]> rtime.felk.cvut.cz Git - can-eth-gw-linux.git/blob - drivers/net/ethernet/intel/e1000e/80003es2lan.c
Merge branch 'akpm' (Andrew's patch-bomb)
[can-eth-gw-linux.git] / drivers / net / ethernet / intel / e1000e / 80003es2lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* 80003ES2LAN Gigabit Ethernet Controller (Copper)
30  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
31  */
32
33 #include "e1000.h"
34
35 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL       0x00
36 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL        0x02
37 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL         0x10
38 #define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE  0x1F
39
40 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS    0x0008
41 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS    0x0800
42 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING   0x0010
43
44 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
45 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT   0x0000
46 #define E1000_KMRNCTRLSTA_OPMODE_E_IDLE          0x2000
47
48 #define E1000_KMRNCTRLSTA_OPMODE_MASK            0x000C
49 #define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO     0x0004
50
51 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
52 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN        0x00010000
53
54 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN       0x8
55 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN     0x9
56
57 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */
58 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE   0x0002 /* 1=Reversal Disab. */
59 #define GG82563_PSCR_CROSSOVER_MODE_MASK         0x0060
60 #define GG82563_PSCR_CROSSOVER_MODE_MDI          0x0000 /* 00=Manual MDI */
61 #define GG82563_PSCR_CROSSOVER_MODE_MDIX         0x0020 /* 01=Manual MDIX */
62 #define GG82563_PSCR_CROSSOVER_MODE_AUTO         0x0060 /* 11=Auto crossover */
63
64 /* PHY Specific Control Register 2 (Page 0, Register 26) */
65 #define GG82563_PSCR2_REVERSE_AUTO_NEG           0x2000
66                                                 /* 1=Reverse Auto-Negotiation */
67
68 /* MAC Specific Control Register (Page 2, Register 21) */
69 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
70 #define GG82563_MSCR_TX_CLK_MASK                 0x0007
71 #define GG82563_MSCR_TX_CLK_10MBPS_2_5           0x0004
72 #define GG82563_MSCR_TX_CLK_100MBPS_25           0x0005
73 #define GG82563_MSCR_TX_CLK_1000MBPS_25          0x0007
74
75 #define GG82563_MSCR_ASSERT_CRS_ON_TX            0x0010 /* 1=Assert */
76
77 /* DSP Distance Register (Page 5, Register 26) */
78 #define GG82563_DSPD_CABLE_LENGTH                0x0007 /* 0 = <50M
79                                                            1 = 50-80M
80                                                            2 = 80-110M
81                                                            3 = 110-140M
82                                                            4 = >140M
83                                                         */
84
85 /* Kumeran Mode Control Register (Page 193, Register 16) */
86 #define GG82563_KMCR_PASS_FALSE_CARRIER          0x0800
87
88 /* Max number of times Kumeran read/write should be validated */
89 #define GG82563_MAX_KMRN_RETRY  0x5
90
91 /* Power Management Control Register (Page 193, Register 20) */
92 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE      0x0001
93                                            /* 1=Enable SERDES Electrical Idle */
94
95 /* In-Band Control Register (Page 194, Register 18) */
96 #define GG82563_ICR_DIS_PADDING                  0x0010 /* Disable Padding */
97
98 /* A table for the GG82563 cable length where the range is defined
99  * with a lower bound at "index" and the upper bound at
100  * "index + 5".
101  */
102 static const u16 e1000_gg82563_cable_length_table[] = {
103          0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
104 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
105                 ARRAY_SIZE(e1000_gg82563_cable_length_table)
106
107 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
108 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
109 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
110 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
111 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
112 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
113 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
114 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
115 static s32  e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
116                                             u16 *data);
117 static s32  e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
118                                              u16 data);
119 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
120
121 /**
122  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
123  *  @hw: pointer to the HW structure
124  **/
125 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
126 {
127         struct e1000_phy_info *phy = &hw->phy;
128         s32 ret_val;
129
130         if (hw->phy.media_type != e1000_media_type_copper) {
131                 phy->type       = e1000_phy_none;
132                 return 0;
133         } else {
134                 phy->ops.power_up = e1000_power_up_phy_copper;
135                 phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
136         }
137
138         phy->addr               = 1;
139         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
140         phy->reset_delay_us      = 100;
141         phy->type               = e1000_phy_gg82563;
142
143         /* This can only be done after all function pointers are setup. */
144         ret_val = e1000e_get_phy_id(hw);
145
146         /* Verify phy id */
147         if (phy->id != GG82563_E_PHY_ID)
148                 return -E1000_ERR_PHY;
149
150         return ret_val;
151 }
152
153 /**
154  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
155  *  @hw: pointer to the HW structure
156  **/
157 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
158 {
159         struct e1000_nvm_info *nvm = &hw->nvm;
160         u32 eecd = er32(EECD);
161         u16 size;
162
163         nvm->opcode_bits        = 8;
164         nvm->delay_usec  = 1;
165         switch (nvm->override) {
166         case e1000_nvm_override_spi_large:
167                 nvm->page_size    = 32;
168                 nvm->address_bits = 16;
169                 break;
170         case e1000_nvm_override_spi_small:
171                 nvm->page_size    = 8;
172                 nvm->address_bits = 8;
173                 break;
174         default:
175                 nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
176                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
177                 break;
178         }
179
180         nvm->type = e1000_nvm_eeprom_spi;
181
182         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
183                           E1000_EECD_SIZE_EX_SHIFT);
184
185         /* Added to a constant, "size" becomes the left-shift value
186          * for setting word_size.
187          */
188         size += NVM_WORD_SIZE_BASE_SHIFT;
189
190         /* EEPROM access above 16k is unsupported */
191         if (size > 14)
192                 size = 14;
193         nvm->word_size  = 1 << size;
194
195         return 0;
196 }
197
198 /**
199  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
200  *  @hw: pointer to the HW structure
201  **/
202 static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
203 {
204         struct e1000_mac_info *mac = &hw->mac;
205
206         /* Set media type and media-dependent function pointers */
207         switch (hw->adapter->pdev->device) {
208         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
209                 hw->phy.media_type = e1000_media_type_internal_serdes;
210                 mac->ops.check_for_link = e1000e_check_for_serdes_link;
211                 mac->ops.setup_physical_interface =
212                     e1000e_setup_fiber_serdes_link;
213                 break;
214         default:
215                 hw->phy.media_type = e1000_media_type_copper;
216                 mac->ops.check_for_link = e1000e_check_for_copper_link;
217                 mac->ops.setup_physical_interface =
218                     e1000_setup_copper_link_80003es2lan;
219                 break;
220         }
221
222         /* Set mta register count */
223         mac->mta_reg_count = 128;
224         /* Set rar entry count */
225         mac->rar_entry_count = E1000_RAR_ENTRIES;
226         /* FWSM register */
227         mac->has_fwsm = true;
228         /* ARC supported; valid only if manageability features are enabled. */
229         mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
230         /* Adaptive IFS not supported */
231         mac->adaptive_ifs = false;
232
233         /* set lan id for port to determine which phy lock to use */
234         hw->mac.ops.set_lan_id(hw);
235
236         return 0;
237 }
238
239 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
240 {
241         struct e1000_hw *hw = &adapter->hw;
242         s32 rc;
243
244         rc = e1000_init_mac_params_80003es2lan(hw);
245         if (rc)
246                 return rc;
247
248         rc = e1000_init_nvm_params_80003es2lan(hw);
249         if (rc)
250                 return rc;
251
252         rc = e1000_init_phy_params_80003es2lan(hw);
253         if (rc)
254                 return rc;
255
256         return 0;
257 }
258
259 /**
260  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
261  *  @hw: pointer to the HW structure
262  *
263  *  A wrapper to acquire access rights to the correct PHY.
264  **/
265 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
266 {
267         u16 mask;
268
269         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
270         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
271 }
272
273 /**
274  *  e1000_release_phy_80003es2lan - Release rights to access PHY
275  *  @hw: pointer to the HW structure
276  *
277  *  A wrapper to release access rights to the correct PHY.
278  **/
279 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
280 {
281         u16 mask;
282
283         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
284         e1000_release_swfw_sync_80003es2lan(hw, mask);
285 }
286
287 /**
288  *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
289  *  @hw: pointer to the HW structure
290  *
291  *  Acquire the semaphore to access the Kumeran interface.
292  *
293  **/
294 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
295 {
296         u16 mask;
297
298         mask = E1000_SWFW_CSR_SM;
299
300         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
301 }
302
303 /**
304  *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
305  *  @hw: pointer to the HW structure
306  *
307  *  Release the semaphore used to access the Kumeran interface
308  **/
309 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
310 {
311         u16 mask;
312
313         mask = E1000_SWFW_CSR_SM;
314
315         e1000_release_swfw_sync_80003es2lan(hw, mask);
316 }
317
318 /**
319  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
320  *  @hw: pointer to the HW structure
321  *
322  *  Acquire the semaphore to access the EEPROM.
323  **/
324 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
325 {
326         s32 ret_val;
327
328         ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
329         if (ret_val)
330                 return ret_val;
331
332         ret_val = e1000e_acquire_nvm(hw);
333
334         if (ret_val)
335                 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
336
337         return ret_val;
338 }
339
340 /**
341  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
342  *  @hw: pointer to the HW structure
343  *
344  *  Release the semaphore used to access the EEPROM.
345  **/
346 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
347 {
348         e1000e_release_nvm(hw);
349         e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
350 }
351
352 /**
353  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
354  *  @hw: pointer to the HW structure
355  *  @mask: specifies which semaphore to acquire
356  *
357  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
358  *  will also specify which port we're acquiring the lock for.
359  **/
360 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
361 {
362         u32 swfw_sync;
363         u32 swmask = mask;
364         u32 fwmask = mask << 16;
365         s32 i = 0;
366         s32 timeout = 50;
367
368         while (i < timeout) {
369                 if (e1000e_get_hw_semaphore(hw))
370                         return -E1000_ERR_SWFW_SYNC;
371
372                 swfw_sync = er32(SW_FW_SYNC);
373                 if (!(swfw_sync & (fwmask | swmask)))
374                         break;
375
376                 /* Firmware currently using resource (fwmask)
377                  * or other software thread using resource (swmask)
378                  */
379                 e1000e_put_hw_semaphore(hw);
380                 mdelay(5);
381                 i++;
382         }
383
384         if (i == timeout) {
385                 e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
386                 return -E1000_ERR_SWFW_SYNC;
387         }
388
389         swfw_sync |= swmask;
390         ew32(SW_FW_SYNC, swfw_sync);
391
392         e1000e_put_hw_semaphore(hw);
393
394         return 0;
395 }
396
397 /**
398  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
399  *  @hw: pointer to the HW structure
400  *  @mask: specifies which semaphore to acquire
401  *
402  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
403  *  will also specify which port we're releasing the lock for.
404  **/
405 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
406 {
407         u32 swfw_sync;
408
409         while (e1000e_get_hw_semaphore(hw) != 0)
410                 ; /* Empty */
411
412         swfw_sync = er32(SW_FW_SYNC);
413         swfw_sync &= ~mask;
414         ew32(SW_FW_SYNC, swfw_sync);
415
416         e1000e_put_hw_semaphore(hw);
417 }
418
419 /**
420  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
421  *  @hw: pointer to the HW structure
422  *  @offset: offset of the register to read
423  *  @data: pointer to the data returned from the operation
424  *
425  *  Read the GG82563 PHY register.
426  **/
427 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
428                                                   u32 offset, u16 *data)
429 {
430         s32 ret_val;
431         u32 page_select;
432         u16 temp;
433
434         ret_val = e1000_acquire_phy_80003es2lan(hw);
435         if (ret_val)
436                 return ret_val;
437
438         /* Select Configuration Page */
439         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
440                 page_select = GG82563_PHY_PAGE_SELECT;
441         } else {
442                 /* Use Alternative Page Select register to access
443                  * registers 30 and 31
444                  */
445                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
446         }
447
448         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
449         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
450         if (ret_val) {
451                 e1000_release_phy_80003es2lan(hw);
452                 return ret_val;
453         }
454
455         if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
456                 /* The "ready" bit in the MDIC register may be incorrectly set
457                  * before the device has completed the "Page Select" MDI
458                  * transaction.  So we wait 200us after each MDI command...
459                  */
460                 udelay(200);
461
462                 /* ...and verify the command was successful. */
463                 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
464
465                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
466                         e1000_release_phy_80003es2lan(hw);
467                         return -E1000_ERR_PHY;
468                 }
469
470                 udelay(200);
471
472                 ret_val = e1000e_read_phy_reg_mdic(hw,
473                                                   MAX_PHY_REG_ADDRESS & offset,
474                                                   data);
475
476                 udelay(200);
477         } else {
478                 ret_val = e1000e_read_phy_reg_mdic(hw,
479                                                   MAX_PHY_REG_ADDRESS & offset,
480                                                   data);
481         }
482
483         e1000_release_phy_80003es2lan(hw);
484
485         return ret_val;
486 }
487
488 /**
489  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
490  *  @hw: pointer to the HW structure
491  *  @offset: offset of the register to read
492  *  @data: value to write to the register
493  *
494  *  Write to the GG82563 PHY register.
495  **/
496 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
497                                                    u32 offset, u16 data)
498 {
499         s32 ret_val;
500         u32 page_select;
501         u16 temp;
502
503         ret_val = e1000_acquire_phy_80003es2lan(hw);
504         if (ret_val)
505                 return ret_val;
506
507         /* Select Configuration Page */
508         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
509                 page_select = GG82563_PHY_PAGE_SELECT;
510         } else {
511                 /* Use Alternative Page Select register to access
512                  * registers 30 and 31
513                  */
514                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
515         }
516
517         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
518         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
519         if (ret_val) {
520                 e1000_release_phy_80003es2lan(hw);
521                 return ret_val;
522         }
523
524         if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
525                 /* The "ready" bit in the MDIC register may be incorrectly set
526                  * before the device has completed the "Page Select" MDI
527                  * transaction.  So we wait 200us after each MDI command...
528                  */
529                 udelay(200);
530
531                 /* ...and verify the command was successful. */
532                 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
533
534                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
535                         e1000_release_phy_80003es2lan(hw);
536                         return -E1000_ERR_PHY;
537                 }
538
539                 udelay(200);
540
541                 ret_val = e1000e_write_phy_reg_mdic(hw,
542                                                   MAX_PHY_REG_ADDRESS & offset,
543                                                   data);
544
545                 udelay(200);
546         } else {
547                 ret_val = e1000e_write_phy_reg_mdic(hw,
548                                                   MAX_PHY_REG_ADDRESS & offset,
549                                                   data);
550         }
551
552         e1000_release_phy_80003es2lan(hw);
553
554         return ret_val;
555 }
556
557 /**
558  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
559  *  @hw: pointer to the HW structure
560  *  @offset: offset of the register to read
561  *  @words: number of words to write
562  *  @data: buffer of data to write to the NVM
563  *
564  *  Write "words" of data to the ESB2 NVM.
565  **/
566 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
567                                        u16 words, u16 *data)
568 {
569         return e1000e_write_nvm_spi(hw, offset, words, data);
570 }
571
572 /**
573  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
574  *  @hw: pointer to the HW structure
575  *
576  *  Wait a specific amount of time for manageability processes to complete.
577  *  This is a function pointer entry point called by the phy module.
578  **/
579 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
580 {
581         s32 timeout = PHY_CFG_TIMEOUT;
582         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
583
584         if (hw->bus.func == 1)
585                 mask = E1000_NVM_CFG_DONE_PORT_1;
586
587         while (timeout) {
588                 if (er32(EEMNGCTL) & mask)
589                         break;
590                 usleep_range(1000, 2000);
591                 timeout--;
592         }
593         if (!timeout) {
594                 e_dbg("MNG configuration cycle has not completed.\n");
595                 return -E1000_ERR_RESET;
596         }
597
598         return 0;
599 }
600
601 /**
602  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
603  *  @hw: pointer to the HW structure
604  *
605  *  Force the speed and duplex settings onto the PHY.  This is a
606  *  function pointer entry point called by the phy module.
607  **/
608 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
609 {
610         s32 ret_val;
611         u16 phy_data;
612         bool link;
613
614         /* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
615          * forced whenever speed and duplex are forced.
616          */
617         ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
618         if (ret_val)
619                 return ret_val;
620
621         phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
622         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
623         if (ret_val)
624                 return ret_val;
625
626         e_dbg("GG82563 PSCR: %X\n", phy_data);
627
628         ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
629         if (ret_val)
630                 return ret_val;
631
632         e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
633
634         /* Reset the phy to commit changes. */
635         phy_data |= MII_CR_RESET;
636
637         ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
638         if (ret_val)
639                 return ret_val;
640
641         udelay(1);
642
643         if (hw->phy.autoneg_wait_to_complete) {
644                 e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
645
646                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
647                                                      100000, &link);
648                 if (ret_val)
649                         return ret_val;
650
651                 if (!link) {
652                         /* We didn't get link.
653                          * Reset the DSP and cross our fingers.
654                          */
655                         ret_val = e1000e_phy_reset_dsp(hw);
656                         if (ret_val)
657                                 return ret_val;
658                 }
659
660                 /* Try once more */
661                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
662                                                      100000, &link);
663                 if (ret_val)
664                         return ret_val;
665         }
666
667         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
668         if (ret_val)
669                 return ret_val;
670
671         /* Resetting the phy means we need to verify the TX_CLK corresponds
672          * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
673          */
674         phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
675         if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
676                 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
677         else
678                 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
679
680         /* In addition, we must re-enable CRS on Tx for both half and full
681          * duplex.
682          */
683         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
684         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
685
686         return ret_val;
687 }
688
689 /**
690  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
691  *  @hw: pointer to the HW structure
692  *
693  *  Find the approximate cable length as measured by the GG82563 PHY.
694  *  This is a function pointer entry point called by the phy module.
695  **/
696 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
697 {
698         struct e1000_phy_info *phy = &hw->phy;
699         s32 ret_val = 0;
700         u16 phy_data, index;
701
702         ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
703         if (ret_val)
704                 return ret_val;
705
706         index = phy_data & GG82563_DSPD_CABLE_LENGTH;
707
708         if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
709                 return -E1000_ERR_PHY;
710
711         phy->min_cable_length = e1000_gg82563_cable_length_table[index];
712         phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
713
714         phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
715
716         return 0;
717 }
718
719 /**
720  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
721  *  @hw: pointer to the HW structure
722  *  @speed: pointer to speed buffer
723  *  @duplex: pointer to duplex buffer
724  *
725  *  Retrieve the current speed and duplex configuration.
726  **/
727 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
728                                               u16 *duplex)
729 {
730         s32 ret_val;
731
732         if (hw->phy.media_type == e1000_media_type_copper) {
733                 ret_val = e1000e_get_speed_and_duplex_copper(hw,
734                                                                     speed,
735                                                                     duplex);
736                 hw->phy.ops.cfg_on_link_up(hw);
737         } else {
738                 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
739                                                                   speed,
740                                                                   duplex);
741         }
742
743         return ret_val;
744 }
745
746 /**
747  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
748  *  @hw: pointer to the HW structure
749  *
750  *  Perform a global reset to the ESB2 controller.
751  **/
752 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
753 {
754         u32 ctrl;
755         s32 ret_val;
756         u16 kum_reg_data;
757
758         /* Prevent the PCI-E bus from sticking if there is no TLP connection
759          * on the last TLP read/write transaction when MAC is reset.
760          */
761         ret_val = e1000e_disable_pcie_master(hw);
762         if (ret_val)
763                 e_dbg("PCI-E Master disable polling has failed.\n");
764
765         e_dbg("Masking off all interrupts\n");
766         ew32(IMC, 0xffffffff);
767
768         ew32(RCTL, 0);
769         ew32(TCTL, E1000_TCTL_PSP);
770         e1e_flush();
771
772         usleep_range(10000, 20000);
773
774         ctrl = er32(CTRL);
775
776         ret_val = e1000_acquire_phy_80003es2lan(hw);
777         e_dbg("Issuing a global reset to MAC\n");
778         ew32(CTRL, ctrl | E1000_CTRL_RST);
779         e1000_release_phy_80003es2lan(hw);
780
781         /* Disable IBIST slave mode (far-end loopback) */
782         e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
783                                         &kum_reg_data);
784         kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
785         e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
786                                          kum_reg_data);
787
788         ret_val = e1000e_get_auto_rd_done(hw);
789         if (ret_val)
790                 /* We don't want to continue accessing MAC registers. */
791                 return ret_val;
792
793         /* Clear any pending interrupt events. */
794         ew32(IMC, 0xffffffff);
795         er32(ICR);
796
797         return e1000_check_alt_mac_addr_generic(hw);
798 }
799
800 /**
801  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
802  *  @hw: pointer to the HW structure
803  *
804  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
805  **/
806 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
807 {
808         struct e1000_mac_info *mac = &hw->mac;
809         u32 reg_data;
810         s32 ret_val;
811         u16 kum_reg_data;
812         u16 i;
813
814         e1000_initialize_hw_bits_80003es2lan(hw);
815
816         /* Initialize identification LED */
817         ret_val = mac->ops.id_led_init(hw);
818         if (ret_val)
819                 e_dbg("Error initializing identification LED\n");
820                 /* This is not fatal and we should not stop init due to this */
821
822         /* Disabling VLAN filtering */
823         e_dbg("Initializing the IEEE VLAN\n");
824         mac->ops.clear_vfta(hw);
825
826         /* Setup the receive address. */
827         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
828
829         /* Zero out the Multicast HASH table */
830         e_dbg("Zeroing the MTA\n");
831         for (i = 0; i < mac->mta_reg_count; i++)
832                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
833
834         /* Setup link and flow control */
835         ret_val = mac->ops.setup_link(hw);
836
837         /* Disable IBIST slave mode (far-end loopback) */
838         e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
839                                         &kum_reg_data);
840         kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
841         e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
842                                          kum_reg_data);
843
844         /* Set the transmit descriptor write-back policy */
845         reg_data = er32(TXDCTL(0));
846         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
847                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
848         ew32(TXDCTL(0), reg_data);
849
850         /* ...for both queues. */
851         reg_data = er32(TXDCTL(1));
852         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
853                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
854         ew32(TXDCTL(1), reg_data);
855
856         /* Enable retransmit on late collisions */
857         reg_data = er32(TCTL);
858         reg_data |= E1000_TCTL_RTLC;
859         ew32(TCTL, reg_data);
860
861         /* Configure Gigabit Carry Extend Padding */
862         reg_data = er32(TCTL_EXT);
863         reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
864         reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
865         ew32(TCTL_EXT, reg_data);
866
867         /* Configure Transmit Inter-Packet Gap */
868         reg_data = er32(TIPG);
869         reg_data &= ~E1000_TIPG_IPGT_MASK;
870         reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
871         ew32(TIPG, reg_data);
872
873         reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
874         reg_data &= ~0x00100000;
875         E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
876
877         /* default to true to enable the MDIC W/A */
878         hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
879
880         ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
881                                       E1000_KMRNCTRLSTA_OFFSET >>
882                                       E1000_KMRNCTRLSTA_OFFSET_SHIFT,
883                                       &i);
884         if (!ret_val) {
885                 if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
886                      E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
887                         hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
888         }
889
890         /* Clear all of the statistics registers (clear on read).  It is
891          * important that we do this after we have tried to establish link
892          * because the symbol error count will increment wildly if there
893          * is no link.
894          */
895         e1000_clear_hw_cntrs_80003es2lan(hw);
896
897         return ret_val;
898 }
899
900 /**
901  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
902  *  @hw: pointer to the HW structure
903  *
904  *  Initializes required hardware-dependent bits needed for normal operation.
905  **/
906 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
907 {
908         u32 reg;
909
910         /* Transmit Descriptor Control 0 */
911         reg = er32(TXDCTL(0));
912         reg |= (1 << 22);
913         ew32(TXDCTL(0), reg);
914
915         /* Transmit Descriptor Control 1 */
916         reg = er32(TXDCTL(1));
917         reg |= (1 << 22);
918         ew32(TXDCTL(1), reg);
919
920         /* Transmit Arbitration Control 0 */
921         reg = er32(TARC(0));
922         reg &= ~(0xF << 27); /* 30:27 */
923         if (hw->phy.media_type != e1000_media_type_copper)
924                 reg &= ~(1 << 20);
925         ew32(TARC(0), reg);
926
927         /* Transmit Arbitration Control 1 */
928         reg = er32(TARC(1));
929         if (er32(TCTL) & E1000_TCTL_MULR)
930                 reg &= ~(1 << 28);
931         else
932                 reg |= (1 << 28);
933         ew32(TARC(1), reg);
934
935         /* Disable IPv6 extension header parsing because some malformed
936          * IPv6 headers can hang the Rx.
937          */
938         reg = er32(RFCTL);
939         reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
940         ew32(RFCTL, reg);
941 }
942
943 /**
944  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
945  *  @hw: pointer to the HW structure
946  *
947  *  Setup some GG82563 PHY registers for obtaining link
948  **/
949 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
950 {
951         struct e1000_phy_info *phy = &hw->phy;
952         s32 ret_val;
953         u32 ctrl_ext;
954         u16 data;
955
956         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
957         if (ret_val)
958                 return ret_val;
959
960         data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
961         /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
962         data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
963
964         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
965         if (ret_val)
966                 return ret_val;
967
968         /* Options:
969          *   MDI/MDI-X = 0 (default)
970          *   0 - Auto for all speeds
971          *   1 - MDI mode
972          *   2 - MDI-X mode
973          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
974          */
975         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
976         if (ret_val)
977                 return ret_val;
978
979         data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
980
981         switch (phy->mdix) {
982         case 1:
983                 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
984                 break;
985         case 2:
986                 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
987                 break;
988         case 0:
989         default:
990                 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
991                 break;
992         }
993
994         /* Options:
995          *   disable_polarity_correction = 0 (default)
996          *       Automatic Correction for Reversed Cable Polarity
997          *   0 - Disabled
998          *   1 - Enabled
999          */
1000         data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1001         if (phy->disable_polarity_correction)
1002                 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1003
1004         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
1005         if (ret_val)
1006                 return ret_val;
1007
1008         /* SW Reset the PHY so all changes take effect */
1009         ret_val = e1000e_commit_phy(hw);
1010         if (ret_val) {
1011                 e_dbg("Error Resetting the PHY\n");
1012                 return ret_val;
1013         }
1014
1015         /* Bypass Rx and Tx FIFO's */
1016         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1017                                         E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
1018                                         E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
1019                                         E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
1020         if (ret_val)
1021                 return ret_val;
1022
1023         ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1024                                        E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1025                                        &data);
1026         if (ret_val)
1027                 return ret_val;
1028         data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
1029         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1030                                         E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1031                                         data);
1032         if (ret_val)
1033                 return ret_val;
1034
1035         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
1036         if (ret_val)
1037                 return ret_val;
1038
1039         data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1040         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
1041         if (ret_val)
1042                 return ret_val;
1043
1044         ctrl_ext = er32(CTRL_EXT);
1045         ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1046         ew32(CTRL_EXT, ctrl_ext);
1047
1048         ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
1049         if (ret_val)
1050                 return ret_val;
1051
1052         /* Do not init these registers when the HW is in IAMT mode, since the
1053          * firmware will have already initialized them.  We only initialize
1054          * them if the HW is not in IAMT mode.
1055          */
1056         if (!hw->mac.ops.check_mng_mode(hw)) {
1057                 /* Enable Electrical Idle on the PHY */
1058                 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1059                 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
1060                 if (ret_val)
1061                         return ret_val;
1062
1063                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
1064                 if (ret_val)
1065                         return ret_val;
1066
1067                 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1068                 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1069                 if (ret_val)
1070                         return ret_val;
1071         }
1072
1073         /* Workaround: Disable padding in Kumeran interface in the MAC
1074          * and in the PHY to avoid CRC errors.
1075          */
1076         ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1077         if (ret_val)
1078                 return ret_val;
1079
1080         data |= GG82563_ICR_DIS_PADDING;
1081         ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1082         if (ret_val)
1083                 return ret_val;
1084
1085         return 0;
1086 }
1087
1088 /**
1089  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1090  *  @hw: pointer to the HW structure
1091  *
1092  *  Essentially a wrapper for setting up all things "copper" related.
1093  *  This is a function pointer entry point called by the mac module.
1094  **/
1095 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1096 {
1097         u32 ctrl;
1098         s32 ret_val;
1099         u16 reg_data;
1100
1101         ctrl = er32(CTRL);
1102         ctrl |= E1000_CTRL_SLU;
1103         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1104         ew32(CTRL, ctrl);
1105
1106         /* Set the mac to wait the maximum time between each
1107          * iteration and increase the max iterations when
1108          * polling the phy; this fixes erroneous timeouts at 10Mbps.
1109          */
1110         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1111                                                    0xFFFF);
1112         if (ret_val)
1113                 return ret_val;
1114         ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1115                                                   &reg_data);
1116         if (ret_val)
1117                 return ret_val;
1118         reg_data |= 0x3F;
1119         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1120                                                    reg_data);
1121         if (ret_val)
1122                 return ret_val;
1123         ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1124                                       E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1125                                       &reg_data);
1126         if (ret_val)
1127                 return ret_val;
1128         reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1129         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1130                                         E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1131                                         reg_data);
1132         if (ret_val)
1133                 return ret_val;
1134
1135         ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1136         if (ret_val)
1137                 return ret_val;
1138
1139         return e1000e_setup_copper_link(hw);
1140 }
1141
1142 /**
1143  *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1144  *  @hw: pointer to the HW structure
1145  *  @duplex: current duplex setting
1146  *
1147  *  Configure the KMRN interface by applying last minute quirks for
1148  *  10/100 operation.
1149  **/
1150 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1151 {
1152         s32 ret_val = 0;
1153         u16 speed;
1154         u16 duplex;
1155
1156         if (hw->phy.media_type == e1000_media_type_copper) {
1157                 ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1158                                                              &duplex);
1159                 if (ret_val)
1160                         return ret_val;
1161
1162                 if (speed == SPEED_1000)
1163                         ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1164                 else
1165                         ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1166         }
1167
1168         return ret_val;
1169 }
1170
1171 /**
1172  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1173  *  @hw: pointer to the HW structure
1174  *  @duplex: current duplex setting
1175  *
1176  *  Configure the KMRN interface by applying last minute quirks for
1177  *  10/100 operation.
1178  **/
1179 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1180 {
1181         s32 ret_val;
1182         u32 tipg;
1183         u32 i = 0;
1184         u16 reg_data, reg_data2;
1185
1186         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1187         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1188                                        E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1189                                        reg_data);
1190         if (ret_val)
1191                 return ret_val;
1192
1193         /* Configure Transmit Inter-Packet Gap */
1194         tipg = er32(TIPG);
1195         tipg &= ~E1000_TIPG_IPGT_MASK;
1196         tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1197         ew32(TIPG, tipg);
1198
1199         do {
1200                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1201                 if (ret_val)
1202                         return ret_val;
1203
1204                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1205                 if (ret_val)
1206                         return ret_val;
1207                 i++;
1208         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1209
1210         if (duplex == HALF_DUPLEX)
1211                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1212         else
1213                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1214
1215         return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1216 }
1217
1218 /**
1219  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1220  *  @hw: pointer to the HW structure
1221  *
1222  *  Configure the KMRN interface by applying last minute quirks for
1223  *  gigabit operation.
1224  **/
1225 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1226 {
1227         s32 ret_val;
1228         u16 reg_data, reg_data2;
1229         u32 tipg;
1230         u32 i = 0;
1231
1232         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1233         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1234                                        E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1235                                        reg_data);
1236         if (ret_val)
1237                 return ret_val;
1238
1239         /* Configure Transmit Inter-Packet Gap */
1240         tipg = er32(TIPG);
1241         tipg &= ~E1000_TIPG_IPGT_MASK;
1242         tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1243         ew32(TIPG, tipg);
1244
1245         do {
1246                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1247                 if (ret_val)
1248                         return ret_val;
1249
1250                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1251                 if (ret_val)
1252                         return ret_val;
1253                 i++;
1254         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1255
1256         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1257
1258         return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1259 }
1260
1261 /**
1262  *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1263  *  @hw: pointer to the HW structure
1264  *  @offset: register offset to be read
1265  *  @data: pointer to the read data
1266  *
1267  *  Acquire semaphore, then read the PHY register at offset
1268  *  using the kumeran interface.  The information retrieved is stored in data.
1269  *  Release the semaphore before exiting.
1270  **/
1271 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1272                                            u16 *data)
1273 {
1274         u32 kmrnctrlsta;
1275         s32 ret_val = 0;
1276
1277         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1278         if (ret_val)
1279                 return ret_val;
1280
1281         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1282                        E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1283         ew32(KMRNCTRLSTA, kmrnctrlsta);
1284         e1e_flush();
1285
1286         udelay(2);
1287
1288         kmrnctrlsta = er32(KMRNCTRLSTA);
1289         *data = (u16)kmrnctrlsta;
1290
1291         e1000_release_mac_csr_80003es2lan(hw);
1292
1293         return ret_val;
1294 }
1295
1296 /**
1297  *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1298  *  @hw: pointer to the HW structure
1299  *  @offset: register offset to write to
1300  *  @data: data to write at register offset
1301  *
1302  *  Acquire semaphore, then write the data to PHY register
1303  *  at the offset using the kumeran interface.  Release semaphore
1304  *  before exiting.
1305  **/
1306 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1307                                             u16 data)
1308 {
1309         u32 kmrnctrlsta;
1310         s32 ret_val = 0;
1311
1312         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1313         if (ret_val)
1314                 return ret_val;
1315
1316         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1317                        E1000_KMRNCTRLSTA_OFFSET) | data;
1318         ew32(KMRNCTRLSTA, kmrnctrlsta);
1319         e1e_flush();
1320
1321         udelay(2);
1322
1323         e1000_release_mac_csr_80003es2lan(hw);
1324
1325         return ret_val;
1326 }
1327
1328 /**
1329  *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1330  *  @hw: pointer to the HW structure
1331  **/
1332 static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1333 {
1334         s32 ret_val = 0;
1335
1336         /* If there's an alternate MAC address place it in RAR0
1337          * so that it will override the Si installed default perm
1338          * address.
1339          */
1340         ret_val = e1000_check_alt_mac_addr_generic(hw);
1341         if (ret_val)
1342                 return ret_val;
1343
1344         return e1000_read_mac_addr_generic(hw);
1345 }
1346
1347 /**
1348  * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1349  * @hw: pointer to the HW structure
1350  *
1351  * In the case of a PHY power down to save power, or to turn off link during a
1352  * driver unload, or wake on lan is not enabled, remove the link.
1353  **/
1354 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1355 {
1356         /* If the management interface is not enabled, then power down */
1357         if (!(hw->mac.ops.check_mng_mode(hw) ||
1358               hw->phy.ops.check_reset_block(hw)))
1359                 e1000_power_down_phy_copper(hw);
1360 }
1361
1362 /**
1363  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1364  *  @hw: pointer to the HW structure
1365  *
1366  *  Clears the hardware counters by reading the counter registers.
1367  **/
1368 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1369 {
1370         e1000e_clear_hw_cntrs_base(hw);
1371
1372         er32(PRC64);
1373         er32(PRC127);
1374         er32(PRC255);
1375         er32(PRC511);
1376         er32(PRC1023);
1377         er32(PRC1522);
1378         er32(PTC64);
1379         er32(PTC127);
1380         er32(PTC255);
1381         er32(PTC511);
1382         er32(PTC1023);
1383         er32(PTC1522);
1384
1385         er32(ALGNERRC);
1386         er32(RXERRC);
1387         er32(TNCRS);
1388         er32(CEXTERR);
1389         er32(TSCTC);
1390         er32(TSCTFC);
1391
1392         er32(MGTPRC);
1393         er32(MGTPDC);
1394         er32(MGTPTC);
1395
1396         er32(IAC);
1397         er32(ICRXOC);
1398
1399         er32(ICRXPTC);
1400         er32(ICRXATC);
1401         er32(ICTXPTC);
1402         er32(ICTXATC);
1403         er32(ICTXQEC);
1404         er32(ICTXQMTC);
1405         er32(ICRXDMTC);
1406 }
1407
1408 static const struct e1000_mac_operations es2_mac_ops = {
1409         .read_mac_addr          = e1000_read_mac_addr_80003es2lan,
1410         .id_led_init            = e1000e_id_led_init_generic,
1411         .blink_led              = e1000e_blink_led_generic,
1412         .check_mng_mode         = e1000e_check_mng_mode_generic,
1413         /* check_for_link dependent on media type */
1414         .cleanup_led            = e1000e_cleanup_led_generic,
1415         .clear_hw_cntrs         = e1000_clear_hw_cntrs_80003es2lan,
1416         .get_bus_info           = e1000e_get_bus_info_pcie,
1417         .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1418         .get_link_up_info       = e1000_get_link_up_info_80003es2lan,
1419         .led_on                 = e1000e_led_on_generic,
1420         .led_off                = e1000e_led_off_generic,
1421         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1422         .write_vfta             = e1000_write_vfta_generic,
1423         .clear_vfta             = e1000_clear_vfta_generic,
1424         .reset_hw               = e1000_reset_hw_80003es2lan,
1425         .init_hw                = e1000_init_hw_80003es2lan,
1426         .setup_link             = e1000e_setup_link_generic,
1427         /* setup_physical_interface dependent on media type */
1428         .setup_led              = e1000e_setup_led_generic,
1429         .config_collision_dist  = e1000e_config_collision_dist_generic,
1430         .rar_set                = e1000e_rar_set_generic,
1431 };
1432
1433 static const struct e1000_phy_operations es2_phy_ops = {
1434         .acquire                = e1000_acquire_phy_80003es2lan,
1435         .check_polarity         = e1000_check_polarity_m88,
1436         .check_reset_block      = e1000e_check_reset_block_generic,
1437         .commit                 = e1000e_phy_sw_reset,
1438         .force_speed_duplex     = e1000_phy_force_speed_duplex_80003es2lan,
1439         .get_cfg_done           = e1000_get_cfg_done_80003es2lan,
1440         .get_cable_length       = e1000_get_cable_length_80003es2lan,
1441         .get_info               = e1000e_get_phy_info_m88,
1442         .read_reg               = e1000_read_phy_reg_gg82563_80003es2lan,
1443         .release                = e1000_release_phy_80003es2lan,
1444         .reset                  = e1000e_phy_hw_reset_generic,
1445         .set_d0_lplu_state      = NULL,
1446         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1447         .write_reg              = e1000_write_phy_reg_gg82563_80003es2lan,
1448         .cfg_on_link_up         = e1000_cfg_on_link_up_80003es2lan,
1449 };
1450
1451 static const struct e1000_nvm_operations es2_nvm_ops = {
1452         .acquire                = e1000_acquire_nvm_80003es2lan,
1453         .read                   = e1000e_read_nvm_eerd,
1454         .release                = e1000_release_nvm_80003es2lan,
1455         .reload                 = e1000e_reload_nvm_generic,
1456         .update                 = e1000e_update_nvm_checksum_generic,
1457         .valid_led_default      = e1000e_valid_led_default,
1458         .validate               = e1000e_validate_nvm_checksum_generic,
1459         .write                  = e1000_write_nvm_80003es2lan,
1460 };
1461
1462 const struct e1000_info e1000_es2_info = {
1463         .mac                    = e1000_80003es2lan,
1464         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1465                                   | FLAG_HAS_JUMBO_FRAMES
1466                                   | FLAG_HAS_WOL
1467                                   | FLAG_APME_IN_CTRL3
1468                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1469                                   | FLAG_RX_NEEDS_RESTART /* errata */
1470                                   | FLAG_TARC_SET_BIT_ZERO /* errata */
1471                                   | FLAG_APME_CHECK_PORT_B
1472                                   | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1473         .flags2                 = FLAG2_DMA_BURST,
1474         .pba                    = 38,
1475         .max_hw_frame_size      = DEFAULT_JUMBO,
1476         .get_variants           = e1000_get_variants_80003es2lan,
1477         .mac_ops                = &es2_mac_ops,
1478         .phy_ops                = &es2_phy_ops,
1479         .nvm_ops                = &es2_nvm_ops,
1480 };
1481