loop);
1223
1224         /* re-enable interrupts */
1225         locked_reg_bfset(priv, EIE, EIE_INTIE);
1226         if (netif_msg_intr(priv))
1227                 printk(KERN_DEBUG DRV_NAME ": %s() exit\n", __func__);
1228 }
1229
1230 /*
1231  * Hardware transmit function.
1232  * Fill the buffer memory and send the contents of the transmit buffer
1233  * onto the network
1234  */
1235 static void enc28j60_hw_tx(struct enc28j60_net *priv)
1236 {
1237         if (netif_msg_tx_queued(priv))
1238                 printk(KERN_DEBUG DRV_NAME
1239                         ": Tx Packet Len:%d\n", priv->tx_skb->len);
1240
1241         if (netif_msg_pktdata(priv))
1242                 dump_packet(__func__,
1243                             priv->tx_skb->len, priv->tx_skb->data);
1244         enc28j60_packet_write(priv, priv->tx_skb->len, priv->tx_skb->data);
1245
1246 #ifdef CONFIG_ENC28J60_WRITEVERIFY
1247         /* readback and verify written data */
1248         if (netif_msg_drv(priv)) {
1249                 int test_len, k;
1250                 u8 test_buf[64]; /* limit the test to the first 64 bytes */
1251                 int okflag;
1252
1253                 test_len = priv->tx_skb->len;
1254                 if (test_len > sizeof(test_buf))
1255                         test_len = sizeof(test_buf);
1256
1257                 /* + 1 to skip control byte */
1258                 enc28j60_mem_read(priv, TXSTART_INIT + 1, test_len, test_buf);
1259                 okflag = 1;
1260                 for (k = 0; k < test_len; k++) {
1261                         if (priv->tx_skb->data[k] != test_buf[k]) {
1262                                 printk(KERN_DEBUG DRV_NAME
1263                                          ": Error, %d location differ: "
1264                                          "0x%02x-0x%02x\n", k,
1265                                          priv->tx_skb->data[k], test_buf[k]);
1266                                 okflag = 0;
1267                         }
1268                 }
1269                 if (!okflag)
1270                         printk(KERN_DEBUG DRV_NAME ": Tx write buffer, "
1271                                 "verify ERROR!\n");
1272         }
1273 #endif
1274         /* set TX request flag */
1275         locked_reg_bfset(priv, ECON1, ECON1_TXRTS);
1276 }
1277
1278 static netdev_tx_t enc28j60_send_packet(struct sk_buff *skb,
1279                                         struct net_device *dev)
1280 {
1281         struct enc28j60_net *priv = netdev_priv(dev);
1282
1283         if (netif_msg_tx_queued(priv))
1284                 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__);
1285
1286         /* If some error occurs while trying to transmit this
1287          * packet, you should return '1' from this function.
1288          * In such a case you _may not_ do anything to the
1289          * SKB, it is still owned by the network queueing
1290          * layer when an error is returned.  This means you
1291          * may not modify any SKB fields, you may not free
1292          * the SKB, etc.
1293          */
1294         netif_stop_queue(dev);
1295
1296         /* Remember the skb for deferred processing */
1297         priv->tx_skb = skb;
1298         schedule_work(&priv->tx_work);
1299
1300         return NETDEV_TX_OK;
1301 }
1302
1303 static void enc28j60_tx_work_handler(struct work_struct *work)
1304 {
1305         struct enc28j60_net *priv =
1306                 container_of(work, struct enc28j60_net, tx_work);
1307
1308         /* actual delivery of data */
1309         enc28j60_hw_tx(priv);
1310 }
1311
1312 static irqreturn_t enc28j60_irq(int irq, void *dev_id)
1313 {
1314         struct enc28j60_net *priv = dev_id;
1315
1316         /*
1317          * Can't do anything in interrupt context because we need to
1318          * block (spi_sync() is blocking) so fire of the interrupt
1319          * handling workqueue.
1320          * Remember that we access enc28j60 registers through SPI bus
1321          * via spi_sync() call.
1322          */
1323         schedule_work(&priv->irq_work);
1324
1325         return IRQ_HANDLED;
1326 }
1327
1328 static void enc28j60_tx_timeout(struct net_device *ndev)
1329 {
1330         struct enc28j60_net *priv = netdev_priv(ndev);
1331
1332         if (netif_msg_timer(priv))
1333                 dev_err(&ndev->dev, DRV_NAME " tx timeout\n");
1334
1335         ndev->stats.tx_errors++;
1336         /* can't restart safely under softirq */
1337         schedule_work(&priv->restart_work);
1338 }
1339
1340 /*
1341  * Open/initialize the board. This is called (in the current kernel)
1342  * sometime after booting when the 'ifconfig' program is run.
1343  *
1344  * This routine should set everything up anew at each open, even
1345  * registers that "should" only need to be set once at boot, so that
1346  * there is non-reboot way to recover if something goes wrong.
1347  */
1348 static int enc28j60_net_open(struct net_device *dev)
1349 {
1350         struct enc28j60_net *priv = netdev_priv(dev);
1351
1352         if (netif_msg_drv(priv))
1353                 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__);
1354
1355         if (!is_valid_ether_addr(dev->dev_addr)) {
1356                 if (netif_msg_ifup(priv))
1357                         dev_err(&dev->dev, "invalid MAC address %pM\n",
1358                                 dev->dev_addr);
1359                 return -EADDRNOTAVAIL;
1360         }
1361         /* Reset the hardware here (and take it out of low power mode) */
1362         enc28j60_lowpower(priv, false);
1363         enc28j60_hw_disable(priv);
1364         if (!enc28j60_hw_init(priv)) {
1365                 if (netif_msg_ifup(priv))
1366                         dev_err(&dev->dev, "hw_reset() failed\n");
1367                 return -EINVAL;
1368         }
1369         /* Update the MAC address (in case user has changed it) */
1370         enc28j60_set_hw_macaddr(dev);
1371         /* Enable interrupts */
1372         enc28j60_hw_enable(priv);
1373         /* check link status */
1374         enc28j60_check_link_status(dev);
1375         /* We are now ready to accept transmit requests from
1376          * the queueing layer of the networking.
1377          */
1378         netif_start_queue(dev);
1379
1380         return 0;
1381 }
1382
1383 /* The inverse routine to net_open(). */
1384 static int enc28j60_net_close(struct net_device *dev)
1385 {
1386         struct enc28j60_net *priv = netdev_priv(dev);
1387
1388         if (netif_msg_drv(priv))
1389                 printk(KERN_DEBUG DRV_NAME ": %s() enter\n", __func__);
1390
1391         enc28j60_hw_disable(priv);
1392         enc28j60_lowpower(priv, true);
1393         netif_stop_queue(dev);
1394
1395         return 0;
1396 }
1397
1398 /*
1399  * Set or clear the multicast filter for this adapter
1400  * num_addrs == -1      Promiscuous mode, receive all packets
1401  * num_addrs == 0       Normal mode, filter out multicast packets
1402  * num_addrs > 0        Multicast mode, receive normal and MC packets
1403  */
1404 static void enc28j60_set_multicast_list(struct net_device *dev)
1405 {
1406         struct enc28j60_net *priv = netdev_priv(dev);
1407         int oldfilter = priv->rxfilter;
1408
1409         if (dev->flags & IFF_PROMISC) {
1410                 if (netif_msg_link(priv))
1411                         dev_info(&dev->dev, "promiscuous mode\n");
1412                 priv->rxfilter = RXFILTER_PROMISC;
1413         } else if ((dev->flags & IFF_ALLMULTI) || !netdev_mc_empty(dev)) {
1414                 if (netif_msg_link(priv))
1415                         dev_info(&dev->dev, "%smulticast mode\n",
1416                                 (dev->flags & IFF_ALLMULTI) ? "all-" : "");
1417                 priv->rxfilter = RXFILTER_MULTI;
1418         } else {
1419                 if (netif_msg_link(priv))
1420                         dev_info(&dev->dev, "normal mode\n");
1421                 priv->rxfilter = RXFILTER_NORMAL;
1422         }
1423
1424         if (oldfilter != priv->rxfilter)
1425                 schedule_work(&priv->setrx_work);
1426 }
1427
1428 static void enc28j60_setrx_work_handler(struct work_struct *work)
1429 {
1430         struct enc28j60_net *priv =
1431                 container_of(work, struct enc28j60_net, setrx_work);
1432
1433         if (priv->rxfilter == RXFILTER_PROMISC) {
1434                 if (netif_msg_drv(priv))
1435                         printk(KERN_DEBUG DRV_NAME ": promiscuous mode\n");
1436                 locked_regb_write(priv, ERXFCON, 0x00);
1437         } else if (priv->rxfilter == RXFILTER_MULTI) {
1438                 if (netif_msg_drv(priv))
1439                         printk(KERN_DEBUG DRV_NAME ": multicast mode\n");
1440                 locked_regb_write(priv, ERXFCON,
1441                                         ERXFCON_UCEN | ERXFCON_CRCEN |
1442                                         ERXFCON_BCEN | ERXFCON_MCEN);
1443         } else {
1444                 if (netif_msg_drv(priv))
1445                         printk(KERN_DEBUG DRV_NAME ": normal mode\n");
1446                 locked_regb_write(priv, ERXFCON,
1447                                         ERXFCON_UCEN | ERXFCON_CRCEN |
1448                                         ERXFCON_BCEN);
1449         }
1450 }
1451
1452 static void enc28j60_restart_work_handler(struct work_struct *work)
1453 {
1454         struct enc28j60_net *priv =
1455                         container_of(work, struct enc28j60_net, restart_work);
1456         struct net_device *ndev = priv->netdev;
1457         int ret;
1458
1459         rtnl_lock();
1460         if (netif_running(ndev)) {
1461                 enc28j60_net_close(ndev);
1462                 ret = enc28j60_net_open(ndev);
1463                 if (unlikely(ret)) {
1464                         dev_info(&ndev->dev, " could not restart %d\n", ret);
1465                         dev_close(ndev);
1466                 }
1467         }
1468         rtnl_unlock();
1469 }
1470
1471 /* ......................... ETHTOOL SUPPORT ........................... */
1472
1473 static void
1474 enc28j60_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1475 {
1476         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1477         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1478         strlcpy(info->bus_info,
1479                 dev_name(dev->dev.parent), sizeof(info->bus_info));
1480 }
1481
1482 static int
1483 enc28j60_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1484 {
1485         struct enc28j60_net *priv = netdev_priv(dev);
1486
1487         cmd->transceiver = XCVR_INTERNAL;
1488         cmd->supported  = SUPPORTED_10baseT_Half
1489                         | SUPPORTED_10baseT_Full
1490                         | SUPPORTED_TP;
1491         ethtool_cmd_speed_set(cmd,  SPEED_10);
1492         cmd->duplex     = priv->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1493         cmd->port       = PORT_TP;
1494         cmd->autoneg    = AUTONEG_DISABLE;
1495
1496         return 0;
1497 }
1498
1499 static int
1500 enc28j60_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1501 {
1502         return enc28j60_setlink(dev, cmd->autoneg,
1503                                 ethtool_cmd_speed(cmd), cmd->duplex);
1504 }
1505
1506 static u32 enc28j60_get_msglevel(struct net_device *dev)
1507 {
1508         struct enc28j60_net *priv = netdev_priv(dev);
1509         return priv->msg_enable;
1510 }
1511
1512 static void enc28j60_set_msglevel(struct net_device *dev, u32 val)
1513 {
1514         struct enc28j60_net *priv = netdev_priv(dev);
1515         priv->msg_enable = val;
1516 }
1517
1518 static const struct ethtool_ops enc28j60_ethtool_ops = {
1519         .get_settings   = enc28j60_get_settings,
1520         .set_settings   = enc28j60_set_settings,
1521         .get_drvinfo    = enc28j60_get_drvinfo,
1522         .get_msglevel   = enc28j60_get_msglevel,
1523         .set_msglevel   = enc28j60_set_msglevel,
1524 };
1525
1526 static int enc28j60_chipset_init(struct net_device *dev)
1527 {
1528         struct enc28j60_net *priv = netdev_priv(dev);
1529
1530         return enc28j60_hw_init(priv);
1531 }
1532
1533 static const struct net_device_ops enc28j60_netdev_ops = {
1534         .ndo_open               = enc28j60_net_open,
1535         .ndo_stop               = enc28j60_net_close,
1536         .ndo_start_xmit         = enc28j60_send_packet,
1537         .ndo_set_rx_mode        = enc28j60_set_multicast_list,
1538         .ndo_set_mac_address    = enc28j60_set_mac_address,
1539         .ndo_tx_timeout         = enc28j60_tx_timeout,
1540         .ndo_change_mtu         = eth_change_mtu,
1541         .ndo_validate_addr      = eth_validate_addr,
1542 };
1543
1544 static int enc28j60_probe(struct spi_device *spi)
1545 {
1546         struct net_device *dev;
1547         struct enc28j60_net *priv;
1548         int ret = 0;
1549
1550         if (netif_msg_drv(&debug))
1551                 dev_info(&spi->dev, DRV_NAME " Ethernet driver %s loaded\n",
1552                         DRV_VERSION);
1553
1554         dev = alloc_etherdev(sizeof(struct enc28j60_net));
1555         if (!dev) {
1556                 ret = -ENOMEM;
1557                 goto error_alloc;
1558         }
1559         priv = netdev_priv(dev);
1560
1561         priv->netdev = dev;     /* priv to netdev reference */
1562         priv->spi = spi;        /* priv to spi reference */
1563         priv->msg_enable = netif_msg_init(debug.msg_enable,
1564                                                 ENC28J60_MSG_DEFAULT);
1565         mutex_init(&priv->lock);
1566         INIT_WORK(&priv->tx_work, enc28j60_tx_work_handler);
1567         INIT_WORK(&priv->setrx_work, enc28j60_setrx_work_handler);
1568         INIT_WORK(&priv->irq_work, enc28j60_irq_work_handler);
1569         INIT_WORK(&priv->restart_work, enc28j60_restart_work_handler);
1570         dev_set_drvdata(&spi->dev, priv);       /* spi to priv reference */
1571         SET_NETDEV_DEV(dev, &spi->dev);
1572
1573         if (!enc28j60_chipset_init(dev)) {
1574                 if (netif_msg_probe(priv))
1575                         dev_info(&spi->dev, DRV_NAME " chip not found\n");
1576                 ret = -EIO;
1577                 goto error_irq;
1578         }
1579         eth_hw_addr_random(dev);
1580         enc28j60_set_hw_macaddr(dev);
1581
1582         /* Board setup must set the relevant edge trigger type;
1583          * level triggers won't currently work.
1584          */
1585         ret = request_irq(spi->irq, enc28j60_irq, 0, DRV_NAME, priv);
1586         if (ret < 0) {
1587                 if (netif_msg_probe(priv))
1588                         dev_err(&spi->dev, DRV_NAME ": request irq %d failed "
1589                                 "(ret = %d)\n", spi->irq, ret);
1590                 goto error_irq;
1591         }
1592
1593         dev->if_port = IF_PORT_10BASET;
1594         dev->irq = spi->irq;
1595         dev->netdev_ops = &enc28j60_netdev_ops;
1596         dev->watchdog_timeo = TX_TIMEOUT;
1597         SET_ETHTOOL_OPS(dev, &enc28j60_ethtool_ops);
1598
1599         enc28j60_lowpower(priv, true);
1600
1601         ret = register_netdev(dev);
1602         if (ret) {
1603                 if (netif_msg_probe(priv))
1604                         dev_err(&spi->dev, "register netdev " DRV_NAME
1605                                 " failed (ret = %d)\n", ret);
1606                 goto error_register;
1607         }
1608         dev_info(&dev->dev, DRV_NAME " driver registered\n");
1609
1610         return 0;
1611
1612 error_register:
1613         free_irq(spi->irq, priv);
1614 error_irq:
1615         free_netdev(dev);
1616 error_alloc:
1617         return ret;
1618 }
1619
1620 static int enc28j60_remove(struct spi_device *spi)
1621 {
1622         struct enc28j60_net *priv = dev_get_drvdata(&spi->dev);
1623
1624         if (netif_msg_drv(priv))
1625                 printk(KERN_DEBUG DRV_NAME ": remove\n");
1626
1627         unregister_netdev(priv->netdev);
1628         free_irq(spi->irq, priv);
1629         free_netdev(priv->netdev);
1630
1631         return 0;
1632 }
1633
1634 static struct spi_driver enc28j60_driver = {
1635         .driver = {
1636                    .name = DRV_NAME,
1637                    .owner = THIS_MODULE,
1638          },
1639         .probe = enc28j60_probe,
1640         .remove = enc28j60_remove,
1641 };
1642
1643 static int __init enc28j60_init(void)
1644 {
1645         msec20_to_jiffies = msecs_to_jiffies(20);
1646
1647         return spi_register_driver(&enc28j60_driver);
1648 }
1649
1650 module_init(enc28j60_init);
1651
1652 static void __exit enc28j60_exit(void)
1653 {
1654         spi_unregister_driver(&enc28j60_driver);
1655 }
1656
1657 module_exit(enc28j60_exit);
1658
1659 MODULE_DESCRIPTION(DRV_NAME " ethernet driver");
1660 MODULE_AUTHOR("Claudio Lanconelli <lanconelli.claudio@eptar.com>");
1661 MODULE_LICENSE("GPL");
1662 module_param_named(debug, debug.msg_enable, int, 0);
1663 MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., ffff=all)");
1664 MODULE_ALIAS("spi:" DRV_NAME);