]> rtime.felk.cvut.cz Git - can-eth-gw-linux.git/blob - drivers/net/ethernet/freescale/gianfar.c
Merge branch 'akpm' (Andrew's patch-bomb)
[can-eth-gw-linux.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/of_mdio.h>
82 #include <linux/of_platform.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87 #include <linux/net_tstamp.h>
88
89 #include <asm/io.h>
90 #include <asm/reg.h>
91 #include <asm/irq.h>
92 #include <asm/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101
102 #include "gianfar.h"
103
104 #define TX_TIMEOUT      (1*HZ)
105
106 const char gfar_driver_version[] = "1.3";
107
108 static int gfar_enet_open(struct net_device *dev);
109 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
110 static void gfar_reset_task(struct work_struct *work);
111 static void gfar_timeout(struct net_device *dev);
112 static int gfar_close(struct net_device *dev);
113 struct sk_buff *gfar_new_skb(struct net_device *dev);
114 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
115                            struct sk_buff *skb);
116 static int gfar_set_mac_address(struct net_device *dev);
117 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
118 static irqreturn_t gfar_error(int irq, void *dev_id);
119 static irqreturn_t gfar_transmit(int irq, void *dev_id);
120 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
121 static void adjust_link(struct net_device *dev);
122 static void init_registers(struct net_device *dev);
123 static int init_phy(struct net_device *dev);
124 static int gfar_probe(struct platform_device *ofdev);
125 static int gfar_remove(struct platform_device *ofdev);
126 static void free_skb_resources(struct gfar_private *priv);
127 static void gfar_set_multi(struct net_device *dev);
128 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
129 static void gfar_configure_serdes(struct net_device *dev);
130 static int gfar_poll(struct napi_struct *napi, int budget);
131 #ifdef CONFIG_NET_POLL_CONTROLLER
132 static void gfar_netpoll(struct net_device *dev);
133 #endif
134 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
135 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
136 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
137                               int amount_pull, struct napi_struct *napi);
138 void gfar_halt(struct net_device *dev);
139 static void gfar_halt_nodisable(struct net_device *dev);
140 void gfar_start(struct net_device *dev);
141 static void gfar_clear_exact_match(struct net_device *dev);
142 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
143                                   const u8 *addr);
144 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
145
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
149
150 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
151                             dma_addr_t buf)
152 {
153         u32 lstatus;
154
155         bdp->bufPtr = buf;
156
157         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
158         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
159                 lstatus |= BD_LFLAG(RXBD_WRAP);
160
161         eieio();
162
163         bdp->lstatus = lstatus;
164 }
165
166 static int gfar_init_bds(struct net_device *ndev)
167 {
168         struct gfar_private *priv = netdev_priv(ndev);
169         struct gfar_priv_tx_q *tx_queue = NULL;
170         struct gfar_priv_rx_q *rx_queue = NULL;
171         struct txbd8 *txbdp;
172         struct rxbd8 *rxbdp;
173         int i, j;
174
175         for (i = 0; i < priv->num_tx_queues; i++) {
176                 tx_queue = priv->tx_queue[i];
177                 /* Initialize some variables in our dev structure */
178                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
179                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
180                 tx_queue->cur_tx = tx_queue->tx_bd_base;
181                 tx_queue->skb_curtx = 0;
182                 tx_queue->skb_dirtytx = 0;
183
184                 /* Initialize Transmit Descriptor Ring */
185                 txbdp = tx_queue->tx_bd_base;
186                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
187                         txbdp->lstatus = 0;
188                         txbdp->bufPtr = 0;
189                         txbdp++;
190                 }
191
192                 /* Set the last descriptor in the ring to indicate wrap */
193                 txbdp--;
194                 txbdp->status |= TXBD_WRAP;
195         }
196
197         for (i = 0; i < priv->num_rx_queues; i++) {
198                 rx_queue = priv->rx_queue[i];
199                 rx_queue->cur_rx = rx_queue->rx_bd_base;
200                 rx_queue->skb_currx = 0;
201                 rxbdp = rx_queue->rx_bd_base;
202
203                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
204                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
205
206                         if (skb) {
207                                 gfar_init_rxbdp(rx_queue, rxbdp,
208                                                 rxbdp->bufPtr);
209                         } else {
210                                 skb = gfar_new_skb(ndev);
211                                 if (!skb) {
212                                         netdev_err(ndev, "Can't allocate RX buffers\n");
213                                         return -ENOMEM;
214                                 }
215                                 rx_queue->rx_skbuff[j] = skb;
216
217                                 gfar_new_rxbdp(rx_queue, rxbdp, skb);
218                         }
219
220                         rxbdp++;
221                 }
222
223         }
224
225         return 0;
226 }
227
228 static int gfar_alloc_skb_resources(struct net_device *ndev)
229 {
230         void *vaddr;
231         dma_addr_t addr;
232         int i, j, k;
233         struct gfar_private *priv = netdev_priv(ndev);
234         struct device *dev = &priv->ofdev->dev;
235         struct gfar_priv_tx_q *tx_queue = NULL;
236         struct gfar_priv_rx_q *rx_queue = NULL;
237
238         priv->total_tx_ring_size = 0;
239         for (i = 0; i < priv->num_tx_queues; i++)
240                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
241
242         priv->total_rx_ring_size = 0;
243         for (i = 0; i < priv->num_rx_queues; i++)
244                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
245
246         /* Allocate memory for the buffer descriptors */
247         vaddr = dma_alloc_coherent(dev,
248                         sizeof(struct txbd8) * priv->total_tx_ring_size +
249                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
250                         &addr, GFP_KERNEL);
251         if (!vaddr) {
252                 netif_err(priv, ifup, ndev,
253                           "Could not allocate buffer descriptors!\n");
254                 return -ENOMEM;
255         }
256
257         for (i = 0; i < priv->num_tx_queues; i++) {
258                 tx_queue = priv->tx_queue[i];
259                 tx_queue->tx_bd_base = vaddr;
260                 tx_queue->tx_bd_dma_base = addr;
261                 tx_queue->dev = ndev;
262                 /* enet DMA only understands physical addresses */
263                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
264                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
265         }
266
267         /* Start the rx descriptor ring where the tx ring leaves off */
268         for (i = 0; i < priv->num_rx_queues; i++) {
269                 rx_queue = priv->rx_queue[i];
270                 rx_queue->rx_bd_base = vaddr;
271                 rx_queue->rx_bd_dma_base = addr;
272                 rx_queue->dev = ndev;
273                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
274                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
275         }
276
277         /* Setup the skbuff rings */
278         for (i = 0; i < priv->num_tx_queues; i++) {
279                 tx_queue = priv->tx_queue[i];
280                 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
281                                               tx_queue->tx_ring_size,
282                                               GFP_KERNEL);
283                 if (!tx_queue->tx_skbuff) {
284                         netif_err(priv, ifup, ndev,
285                                   "Could not allocate tx_skbuff\n");
286                         goto cleanup;
287                 }
288
289                 for (k = 0; k < tx_queue->tx_ring_size; k++)
290                         tx_queue->tx_skbuff[k] = NULL;
291         }
292
293         for (i = 0; i < priv->num_rx_queues; i++) {
294                 rx_queue = priv->rx_queue[i];
295                 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
296                                               rx_queue->rx_ring_size,
297                                               GFP_KERNEL);
298
299                 if (!rx_queue->rx_skbuff) {
300                         netif_err(priv, ifup, ndev,
301                                   "Could not allocate rx_skbuff\n");
302                         goto cleanup;
303                 }
304
305                 for (j = 0; j < rx_queue->rx_ring_size; j++)
306                         rx_queue->rx_skbuff[j] = NULL;
307         }
308
309         if (gfar_init_bds(ndev))
310                 goto cleanup;
311
312         return 0;
313
314 cleanup:
315         free_skb_resources(priv);
316         return -ENOMEM;
317 }
318
319 static void gfar_init_tx_rx_base(struct gfar_private *priv)
320 {
321         struct gfar __iomem *regs = priv->gfargrp[0].regs;
322         u32 __iomem *baddr;
323         int i;
324
325         baddr = &regs->tbase0;
326         for (i = 0; i < priv->num_tx_queues; i++) {
327                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
328                 baddr += 2;
329         }
330
331         baddr = &regs->rbase0;
332         for (i = 0; i < priv->num_rx_queues; i++) {
333                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
334                 baddr += 2;
335         }
336 }
337
338 static void gfar_init_mac(struct net_device *ndev)
339 {
340         struct gfar_private *priv = netdev_priv(ndev);
341         struct gfar __iomem *regs = priv->gfargrp[0].regs;
342         u32 rctrl = 0;
343         u32 tctrl = 0;
344         u32 attrs = 0;
345
346         /* write the tx/rx base registers */
347         gfar_init_tx_rx_base(priv);
348
349         /* Configure the coalescing support */
350         gfar_configure_coalescing(priv, 0xFF, 0xFF);
351
352         if (priv->rx_filer_enable) {
353                 rctrl |= RCTRL_FILREN;
354                 /* Program the RIR0 reg with the required distribution */
355                 gfar_write(&regs->rir0, DEFAULT_RIR0);
356         }
357
358         if (ndev->features & NETIF_F_RXCSUM)
359                 rctrl |= RCTRL_CHECKSUMMING;
360
361         if (priv->extended_hash) {
362                 rctrl |= RCTRL_EXTHASH;
363
364                 gfar_clear_exact_match(ndev);
365                 rctrl |= RCTRL_EMEN;
366         }
367
368         if (priv->padding) {
369                 rctrl &= ~RCTRL_PAL_MASK;
370                 rctrl |= RCTRL_PADDING(priv->padding);
371         }
372
373         /* Insert receive time stamps into padding alignment bytes */
374         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
375                 rctrl &= ~RCTRL_PAL_MASK;
376                 rctrl |= RCTRL_PADDING(8);
377                 priv->padding = 8;
378         }
379
380         /* Enable HW time stamping if requested from user space */
381         if (priv->hwts_rx_en)
382                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
383
384         if (ndev->features & NETIF_F_HW_VLAN_RX)
385                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
386
387         /* Init rctrl based on our settings */
388         gfar_write(&regs->rctrl, rctrl);
389
390         if (ndev->features & NETIF_F_IP_CSUM)
391                 tctrl |= TCTRL_INIT_CSUM;
392
393         if (priv->prio_sched_en)
394                 tctrl |= TCTRL_TXSCHED_PRIO;
395         else {
396                 tctrl |= TCTRL_TXSCHED_WRRS;
397                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
398                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
399         }
400
401         gfar_write(&regs->tctrl, tctrl);
402
403         /* Set the extraction length and index */
404         attrs = ATTRELI_EL(priv->rx_stash_size) |
405                 ATTRELI_EI(priv->rx_stash_index);
406
407         gfar_write(&regs->attreli, attrs);
408
409         /* Start with defaults, and add stashing or locking
410          * depending on the approprate variables
411          */
412         attrs = ATTR_INIT_SETTINGS;
413
414         if (priv->bd_stash_en)
415                 attrs |= ATTR_BDSTASH;
416
417         if (priv->rx_stash_size != 0)
418                 attrs |= ATTR_BUFSTASH;
419
420         gfar_write(&regs->attr, attrs);
421
422         gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
423         gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
424         gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
425 }
426
427 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
428 {
429         struct gfar_private *priv = netdev_priv(dev);
430         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
431         unsigned long tx_packets = 0, tx_bytes = 0;
432         int i;
433
434         for (i = 0; i < priv->num_rx_queues; i++) {
435                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
436                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
437                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
438         }
439
440         dev->stats.rx_packets = rx_packets;
441         dev->stats.rx_bytes   = rx_bytes;
442         dev->stats.rx_dropped = rx_dropped;
443
444         for (i = 0; i < priv->num_tx_queues; i++) {
445                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
446                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
447         }
448
449         dev->stats.tx_bytes   = tx_bytes;
450         dev->stats.tx_packets = tx_packets;
451
452         return &dev->stats;
453 }
454
455 static const struct net_device_ops gfar_netdev_ops = {
456         .ndo_open = gfar_enet_open,
457         .ndo_start_xmit = gfar_start_xmit,
458         .ndo_stop = gfar_close,
459         .ndo_change_mtu = gfar_change_mtu,
460         .ndo_set_features = gfar_set_features,
461         .ndo_set_rx_mode = gfar_set_multi,
462         .ndo_tx_timeout = gfar_timeout,
463         .ndo_do_ioctl = gfar_ioctl,
464         .ndo_get_stats = gfar_get_stats,
465         .ndo_set_mac_address = eth_mac_addr,
466         .ndo_validate_addr = eth_validate_addr,
467 #ifdef CONFIG_NET_POLL_CONTROLLER
468         .ndo_poll_controller = gfar_netpoll,
469 #endif
470 };
471
472 void lock_rx_qs(struct gfar_private *priv)
473 {
474         int i;
475
476         for (i = 0; i < priv->num_rx_queues; i++)
477                 spin_lock(&priv->rx_queue[i]->rxlock);
478 }
479
480 void lock_tx_qs(struct gfar_private *priv)
481 {
482         int i;
483
484         for (i = 0; i < priv->num_tx_queues; i++)
485                 spin_lock(&priv->tx_queue[i]->txlock);
486 }
487
488 void unlock_rx_qs(struct gfar_private *priv)
489 {
490         int i;
491
492         for (i = 0; i < priv->num_rx_queues; i++)
493                 spin_unlock(&priv->rx_queue[i]->rxlock);
494 }
495
496 void unlock_tx_qs(struct gfar_private *priv)
497 {
498         int i;
499
500         for (i = 0; i < priv->num_tx_queues; i++)
501                 spin_unlock(&priv->tx_queue[i]->txlock);
502 }
503
504 static bool gfar_is_vlan_on(struct gfar_private *priv)
505 {
506         return (priv->ndev->features & NETIF_F_HW_VLAN_RX) ||
507                (priv->ndev->features & NETIF_F_HW_VLAN_TX);
508 }
509
510 /* Returns 1 if incoming frames use an FCB */
511 static inline int gfar_uses_fcb(struct gfar_private *priv)
512 {
513         return gfar_is_vlan_on(priv) ||
514                (priv->ndev->features & NETIF_F_RXCSUM) ||
515                (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
516 }
517
518 static void free_tx_pointers(struct gfar_private *priv)
519 {
520         int i;
521
522         for (i = 0; i < priv->num_tx_queues; i++)
523                 kfree(priv->tx_queue[i]);
524 }
525
526 static void free_rx_pointers(struct gfar_private *priv)
527 {
528         int i;
529
530         for (i = 0; i < priv->num_rx_queues; i++)
531                 kfree(priv->rx_queue[i]);
532 }
533
534 static void unmap_group_regs(struct gfar_private *priv)
535 {
536         int i;
537
538         for (i = 0; i < MAXGROUPS; i++)
539                 if (priv->gfargrp[i].regs)
540                         iounmap(priv->gfargrp[i].regs);
541 }
542
543 static void disable_napi(struct gfar_private *priv)
544 {
545         int i;
546
547         for (i = 0; i < priv->num_grps; i++)
548                 napi_disable(&priv->gfargrp[i].napi);
549 }
550
551 static void enable_napi(struct gfar_private *priv)
552 {
553         int i;
554
555         for (i = 0; i < priv->num_grps; i++)
556                 napi_enable(&priv->gfargrp[i].napi);
557 }
558
559 static int gfar_parse_group(struct device_node *np,
560                             struct gfar_private *priv, const char *model)
561 {
562         u32 *queue_mask;
563
564         priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
565         if (!priv->gfargrp[priv->num_grps].regs)
566                 return -ENOMEM;
567
568         priv->gfargrp[priv->num_grps].interruptTransmit =
569                         irq_of_parse_and_map(np, 0);
570
571         /* If we aren't the FEC we have multiple interrupts */
572         if (model && strcasecmp(model, "FEC")) {
573                 priv->gfargrp[priv->num_grps].interruptReceive =
574                         irq_of_parse_and_map(np, 1);
575                 priv->gfargrp[priv->num_grps].interruptError =
576                         irq_of_parse_and_map(np,2);
577                 if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ ||
578                     priv->gfargrp[priv->num_grps].interruptReceive  == NO_IRQ ||
579                     priv->gfargrp[priv->num_grps].interruptError    == NO_IRQ)
580                         return -EINVAL;
581         }
582
583         priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
584         priv->gfargrp[priv->num_grps].priv = priv;
585         spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
586         if (priv->mode == MQ_MG_MODE) {
587                 queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
588                 priv->gfargrp[priv->num_grps].rx_bit_map = queue_mask ?
589                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
590                 queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
591                 priv->gfargrp[priv->num_grps].tx_bit_map = queue_mask ?
592                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
593         } else {
594                 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
595                 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
596         }
597         priv->num_grps++;
598
599         return 0;
600 }
601
602 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
603 {
604         const char *model;
605         const char *ctype;
606         const void *mac_addr;
607         int err = 0, i;
608         struct net_device *dev = NULL;
609         struct gfar_private *priv = NULL;
610         struct device_node *np = ofdev->dev.of_node;
611         struct device_node *child = NULL;
612         const u32 *stash;
613         const u32 *stash_len;
614         const u32 *stash_idx;
615         unsigned int num_tx_qs, num_rx_qs;
616         u32 *tx_queues, *rx_queues;
617
618         if (!np || !of_device_is_available(np))
619                 return -ENODEV;
620
621         /* parse the num of tx and rx queues */
622         tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
623         num_tx_qs = tx_queues ? *tx_queues : 1;
624
625         if (num_tx_qs > MAX_TX_QS) {
626                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
627                        num_tx_qs, MAX_TX_QS);
628                 pr_err("Cannot do alloc_etherdev, aborting\n");
629                 return -EINVAL;
630         }
631
632         rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
633         num_rx_qs = rx_queues ? *rx_queues : 1;
634
635         if (num_rx_qs > MAX_RX_QS) {
636                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
637                        num_rx_qs, MAX_RX_QS);
638                 pr_err("Cannot do alloc_etherdev, aborting\n");
639                 return -EINVAL;
640         }
641
642         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
643         dev = *pdev;
644         if (NULL == dev)
645                 return -ENOMEM;
646
647         priv = netdev_priv(dev);
648         priv->node = ofdev->dev.of_node;
649         priv->ndev = dev;
650
651         priv->num_tx_queues = num_tx_qs;
652         netif_set_real_num_rx_queues(dev, num_rx_qs);
653         priv->num_rx_queues = num_rx_qs;
654         priv->num_grps = 0x0;
655
656         /* Init Rx queue filer rule set linked list */
657         INIT_LIST_HEAD(&priv->rx_list.list);
658         priv->rx_list.count = 0;
659         mutex_init(&priv->rx_queue_access);
660
661         model = of_get_property(np, "model", NULL);
662
663         for (i = 0; i < MAXGROUPS; i++)
664                 priv->gfargrp[i].regs = NULL;
665
666         /* Parse and initialize group specific information */
667         if (of_device_is_compatible(np, "fsl,etsec2")) {
668                 priv->mode = MQ_MG_MODE;
669                 for_each_child_of_node(np, child) {
670                         err = gfar_parse_group(child, priv, model);
671                         if (err)
672                                 goto err_grp_init;
673                 }
674         } else {
675                 priv->mode = SQ_SG_MODE;
676                 err = gfar_parse_group(np, priv, model);
677                 if (err)
678                         goto err_grp_init;
679         }
680
681         for (i = 0; i < priv->num_tx_queues; i++)
682                priv->tx_queue[i] = NULL;
683         for (i = 0; i < priv->num_rx_queues; i++)
684                 priv->rx_queue[i] = NULL;
685
686         for (i = 0; i < priv->num_tx_queues; i++) {
687                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
688                                             GFP_KERNEL);
689                 if (!priv->tx_queue[i]) {
690                         err = -ENOMEM;
691                         goto tx_alloc_failed;
692                 }
693                 priv->tx_queue[i]->tx_skbuff = NULL;
694                 priv->tx_queue[i]->qindex = i;
695                 priv->tx_queue[i]->dev = dev;
696                 spin_lock_init(&(priv->tx_queue[i]->txlock));
697         }
698
699         for (i = 0; i < priv->num_rx_queues; i++) {
700                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
701                                             GFP_KERNEL);
702                 if (!priv->rx_queue[i]) {
703                         err = -ENOMEM;
704                         goto rx_alloc_failed;
705                 }
706                 priv->rx_queue[i]->rx_skbuff = NULL;
707                 priv->rx_queue[i]->qindex = i;
708                 priv->rx_queue[i]->dev = dev;
709                 spin_lock_init(&(priv->rx_queue[i]->rxlock));
710         }
711
712
713         stash = of_get_property(np, "bd-stash", NULL);
714
715         if (stash) {
716                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
717                 priv->bd_stash_en = 1;
718         }
719
720         stash_len = of_get_property(np, "rx-stash-len", NULL);
721
722         if (stash_len)
723                 priv->rx_stash_size = *stash_len;
724
725         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
726
727         if (stash_idx)
728                 priv->rx_stash_index = *stash_idx;
729
730         if (stash_len || stash_idx)
731                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
732
733         mac_addr = of_get_mac_address(np);
734
735         if (mac_addr)
736                 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
737
738         if (model && !strcasecmp(model, "TSEC"))
739                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
740                                      FSL_GIANFAR_DEV_HAS_COALESCE |
741                                      FSL_GIANFAR_DEV_HAS_RMON |
742                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
743
744         if (model && !strcasecmp(model, "eTSEC"))
745                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
746                                      FSL_GIANFAR_DEV_HAS_COALESCE |
747                                      FSL_GIANFAR_DEV_HAS_RMON |
748                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
749                                      FSL_GIANFAR_DEV_HAS_PADDING |
750                                      FSL_GIANFAR_DEV_HAS_CSUM |
751                                      FSL_GIANFAR_DEV_HAS_VLAN |
752                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
753                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
754                                      FSL_GIANFAR_DEV_HAS_TIMER;
755
756         ctype = of_get_property(np, "phy-connection-type", NULL);
757
758         /* We only care about rgmii-id.  The rest are autodetected */
759         if (ctype && !strcmp(ctype, "rgmii-id"))
760                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
761         else
762                 priv->interface = PHY_INTERFACE_MODE_MII;
763
764         if (of_get_property(np, "fsl,magic-packet", NULL))
765                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
766
767         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
768
769         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
770         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
771
772         return 0;
773
774 rx_alloc_failed:
775         free_rx_pointers(priv);
776 tx_alloc_failed:
777         free_tx_pointers(priv);
778 err_grp_init:
779         unmap_group_regs(priv);
780         free_netdev(dev);
781         return err;
782 }
783
784 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
785                                struct ifreq *ifr, int cmd)
786 {
787         struct hwtstamp_config config;
788         struct gfar_private *priv = netdev_priv(netdev);
789
790         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
791                 return -EFAULT;
792
793         /* reserved for future extensions */
794         if (config.flags)
795                 return -EINVAL;
796
797         switch (config.tx_type) {
798         case HWTSTAMP_TX_OFF:
799                 priv->hwts_tx_en = 0;
800                 break;
801         case HWTSTAMP_TX_ON:
802                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
803                         return -ERANGE;
804                 priv->hwts_tx_en = 1;
805                 break;
806         default:
807                 return -ERANGE;
808         }
809
810         switch (config.rx_filter) {
811         case HWTSTAMP_FILTER_NONE:
812                 if (priv->hwts_rx_en) {
813                         stop_gfar(netdev);
814                         priv->hwts_rx_en = 0;
815                         startup_gfar(netdev);
816                 }
817                 break;
818         default:
819                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
820                         return -ERANGE;
821                 if (!priv->hwts_rx_en) {
822                         stop_gfar(netdev);
823                         priv->hwts_rx_en = 1;
824                         startup_gfar(netdev);
825                 }
826                 config.rx_filter = HWTSTAMP_FILTER_ALL;
827                 break;
828         }
829
830         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
831                 -EFAULT : 0;
832 }
833
834 /* Ioctl MII Interface */
835 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
836 {
837         struct gfar_private *priv = netdev_priv(dev);
838
839         if (!netif_running(dev))
840                 return -EINVAL;
841
842         if (cmd == SIOCSHWTSTAMP)
843                 return gfar_hwtstamp_ioctl(dev, rq, cmd);
844
845         if (!priv->phydev)
846                 return -ENODEV;
847
848         return phy_mii_ioctl(priv->phydev, rq, cmd);
849 }
850
851 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
852 {
853         unsigned int new_bit_map = 0x0;
854         int mask = 0x1 << (max_qs - 1), i;
855
856         for (i = 0; i < max_qs; i++) {
857                 if (bit_map & mask)
858                         new_bit_map = new_bit_map + (1 << i);
859                 mask = mask >> 0x1;
860         }
861         return new_bit_map;
862 }
863
864 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
865                                    u32 class)
866 {
867         u32 rqfpr = FPR_FILER_MASK;
868         u32 rqfcr = 0x0;
869
870         rqfar--;
871         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
872         priv->ftp_rqfpr[rqfar] = rqfpr;
873         priv->ftp_rqfcr[rqfar] = rqfcr;
874         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
875
876         rqfar--;
877         rqfcr = RQFCR_CMP_NOMATCH;
878         priv->ftp_rqfpr[rqfar] = rqfpr;
879         priv->ftp_rqfcr[rqfar] = rqfcr;
880         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
881
882         rqfar--;
883         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
884         rqfpr = class;
885         priv->ftp_rqfcr[rqfar] = rqfcr;
886         priv->ftp_rqfpr[rqfar] = rqfpr;
887         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
888
889         rqfar--;
890         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
891         rqfpr = class;
892         priv->ftp_rqfcr[rqfar] = rqfcr;
893         priv->ftp_rqfpr[rqfar] = rqfpr;
894         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
895
896         return rqfar;
897 }
898
899 static void gfar_init_filer_table(struct gfar_private *priv)
900 {
901         int i = 0x0;
902         u32 rqfar = MAX_FILER_IDX;
903         u32 rqfcr = 0x0;
904         u32 rqfpr = FPR_FILER_MASK;
905
906         /* Default rule */
907         rqfcr = RQFCR_CMP_MATCH;
908         priv->ftp_rqfcr[rqfar] = rqfcr;
909         priv->ftp_rqfpr[rqfar] = rqfpr;
910         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
911
912         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
913         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
914         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
915         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
916         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
917         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
918
919         /* cur_filer_idx indicated the first non-masked rule */
920         priv->cur_filer_idx = rqfar;
921
922         /* Rest are masked rules */
923         rqfcr = RQFCR_CMP_NOMATCH;
924         for (i = 0; i < rqfar; i++) {
925                 priv->ftp_rqfcr[i] = rqfcr;
926                 priv->ftp_rqfpr[i] = rqfpr;
927                 gfar_write_filer(priv, i, rqfcr, rqfpr);
928         }
929 }
930
931 static void gfar_detect_errata(struct gfar_private *priv)
932 {
933         struct device *dev = &priv->ofdev->dev;
934         unsigned int pvr = mfspr(SPRN_PVR);
935         unsigned int svr = mfspr(SPRN_SVR);
936         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
937         unsigned int rev = svr & 0xffff;
938
939         /* MPC8313 Rev 2.0 and higher; All MPC837x */
940         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
941             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
942                 priv->errata |= GFAR_ERRATA_74;
943
944         /* MPC8313 and MPC837x all rev */
945         if ((pvr == 0x80850010 && mod == 0x80b0) ||
946             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
947                 priv->errata |= GFAR_ERRATA_76;
948
949         /* MPC8313 and MPC837x all rev */
950         if ((pvr == 0x80850010 && mod == 0x80b0) ||
951             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
952                 priv->errata |= GFAR_ERRATA_A002;
953
954         /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
955         if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
956             (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
957                 priv->errata |= GFAR_ERRATA_12;
958
959         if (priv->errata)
960                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
961                          priv->errata);
962 }
963
964 /* Set up the ethernet device structure, private data,
965  * and anything else we need before we start
966  */
967 static int gfar_probe(struct platform_device *ofdev)
968 {
969         u32 tempval;
970         struct net_device *dev = NULL;
971         struct gfar_private *priv = NULL;
972         struct gfar __iomem *regs = NULL;
973         int err = 0, i, grp_idx = 0;
974         u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
975         u32 isrg = 0;
976         u32 __iomem *baddr;
977
978         err = gfar_of_init(ofdev, &dev);
979
980         if (err)
981                 return err;
982
983         priv = netdev_priv(dev);
984         priv->ndev = dev;
985         priv->ofdev = ofdev;
986         priv->node = ofdev->dev.of_node;
987         SET_NETDEV_DEV(dev, &ofdev->dev);
988
989         spin_lock_init(&priv->bflock);
990         INIT_WORK(&priv->reset_task, gfar_reset_task);
991
992         dev_set_drvdata(&ofdev->dev, priv);
993         regs = priv->gfargrp[0].regs;
994
995         gfar_detect_errata(priv);
996
997         /* Stop the DMA engine now, in case it was running before
998          * (The firmware could have used it, and left it running).
999          */
1000         gfar_halt(dev);
1001
1002         /* Reset MAC layer */
1003         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1004
1005         /* We need to delay at least 3 TX clocks */
1006         udelay(2);
1007
1008         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1009         gfar_write(&regs->maccfg1, tempval);
1010
1011         /* Initialize MACCFG2. */
1012         tempval = MACCFG2_INIT_SETTINGS;
1013         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1014                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1015         gfar_write(&regs->maccfg2, tempval);
1016
1017         /* Initialize ECNTRL */
1018         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1019
1020         /* Set the dev->base_addr to the gfar reg region */
1021         dev->base_addr = (unsigned long) regs;
1022
1023         SET_NETDEV_DEV(dev, &ofdev->dev);
1024
1025         /* Fill in the dev structure */
1026         dev->watchdog_timeo = TX_TIMEOUT;
1027         dev->mtu = 1500;
1028         dev->netdev_ops = &gfar_netdev_ops;
1029         dev->ethtool_ops = &gfar_ethtool_ops;
1030
1031         /* Register for napi ...We are registering NAPI for each grp */
1032         for (i = 0; i < priv->num_grps; i++)
1033                 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1034                                GFAR_DEV_WEIGHT);
1035
1036         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1037                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1038                                    NETIF_F_RXCSUM;
1039                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1040                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1041         }
1042
1043         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1044                 dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1045                 dev->features |= NETIF_F_HW_VLAN_RX;
1046         }
1047
1048         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1049                 priv->extended_hash = 1;
1050                 priv->hash_width = 9;
1051
1052                 priv->hash_regs[0] = &regs->igaddr0;
1053                 priv->hash_regs[1] = &regs->igaddr1;
1054                 priv->hash_regs[2] = &regs->igaddr2;
1055                 priv->hash_regs[3] = &regs->igaddr3;
1056                 priv->hash_regs[4] = &regs->igaddr4;
1057                 priv->hash_regs[5] = &regs->igaddr5;
1058                 priv->hash_regs[6] = &regs->igaddr6;
1059                 priv->hash_regs[7] = &regs->igaddr7;
1060                 priv->hash_regs[8] = &regs->gaddr0;
1061                 priv->hash_regs[9] = &regs->gaddr1;
1062                 priv->hash_regs[10] = &regs->gaddr2;
1063                 priv->hash_regs[11] = &regs->gaddr3;
1064                 priv->hash_regs[12] = &regs->gaddr4;
1065                 priv->hash_regs[13] = &regs->gaddr5;
1066                 priv->hash_regs[14] = &regs->gaddr6;
1067                 priv->hash_regs[15] = &regs->gaddr7;
1068
1069         } else {
1070                 priv->extended_hash = 0;
1071                 priv->hash_width = 8;
1072
1073                 priv->hash_regs[0] = &regs->gaddr0;
1074                 priv->hash_regs[1] = &regs->gaddr1;
1075                 priv->hash_regs[2] = &regs->gaddr2;
1076                 priv->hash_regs[3] = &regs->gaddr3;
1077                 priv->hash_regs[4] = &regs->gaddr4;
1078                 priv->hash_regs[5] = &regs->gaddr5;
1079                 priv->hash_regs[6] = &regs->gaddr6;
1080                 priv->hash_regs[7] = &regs->gaddr7;
1081         }
1082
1083         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1084                 priv->padding = DEFAULT_PADDING;
1085         else
1086                 priv->padding = 0;
1087
1088         if (dev->features & NETIF_F_IP_CSUM ||
1089             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1090                 dev->needed_headroom = GMAC_FCB_LEN;
1091
1092         /* Program the isrg regs only if number of grps > 1 */
1093         if (priv->num_grps > 1) {
1094                 baddr = &regs->isrg0;
1095                 for (i = 0; i < priv->num_grps; i++) {
1096                         isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1097                         isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1098                         gfar_write(baddr, isrg);
1099                         baddr++;
1100                         isrg = 0x0;
1101                 }
1102         }
1103
1104         /* Need to reverse the bit maps as  bit_map's MSB is q0
1105          * but, for_each_set_bit parses from right to left, which
1106          * basically reverses the queue numbers
1107          */
1108         for (i = 0; i< priv->num_grps; i++) {
1109                 priv->gfargrp[i].tx_bit_map =
1110                         reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1111                 priv->gfargrp[i].rx_bit_map =
1112                         reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1113         }
1114
1115         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1116          * also assign queues to groups
1117          */
1118         for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1119                 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1120
1121                 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1122                                  priv->num_rx_queues) {
1123                         priv->gfargrp[grp_idx].num_rx_queues++;
1124                         priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1125                         rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1126                         rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1127                 }
1128                 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1129
1130                 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1131                                  priv->num_tx_queues) {
1132                         priv->gfargrp[grp_idx].num_tx_queues++;
1133                         priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1134                         tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1135                         tqueue = tqueue | (TQUEUE_EN0 >> i);
1136                 }
1137                 priv->gfargrp[grp_idx].rstat = rstat;
1138                 priv->gfargrp[grp_idx].tstat = tstat;
1139                 rstat = tstat =0;
1140         }
1141
1142         gfar_write(&regs->rqueue, rqueue);
1143         gfar_write(&regs->tqueue, tqueue);
1144
1145         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1146
1147         /* Initializing some of the rx/tx queue level parameters */
1148         for (i = 0; i < priv->num_tx_queues; i++) {
1149                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1150                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1151                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1152                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1153         }
1154
1155         for (i = 0; i < priv->num_rx_queues; i++) {
1156                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1157                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1158                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1159         }
1160
1161         /* always enable rx filer */
1162         priv->rx_filer_enable = 1;
1163         /* Enable most messages by default */
1164         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1165         /* use pritority h/w tx queue scheduling for single queue devices */
1166         if (priv->num_tx_queues == 1)
1167                 priv->prio_sched_en = 1;
1168
1169         /* Carrier starts down, phylib will bring it up */
1170         netif_carrier_off(dev);
1171
1172         err = register_netdev(dev);
1173
1174         if (err) {
1175                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1176                 goto register_fail;
1177         }
1178
1179         device_init_wakeup(&dev->dev,
1180                            priv->device_flags &
1181                            FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1182
1183         /* fill out IRQ number and name fields */
1184         for (i = 0; i < priv->num_grps; i++) {
1185                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1186                         sprintf(priv->gfargrp[i].int_name_tx, "%s%s%c%s",
1187                                 dev->name, "_g", '0' + i, "_tx");
1188                         sprintf(priv->gfargrp[i].int_name_rx, "%s%s%c%s",
1189                                 dev->name, "_g", '0' + i, "_rx");
1190                         sprintf(priv->gfargrp[i].int_name_er, "%s%s%c%s",
1191                                 dev->name, "_g", '0' + i, "_er");
1192                 } else
1193                         strcpy(priv->gfargrp[i].int_name_tx, dev->name);
1194         }
1195
1196         /* Initialize the filer table */
1197         gfar_init_filer_table(priv);
1198
1199         /* Create all the sysfs files */
1200         gfar_init_sysfs(dev);
1201
1202         /* Print out the device info */
1203         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1204
1205         /* Even more device info helps when determining which kernel
1206          * provided which set of benchmarks.
1207          */
1208         netdev_info(dev, "Running with NAPI enabled\n");
1209         for (i = 0; i < priv->num_rx_queues; i++)
1210                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1211                             i, priv->rx_queue[i]->rx_ring_size);
1212         for (i = 0; i < priv->num_tx_queues; i++)
1213                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1214                             i, priv->tx_queue[i]->tx_ring_size);
1215
1216         return 0;
1217
1218 register_fail:
1219         unmap_group_regs(priv);
1220         free_tx_pointers(priv);
1221         free_rx_pointers(priv);
1222         if (priv->phy_node)
1223                 of_node_put(priv->phy_node);
1224         if (priv->tbi_node)
1225                 of_node_put(priv->tbi_node);
1226         free_netdev(dev);
1227         return err;
1228 }
1229
1230 static int gfar_remove(struct platform_device *ofdev)
1231 {
1232         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1233
1234         if (priv->phy_node)
1235                 of_node_put(priv->phy_node);
1236         if (priv->tbi_node)
1237                 of_node_put(priv->tbi_node);
1238
1239         dev_set_drvdata(&ofdev->dev, NULL);
1240
1241         unregister_netdev(priv->ndev);
1242         unmap_group_regs(priv);
1243         free_netdev(priv->ndev);
1244
1245         return 0;
1246 }
1247
1248 #ifdef CONFIG_PM
1249
1250 static int gfar_suspend(struct device *dev)
1251 {
1252         struct gfar_private *priv = dev_get_drvdata(dev);
1253         struct net_device *ndev = priv->ndev;
1254         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1255         unsigned long flags;
1256         u32 tempval;
1257
1258         int magic_packet = priv->wol_en &&
1259                            (priv->device_flags &
1260                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1261
1262         netif_device_detach(ndev);
1263
1264         if (netif_running(ndev)) {
1265
1266                 local_irq_save(flags);
1267                 lock_tx_qs(priv);
1268                 lock_rx_qs(priv);
1269
1270                 gfar_halt_nodisable(ndev);
1271
1272                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1273                 tempval = gfar_read(&regs->maccfg1);
1274
1275                 tempval &= ~MACCFG1_TX_EN;
1276
1277                 if (!magic_packet)
1278                         tempval &= ~MACCFG1_RX_EN;
1279
1280                 gfar_write(&regs->maccfg1, tempval);
1281
1282                 unlock_rx_qs(priv);
1283                 unlock_tx_qs(priv);
1284                 local_irq_restore(flags);
1285
1286                 disable_napi(priv);
1287
1288                 if (magic_packet) {
1289                         /* Enable interrupt on Magic Packet */
1290                         gfar_write(&regs->imask, IMASK_MAG);
1291
1292                         /* Enable Magic Packet mode */
1293                         tempval = gfar_read(&regs->maccfg2);
1294                         tempval |= MACCFG2_MPEN;
1295                         gfar_write(&regs->maccfg2, tempval);
1296                 } else {
1297                         phy_stop(priv->phydev);
1298                 }
1299         }
1300
1301         return 0;
1302 }
1303
1304 static int gfar_resume(struct device *dev)
1305 {
1306         struct gfar_private *priv = dev_get_drvdata(dev);
1307         struct net_device *ndev = priv->ndev;
1308         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1309         unsigned long flags;
1310         u32 tempval;
1311         int magic_packet = priv->wol_en &&
1312                            (priv->device_flags &
1313                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1314
1315         if (!netif_running(ndev)) {
1316                 netif_device_attach(ndev);
1317                 return 0;
1318         }
1319
1320         if (!magic_packet && priv->phydev)
1321                 phy_start(priv->phydev);
1322
1323         /* Disable Magic Packet mode, in case something
1324          * else woke us up.
1325          */
1326         local_irq_save(flags);
1327         lock_tx_qs(priv);
1328         lock_rx_qs(priv);
1329
1330         tempval = gfar_read(&regs->maccfg2);
1331         tempval &= ~MACCFG2_MPEN;
1332         gfar_write(&regs->maccfg2, tempval);
1333
1334         gfar_start(ndev);
1335
1336         unlock_rx_qs(priv);
1337         unlock_tx_qs(priv);
1338         local_irq_restore(flags);
1339
1340         netif_device_attach(ndev);
1341
1342         enable_napi(priv);
1343
1344         return 0;
1345 }
1346
1347 static int gfar_restore(struct device *dev)
1348 {
1349         struct gfar_private *priv = dev_get_drvdata(dev);
1350         struct net_device *ndev = priv->ndev;
1351
1352         if (!netif_running(ndev)) {
1353                 netif_device_attach(ndev);
1354
1355                 return 0;
1356         }
1357
1358         if (gfar_init_bds(ndev)) {
1359                 free_skb_resources(priv);
1360                 return -ENOMEM;
1361         }
1362
1363         init_registers(ndev);
1364         gfar_set_mac_address(ndev);
1365         gfar_init_mac(ndev);
1366         gfar_start(ndev);
1367
1368         priv->oldlink = 0;
1369         priv->oldspeed = 0;
1370         priv->oldduplex = -1;
1371
1372         if (priv->phydev)
1373                 phy_start(priv->phydev);
1374
1375         netif_device_attach(ndev);
1376         enable_napi(priv);
1377
1378         return 0;
1379 }
1380
1381 static struct dev_pm_ops gfar_pm_ops = {
1382         .suspend = gfar_suspend,
1383         .resume = gfar_resume,
1384         .freeze = gfar_suspend,
1385         .thaw = gfar_resume,
1386         .restore = gfar_restore,
1387 };
1388
1389 #define GFAR_PM_OPS (&gfar_pm_ops)
1390
1391 #else
1392
1393 #define GFAR_PM_OPS NULL
1394
1395 #endif
1396
1397 /* Reads the controller's registers to determine what interface
1398  * connects it to the PHY.
1399  */
1400 static phy_interface_t gfar_get_interface(struct net_device *dev)
1401 {
1402         struct gfar_private *priv = netdev_priv(dev);
1403         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1404         u32 ecntrl;
1405
1406         ecntrl = gfar_read(&regs->ecntrl);
1407
1408         if (ecntrl & ECNTRL_SGMII_MODE)
1409                 return PHY_INTERFACE_MODE_SGMII;
1410
1411         if (ecntrl & ECNTRL_TBI_MODE) {
1412                 if (ecntrl & ECNTRL_REDUCED_MODE)
1413                         return PHY_INTERFACE_MODE_RTBI;
1414                 else
1415                         return PHY_INTERFACE_MODE_TBI;
1416         }
1417
1418         if (ecntrl & ECNTRL_REDUCED_MODE) {
1419                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1420                         return PHY_INTERFACE_MODE_RMII;
1421                 }
1422                 else {
1423                         phy_interface_t interface = priv->interface;
1424
1425                         /* This isn't autodetected right now, so it must
1426                          * be set by the device tree or platform code.
1427                          */
1428                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1429                                 return PHY_INTERFACE_MODE_RGMII_ID;
1430
1431                         return PHY_INTERFACE_MODE_RGMII;
1432                 }
1433         }
1434
1435         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1436                 return PHY_INTERFACE_MODE_GMII;
1437
1438         return PHY_INTERFACE_MODE_MII;
1439 }
1440
1441
1442 /* Initializes driver's PHY state, and attaches to the PHY.
1443  * Returns 0 on success.
1444  */
1445 static int init_phy(struct net_device *dev)
1446 {
1447         struct gfar_private *priv = netdev_priv(dev);
1448         uint gigabit_support =
1449                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1450                 SUPPORTED_1000baseT_Full : 0;
1451         phy_interface_t interface;
1452
1453         priv->oldlink = 0;
1454         priv->oldspeed = 0;
1455         priv->oldduplex = -1;
1456
1457         interface = gfar_get_interface(dev);
1458
1459         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1460                                       interface);
1461         if (!priv->phydev)
1462                 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1463                                                          interface);
1464         if (!priv->phydev) {
1465                 dev_err(&dev->dev, "could not attach to PHY\n");
1466                 return -ENODEV;
1467         }
1468
1469         if (interface == PHY_INTERFACE_MODE_SGMII)
1470                 gfar_configure_serdes(dev);
1471
1472         /* Remove any features not supported by the controller */
1473         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1474         priv->phydev->advertising = priv->phydev->supported;
1475
1476         return 0;
1477 }
1478
1479 /* Initialize TBI PHY interface for communicating with the
1480  * SERDES lynx PHY on the chip.  We communicate with this PHY
1481  * through the MDIO bus on each controller, treating it as a
1482  * "normal" PHY at the address found in the TBIPA register.  We assume
1483  * that the TBIPA register is valid.  Either the MDIO bus code will set
1484  * it to a value that doesn't conflict with other PHYs on the bus, or the
1485  * value doesn't matter, as there are no other PHYs on the bus.
1486  */
1487 static void gfar_configure_serdes(struct net_device *dev)
1488 {
1489         struct gfar_private *priv = netdev_priv(dev);
1490         struct phy_device *tbiphy;
1491
1492         if (!priv->tbi_node) {
1493                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1494                                     "device tree specify a tbi-handle\n");
1495                 return;
1496         }
1497
1498         tbiphy = of_phy_find_device(priv->tbi_node);
1499         if (!tbiphy) {
1500                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1501                 return;
1502         }
1503
1504         /* If the link is already up, we must already be ok, and don't need to
1505          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1506          * everything for us?  Resetting it takes the link down and requires
1507          * several seconds for it to come back.
1508          */
1509         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1510                 return;
1511
1512         /* Single clk mode, mii mode off(for serdes communication) */
1513         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1514
1515         phy_write(tbiphy, MII_ADVERTISE,
1516                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1517                   ADVERTISE_1000XPSE_ASYM);
1518
1519         phy_write(tbiphy, MII_BMCR,
1520                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1521                   BMCR_SPEED1000);
1522 }
1523
1524 static void init_registers(struct net_device *dev)
1525 {
1526         struct gfar_private *priv = netdev_priv(dev);
1527         struct gfar __iomem *regs = NULL;
1528         int i;
1529
1530         for (i = 0; i < priv->num_grps; i++) {
1531                 regs = priv->gfargrp[i].regs;
1532                 /* Clear IEVENT */
1533                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1534
1535                 /* Initialize IMASK */
1536                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1537         }
1538
1539         regs = priv->gfargrp[0].regs;
1540         /* Init hash registers to zero */
1541         gfar_write(&regs->igaddr0, 0);
1542         gfar_write(&regs->igaddr1, 0);
1543         gfar_write(&regs->igaddr2, 0);
1544         gfar_write(&regs->igaddr3, 0);
1545         gfar_write(&regs->igaddr4, 0);
1546         gfar_write(&regs->igaddr5, 0);
1547         gfar_write(&regs->igaddr6, 0);
1548         gfar_write(&regs->igaddr7, 0);
1549
1550         gfar_write(&regs->gaddr0, 0);
1551         gfar_write(&regs->gaddr1, 0);
1552         gfar_write(&regs->gaddr2, 0);
1553         gfar_write(&regs->gaddr3, 0);
1554         gfar_write(&regs->gaddr4, 0);
1555         gfar_write(&regs->gaddr5, 0);
1556         gfar_write(&regs->gaddr6, 0);
1557         gfar_write(&regs->gaddr7, 0);
1558
1559         /* Zero out the rmon mib registers if it has them */
1560         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1561                 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1562
1563                 /* Mask off the CAM interrupts */
1564                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1565                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1566         }
1567
1568         /* Initialize the max receive buffer length */
1569         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1570
1571         /* Initialize the Minimum Frame Length Register */
1572         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1573 }
1574
1575 static int __gfar_is_rx_idle(struct gfar_private *priv)
1576 {
1577         u32 res;
1578
1579         /* Normaly TSEC should not hang on GRS commands, so we should
1580          * actually wait for IEVENT_GRSC flag.
1581          */
1582         if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1583                 return 0;
1584
1585         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1586          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1587          * and the Rx can be safely reset.
1588          */
1589         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1590         res &= 0x7f807f80;
1591         if ((res & 0xffff) == (res >> 16))
1592                 return 1;
1593
1594         return 0;
1595 }
1596
1597 /* Halt the receive and transmit queues */
1598 static void gfar_halt_nodisable(struct net_device *dev)
1599 {
1600         struct gfar_private *priv = netdev_priv(dev);
1601         struct gfar __iomem *regs = NULL;
1602         u32 tempval;
1603         int i;
1604
1605         for (i = 0; i < priv->num_grps; i++) {
1606                 regs = priv->gfargrp[i].regs;
1607                 /* Mask all interrupts */
1608                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1609
1610                 /* Clear all interrupts */
1611                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1612         }
1613
1614         regs = priv->gfargrp[0].regs;
1615         /* Stop the DMA, and wait for it to stop */
1616         tempval = gfar_read(&regs->dmactrl);
1617         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1618             (DMACTRL_GRS | DMACTRL_GTS)) {
1619                 int ret;
1620
1621                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1622                 gfar_write(&regs->dmactrl, tempval);
1623
1624                 do {
1625                         ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1626                                  (IEVENT_GRSC | IEVENT_GTSC)) ==
1627                                  (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1628                         if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1629                                 ret = __gfar_is_rx_idle(priv);
1630                 } while (!ret);
1631         }
1632 }
1633
1634 /* Halt the receive and transmit queues */
1635 void gfar_halt(struct net_device *dev)
1636 {
1637         struct gfar_private *priv = netdev_priv(dev);
1638         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1639         u32 tempval;
1640
1641         gfar_halt_nodisable(dev);
1642
1643         /* Disable Rx and Tx */
1644         tempval = gfar_read(&regs->maccfg1);
1645         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1646         gfar_write(&regs->maccfg1, tempval);
1647 }
1648
1649 static void free_grp_irqs(struct gfar_priv_grp *grp)
1650 {
1651         free_irq(grp->interruptError, grp);
1652         free_irq(grp->interruptTransmit, grp);
1653         free_irq(grp->interruptReceive, grp);
1654 }
1655
1656 void stop_gfar(struct net_device *dev)
1657 {
1658         struct gfar_private *priv = netdev_priv(dev);
1659         unsigned long flags;
1660         int i;
1661
1662         phy_stop(priv->phydev);
1663
1664
1665         /* Lock it down */
1666         local_irq_save(flags);
1667         lock_tx_qs(priv);
1668         lock_rx_qs(priv);
1669
1670         gfar_halt(dev);
1671
1672         unlock_rx_qs(priv);
1673         unlock_tx_qs(priv);
1674         local_irq_restore(flags);
1675
1676         /* Free the IRQs */
1677         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1678                 for (i = 0; i < priv->num_grps; i++)
1679                         free_grp_irqs(&priv->gfargrp[i]);
1680         } else {
1681                 for (i = 0; i < priv->num_grps; i++)
1682                         free_irq(priv->gfargrp[i].interruptTransmit,
1683                                  &priv->gfargrp[i]);
1684         }
1685
1686         free_skb_resources(priv);
1687 }
1688
1689 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1690 {
1691         struct txbd8 *txbdp;
1692         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1693         int i, j;
1694
1695         txbdp = tx_queue->tx_bd_base;
1696
1697         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1698                 if (!tx_queue->tx_skbuff[i])
1699                         continue;
1700
1701                 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1702                                  txbdp->length, DMA_TO_DEVICE);
1703                 txbdp->lstatus = 0;
1704                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1705                      j++) {
1706                         txbdp++;
1707                         dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1708                                        txbdp->length, DMA_TO_DEVICE);
1709                 }
1710                 txbdp++;
1711                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1712                 tx_queue->tx_skbuff[i] = NULL;
1713         }
1714         kfree(tx_queue->tx_skbuff);
1715         tx_queue->tx_skbuff = NULL;
1716 }
1717
1718 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1719 {
1720         struct rxbd8 *rxbdp;
1721         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1722         int i;
1723
1724         rxbdp = rx_queue->rx_bd_base;
1725
1726         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1727                 if (rx_queue->rx_skbuff[i]) {
1728                         dma_unmap_single(&priv->ofdev->dev,
1729                                          rxbdp->bufPtr, priv->rx_buffer_size,
1730                                          DMA_FROM_DEVICE);
1731                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1732                         rx_queue->rx_skbuff[i] = NULL;
1733                 }
1734                 rxbdp->lstatus = 0;
1735                 rxbdp->bufPtr = 0;
1736                 rxbdp++;
1737         }
1738         kfree(rx_queue->rx_skbuff);
1739         rx_queue->rx_skbuff = NULL;
1740 }
1741
1742 /* If there are any tx skbs or rx skbs still around, free them.
1743  * Then free tx_skbuff and rx_skbuff
1744  */
1745 static void free_skb_resources(struct gfar_private *priv)
1746 {
1747         struct gfar_priv_tx_q *tx_queue = NULL;
1748         struct gfar_priv_rx_q *rx_queue = NULL;
1749         int i;
1750
1751         /* Go through all the buffer descriptors and free their data buffers */
1752         for (i = 0; i < priv->num_tx_queues; i++) {
1753                 struct netdev_queue *txq;
1754
1755                 tx_queue = priv->tx_queue[i];
1756                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1757                 if (tx_queue->tx_skbuff)
1758                         free_skb_tx_queue(tx_queue);
1759                 netdev_tx_reset_queue(txq);
1760         }
1761
1762         for (i = 0; i < priv->num_rx_queues; i++) {
1763                 rx_queue = priv->rx_queue[i];
1764                 if (rx_queue->rx_skbuff)
1765                         free_skb_rx_queue(rx_queue);
1766         }
1767
1768         dma_free_coherent(&priv->ofdev->dev,
1769                           sizeof(struct txbd8) * priv->total_tx_ring_size +
1770                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
1771                           priv->tx_queue[0]->tx_bd_base,
1772                           priv->tx_queue[0]->tx_bd_dma_base);
1773 }
1774
1775 void gfar_start(struct net_device *dev)
1776 {
1777         struct gfar_private *priv = netdev_priv(dev);
1778         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1779         u32 tempval;
1780         int i = 0;
1781
1782         /* Enable Rx and Tx in MACCFG1 */
1783         tempval = gfar_read(&regs->maccfg1);
1784         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1785         gfar_write(&regs->maccfg1, tempval);
1786
1787         /* Initialize DMACTRL to have WWR and WOP */
1788         tempval = gfar_read(&regs->dmactrl);
1789         tempval |= DMACTRL_INIT_SETTINGS;
1790         gfar_write(&regs->dmactrl, tempval);
1791
1792         /* Make sure we aren't stopped */
1793         tempval = gfar_read(&regs->dmactrl);
1794         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1795         gfar_write(&regs->dmactrl, tempval);
1796
1797         for (i = 0; i < priv->num_grps; i++) {
1798                 regs = priv->gfargrp[i].regs;
1799                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1800                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1801                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1802                 /* Unmask the interrupts we look for */
1803                 gfar_write(&regs->imask, IMASK_DEFAULT);
1804         }
1805
1806         dev->trans_start = jiffies; /* prevent tx timeout */
1807 }
1808
1809 void gfar_configure_coalescing(struct gfar_private *priv,
1810                                unsigned long tx_mask, unsigned long rx_mask)
1811 {
1812         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1813         u32 __iomem *baddr;
1814         int i = 0;
1815
1816         /* Backward compatible case ---- even if we enable
1817          * multiple queues, there's only single reg to program
1818          */
1819         gfar_write(&regs->txic, 0);
1820         if (likely(priv->tx_queue[0]->txcoalescing))
1821                 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1822
1823         gfar_write(&regs->rxic, 0);
1824         if (unlikely(priv->rx_queue[0]->rxcoalescing))
1825                 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1826
1827         if (priv->mode == MQ_MG_MODE) {
1828                 baddr = &regs->txic0;
1829                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1830                         gfar_write(baddr + i, 0);
1831                         if (likely(priv->tx_queue[i]->txcoalescing))
1832                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1833                 }
1834
1835                 baddr = &regs->rxic0;
1836                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1837                         gfar_write(baddr + i, 0);
1838                         if (likely(priv->rx_queue[i]->rxcoalescing))
1839                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1840                 }
1841         }
1842 }
1843
1844 static int register_grp_irqs(struct gfar_priv_grp *grp)
1845 {
1846         struct gfar_private *priv = grp->priv;
1847         struct net_device *dev = priv->ndev;
1848         int err;
1849
1850         /* If the device has multiple interrupts, register for
1851          * them.  Otherwise, only register for the one
1852          */
1853         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1854                 /* Install our interrupt handlers for Error,
1855                  * Transmit, and Receive
1856                  */
1857                 if ((err = request_irq(grp->interruptError, gfar_error,
1858                                        0, grp->int_name_er, grp)) < 0) {
1859                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1860                                   grp->interruptError);
1861
1862                         goto err_irq_fail;
1863                 }
1864
1865                 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1866                                        0, grp->int_name_tx, grp)) < 0) {
1867                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1868                                   grp->interruptTransmit);
1869                         goto tx_irq_fail;
1870                 }
1871
1872                 if ((err = request_irq(grp->interruptReceive, gfar_receive,
1873                                        0, grp->int_name_rx, grp)) < 0) {
1874                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1875                                   grp->interruptReceive);
1876                         goto rx_irq_fail;
1877                 }
1878         } else {
1879                 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt,
1880                                        0, grp->int_name_tx, grp)) < 0) {
1881                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1882                                   grp->interruptTransmit);
1883                         goto err_irq_fail;
1884                 }
1885         }
1886
1887         return 0;
1888
1889 rx_irq_fail:
1890         free_irq(grp->interruptTransmit, grp);
1891 tx_irq_fail:
1892         free_irq(grp->interruptError, grp);
1893 err_irq_fail:
1894         return err;
1895
1896 }
1897
1898 /* Bring the controller up and running */
1899 int startup_gfar(struct net_device *ndev)
1900 {
1901         struct gfar_private *priv = netdev_priv(ndev);
1902         struct gfar __iomem *regs = NULL;
1903         int err, i, j;
1904
1905         for (i = 0; i < priv->num_grps; i++) {
1906                 regs= priv->gfargrp[i].regs;
1907                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1908         }
1909
1910         regs= priv->gfargrp[0].regs;
1911         err = gfar_alloc_skb_resources(ndev);
1912         if (err)
1913                 return err;
1914
1915         gfar_init_mac(ndev);
1916
1917         for (i = 0; i < priv->num_grps; i++) {
1918                 err = register_grp_irqs(&priv->gfargrp[i]);
1919                 if (err) {
1920                         for (j = 0; j < i; j++)
1921                                 free_grp_irqs(&priv->gfargrp[j]);
1922                         goto irq_fail;
1923                 }
1924         }
1925
1926         /* Start the controller */
1927         gfar_start(ndev);
1928
1929         phy_start(priv->phydev);
1930
1931         gfar_configure_coalescing(priv, 0xFF, 0xFF);
1932
1933         return 0;
1934
1935 irq_fail:
1936         free_skb_resources(priv);
1937         return err;
1938 }
1939
1940 /* Called when something needs to use the ethernet device
1941  * Returns 0 for success.
1942  */
1943 static int gfar_enet_open(struct net_device *dev)
1944 {
1945         struct gfar_private *priv = netdev_priv(dev);
1946         int err;
1947
1948         enable_napi(priv);
1949
1950         /* Initialize a bunch of registers */
1951         init_registers(dev);
1952
1953         gfar_set_mac_address(dev);
1954
1955         err = init_phy(dev);
1956
1957         if (err) {
1958                 disable_napi(priv);
1959                 return err;
1960         }
1961
1962         err = startup_gfar(dev);
1963         if (err) {
1964                 disable_napi(priv);
1965                 return err;
1966         }
1967
1968         netif_tx_start_all_queues(dev);
1969
1970         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1971
1972         return err;
1973 }
1974
1975 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1976 {
1977         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1978
1979         memset(fcb, 0, GMAC_FCB_LEN);
1980
1981         return fcb;
1982 }
1983
1984 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1985                                     int fcb_length)
1986 {
1987         /* If we're here, it's a IP packet with a TCP or UDP
1988          * payload.  We set it to checksum, using a pseudo-header
1989          * we provide
1990          */
1991         u8 flags = TXFCB_DEFAULT;
1992
1993         /* Tell the controller what the protocol is
1994          * And provide the already calculated phcs
1995          */
1996         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1997                 flags |= TXFCB_UDP;
1998                 fcb->phcs = udp_hdr(skb)->check;
1999         } else
2000                 fcb->phcs = tcp_hdr(skb)->check;
2001
2002         /* l3os is the distance between the start of the
2003          * frame (skb->data) and the start of the IP hdr.
2004          * l4os is the distance between the start of the
2005          * l3 hdr and the l4 hdr
2006          */
2007         fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2008         fcb->l4os = skb_network_header_len(skb);
2009
2010         fcb->flags = flags;
2011 }
2012
2013 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2014 {
2015         fcb->flags |= TXFCB_VLN;
2016         fcb->vlctl = vlan_tx_tag_get(skb);
2017 }
2018
2019 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2020                                       struct txbd8 *base, int ring_size)
2021 {
2022         struct txbd8 *new_bd = bdp + stride;
2023
2024         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2025 }
2026
2027 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2028                                       int ring_size)
2029 {
2030         return skip_txbd(bdp, 1, base, ring_size);
2031 }
2032
2033 /* This is called by the kernel when a frame is ready for transmission.
2034  * It is pointed to by the dev->hard_start_xmit function pointer
2035  */
2036 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2037 {
2038         struct gfar_private *priv = netdev_priv(dev);
2039         struct gfar_priv_tx_q *tx_queue = NULL;
2040         struct netdev_queue *txq;
2041         struct gfar __iomem *regs = NULL;
2042         struct txfcb *fcb = NULL;
2043         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2044         u32 lstatus;
2045         int i, rq = 0, do_tstamp = 0;
2046         u32 bufaddr;
2047         unsigned long flags;
2048         unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN;
2049
2050         /* TOE=1 frames larger than 2500 bytes may see excess delays
2051          * before start of transmission.
2052          */
2053         if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2054                      skb->ip_summed == CHECKSUM_PARTIAL &&
2055                      skb->len > 2500)) {
2056                 int ret;
2057
2058                 ret = skb_checksum_help(skb);
2059                 if (ret)
2060                         return ret;
2061         }
2062
2063         rq = skb->queue_mapping;
2064         tx_queue = priv->tx_queue[rq];
2065         txq = netdev_get_tx_queue(dev, rq);
2066         base = tx_queue->tx_bd_base;
2067         regs = tx_queue->grp->regs;
2068
2069         /* check if time stamp should be generated */
2070         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2071                      priv->hwts_tx_en)) {
2072                 do_tstamp = 1;
2073                 fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2074         }
2075
2076         /* make space for additional header when fcb is needed */
2077         if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2078              vlan_tx_tag_present(skb) ||
2079              unlikely(do_tstamp)) &&
2080             (skb_headroom(skb) < fcb_length)) {
2081                 struct sk_buff *skb_new;
2082
2083                 skb_new = skb_realloc_headroom(skb, fcb_length);
2084                 if (!skb_new) {
2085                         dev->stats.tx_errors++;
2086                         kfree_skb(skb);
2087                         return NETDEV_TX_OK;
2088                 }
2089
2090                 if (skb->sk)
2091                         skb_set_owner_w(skb_new, skb->sk);
2092                 consume_skb(skb);
2093                 skb = skb_new;
2094         }
2095
2096         /* total number of fragments in the SKB */
2097         nr_frags = skb_shinfo(skb)->nr_frags;
2098
2099         /* calculate the required number of TxBDs for this skb */
2100         if (unlikely(do_tstamp))
2101                 nr_txbds = nr_frags + 2;
2102         else
2103                 nr_txbds = nr_frags + 1;
2104
2105         /* check if there is space to queue this packet */
2106         if (nr_txbds > tx_queue->num_txbdfree) {
2107                 /* no space, stop the queue */
2108                 netif_tx_stop_queue(txq);
2109                 dev->stats.tx_fifo_errors++;
2110                 return NETDEV_TX_BUSY;
2111         }
2112
2113         /* Update transmit stats */
2114         tx_queue->stats.tx_bytes += skb->len;
2115         tx_queue->stats.tx_packets++;
2116
2117         txbdp = txbdp_start = tx_queue->cur_tx;
2118         lstatus = txbdp->lstatus;
2119
2120         /* Time stamp insertion requires one additional TxBD */
2121         if (unlikely(do_tstamp))
2122                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2123                                                  tx_queue->tx_ring_size);
2124
2125         if (nr_frags == 0) {
2126                 if (unlikely(do_tstamp))
2127                         txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2128                                                           TXBD_INTERRUPT);
2129                 else
2130                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2131         } else {
2132                 /* Place the fragment addresses and lengths into the TxBDs */
2133                 for (i = 0; i < nr_frags; i++) {
2134                         /* Point at the next BD, wrapping as needed */
2135                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2136
2137                         length = skb_shinfo(skb)->frags[i].size;
2138
2139                         lstatus = txbdp->lstatus | length |
2140                                   BD_LFLAG(TXBD_READY);
2141
2142                         /* Handle the last BD specially */
2143                         if (i == nr_frags - 1)
2144                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2145
2146                         bufaddr = skb_frag_dma_map(&priv->ofdev->dev,
2147                                                    &skb_shinfo(skb)->frags[i],
2148                                                    0,
2149                                                    length,
2150                                                    DMA_TO_DEVICE);
2151
2152                         /* set the TxBD length and buffer pointer */
2153                         txbdp->bufPtr = bufaddr;
2154                         txbdp->lstatus = lstatus;
2155                 }
2156
2157                 lstatus = txbdp_start->lstatus;
2158         }
2159
2160         /* Add TxPAL between FCB and frame if required */
2161         if (unlikely(do_tstamp)) {
2162                 skb_push(skb, GMAC_TXPAL_LEN);
2163                 memset(skb->data, 0, GMAC_TXPAL_LEN);
2164         }
2165
2166         /* Set up checksumming */
2167         if (CHECKSUM_PARTIAL == skb->ip_summed) {
2168                 fcb = gfar_add_fcb(skb);
2169                 /* as specified by errata */
2170                 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12) &&
2171                              ((unsigned long)fcb % 0x20) > 0x18)) {
2172                         __skb_pull(skb, GMAC_FCB_LEN);
2173                         skb_checksum_help(skb);
2174                 } else {
2175                         lstatus |= BD_LFLAG(TXBD_TOE);
2176                         gfar_tx_checksum(skb, fcb, fcb_length);
2177                 }
2178         }
2179
2180         if (vlan_tx_tag_present(skb)) {
2181                 if (unlikely(NULL == fcb)) {
2182                         fcb = gfar_add_fcb(skb);
2183                         lstatus |= BD_LFLAG(TXBD_TOE);
2184                 }
2185
2186                 gfar_tx_vlan(skb, fcb);
2187         }
2188
2189         /* Setup tx hardware time stamping if requested */
2190         if (unlikely(do_tstamp)) {
2191                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2192                 if (fcb == NULL)
2193                         fcb = gfar_add_fcb(skb);
2194                 fcb->ptp = 1;
2195                 lstatus |= BD_LFLAG(TXBD_TOE);
2196         }
2197
2198         txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2199                                              skb_headlen(skb), DMA_TO_DEVICE);
2200
2201         /* If time stamping is requested one additional TxBD must be set up. The
2202          * first TxBD points to the FCB and must have a data length of
2203          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2204          * the full frame length.
2205          */
2206         if (unlikely(do_tstamp)) {
2207                 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length;
2208                 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2209                                          (skb_headlen(skb) - fcb_length);
2210                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2211         } else {
2212                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2213         }
2214
2215         netdev_tx_sent_queue(txq, skb->len);
2216
2217         /* We can work in parallel with gfar_clean_tx_ring(), except
2218          * when modifying num_txbdfree. Note that we didn't grab the lock
2219          * when we were reading the num_txbdfree and checking for available
2220          * space, that's because outside of this function it can only grow,
2221          * and once we've got needed space, it cannot suddenly disappear.
2222          *
2223          * The lock also protects us from gfar_error(), which can modify
2224          * regs->tstat and thus retrigger the transfers, which is why we
2225          * also must grab the lock before setting ready bit for the first
2226          * to be transmitted BD.
2227          */
2228         spin_lock_irqsave(&tx_queue->txlock, flags);
2229
2230         /* The powerpc-specific eieio() is used, as wmb() has too strong
2231          * semantics (it requires synchronization between cacheable and
2232          * uncacheable mappings, which eieio doesn't provide and which we
2233          * don't need), thus requiring a more expensive sync instruction.  At
2234          * some point, the set of architecture-independent barrier functions
2235          * should be expanded to include weaker barriers.
2236          */
2237         eieio();
2238
2239         txbdp_start->lstatus = lstatus;
2240
2241         eieio(); /* force lstatus write before tx_skbuff */
2242
2243         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2244
2245         /* Update the current skb pointer to the next entry we will use
2246          * (wrapping if necessary)
2247          */
2248         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2249                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2250
2251         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2252
2253         /* reduce TxBD free count */
2254         tx_queue->num_txbdfree -= (nr_txbds);
2255
2256         /* If the next BD still needs to be cleaned up, then the bds
2257          * are full.  We need to tell the kernel to stop sending us stuff.
2258          */
2259         if (!tx_queue->num_txbdfree) {
2260                 netif_tx_stop_queue(txq);
2261
2262                 dev->stats.tx_fifo_errors++;
2263         }
2264
2265         /* Tell the DMA to go go go */
2266         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2267
2268         /* Unlock priv */
2269         spin_unlock_irqrestore(&tx_queue->txlock, flags);
2270
2271         return NETDEV_TX_OK;
2272 }
2273
2274 /* Stops the kernel queue, and halts the controller */
2275 static int gfar_close(struct net_device *dev)
2276 {
2277         struct gfar_private *priv = netdev_priv(dev);
2278
2279         disable_napi(priv);
2280
2281         cancel_work_sync(&priv->reset_task);
2282         stop_gfar(dev);
2283
2284         /* Disconnect from the PHY */
2285         phy_disconnect(priv->phydev);
2286         priv->phydev = NULL;
2287
2288         netif_tx_stop_all_queues(dev);
2289
2290         return 0;
2291 }
2292
2293 /* Changes the mac address if the controller is not running. */
2294 static int gfar_set_mac_address(struct net_device *dev)
2295 {
2296         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2297
2298         return 0;
2299 }
2300
2301 /* Check if rx parser should be activated */
2302 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2303 {
2304         struct gfar __iomem *regs;
2305         u32 tempval;
2306
2307         regs = priv->gfargrp[0].regs;
2308
2309         tempval = gfar_read(&regs->rctrl);
2310         /* If parse is no longer required, then disable parser */
2311         if (tempval & RCTRL_REQ_PARSER)
2312                 tempval |= RCTRL_PRSDEP_INIT;
2313         else
2314                 tempval &= ~RCTRL_PRSDEP_INIT;
2315         gfar_write(&regs->rctrl, tempval);
2316 }
2317
2318 /* Enables and disables VLAN insertion/extraction */
2319 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2320 {
2321         struct gfar_private *priv = netdev_priv(dev);
2322         struct gfar __iomem *regs = NULL;
2323         unsigned long flags;
2324         u32 tempval;
2325
2326         regs = priv->gfargrp[0].regs;
2327         local_irq_save(flags);
2328         lock_rx_qs(priv);
2329
2330         if (features & NETIF_F_HW_VLAN_TX) {
2331                 /* Enable VLAN tag insertion */
2332                 tempval = gfar_read(&regs->tctrl);
2333                 tempval |= TCTRL_VLINS;
2334                 gfar_write(&regs->tctrl, tempval);
2335         } else {
2336                 /* Disable VLAN tag insertion */
2337                 tempval = gfar_read(&regs->tctrl);
2338                 tempval &= ~TCTRL_VLINS;
2339                 gfar_write(&regs->tctrl, tempval);
2340         }
2341
2342         if (features & NETIF_F_HW_VLAN_RX) {
2343                 /* Enable VLAN tag extraction */
2344                 tempval = gfar_read(&regs->rctrl);
2345                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2346                 gfar_write(&regs->rctrl, tempval);
2347         } else {
2348                 /* Disable VLAN tag extraction */
2349                 tempval = gfar_read(&regs->rctrl);
2350                 tempval &= ~RCTRL_VLEX;
2351                 gfar_write(&regs->rctrl, tempval);
2352
2353                 gfar_check_rx_parser_mode(priv);
2354         }
2355
2356         gfar_change_mtu(dev, dev->mtu);
2357
2358         unlock_rx_qs(priv);
2359         local_irq_restore(flags);
2360 }
2361
2362 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2363 {
2364         int tempsize, tempval;
2365         struct gfar_private *priv = netdev_priv(dev);
2366         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2367         int oldsize = priv->rx_buffer_size;
2368         int frame_size = new_mtu + ETH_HLEN;
2369
2370         if (gfar_is_vlan_on(priv))
2371                 frame_size += VLAN_HLEN;
2372
2373         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2374                 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2375                 return -EINVAL;
2376         }
2377
2378         if (gfar_uses_fcb(priv))
2379                 frame_size += GMAC_FCB_LEN;
2380
2381         frame_size += priv->padding;
2382
2383         tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2384                    INCREMENTAL_BUFFER_SIZE;
2385
2386         /* Only stop and start the controller if it isn't already
2387          * stopped, and we changed something
2388          */
2389         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2390                 stop_gfar(dev);
2391
2392         priv->rx_buffer_size = tempsize;
2393
2394         dev->mtu = new_mtu;
2395
2396         gfar_write(&regs->mrblr, priv->rx_buffer_size);
2397         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2398
2399         /* If the mtu is larger than the max size for standard
2400          * ethernet frames (ie, a jumbo frame), then set maccfg2
2401          * to allow huge frames, and to check the length
2402          */
2403         tempval = gfar_read(&regs->maccfg2);
2404
2405         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2406             gfar_has_errata(priv, GFAR_ERRATA_74))
2407                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2408         else
2409                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2410
2411         gfar_write(&regs->maccfg2, tempval);
2412
2413         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2414                 startup_gfar(dev);
2415
2416         return 0;
2417 }
2418
2419 /* gfar_reset_task gets scheduled when a packet has not been
2420  * transmitted after a set amount of time.
2421  * For now, assume that clearing out all the structures, and
2422  * starting over will fix the problem.
2423  */
2424 static void gfar_reset_task(struct work_struct *work)
2425 {
2426         struct gfar_private *priv = container_of(work, struct gfar_private,
2427                                                  reset_task);
2428         struct net_device *dev = priv->ndev;
2429
2430         if (dev->flags & IFF_UP) {
2431                 netif_tx_stop_all_queues(dev);
2432                 stop_gfar(dev);
2433                 startup_gfar(dev);
2434                 netif_tx_start_all_queues(dev);
2435         }
2436
2437         netif_tx_schedule_all(dev);
2438 }
2439
2440 static void gfar_timeout(struct net_device *dev)
2441 {
2442         struct gfar_private *priv = netdev_priv(dev);
2443
2444         dev->stats.tx_errors++;
2445         schedule_work(&priv->reset_task);
2446 }
2447
2448 static void gfar_align_skb(struct sk_buff *skb)
2449 {
2450         /* We need the data buffer to be aligned properly.  We will reserve
2451          * as many bytes as needed to align the data properly
2452          */
2453         skb_reserve(skb, RXBUF_ALIGNMENT -
2454                     (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2455 }
2456
2457 /* Interrupt Handler for Transmit complete */
2458 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2459 {
2460         struct net_device *dev = tx_queue->dev;
2461         struct netdev_queue *txq;
2462         struct gfar_private *priv = netdev_priv(dev);
2463         struct gfar_priv_rx_q *rx_queue = NULL;
2464         struct txbd8 *bdp, *next = NULL;
2465         struct txbd8 *lbdp = NULL;
2466         struct txbd8 *base = tx_queue->tx_bd_base;
2467         struct sk_buff *skb;
2468         int skb_dirtytx;
2469         int tx_ring_size = tx_queue->tx_ring_size;
2470         int frags = 0, nr_txbds = 0;
2471         int i;
2472         int howmany = 0;
2473         int tqi = tx_queue->qindex;
2474         unsigned int bytes_sent = 0;
2475         u32 lstatus;
2476         size_t buflen;
2477
2478         rx_queue = priv->rx_queue[tqi];
2479         txq = netdev_get_tx_queue(dev, tqi);
2480         bdp = tx_queue->dirty_tx;
2481         skb_dirtytx = tx_queue->skb_dirtytx;
2482
2483         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2484                 unsigned long flags;
2485
2486                 frags = skb_shinfo(skb)->nr_frags;
2487
2488                 /* When time stamping, one additional TxBD must be freed.
2489                  * Also, we need to dma_unmap_single() the TxPAL.
2490                  */
2491                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2492                         nr_txbds = frags + 2;
2493                 else
2494                         nr_txbds = frags + 1;
2495
2496                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2497
2498                 lstatus = lbdp->lstatus;
2499
2500                 /* Only clean completed frames */
2501                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2502                     (lstatus & BD_LENGTH_MASK))
2503                         break;
2504
2505                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2506                         next = next_txbd(bdp, base, tx_ring_size);
2507                         buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2508                 } else
2509                         buflen = bdp->length;
2510
2511                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2512                                  buflen, DMA_TO_DEVICE);
2513
2514                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2515                         struct skb_shared_hwtstamps shhwtstamps;
2516                         u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2517
2518                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2519                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2520                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2521                         skb_tstamp_tx(skb, &shhwtstamps);
2522                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2523                         bdp = next;
2524                 }
2525
2526                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2527                 bdp = next_txbd(bdp, base, tx_ring_size);
2528
2529                 for (i = 0; i < frags; i++) {
2530                         dma_unmap_page(&priv->ofdev->dev, bdp->bufPtr,
2531                                        bdp->length, DMA_TO_DEVICE);
2532                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2533                         bdp = next_txbd(bdp, base, tx_ring_size);
2534                 }
2535
2536                 bytes_sent += skb->len;
2537
2538                 dev_kfree_skb_any(skb);
2539
2540                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2541
2542                 skb_dirtytx = (skb_dirtytx + 1) &
2543                               TX_RING_MOD_MASK(tx_ring_size);
2544
2545                 howmany++;
2546                 spin_lock_irqsave(&tx_queue->txlock, flags);
2547                 tx_queue->num_txbdfree += nr_txbds;
2548                 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2549         }
2550
2551         /* If we freed a buffer, we can restart transmission, if necessary */
2552         if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2553                 netif_wake_subqueue(dev, tqi);
2554
2555         /* Update dirty indicators */
2556         tx_queue->skb_dirtytx = skb_dirtytx;
2557         tx_queue->dirty_tx = bdp;
2558
2559         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2560
2561         return howmany;
2562 }
2563
2564 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2565 {
2566         unsigned long flags;
2567
2568         spin_lock_irqsave(&gfargrp->grplock, flags);
2569         if (napi_schedule_prep(&gfargrp->napi)) {
2570                 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2571                 __napi_schedule(&gfargrp->napi);
2572         } else {
2573                 /* Clear IEVENT, so interrupts aren't called again
2574                  * because of the packets that have already arrived.
2575                  */
2576                 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2577         }
2578         spin_unlock_irqrestore(&gfargrp->grplock, flags);
2579
2580 }
2581
2582 /* Interrupt Handler for Transmit complete */
2583 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2584 {
2585         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2586         return IRQ_HANDLED;
2587 }
2588
2589 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2590                            struct sk_buff *skb)
2591 {
2592         struct net_device *dev = rx_queue->dev;
2593         struct gfar_private *priv = netdev_priv(dev);
2594         dma_addr_t buf;
2595
2596         buf = dma_map_single(&priv->ofdev->dev, skb->data,
2597                              priv->rx_buffer_size, DMA_FROM_DEVICE);
2598         gfar_init_rxbdp(rx_queue, bdp, buf);
2599 }
2600
2601 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2602 {
2603         struct gfar_private *priv = netdev_priv(dev);
2604         struct sk_buff *skb;
2605
2606         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2607         if (!skb)
2608                 return NULL;
2609
2610         gfar_align_skb(skb);
2611
2612         return skb;
2613 }
2614
2615 struct sk_buff *gfar_new_skb(struct net_device *dev)
2616 {
2617         return gfar_alloc_skb(dev);
2618 }
2619
2620 static inline void count_errors(unsigned short status, struct net_device *dev)
2621 {
2622         struct gfar_private *priv = netdev_priv(dev);
2623         struct net_device_stats *stats = &dev->stats;
2624         struct gfar_extra_stats *estats = &priv->extra_stats;
2625
2626         /* If the packet was truncated, none of the other errors matter */
2627         if (status & RXBD_TRUNCATED) {
2628                 stats->rx_length_errors++;
2629
2630                 estats->rx_trunc++;
2631
2632                 return;
2633         }
2634         /* Count the errors, if there were any */
2635         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2636                 stats->rx_length_errors++;
2637
2638                 if (status & RXBD_LARGE)
2639                         estats->rx_large++;
2640                 else
2641                         estats->rx_short++;
2642         }
2643         if (status & RXBD_NONOCTET) {
2644                 stats->rx_frame_errors++;
2645                 estats->rx_nonoctet++;
2646         }
2647         if (status & RXBD_CRCERR) {
2648                 estats->rx_crcerr++;
2649                 stats->rx_crc_errors++;
2650         }
2651         if (status & RXBD_OVERRUN) {
2652                 estats->rx_overrun++;
2653                 stats->rx_crc_errors++;
2654         }
2655 }
2656
2657 irqreturn_t gfar_receive(int irq, void *grp_id)
2658 {
2659         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2660         return IRQ_HANDLED;
2661 }
2662
2663 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2664 {
2665         /* If valid headers were found, and valid sums
2666          * were verified, then we tell the kernel that no
2667          * checksumming is necessary.  Otherwise, it is [FIXME]
2668          */
2669         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2670                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2671         else
2672                 skb_checksum_none_assert(skb);
2673 }
2674
2675
2676 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2677 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2678                               int amount_pull, struct napi_struct *napi)
2679 {
2680         struct gfar_private *priv = netdev_priv(dev);
2681         struct rxfcb *fcb = NULL;
2682
2683         gro_result_t ret;
2684
2685         /* fcb is at the beginning if exists */
2686         fcb = (struct rxfcb *)skb->data;
2687
2688         /* Remove the FCB from the skb
2689          * Remove the padded bytes, if there are any
2690          */
2691         if (amount_pull) {
2692                 skb_record_rx_queue(skb, fcb->rq);
2693                 skb_pull(skb, amount_pull);
2694         }
2695
2696         /* Get receive timestamp from the skb */
2697         if (priv->hwts_rx_en) {
2698                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2699                 u64 *ns = (u64 *) skb->data;
2700
2701                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2702                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2703         }
2704
2705         if (priv->padding)
2706                 skb_pull(skb, priv->padding);
2707
2708         if (dev->features & NETIF_F_RXCSUM)
2709                 gfar_rx_checksum(skb, fcb);
2710
2711         /* Tell the skb what kind of packet this is */
2712         skb->protocol = eth_type_trans(skb, dev);
2713
2714         /* There's need to check for NETIF_F_HW_VLAN_RX here.
2715          * Even if vlan rx accel is disabled, on some chips
2716          * RXFCB_VLN is pseudo randomly set.
2717          */
2718         if (dev->features & NETIF_F_HW_VLAN_RX &&
2719             fcb->flags & RXFCB_VLN)
2720                 __vlan_hwaccel_put_tag(skb, fcb->vlctl);
2721
2722         /* Send the packet up the stack */
2723         ret = napi_gro_receive(napi, skb);
2724
2725         if (GRO_DROP == ret)
2726                 priv->extra_stats.kernel_dropped++;
2727
2728         return 0;
2729 }
2730
2731 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2732  * until the budget/quota has been reached. Returns the number
2733  * of frames handled
2734  */
2735 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2736 {
2737         struct net_device *dev = rx_queue->dev;
2738         struct rxbd8 *bdp, *base;
2739         struct sk_buff *skb;
2740         int pkt_len;
2741         int amount_pull;
2742         int howmany = 0;
2743         struct gfar_private *priv = netdev_priv(dev);
2744
2745         /* Get the first full descriptor */
2746         bdp = rx_queue->cur_rx;
2747         base = rx_queue->rx_bd_base;
2748
2749         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2750
2751         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2752                 struct sk_buff *newskb;
2753
2754                 rmb();
2755
2756                 /* Add another skb for the future */
2757                 newskb = gfar_new_skb(dev);
2758
2759                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2760
2761                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2762                                  priv->rx_buffer_size, DMA_FROM_DEVICE);
2763
2764                 if (unlikely(!(bdp->status & RXBD_ERR) &&
2765                              bdp->length > priv->rx_buffer_size))
2766                         bdp->status = RXBD_LARGE;
2767
2768                 /* We drop the frame if we failed to allocate a new buffer */
2769                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2770                              bdp->status & RXBD_ERR)) {
2771                         count_errors(bdp->status, dev);
2772
2773                         if (unlikely(!newskb))
2774                                 newskb = skb;
2775                         else if (skb)
2776                                 dev_kfree_skb(skb);
2777                 } else {
2778                         /* Increment the number of packets */
2779                         rx_queue->stats.rx_packets++;
2780                         howmany++;
2781
2782                         if (likely(skb)) {
2783                                 pkt_len = bdp->length - ETH_FCS_LEN;
2784                                 /* Remove the FCS from the packet length */
2785                                 skb_put(skb, pkt_len);
2786                                 rx_queue->stats.rx_bytes += pkt_len;
2787                                 skb_record_rx_queue(skb, rx_queue->qindex);
2788                                 gfar_process_frame(dev, skb, amount_pull,
2789                                                    &rx_queue->grp->napi);
2790
2791                         } else {
2792                                 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2793                                 rx_queue->stats.rx_dropped++;
2794                                 priv->extra_stats.rx_skbmissing++;
2795                         }
2796
2797                 }
2798
2799                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2800
2801                 /* Setup the new bdp */
2802                 gfar_new_rxbdp(rx_queue, bdp, newskb);
2803
2804                 /* Update to the next pointer */
2805                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2806
2807                 /* update to point at the next skb */
2808                 rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2809                                       RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2810         }
2811
2812         /* Update the current rxbd pointer to be the next one */
2813         rx_queue->cur_rx = bdp;
2814
2815         return howmany;
2816 }
2817
2818 static int gfar_poll(struct napi_struct *napi, int budget)
2819 {
2820         struct gfar_priv_grp *gfargrp =
2821                 container_of(napi, struct gfar_priv_grp, napi);
2822         struct gfar_private *priv = gfargrp->priv;
2823         struct gfar __iomem *regs = gfargrp->regs;
2824         struct gfar_priv_tx_q *tx_queue = NULL;
2825         struct gfar_priv_rx_q *rx_queue = NULL;
2826         int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2827         int tx_cleaned = 0, i, left_over_budget = budget;
2828         unsigned long serviced_queues = 0;
2829         int num_queues = 0;
2830
2831         num_queues = gfargrp->num_rx_queues;
2832         budget_per_queue = budget/num_queues;
2833
2834         /* Clear IEVENT, so interrupts aren't called again
2835          * because of the packets that have already arrived
2836          */
2837         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2838
2839         while (num_queues && left_over_budget) {
2840                 budget_per_queue = left_over_budget/num_queues;
2841                 left_over_budget = 0;
2842
2843                 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2844                         if (test_bit(i, &serviced_queues))
2845                                 continue;
2846                         rx_queue = priv->rx_queue[i];
2847                         tx_queue = priv->tx_queue[rx_queue->qindex];
2848
2849                         tx_cleaned += gfar_clean_tx_ring(tx_queue);
2850                         rx_cleaned_per_queue =
2851                                 gfar_clean_rx_ring(rx_queue, budget_per_queue);
2852                         rx_cleaned += rx_cleaned_per_queue;
2853                         if (rx_cleaned_per_queue < budget_per_queue) {
2854                                 left_over_budget = left_over_budget +
2855                                         (budget_per_queue -
2856                                          rx_cleaned_per_queue);
2857                                 set_bit(i, &serviced_queues);
2858                                 num_queues--;
2859                         }
2860                 }
2861         }
2862
2863         if (tx_cleaned)
2864                 return budget;
2865
2866         if (rx_cleaned < budget) {
2867                 napi_complete(napi);
2868
2869                 /* Clear the halt bit in RSTAT */
2870                 gfar_write(&regs->rstat, gfargrp->rstat);
2871
2872                 gfar_write(&regs->imask, IMASK_DEFAULT);
2873
2874                 /* If we are coalescing interrupts, update the timer
2875                  * Otherwise, clear it
2876                  */
2877                 gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2878                                           gfargrp->tx_bit_map);
2879         }
2880
2881         return rx_cleaned;
2882 }
2883
2884 #ifdef CONFIG_NET_POLL_CONTROLLER
2885 /* Polling 'interrupt' - used by things like netconsole to send skbs
2886  * without having to re-enable interrupts. It's not called while
2887  * the interrupt routine is executing.
2888  */
2889 static void gfar_netpoll(struct net_device *dev)
2890 {
2891         struct gfar_private *priv = netdev_priv(dev);
2892         int i;
2893
2894         /* If the device has multiple interrupts, run tx/rx */
2895         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2896                 for (i = 0; i < priv->num_grps; i++) {
2897                         disable_irq(priv->gfargrp[i].interruptTransmit);
2898                         disable_irq(priv->gfargrp[i].interruptReceive);
2899                         disable_irq(priv->gfargrp[i].interruptError);
2900                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2901                                        &priv->gfargrp[i]);
2902                         enable_irq(priv->gfargrp[i].interruptError);
2903                         enable_irq(priv->gfargrp[i].interruptReceive);
2904                         enable_irq(priv->gfargrp[i].interruptTransmit);
2905                 }
2906         } else {
2907                 for (i = 0; i < priv->num_grps; i++) {
2908                         disable_irq(priv->gfargrp[i].interruptTransmit);
2909                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2910                                        &priv->gfargrp[i]);
2911                         enable_irq(priv->gfargrp[i].interruptTransmit);
2912                 }
2913         }
2914 }
2915 #endif
2916
2917 /* The interrupt handler for devices with one interrupt */
2918 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2919 {
2920         struct gfar_priv_grp *gfargrp = grp_id;
2921
2922         /* Save ievent for future reference */
2923         u32 events = gfar_read(&gfargrp->regs->ievent);
2924
2925         /* Check for reception */
2926         if (events & IEVENT_RX_MASK)
2927                 gfar_receive(irq, grp_id);
2928
2929         /* Check for transmit completion */
2930         if (events & IEVENT_TX_MASK)
2931                 gfar_transmit(irq, grp_id);
2932
2933         /* Check for errors */
2934         if (events & IEVENT_ERR_MASK)
2935                 gfar_error(irq, grp_id);
2936
2937         return IRQ_HANDLED;
2938 }
2939
2940 /* Called every time the controller might need to be made
2941  * aware of new link state.  The PHY code conveys this
2942  * information through variables in the phydev structure, and this
2943  * function converts those variables into the appropriate
2944  * register values, and can bring down the device if needed.
2945  */
2946 static void adjust_link(struct net_device *dev)
2947 {
2948         struct gfar_private *priv = netdev_priv(dev);
2949         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2950         unsigned long flags;
2951         struct phy_device *phydev = priv->phydev;
2952         int new_state = 0;
2953
2954         local_irq_save(flags);
2955         lock_tx_qs(priv);
2956
2957         if (phydev->link) {
2958                 u32 tempval = gfar_read(&regs->maccfg2);
2959                 u32 ecntrl = gfar_read(&regs->ecntrl);
2960
2961                 /* Now we make sure that we can be in full duplex mode.
2962                  * If not, we operate in half-duplex mode.
2963                  */
2964                 if (phydev->duplex != priv->oldduplex) {
2965                         new_state = 1;
2966                         if (!(phydev->duplex))
2967                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
2968                         else
2969                                 tempval |= MACCFG2_FULL_DUPLEX;
2970
2971                         priv->oldduplex = phydev->duplex;
2972                 }
2973
2974                 if (phydev->speed != priv->oldspeed) {
2975                         new_state = 1;
2976                         switch (phydev->speed) {
2977                         case 1000:
2978                                 tempval =
2979                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2980
2981                                 ecntrl &= ~(ECNTRL_R100);
2982                                 break;
2983                         case 100:
2984                         case 10:
2985                                 tempval =
2986                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2987
2988                                 /* Reduced mode distinguishes
2989                                  * between 10 and 100
2990                                  */
2991                                 if (phydev->speed == SPEED_100)
2992                                         ecntrl |= ECNTRL_R100;
2993                                 else
2994                                         ecntrl &= ~(ECNTRL_R100);
2995                                 break;
2996                         default:
2997                                 netif_warn(priv, link, dev,
2998                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
2999                                            phydev->speed);
3000                                 break;
3001                         }
3002
3003                         priv->oldspeed = phydev->speed;
3004                 }
3005
3006                 gfar_write(&regs->maccfg2, tempval);
3007                 gfar_write(&regs->ecntrl, ecntrl);
3008
3009                 if (!priv->oldlink) {
3010                         new_state = 1;
3011                         priv->oldlink = 1;
3012                 }
3013         } else if (priv->oldlink) {
3014                 new_state = 1;
3015                 priv->oldlink = 0;
3016                 priv->oldspeed = 0;
3017                 priv->oldduplex = -1;
3018         }
3019
3020         if (new_state && netif_msg_link(priv))
3021                 phy_print_status(phydev);
3022         unlock_tx_qs(priv);
3023         local_irq_restore(flags);
3024 }
3025
3026 /* Update the hash table based on the current list of multicast
3027  * addresses we subscribe to.  Also, change the promiscuity of
3028  * the device based on the flags (this function is called
3029  * whenever dev->flags is changed
3030  */
3031 static void gfar_set_multi(struct net_device *dev)
3032 {
3033         struct netdev_hw_addr *ha;
3034         struct gfar_private *priv = netdev_priv(dev);
3035         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3036         u32 tempval;
3037
3038         if (dev->flags & IFF_PROMISC) {
3039                 /* Set RCTRL to PROM */
3040                 tempval = gfar_read(&regs->rctrl);
3041                 tempval |= RCTRL_PROM;
3042                 gfar_write(&regs->rctrl, tempval);
3043         } else {
3044                 /* Set RCTRL to not PROM */
3045                 tempval = gfar_read(&regs->rctrl);
3046                 tempval &= ~(RCTRL_PROM);
3047                 gfar_write(&regs->rctrl, tempval);
3048         }
3049
3050         if (dev->flags & IFF_ALLMULTI) {
3051                 /* Set the hash to rx all multicast frames */
3052                 gfar_write(&regs->igaddr0, 0xffffffff);
3053                 gfar_write(&regs->igaddr1, 0xffffffff);
3054                 gfar_write(&regs->igaddr2, 0xffffffff);
3055                 gfar_write(&regs->igaddr3, 0xffffffff);
3056                 gfar_write(&regs->igaddr4, 0xffffffff);
3057                 gfar_write(&regs->igaddr5, 0xffffffff);
3058                 gfar_write(&regs->igaddr6, 0xffffffff);
3059                 gfar_write(&regs->igaddr7, 0xffffffff);
3060                 gfar_write(&regs->gaddr0, 0xffffffff);
3061                 gfar_write(&regs->gaddr1, 0xffffffff);
3062                 gfar_write(&regs->gaddr2, 0xffffffff);
3063                 gfar_write(&regs->gaddr3, 0xffffffff);
3064                 gfar_write(&regs->gaddr4, 0xffffffff);
3065                 gfar_write(&regs->gaddr5, 0xffffffff);
3066                 gfar_write(&regs->gaddr6, 0xffffffff);
3067                 gfar_write(&regs->gaddr7, 0xffffffff);
3068         } else {
3069                 int em_num;
3070                 int idx;
3071
3072                 /* zero out the hash */
3073                 gfar_write(&regs->igaddr0, 0x0);
3074                 gfar_write(&regs->igaddr1, 0x0);
3075                 gfar_write(&regs->igaddr2, 0x0);
3076                 gfar_write(&regs->igaddr3, 0x0);
3077                 gfar_write(&regs->igaddr4, 0x0);
3078                 gfar_write(&regs->igaddr5, 0x0);
3079                 gfar_write(&regs->igaddr6, 0x0);
3080                 gfar_write(&regs->igaddr7, 0x0);
3081                 gfar_write(&regs->gaddr0, 0x0);
3082                 gfar_write(&regs->gaddr1, 0x0);
3083                 gfar_write(&regs->gaddr2, 0x0);
3084                 gfar_write(&regs->gaddr3, 0x0);
3085                 gfar_write(&regs->gaddr4, 0x0);
3086                 gfar_write(&regs->gaddr5, 0x0);
3087                 gfar_write(&regs->gaddr6, 0x0);
3088                 gfar_write(&regs->gaddr7, 0x0);
3089
3090                 /* If we have extended hash tables, we need to
3091                  * clear the exact match registers to prepare for
3092                  * setting them
3093                  */
3094                 if (priv->extended_hash) {
3095                         em_num = GFAR_EM_NUM + 1;
3096                         gfar_clear_exact_match(dev);
3097                         idx = 1;
3098                 } else {
3099                         idx = 0;
3100                         em_num = 0;
3101                 }
3102
3103                 if (netdev_mc_empty(dev))
3104                         return;
3105
3106                 /* Parse the list, and set the appropriate bits */
3107                 netdev_for_each_mc_addr(ha, dev) {
3108                         if (idx < em_num) {
3109                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3110                                 idx++;
3111                         } else
3112                                 gfar_set_hash_for_addr(dev, ha->addr);
3113                 }
3114         }
3115 }
3116
3117
3118 /* Clears each of the exact match registers to zero, so they
3119  * don't interfere with normal reception
3120  */
3121 static void gfar_clear_exact_match(struct net_device *dev)
3122 {
3123         int idx;
3124         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3125
3126         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3127                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3128 }
3129
3130 /* Set the appropriate hash bit for the given addr */
3131 /* The algorithm works like so:
3132  * 1) Take the Destination Address (ie the multicast address), and
3133  * do a CRC on it (little endian), and reverse the bits of the
3134  * result.
3135  * 2) Use the 8 most significant bits as a hash into a 256-entry
3136  * table.  The table is controlled through 8 32-bit registers:
3137  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3138  * gaddr7.  This means that the 3 most significant bits in the
3139  * hash index which gaddr register to use, and the 5 other bits
3140  * indicate which bit (assuming an IBM numbering scheme, which
3141  * for PowerPC (tm) is usually the case) in the register holds
3142  * the entry.
3143  */
3144 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3145 {
3146         u32 tempval;
3147         struct gfar_private *priv = netdev_priv(dev);
3148         u32 result = ether_crc(ETH_ALEN, addr);
3149         int width = priv->hash_width;
3150         u8 whichbit = (result >> (32 - width)) & 0x1f;
3151         u8 whichreg = result >> (32 - width + 5);
3152         u32 value = (1 << (31-whichbit));
3153
3154         tempval = gfar_read(priv->hash_regs[whichreg]);
3155         tempval |= value;
3156         gfar_write(priv->hash_regs[whichreg], tempval);
3157 }
3158
3159
3160 /* There are multiple MAC Address register pairs on some controllers
3161  * This function sets the numth pair to a given address
3162  */
3163 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3164                                   const u8 *addr)
3165 {
3166         struct gfar_private *priv = netdev_priv(dev);
3167         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3168         int idx;
3169         char tmpbuf[ETH_ALEN];
3170         u32 tempval;
3171         u32 __iomem *macptr = &regs->macstnaddr1;
3172
3173         macptr += num*2;
3174
3175         /* Now copy it into the mac registers backwards, cuz
3176          * little endian is silly
3177          */
3178         for (idx = 0; idx < ETH_ALEN; idx++)
3179                 tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3180
3181         gfar_write(macptr, *((u32 *) (tmpbuf)));
3182
3183         tempval = *((u32 *) (tmpbuf + 4));
3184
3185         gfar_write(macptr+1, tempval);
3186 }
3187
3188 /* GFAR error interrupt handler */
3189 static irqreturn_t gfar_error(int irq, void *grp_id)
3190 {
3191         struct gfar_priv_grp *gfargrp = grp_id;
3192         struct gfar __iomem *regs = gfargrp->regs;
3193         struct gfar_private *priv= gfargrp->priv;
3194         struct net_device *dev = priv->ndev;
3195
3196         /* Save ievent for future reference */
3197         u32 events = gfar_read(&regs->ievent);
3198
3199         /* Clear IEVENT */
3200         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3201
3202         /* Magic Packet is not an error. */
3203         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3204             (events & IEVENT_MAG))
3205                 events &= ~IEVENT_MAG;
3206
3207         /* Hmm... */
3208         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3209                 netdev_dbg(dev,
3210                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3211                            events, gfar_read(&regs->imask));
3212
3213         /* Update the error counters */
3214         if (events & IEVENT_TXE) {
3215                 dev->stats.tx_errors++;
3216
3217                 if (events & IEVENT_LC)
3218                         dev->stats.tx_window_errors++;
3219                 if (events & IEVENT_CRL)
3220                         dev->stats.tx_aborted_errors++;
3221                 if (events & IEVENT_XFUN) {
3222                         unsigned long flags;
3223
3224                         netif_dbg(priv, tx_err, dev,
3225                                   "TX FIFO underrun, packet dropped\n");
3226                         dev->stats.tx_dropped++;
3227                         priv->extra_stats.tx_underrun++;
3228
3229                         local_irq_save(flags);
3230                         lock_tx_qs(priv);
3231
3232                         /* Reactivate the Tx Queues */
3233                         gfar_write(&regs->tstat, gfargrp->tstat);
3234
3235                         unlock_tx_qs(priv);
3236                         local_irq_restore(flags);
3237                 }
3238                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3239         }
3240         if (events & IEVENT_BSY) {
3241                 dev->stats.rx_errors++;
3242                 priv->extra_stats.rx_bsy++;
3243
3244                 gfar_receive(irq, grp_id);
3245
3246                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3247                           gfar_read(&regs->rstat));
3248         }
3249         if (events & IEVENT_BABR) {
3250                 dev->stats.rx_errors++;
3251                 priv->extra_stats.rx_babr++;
3252
3253                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3254         }
3255         if (events & IEVENT_EBERR) {
3256                 priv->extra_stats.eberr++;
3257                 netif_dbg(priv, rx_err, dev, "bus error\n");
3258         }
3259         if (events & IEVENT_RXC)
3260                 netif_dbg(priv, rx_status, dev, "control frame\n");
3261
3262         if (events & IEVENT_BABT) {
3263                 priv->extra_stats.tx_babt++;
3264                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3265         }
3266         return IRQ_HANDLED;
3267 }
3268
3269 static struct of_device_id gfar_match[] =
3270 {
3271         {
3272                 .type = "network",
3273                 .compatible = "gianfar",
3274         },
3275         {
3276                 .compatible = "fsl,etsec2",
3277         },
3278         {},
3279 };
3280 MODULE_DEVICE_TABLE(of, gfar_match);
3281
3282 /* Structure for a device driver */
3283 static struct platform_driver gfar_driver = {
3284         .driver = {
3285                 .name = "fsl-gianfar",
3286                 .owner = THIS_MODULE,
3287                 .pm = GFAR_PM_OPS,
3288                 .of_match_table = gfar_match,
3289         },
3290         .probe = gfar_probe,
3291         .remove = gfar_remove,
3292 };
3293
3294 module_platform_driver(gfar_driver);