]> rtime.felk.cvut.cz Git - can-eth-gw-linux.git/blob - mm/huge_memory.c
mm, thp: allow fallback when pte_alloc_one() fails for huge pmd
[can-eth-gw-linux.git] / mm / huge_memory.c
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <asm/tlb.h>
21 #include <asm/pgalloc.h>
22 #include "internal.h"
23
24 /*
25  * By default transparent hugepage support is enabled for all mappings
26  * and khugepaged scans all mappings. Defrag is only invoked by
27  * khugepaged hugepage allocations and by page faults inside
28  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29  * allocations.
30  */
31 unsigned long transparent_hugepage_flags __read_mostly =
32 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33         (1<<TRANSPARENT_HUGEPAGE_FLAG)|
34 #endif
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36         (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37 #endif
38         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
39         (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40
41 /* default scan 8*512 pte (or vmas) every 30 second */
42 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43 static unsigned int khugepaged_pages_collapsed;
44 static unsigned int khugepaged_full_scans;
45 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46 /* during fragmentation poll the hugepage allocator once every minute */
47 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48 static struct task_struct *khugepaged_thread __read_mostly;
49 static DEFINE_MUTEX(khugepaged_mutex);
50 static DEFINE_SPINLOCK(khugepaged_mm_lock);
51 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52 /*
53  * default collapse hugepages if there is at least one pte mapped like
54  * it would have happened if the vma was large enough during page
55  * fault.
56  */
57 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58
59 static int khugepaged(void *none);
60 static int mm_slots_hash_init(void);
61 static int khugepaged_slab_init(void);
62 static void khugepaged_slab_free(void);
63
64 #define MM_SLOTS_HASH_HEADS 1024
65 static struct hlist_head *mm_slots_hash __read_mostly;
66 static struct kmem_cache *mm_slot_cache __read_mostly;
67
68 /**
69  * struct mm_slot - hash lookup from mm to mm_slot
70  * @hash: hash collision list
71  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72  * @mm: the mm that this information is valid for
73  */
74 struct mm_slot {
75         struct hlist_node hash;
76         struct list_head mm_node;
77         struct mm_struct *mm;
78 };
79
80 /**
81  * struct khugepaged_scan - cursor for scanning
82  * @mm_head: the head of the mm list to scan
83  * @mm_slot: the current mm_slot we are scanning
84  * @address: the next address inside that to be scanned
85  *
86  * There is only the one khugepaged_scan instance of this cursor structure.
87  */
88 struct khugepaged_scan {
89         struct list_head mm_head;
90         struct mm_slot *mm_slot;
91         unsigned long address;
92 };
93 static struct khugepaged_scan khugepaged_scan = {
94         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
95 };
96
97
98 static int set_recommended_min_free_kbytes(void)
99 {
100         struct zone *zone;
101         int nr_zones = 0;
102         unsigned long recommended_min;
103         extern int min_free_kbytes;
104
105         if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
106                       &transparent_hugepage_flags) &&
107             !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
108                       &transparent_hugepage_flags))
109                 return 0;
110
111         for_each_populated_zone(zone)
112                 nr_zones++;
113
114         /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
115         recommended_min = pageblock_nr_pages * nr_zones * 2;
116
117         /*
118          * Make sure that on average at least two pageblocks are almost free
119          * of another type, one for a migratetype to fall back to and a
120          * second to avoid subsequent fallbacks of other types There are 3
121          * MIGRATE_TYPES we care about.
122          */
123         recommended_min += pageblock_nr_pages * nr_zones *
124                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
125
126         /* don't ever allow to reserve more than 5% of the lowmem */
127         recommended_min = min(recommended_min,
128                               (unsigned long) nr_free_buffer_pages() / 20);
129         recommended_min <<= (PAGE_SHIFT-10);
130
131         if (recommended_min > min_free_kbytes)
132                 min_free_kbytes = recommended_min;
133         setup_per_zone_wmarks();
134         return 0;
135 }
136 late_initcall(set_recommended_min_free_kbytes);
137
138 static int start_khugepaged(void)
139 {
140         int err = 0;
141         if (khugepaged_enabled()) {
142                 int wakeup;
143                 if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
144                         err = -ENOMEM;
145                         goto out;
146                 }
147                 mutex_lock(&khugepaged_mutex);
148                 if (!khugepaged_thread)
149                         khugepaged_thread = kthread_run(khugepaged, NULL,
150                                                         "khugepaged");
151                 if (unlikely(IS_ERR(khugepaged_thread))) {
152                         printk(KERN_ERR
153                                "khugepaged: kthread_run(khugepaged) failed\n");
154                         err = PTR_ERR(khugepaged_thread);
155                         khugepaged_thread = NULL;
156                 }
157                 wakeup = !list_empty(&khugepaged_scan.mm_head);
158                 mutex_unlock(&khugepaged_mutex);
159                 if (wakeup)
160                         wake_up_interruptible(&khugepaged_wait);
161
162                 set_recommended_min_free_kbytes();
163         } else
164                 /* wakeup to exit */
165                 wake_up_interruptible(&khugepaged_wait);
166 out:
167         return err;
168 }
169
170 #ifdef CONFIG_SYSFS
171
172 static ssize_t double_flag_show(struct kobject *kobj,
173                                 struct kobj_attribute *attr, char *buf,
174                                 enum transparent_hugepage_flag enabled,
175                                 enum transparent_hugepage_flag req_madv)
176 {
177         if (test_bit(enabled, &transparent_hugepage_flags)) {
178                 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
179                 return sprintf(buf, "[always] madvise never\n");
180         } else if (test_bit(req_madv, &transparent_hugepage_flags))
181                 return sprintf(buf, "always [madvise] never\n");
182         else
183                 return sprintf(buf, "always madvise [never]\n");
184 }
185 static ssize_t double_flag_store(struct kobject *kobj,
186                                  struct kobj_attribute *attr,
187                                  const char *buf, size_t count,
188                                  enum transparent_hugepage_flag enabled,
189                                  enum transparent_hugepage_flag req_madv)
190 {
191         if (!memcmp("always", buf,
192                     min(sizeof("always")-1, count))) {
193                 set_bit(enabled, &transparent_hugepage_flags);
194                 clear_bit(req_madv, &transparent_hugepage_flags);
195         } else if (!memcmp("madvise", buf,
196                            min(sizeof("madvise")-1, count))) {
197                 clear_bit(enabled, &transparent_hugepage_flags);
198                 set_bit(req_madv, &transparent_hugepage_flags);
199         } else if (!memcmp("never", buf,
200                            min(sizeof("never")-1, count))) {
201                 clear_bit(enabled, &transparent_hugepage_flags);
202                 clear_bit(req_madv, &transparent_hugepage_flags);
203         } else
204                 return -EINVAL;
205
206         return count;
207 }
208
209 static ssize_t enabled_show(struct kobject *kobj,
210                             struct kobj_attribute *attr, char *buf)
211 {
212         return double_flag_show(kobj, attr, buf,
213                                 TRANSPARENT_HUGEPAGE_FLAG,
214                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
215 }
216 static ssize_t enabled_store(struct kobject *kobj,
217                              struct kobj_attribute *attr,
218                              const char *buf, size_t count)
219 {
220         ssize_t ret;
221
222         ret = double_flag_store(kobj, attr, buf, count,
223                                 TRANSPARENT_HUGEPAGE_FLAG,
224                                 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
225
226         if (ret > 0) {
227                 int err = start_khugepaged();
228                 if (err)
229                         ret = err;
230         }
231
232         if (ret > 0 &&
233             (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
234                       &transparent_hugepage_flags) ||
235              test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
236                       &transparent_hugepage_flags)))
237                 set_recommended_min_free_kbytes();
238
239         return ret;
240 }
241 static struct kobj_attribute enabled_attr =
242         __ATTR(enabled, 0644, enabled_show, enabled_store);
243
244 static ssize_t single_flag_show(struct kobject *kobj,
245                                 struct kobj_attribute *attr, char *buf,
246                                 enum transparent_hugepage_flag flag)
247 {
248         return sprintf(buf, "%d\n",
249                        !!test_bit(flag, &transparent_hugepage_flags));
250 }
251
252 static ssize_t single_flag_store(struct kobject *kobj,
253                                  struct kobj_attribute *attr,
254                                  const char *buf, size_t count,
255                                  enum transparent_hugepage_flag flag)
256 {
257         unsigned long value;
258         int ret;
259
260         ret = kstrtoul(buf, 10, &value);
261         if (ret < 0)
262                 return ret;
263         if (value > 1)
264                 return -EINVAL;
265
266         if (value)
267                 set_bit(flag, &transparent_hugepage_flags);
268         else
269                 clear_bit(flag, &transparent_hugepage_flags);
270
271         return count;
272 }
273
274 /*
275  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
276  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
277  * memory just to allocate one more hugepage.
278  */
279 static ssize_t defrag_show(struct kobject *kobj,
280                            struct kobj_attribute *attr, char *buf)
281 {
282         return double_flag_show(kobj, attr, buf,
283                                 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
284                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
285 }
286 static ssize_t defrag_store(struct kobject *kobj,
287                             struct kobj_attribute *attr,
288                             const char *buf, size_t count)
289 {
290         return double_flag_store(kobj, attr, buf, count,
291                                  TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
292                                  TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
293 }
294 static struct kobj_attribute defrag_attr =
295         __ATTR(defrag, 0644, defrag_show, defrag_store);
296
297 #ifdef CONFIG_DEBUG_VM
298 static ssize_t debug_cow_show(struct kobject *kobj,
299                                 struct kobj_attribute *attr, char *buf)
300 {
301         return single_flag_show(kobj, attr, buf,
302                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
303 }
304 static ssize_t debug_cow_store(struct kobject *kobj,
305                                struct kobj_attribute *attr,
306                                const char *buf, size_t count)
307 {
308         return single_flag_store(kobj, attr, buf, count,
309                                  TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
310 }
311 static struct kobj_attribute debug_cow_attr =
312         __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
313 #endif /* CONFIG_DEBUG_VM */
314
315 static struct attribute *hugepage_attr[] = {
316         &enabled_attr.attr,
317         &defrag_attr.attr,
318 #ifdef CONFIG_DEBUG_VM
319         &debug_cow_attr.attr,
320 #endif
321         NULL,
322 };
323
324 static struct attribute_group hugepage_attr_group = {
325         .attrs = hugepage_attr,
326 };
327
328 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
329                                          struct kobj_attribute *attr,
330                                          char *buf)
331 {
332         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
333 }
334
335 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
336                                           struct kobj_attribute *attr,
337                                           const char *buf, size_t count)
338 {
339         unsigned long msecs;
340         int err;
341
342         err = strict_strtoul(buf, 10, &msecs);
343         if (err || msecs > UINT_MAX)
344                 return -EINVAL;
345
346         khugepaged_scan_sleep_millisecs = msecs;
347         wake_up_interruptible(&khugepaged_wait);
348
349         return count;
350 }
351 static struct kobj_attribute scan_sleep_millisecs_attr =
352         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
353                scan_sleep_millisecs_store);
354
355 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
356                                           struct kobj_attribute *attr,
357                                           char *buf)
358 {
359         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
360 }
361
362 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
363                                            struct kobj_attribute *attr,
364                                            const char *buf, size_t count)
365 {
366         unsigned long msecs;
367         int err;
368
369         err = strict_strtoul(buf, 10, &msecs);
370         if (err || msecs > UINT_MAX)
371                 return -EINVAL;
372
373         khugepaged_alloc_sleep_millisecs = msecs;
374         wake_up_interruptible(&khugepaged_wait);
375
376         return count;
377 }
378 static struct kobj_attribute alloc_sleep_millisecs_attr =
379         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
380                alloc_sleep_millisecs_store);
381
382 static ssize_t pages_to_scan_show(struct kobject *kobj,
383                                   struct kobj_attribute *attr,
384                                   char *buf)
385 {
386         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
387 }
388 static ssize_t pages_to_scan_store(struct kobject *kobj,
389                                    struct kobj_attribute *attr,
390                                    const char *buf, size_t count)
391 {
392         int err;
393         unsigned long pages;
394
395         err = strict_strtoul(buf, 10, &pages);
396         if (err || !pages || pages > UINT_MAX)
397                 return -EINVAL;
398
399         khugepaged_pages_to_scan = pages;
400
401         return count;
402 }
403 static struct kobj_attribute pages_to_scan_attr =
404         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
405                pages_to_scan_store);
406
407 static ssize_t pages_collapsed_show(struct kobject *kobj,
408                                     struct kobj_attribute *attr,
409                                     char *buf)
410 {
411         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
412 }
413 static struct kobj_attribute pages_collapsed_attr =
414         __ATTR_RO(pages_collapsed);
415
416 static ssize_t full_scans_show(struct kobject *kobj,
417                                struct kobj_attribute *attr,
418                                char *buf)
419 {
420         return sprintf(buf, "%u\n", khugepaged_full_scans);
421 }
422 static struct kobj_attribute full_scans_attr =
423         __ATTR_RO(full_scans);
424
425 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
426                                       struct kobj_attribute *attr, char *buf)
427 {
428         return single_flag_show(kobj, attr, buf,
429                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
430 }
431 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
432                                        struct kobj_attribute *attr,
433                                        const char *buf, size_t count)
434 {
435         return single_flag_store(kobj, attr, buf, count,
436                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
437 }
438 static struct kobj_attribute khugepaged_defrag_attr =
439         __ATTR(defrag, 0644, khugepaged_defrag_show,
440                khugepaged_defrag_store);
441
442 /*
443  * max_ptes_none controls if khugepaged should collapse hugepages over
444  * any unmapped ptes in turn potentially increasing the memory
445  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
446  * reduce the available free memory in the system as it
447  * runs. Increasing max_ptes_none will instead potentially reduce the
448  * free memory in the system during the khugepaged scan.
449  */
450 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
451                                              struct kobj_attribute *attr,
452                                              char *buf)
453 {
454         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
455 }
456 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
457                                               struct kobj_attribute *attr,
458                                               const char *buf, size_t count)
459 {
460         int err;
461         unsigned long max_ptes_none;
462
463         err = strict_strtoul(buf, 10, &max_ptes_none);
464         if (err || max_ptes_none > HPAGE_PMD_NR-1)
465                 return -EINVAL;
466
467         khugepaged_max_ptes_none = max_ptes_none;
468
469         return count;
470 }
471 static struct kobj_attribute khugepaged_max_ptes_none_attr =
472         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
473                khugepaged_max_ptes_none_store);
474
475 static struct attribute *khugepaged_attr[] = {
476         &khugepaged_defrag_attr.attr,
477         &khugepaged_max_ptes_none_attr.attr,
478         &pages_to_scan_attr.attr,
479         &pages_collapsed_attr.attr,
480         &full_scans_attr.attr,
481         &scan_sleep_millisecs_attr.attr,
482         &alloc_sleep_millisecs_attr.attr,
483         NULL,
484 };
485
486 static struct attribute_group khugepaged_attr_group = {
487         .attrs = khugepaged_attr,
488         .name = "khugepaged",
489 };
490
491 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
492 {
493         int err;
494
495         *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
496         if (unlikely(!*hugepage_kobj)) {
497                 printk(KERN_ERR "hugepage: failed kobject create\n");
498                 return -ENOMEM;
499         }
500
501         err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
502         if (err) {
503                 printk(KERN_ERR "hugepage: failed register hugeage group\n");
504                 goto delete_obj;
505         }
506
507         err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
508         if (err) {
509                 printk(KERN_ERR "hugepage: failed register hugeage group\n");
510                 goto remove_hp_group;
511         }
512
513         return 0;
514
515 remove_hp_group:
516         sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
517 delete_obj:
518         kobject_put(*hugepage_kobj);
519         return err;
520 }
521
522 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
523 {
524         sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
525         sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
526         kobject_put(hugepage_kobj);
527 }
528 #else
529 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
530 {
531         return 0;
532 }
533
534 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
535 {
536 }
537 #endif /* CONFIG_SYSFS */
538
539 static int __init hugepage_init(void)
540 {
541         int err;
542         struct kobject *hugepage_kobj;
543
544         if (!has_transparent_hugepage()) {
545                 transparent_hugepage_flags = 0;
546                 return -EINVAL;
547         }
548
549         err = hugepage_init_sysfs(&hugepage_kobj);
550         if (err)
551                 return err;
552
553         err = khugepaged_slab_init();
554         if (err)
555                 goto out;
556
557         err = mm_slots_hash_init();
558         if (err) {
559                 khugepaged_slab_free();
560                 goto out;
561         }
562
563         /*
564          * By default disable transparent hugepages on smaller systems,
565          * where the extra memory used could hurt more than TLB overhead
566          * is likely to save.  The admin can still enable it through /sys.
567          */
568         if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
569                 transparent_hugepage_flags = 0;
570
571         start_khugepaged();
572
573         set_recommended_min_free_kbytes();
574
575         return 0;
576 out:
577         hugepage_exit_sysfs(hugepage_kobj);
578         return err;
579 }
580 module_init(hugepage_init)
581
582 static int __init setup_transparent_hugepage(char *str)
583 {
584         int ret = 0;
585         if (!str)
586                 goto out;
587         if (!strcmp(str, "always")) {
588                 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
589                         &transparent_hugepage_flags);
590                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
591                           &transparent_hugepage_flags);
592                 ret = 1;
593         } else if (!strcmp(str, "madvise")) {
594                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
595                           &transparent_hugepage_flags);
596                 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
597                         &transparent_hugepage_flags);
598                 ret = 1;
599         } else if (!strcmp(str, "never")) {
600                 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
601                           &transparent_hugepage_flags);
602                 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
603                           &transparent_hugepage_flags);
604                 ret = 1;
605         }
606 out:
607         if (!ret)
608                 printk(KERN_WARNING
609                        "transparent_hugepage= cannot parse, ignored\n");
610         return ret;
611 }
612 __setup("transparent_hugepage=", setup_transparent_hugepage);
613
614 static void prepare_pmd_huge_pte(pgtable_t pgtable,
615                                  struct mm_struct *mm)
616 {
617         assert_spin_locked(&mm->page_table_lock);
618
619         /* FIFO */
620         if (!mm->pmd_huge_pte)
621                 INIT_LIST_HEAD(&pgtable->lru);
622         else
623                 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
624         mm->pmd_huge_pte = pgtable;
625 }
626
627 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
628 {
629         if (likely(vma->vm_flags & VM_WRITE))
630                 pmd = pmd_mkwrite(pmd);
631         return pmd;
632 }
633
634 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
635                                         struct vm_area_struct *vma,
636                                         unsigned long haddr, pmd_t *pmd,
637                                         struct page *page)
638 {
639         pgtable_t pgtable;
640
641         VM_BUG_ON(!PageCompound(page));
642         pgtable = pte_alloc_one(mm, haddr);
643         if (unlikely(!pgtable))
644                 return VM_FAULT_OOM;
645
646         clear_huge_page(page, haddr, HPAGE_PMD_NR);
647         __SetPageUptodate(page);
648
649         spin_lock(&mm->page_table_lock);
650         if (unlikely(!pmd_none(*pmd))) {
651                 spin_unlock(&mm->page_table_lock);
652                 mem_cgroup_uncharge_page(page);
653                 put_page(page);
654                 pte_free(mm, pgtable);
655         } else {
656                 pmd_t entry;
657                 entry = mk_pmd(page, vma->vm_page_prot);
658                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
659                 entry = pmd_mkhuge(entry);
660                 /*
661                  * The spinlocking to take the lru_lock inside
662                  * page_add_new_anon_rmap() acts as a full memory
663                  * barrier to be sure clear_huge_page writes become
664                  * visible after the set_pmd_at() write.
665                  */
666                 page_add_new_anon_rmap(page, vma, haddr);
667                 set_pmd_at(mm, haddr, pmd, entry);
668                 prepare_pmd_huge_pte(pgtable, mm);
669                 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
670                 mm->nr_ptes++;
671                 spin_unlock(&mm->page_table_lock);
672         }
673
674         return 0;
675 }
676
677 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
678 {
679         return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
680 }
681
682 static inline struct page *alloc_hugepage_vma(int defrag,
683                                               struct vm_area_struct *vma,
684                                               unsigned long haddr, int nd,
685                                               gfp_t extra_gfp)
686 {
687         return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
688                                HPAGE_PMD_ORDER, vma, haddr, nd);
689 }
690
691 #ifndef CONFIG_NUMA
692 static inline struct page *alloc_hugepage(int defrag)
693 {
694         return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
695                            HPAGE_PMD_ORDER);
696 }
697 #endif
698
699 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
700                                unsigned long address, pmd_t *pmd,
701                                unsigned int flags)
702 {
703         struct page *page;
704         unsigned long haddr = address & HPAGE_PMD_MASK;
705         pte_t *pte;
706
707         if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
708                 if (unlikely(anon_vma_prepare(vma)))
709                         return VM_FAULT_OOM;
710                 if (unlikely(khugepaged_enter(vma)))
711                         return VM_FAULT_OOM;
712                 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
713                                           vma, haddr, numa_node_id(), 0);
714                 if (unlikely(!page)) {
715                         count_vm_event(THP_FAULT_FALLBACK);
716                         goto out;
717                 }
718                 count_vm_event(THP_FAULT_ALLOC);
719                 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
720                         put_page(page);
721                         goto out;
722                 }
723                 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
724                                                           page))) {
725                         mem_cgroup_uncharge_page(page);
726                         put_page(page);
727                         goto out;
728                 }
729
730                 return 0;
731         }
732 out:
733         /*
734          * Use __pte_alloc instead of pte_alloc_map, because we can't
735          * run pte_offset_map on the pmd, if an huge pmd could
736          * materialize from under us from a different thread.
737          */
738         if (unlikely(__pte_alloc(mm, vma, pmd, address)))
739                 return VM_FAULT_OOM;
740         /* if an huge pmd materialized from under us just retry later */
741         if (unlikely(pmd_trans_huge(*pmd)))
742                 return 0;
743         /*
744          * A regular pmd is established and it can't morph into a huge pmd
745          * from under us anymore at this point because we hold the mmap_sem
746          * read mode and khugepaged takes it in write mode. So now it's
747          * safe to run pte_offset_map().
748          */
749         pte = pte_offset_map(pmd, address);
750         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
751 }
752
753 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
754                   pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
755                   struct vm_area_struct *vma)
756 {
757         struct page *src_page;
758         pmd_t pmd;
759         pgtable_t pgtable;
760         int ret;
761
762         ret = -ENOMEM;
763         pgtable = pte_alloc_one(dst_mm, addr);
764         if (unlikely(!pgtable))
765                 goto out;
766
767         spin_lock(&dst_mm->page_table_lock);
768         spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
769
770         ret = -EAGAIN;
771         pmd = *src_pmd;
772         if (unlikely(!pmd_trans_huge(pmd))) {
773                 pte_free(dst_mm, pgtable);
774                 goto out_unlock;
775         }
776         if (unlikely(pmd_trans_splitting(pmd))) {
777                 /* split huge page running from under us */
778                 spin_unlock(&src_mm->page_table_lock);
779                 spin_unlock(&dst_mm->page_table_lock);
780                 pte_free(dst_mm, pgtable);
781
782                 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
783                 goto out;
784         }
785         src_page = pmd_page(pmd);
786         VM_BUG_ON(!PageHead(src_page));
787         get_page(src_page);
788         page_dup_rmap(src_page);
789         add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
790
791         pmdp_set_wrprotect(src_mm, addr, src_pmd);
792         pmd = pmd_mkold(pmd_wrprotect(pmd));
793         set_pmd_at(dst_mm, addr, dst_pmd, pmd);
794         prepare_pmd_huge_pte(pgtable, dst_mm);
795         dst_mm->nr_ptes++;
796
797         ret = 0;
798 out_unlock:
799         spin_unlock(&src_mm->page_table_lock);
800         spin_unlock(&dst_mm->page_table_lock);
801 out:
802         return ret;
803 }
804
805 /* no "address" argument so destroys page coloring of some arch */
806 pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
807 {
808         pgtable_t pgtable;
809
810         assert_spin_locked(&mm->page_table_lock);
811
812         /* FIFO */
813         pgtable = mm->pmd_huge_pte;
814         if (list_empty(&pgtable->lru))
815                 mm->pmd_huge_pte = NULL;
816         else {
817                 mm->pmd_huge_pte = list_entry(pgtable->lru.next,
818                                               struct page, lru);
819                 list_del(&pgtable->lru);
820         }
821         return pgtable;
822 }
823
824 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
825                                         struct vm_area_struct *vma,
826                                         unsigned long address,
827                                         pmd_t *pmd, pmd_t orig_pmd,
828                                         struct page *page,
829                                         unsigned long haddr)
830 {
831         pgtable_t pgtable;
832         pmd_t _pmd;
833         int ret = 0, i;
834         struct page **pages;
835
836         pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
837                         GFP_KERNEL);
838         if (unlikely(!pages)) {
839                 ret |= VM_FAULT_OOM;
840                 goto out;
841         }
842
843         for (i = 0; i < HPAGE_PMD_NR; i++) {
844                 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
845                                                __GFP_OTHER_NODE,
846                                                vma, address, page_to_nid(page));
847                 if (unlikely(!pages[i] ||
848                              mem_cgroup_newpage_charge(pages[i], mm,
849                                                        GFP_KERNEL))) {
850                         if (pages[i])
851                                 put_page(pages[i]);
852                         mem_cgroup_uncharge_start();
853                         while (--i >= 0) {
854                                 mem_cgroup_uncharge_page(pages[i]);
855                                 put_page(pages[i]);
856                         }
857                         mem_cgroup_uncharge_end();
858                         kfree(pages);
859                         ret |= VM_FAULT_OOM;
860                         goto out;
861                 }
862         }
863
864         for (i = 0; i < HPAGE_PMD_NR; i++) {
865                 copy_user_highpage(pages[i], page + i,
866                                    haddr + PAGE_SIZE * i, vma);
867                 __SetPageUptodate(pages[i]);
868                 cond_resched();
869         }
870
871         spin_lock(&mm->page_table_lock);
872         if (unlikely(!pmd_same(*pmd, orig_pmd)))
873                 goto out_free_pages;
874         VM_BUG_ON(!PageHead(page));
875
876         pmdp_clear_flush_notify(vma, haddr, pmd);
877         /* leave pmd empty until pte is filled */
878
879         pgtable = get_pmd_huge_pte(mm);
880         pmd_populate(mm, &_pmd, pgtable);
881
882         for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
883                 pte_t *pte, entry;
884                 entry = mk_pte(pages[i], vma->vm_page_prot);
885                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
886                 page_add_new_anon_rmap(pages[i], vma, haddr);
887                 pte = pte_offset_map(&_pmd, haddr);
888                 VM_BUG_ON(!pte_none(*pte));
889                 set_pte_at(mm, haddr, pte, entry);
890                 pte_unmap(pte);
891         }
892         kfree(pages);
893
894         smp_wmb(); /* make pte visible before pmd */
895         pmd_populate(mm, pmd, pgtable);
896         page_remove_rmap(page);
897         spin_unlock(&mm->page_table_lock);
898
899         ret |= VM_FAULT_WRITE;
900         put_page(page);
901
902 out:
903         return ret;
904
905 out_free_pages:
906         spin_unlock(&mm->page_table_lock);
907         mem_cgroup_uncharge_start();
908         for (i = 0; i < HPAGE_PMD_NR; i++) {
909                 mem_cgroup_uncharge_page(pages[i]);
910                 put_page(pages[i]);
911         }
912         mem_cgroup_uncharge_end();
913         kfree(pages);
914         goto out;
915 }
916
917 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
918                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
919 {
920         int ret = 0;
921         struct page *page, *new_page;
922         unsigned long haddr;
923
924         VM_BUG_ON(!vma->anon_vma);
925         spin_lock(&mm->page_table_lock);
926         if (unlikely(!pmd_same(*pmd, orig_pmd)))
927                 goto out_unlock;
928
929         page = pmd_page(orig_pmd);
930         VM_BUG_ON(!PageCompound(page) || !PageHead(page));
931         haddr = address & HPAGE_PMD_MASK;
932         if (page_mapcount(page) == 1) {
933                 pmd_t entry;
934                 entry = pmd_mkyoung(orig_pmd);
935                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
936                 if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
937                         update_mmu_cache(vma, address, entry);
938                 ret |= VM_FAULT_WRITE;
939                 goto out_unlock;
940         }
941         get_page(page);
942         spin_unlock(&mm->page_table_lock);
943
944         if (transparent_hugepage_enabled(vma) &&
945             !transparent_hugepage_debug_cow())
946                 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
947                                               vma, haddr, numa_node_id(), 0);
948         else
949                 new_page = NULL;
950
951         if (unlikely(!new_page)) {
952                 count_vm_event(THP_FAULT_FALLBACK);
953                 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
954                                                    pmd, orig_pmd, page, haddr);
955                 put_page(page);
956                 goto out;
957         }
958         count_vm_event(THP_FAULT_ALLOC);
959
960         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
961                 put_page(new_page);
962                 put_page(page);
963                 ret |= VM_FAULT_OOM;
964                 goto out;
965         }
966
967         copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
968         __SetPageUptodate(new_page);
969
970         spin_lock(&mm->page_table_lock);
971         put_page(page);
972         if (unlikely(!pmd_same(*pmd, orig_pmd))) {
973                 mem_cgroup_uncharge_page(new_page);
974                 put_page(new_page);
975         } else {
976                 pmd_t entry;
977                 VM_BUG_ON(!PageHead(page));
978                 entry = mk_pmd(new_page, vma->vm_page_prot);
979                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
980                 entry = pmd_mkhuge(entry);
981                 pmdp_clear_flush_notify(vma, haddr, pmd);
982                 page_add_new_anon_rmap(new_page, vma, haddr);
983                 set_pmd_at(mm, haddr, pmd, entry);
984                 update_mmu_cache(vma, address, entry);
985                 page_remove_rmap(page);
986                 put_page(page);
987                 ret |= VM_FAULT_WRITE;
988         }
989 out_unlock:
990         spin_unlock(&mm->page_table_lock);
991 out:
992         return ret;
993 }
994
995 struct page *follow_trans_huge_pmd(struct mm_struct *mm,
996                                    unsigned long addr,
997                                    pmd_t *pmd,
998                                    unsigned int flags)
999 {
1000         struct page *page = NULL;
1001
1002         assert_spin_locked(&mm->page_table_lock);
1003
1004         if (flags & FOLL_WRITE && !pmd_write(*pmd))
1005                 goto out;
1006
1007         page = pmd_page(*pmd);
1008         VM_BUG_ON(!PageHead(page));
1009         if (flags & FOLL_TOUCH) {
1010                 pmd_t _pmd;
1011                 /*
1012                  * We should set the dirty bit only for FOLL_WRITE but
1013                  * for now the dirty bit in the pmd is meaningless.
1014                  * And if the dirty bit will become meaningful and
1015                  * we'll only set it with FOLL_WRITE, an atomic
1016                  * set_bit will be required on the pmd to set the
1017                  * young bit, instead of the current set_pmd_at.
1018                  */
1019                 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1020                 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1021         }
1022         page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1023         VM_BUG_ON(!PageCompound(page));
1024         if (flags & FOLL_GET)
1025                 get_page_foll(page);
1026
1027 out:
1028         return page;
1029 }
1030
1031 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1032                  pmd_t *pmd, unsigned long addr)
1033 {
1034         int ret = 0;
1035
1036         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1037                 struct page *page;
1038                 pgtable_t pgtable;
1039                 pgtable = get_pmd_huge_pte(tlb->mm);
1040                 page = pmd_page(*pmd);
1041                 pmd_clear(pmd);
1042                 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1043                 page_remove_rmap(page);
1044                 VM_BUG_ON(page_mapcount(page) < 0);
1045                 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1046                 VM_BUG_ON(!PageHead(page));
1047                 tlb->mm->nr_ptes--;
1048                 spin_unlock(&tlb->mm->page_table_lock);
1049                 tlb_remove_page(tlb, page);
1050                 pte_free(tlb->mm, pgtable);
1051                 ret = 1;
1052         }
1053         return ret;
1054 }
1055
1056 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1057                 unsigned long addr, unsigned long end,
1058                 unsigned char *vec)
1059 {
1060         int ret = 0;
1061
1062         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1063                 /*
1064                  * All logical pages in the range are present
1065                  * if backed by a huge page.
1066                  */
1067                 spin_unlock(&vma->vm_mm->page_table_lock);
1068                 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1069                 ret = 1;
1070         }
1071
1072         return ret;
1073 }
1074
1075 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1076                   unsigned long old_addr,
1077                   unsigned long new_addr, unsigned long old_end,
1078                   pmd_t *old_pmd, pmd_t *new_pmd)
1079 {
1080         int ret = 0;
1081         pmd_t pmd;
1082
1083         struct mm_struct *mm = vma->vm_mm;
1084
1085         if ((old_addr & ~HPAGE_PMD_MASK) ||
1086             (new_addr & ~HPAGE_PMD_MASK) ||
1087             old_end - old_addr < HPAGE_PMD_SIZE ||
1088             (new_vma->vm_flags & VM_NOHUGEPAGE))
1089                 goto out;
1090
1091         /*
1092          * The destination pmd shouldn't be established, free_pgtables()
1093          * should have release it.
1094          */
1095         if (WARN_ON(!pmd_none(*new_pmd))) {
1096                 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1097                 goto out;
1098         }
1099
1100         ret = __pmd_trans_huge_lock(old_pmd, vma);
1101         if (ret == 1) {
1102                 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1103                 VM_BUG_ON(!pmd_none(*new_pmd));
1104                 set_pmd_at(mm, new_addr, new_pmd, pmd);
1105                 spin_unlock(&mm->page_table_lock);
1106         }
1107 out:
1108         return ret;
1109 }
1110
1111 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1112                 unsigned long addr, pgprot_t newprot)
1113 {
1114         struct mm_struct *mm = vma->vm_mm;
1115         int ret = 0;
1116
1117         if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1118                 pmd_t entry;
1119                 entry = pmdp_get_and_clear(mm, addr, pmd);
1120                 entry = pmd_modify(entry, newprot);
1121                 set_pmd_at(mm, addr, pmd, entry);
1122                 spin_unlock(&vma->vm_mm->page_table_lock);
1123                 ret = 1;
1124         }
1125
1126         return ret;
1127 }
1128
1129 /*
1130  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1131  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1132  *
1133  * Note that if it returns 1, this routine returns without unlocking page
1134  * table locks. So callers must unlock them.
1135  */
1136 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1137 {
1138         spin_lock(&vma->vm_mm->page_table_lock);
1139         if (likely(pmd_trans_huge(*pmd))) {
1140                 if (unlikely(pmd_trans_splitting(*pmd))) {
1141                         spin_unlock(&vma->vm_mm->page_table_lock);
1142                         wait_split_huge_page(vma->anon_vma, pmd);
1143                         return -1;
1144                 } else {
1145                         /* Thp mapped by 'pmd' is stable, so we can
1146                          * handle it as it is. */
1147                         return 1;
1148                 }
1149         }
1150         spin_unlock(&vma->vm_mm->page_table_lock);
1151         return 0;
1152 }
1153
1154 pmd_t *page_check_address_pmd(struct page *page,
1155                               struct mm_struct *mm,
1156                               unsigned long address,
1157                               enum page_check_address_pmd_flag flag)
1158 {
1159         pgd_t *pgd;
1160         pud_t *pud;
1161         pmd_t *pmd, *ret = NULL;
1162
1163         if (address & ~HPAGE_PMD_MASK)
1164                 goto out;
1165
1166         pgd = pgd_offset(mm, address);
1167         if (!pgd_present(*pgd))
1168                 goto out;
1169
1170         pud = pud_offset(pgd, address);
1171         if (!pud_present(*pud))
1172                 goto out;
1173
1174         pmd = pmd_offset(pud, address);
1175         if (pmd_none(*pmd))
1176                 goto out;
1177         if (pmd_page(*pmd) != page)
1178                 goto out;
1179         /*
1180          * split_vma() may create temporary aliased mappings. There is
1181          * no risk as long as all huge pmd are found and have their
1182          * splitting bit set before __split_huge_page_refcount
1183          * runs. Finding the same huge pmd more than once during the
1184          * same rmap walk is not a problem.
1185          */
1186         if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1187             pmd_trans_splitting(*pmd))
1188                 goto out;
1189         if (pmd_trans_huge(*pmd)) {
1190                 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1191                           !pmd_trans_splitting(*pmd));
1192                 ret = pmd;
1193         }
1194 out:
1195         return ret;
1196 }
1197
1198 static int __split_huge_page_splitting(struct page *page,
1199                                        struct vm_area_struct *vma,
1200                                        unsigned long address)
1201 {
1202         struct mm_struct *mm = vma->vm_mm;
1203         pmd_t *pmd;
1204         int ret = 0;
1205
1206         spin_lock(&mm->page_table_lock);
1207         pmd = page_check_address_pmd(page, mm, address,
1208                                      PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1209         if (pmd) {
1210                 /*
1211                  * We can't temporarily set the pmd to null in order
1212                  * to split it, the pmd must remain marked huge at all
1213                  * times or the VM won't take the pmd_trans_huge paths
1214                  * and it won't wait on the anon_vma->root->mutex to
1215                  * serialize against split_huge_page*.
1216                  */
1217                 pmdp_splitting_flush_notify(vma, address, pmd);
1218                 ret = 1;
1219         }
1220         spin_unlock(&mm->page_table_lock);
1221
1222         return ret;
1223 }
1224
1225 static void __split_huge_page_refcount(struct page *page)
1226 {
1227         int i;
1228         struct zone *zone = page_zone(page);
1229         int tail_count = 0;
1230
1231         /* prevent PageLRU to go away from under us, and freeze lru stats */
1232         spin_lock_irq(&zone->lru_lock);
1233         compound_lock(page);
1234         /* complete memcg works before add pages to LRU */
1235         mem_cgroup_split_huge_fixup(page);
1236
1237         for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1238                 struct page *page_tail = page + i;
1239
1240                 /* tail_page->_mapcount cannot change */
1241                 BUG_ON(page_mapcount(page_tail) < 0);
1242                 tail_count += page_mapcount(page_tail);
1243                 /* check for overflow */
1244                 BUG_ON(tail_count < 0);
1245                 BUG_ON(atomic_read(&page_tail->_count) != 0);
1246                 /*
1247                  * tail_page->_count is zero and not changing from
1248                  * under us. But get_page_unless_zero() may be running
1249                  * from under us on the tail_page. If we used
1250                  * atomic_set() below instead of atomic_add(), we
1251                  * would then run atomic_set() concurrently with
1252                  * get_page_unless_zero(), and atomic_set() is
1253                  * implemented in C not using locked ops. spin_unlock
1254                  * on x86 sometime uses locked ops because of PPro
1255                  * errata 66, 92, so unless somebody can guarantee
1256                  * atomic_set() here would be safe on all archs (and
1257                  * not only on x86), it's safer to use atomic_add().
1258                  */
1259                 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1260                            &page_tail->_count);
1261
1262                 /* after clearing PageTail the gup refcount can be released */
1263                 smp_mb();
1264
1265                 /*
1266                  * retain hwpoison flag of the poisoned tail page:
1267                  *   fix for the unsuitable process killed on Guest Machine(KVM)
1268                  *   by the memory-failure.
1269                  */
1270                 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1271                 page_tail->flags |= (page->flags &
1272                                      ((1L << PG_referenced) |
1273                                       (1L << PG_swapbacked) |
1274                                       (1L << PG_mlocked) |
1275                                       (1L << PG_uptodate)));
1276                 page_tail->flags |= (1L << PG_dirty);
1277
1278                 /* clear PageTail before overwriting first_page */
1279                 smp_wmb();
1280
1281                 /*
1282                  * __split_huge_page_splitting() already set the
1283                  * splitting bit in all pmd that could map this
1284                  * hugepage, that will ensure no CPU can alter the
1285                  * mapcount on the head page. The mapcount is only
1286                  * accounted in the head page and it has to be
1287                  * transferred to all tail pages in the below code. So
1288                  * for this code to be safe, the split the mapcount
1289                  * can't change. But that doesn't mean userland can't
1290                  * keep changing and reading the page contents while
1291                  * we transfer the mapcount, so the pmd splitting
1292                  * status is achieved setting a reserved bit in the
1293                  * pmd, not by clearing the present bit.
1294                 */
1295                 page_tail->_mapcount = page->_mapcount;
1296
1297                 BUG_ON(page_tail->mapping);
1298                 page_tail->mapping = page->mapping;
1299
1300                 page_tail->index = page->index + i;
1301
1302                 BUG_ON(!PageAnon(page_tail));
1303                 BUG_ON(!PageUptodate(page_tail));
1304                 BUG_ON(!PageDirty(page_tail));
1305                 BUG_ON(!PageSwapBacked(page_tail));
1306
1307
1308                 lru_add_page_tail(zone, page, page_tail);
1309         }
1310         atomic_sub(tail_count, &page->_count);
1311         BUG_ON(atomic_read(&page->_count) <= 0);
1312
1313         __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1314         __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1315
1316         ClearPageCompound(page);
1317         compound_unlock(page);
1318         spin_unlock_irq(&zone->lru_lock);
1319
1320         for (i = 1; i < HPAGE_PMD_NR; i++) {
1321                 struct page *page_tail = page + i;
1322                 BUG_ON(page_count(page_tail) <= 0);
1323                 /*
1324                  * Tail pages may be freed if there wasn't any mapping
1325                  * like if add_to_swap() is running on a lru page that
1326                  * had its mapping zapped. And freeing these pages
1327                  * requires taking the lru_lock so we do the put_page
1328                  * of the tail pages after the split is complete.
1329                  */
1330                 put_page(page_tail);
1331         }
1332
1333         /*
1334          * Only the head page (now become a regular page) is required
1335          * to be pinned by the caller.
1336          */
1337         BUG_ON(page_count(page) <= 0);
1338 }
1339
1340 static int __split_huge_page_map(struct page *page,
1341                                  struct vm_area_struct *vma,
1342                                  unsigned long address)
1343 {
1344         struct mm_struct *mm = vma->vm_mm;
1345         pmd_t *pmd, _pmd;
1346         int ret = 0, i;
1347         pgtable_t pgtable;
1348         unsigned long haddr;
1349
1350         spin_lock(&mm->page_table_lock);
1351         pmd = page_check_address_pmd(page, mm, address,
1352                                      PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1353         if (pmd) {
1354                 pgtable = get_pmd_huge_pte(mm);
1355                 pmd_populate(mm, &_pmd, pgtable);
1356
1357                 for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1358                      i++, haddr += PAGE_SIZE) {
1359                         pte_t *pte, entry;
1360                         BUG_ON(PageCompound(page+i));
1361                         entry = mk_pte(page + i, vma->vm_page_prot);
1362                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1363                         if (!pmd_write(*pmd))
1364                                 entry = pte_wrprotect(entry);
1365                         else
1366                                 BUG_ON(page_mapcount(page) != 1);
1367                         if (!pmd_young(*pmd))
1368                                 entry = pte_mkold(entry);
1369                         pte = pte_offset_map(&_pmd, haddr);
1370                         BUG_ON(!pte_none(*pte));
1371                         set_pte_at(mm, haddr, pte, entry);
1372                         pte_unmap(pte);
1373                 }
1374
1375                 smp_wmb(); /* make pte visible before pmd */
1376                 /*
1377                  * Up to this point the pmd is present and huge and
1378                  * userland has the whole access to the hugepage
1379                  * during the split (which happens in place). If we
1380                  * overwrite the pmd with the not-huge version
1381                  * pointing to the pte here (which of course we could
1382                  * if all CPUs were bug free), userland could trigger
1383                  * a small page size TLB miss on the small sized TLB
1384                  * while the hugepage TLB entry is still established
1385                  * in the huge TLB. Some CPU doesn't like that. See
1386                  * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1387                  * Erratum 383 on page 93. Intel should be safe but is
1388                  * also warns that it's only safe if the permission
1389                  * and cache attributes of the two entries loaded in
1390                  * the two TLB is identical (which should be the case
1391                  * here). But it is generally safer to never allow
1392                  * small and huge TLB entries for the same virtual
1393                  * address to be loaded simultaneously. So instead of
1394                  * doing "pmd_populate(); flush_tlb_range();" we first
1395                  * mark the current pmd notpresent (atomically because
1396                  * here the pmd_trans_huge and pmd_trans_splitting
1397                  * must remain set at all times on the pmd until the
1398                  * split is complete for this pmd), then we flush the
1399                  * SMP TLB and finally we write the non-huge version
1400                  * of the pmd entry with pmd_populate.
1401                  */
1402                 set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1403                 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1404                 pmd_populate(mm, pmd, pgtable);
1405                 ret = 1;
1406         }
1407         spin_unlock(&mm->page_table_lock);
1408
1409         return ret;
1410 }
1411
1412 /* must be called with anon_vma->root->mutex hold */
1413 static void __split_huge_page(struct page *page,
1414                               struct anon_vma *anon_vma)
1415 {
1416         int mapcount, mapcount2;
1417         struct anon_vma_chain *avc;
1418
1419         BUG_ON(!PageHead(page));
1420         BUG_ON(PageTail(page));
1421
1422         mapcount = 0;
1423         list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1424                 struct vm_area_struct *vma = avc->vma;
1425                 unsigned long addr = vma_address(page, vma);
1426                 BUG_ON(is_vma_temporary_stack(vma));
1427                 if (addr == -EFAULT)
1428                         continue;
1429                 mapcount += __split_huge_page_splitting(page, vma, addr);
1430         }
1431         /*
1432          * It is critical that new vmas are added to the tail of the
1433          * anon_vma list. This guarantes that if copy_huge_pmd() runs
1434          * and establishes a child pmd before
1435          * __split_huge_page_splitting() freezes the parent pmd (so if
1436          * we fail to prevent copy_huge_pmd() from running until the
1437          * whole __split_huge_page() is complete), we will still see
1438          * the newly established pmd of the child later during the
1439          * walk, to be able to set it as pmd_trans_splitting too.
1440          */
1441         if (mapcount != page_mapcount(page))
1442                 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1443                        mapcount, page_mapcount(page));
1444         BUG_ON(mapcount != page_mapcount(page));
1445
1446         __split_huge_page_refcount(page);
1447
1448         mapcount2 = 0;
1449         list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1450                 struct vm_area_struct *vma = avc->vma;
1451                 unsigned long addr = vma_address(page, vma);
1452                 BUG_ON(is_vma_temporary_stack(vma));
1453                 if (addr == -EFAULT)
1454                         continue;
1455                 mapcount2 += __split_huge_page_map(page, vma, addr);
1456         }
1457         if (mapcount != mapcount2)
1458                 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1459                        mapcount, mapcount2, page_mapcount(page));
1460         BUG_ON(mapcount != mapcount2);
1461 }
1462
1463 int split_huge_page(struct page *page)
1464 {
1465         struct anon_vma *anon_vma;
1466         int ret = 1;
1467
1468         BUG_ON(!PageAnon(page));
1469         anon_vma = page_lock_anon_vma(page);
1470         if (!anon_vma)
1471                 goto out;
1472         ret = 0;
1473         if (!PageCompound(page))
1474                 goto out_unlock;
1475
1476         BUG_ON(!PageSwapBacked(page));
1477         __split_huge_page(page, anon_vma);
1478         count_vm_event(THP_SPLIT);
1479
1480         BUG_ON(PageCompound(page));
1481 out_unlock:
1482         page_unlock_anon_vma(anon_vma);
1483 out:
1484         return ret;
1485 }
1486
1487 #define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1488                    VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1489
1490 int hugepage_madvise(struct vm_area_struct *vma,
1491                      unsigned long *vm_flags, int advice)
1492 {
1493         switch (advice) {
1494         case MADV_HUGEPAGE:
1495                 /*
1496                  * Be somewhat over-protective like KSM for now!
1497                  */
1498                 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1499                         return -EINVAL;
1500                 *vm_flags &= ~VM_NOHUGEPAGE;
1501                 *vm_flags |= VM_HUGEPAGE;
1502                 /*
1503                  * If the vma become good for khugepaged to scan,
1504                  * register it here without waiting a page fault that
1505                  * may not happen any time soon.
1506                  */
1507                 if (unlikely(khugepaged_enter_vma_merge(vma)))
1508                         return -ENOMEM;
1509                 break;
1510         case MADV_NOHUGEPAGE:
1511                 /*
1512                  * Be somewhat over-protective like KSM for now!
1513                  */
1514                 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1515                         return -EINVAL;
1516                 *vm_flags &= ~VM_HUGEPAGE;
1517                 *vm_flags |= VM_NOHUGEPAGE;
1518                 /*
1519                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1520                  * this vma even if we leave the mm registered in khugepaged if
1521                  * it got registered before VM_NOHUGEPAGE was set.
1522                  */
1523                 break;
1524         }
1525
1526         return 0;
1527 }
1528
1529 static int __init khugepaged_slab_init(void)
1530 {
1531         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1532                                           sizeof(struct mm_slot),
1533                                           __alignof__(struct mm_slot), 0, NULL);
1534         if (!mm_slot_cache)
1535                 return -ENOMEM;
1536
1537         return 0;
1538 }
1539
1540 static void __init khugepaged_slab_free(void)
1541 {
1542         kmem_cache_destroy(mm_slot_cache);
1543         mm_slot_cache = NULL;
1544 }
1545
1546 static inline struct mm_slot *alloc_mm_slot(void)
1547 {
1548         if (!mm_slot_cache)     /* initialization failed */
1549                 return NULL;
1550         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1551 }
1552
1553 static inline void free_mm_slot(struct mm_slot *mm_slot)
1554 {
1555         kmem_cache_free(mm_slot_cache, mm_slot);
1556 }
1557
1558 static int __init mm_slots_hash_init(void)
1559 {
1560         mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1561                                 GFP_KERNEL);
1562         if (!mm_slots_hash)
1563                 return -ENOMEM;
1564         return 0;
1565 }
1566
1567 #if 0
1568 static void __init mm_slots_hash_free(void)
1569 {
1570         kfree(mm_slots_hash);
1571         mm_slots_hash = NULL;
1572 }
1573 #endif
1574
1575 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1576 {
1577         struct mm_slot *mm_slot;
1578         struct hlist_head *bucket;
1579         struct hlist_node *node;
1580
1581         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1582                                 % MM_SLOTS_HASH_HEADS];
1583         hlist_for_each_entry(mm_slot, node, bucket, hash) {
1584                 if (mm == mm_slot->mm)
1585                         return mm_slot;
1586         }
1587         return NULL;
1588 }
1589
1590 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1591                                     struct mm_slot *mm_slot)
1592 {
1593         struct hlist_head *bucket;
1594
1595         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1596                                 % MM_SLOTS_HASH_HEADS];
1597         mm_slot->mm = mm;
1598         hlist_add_head(&mm_slot->hash, bucket);
1599 }
1600
1601 static inline int khugepaged_test_exit(struct mm_struct *mm)
1602 {
1603         return atomic_read(&mm->mm_users) == 0;
1604 }
1605
1606 int __khugepaged_enter(struct mm_struct *mm)
1607 {
1608         struct mm_slot *mm_slot;
1609         int wakeup;
1610
1611         mm_slot = alloc_mm_slot();
1612         if (!mm_slot)
1613                 return -ENOMEM;
1614
1615         /* __khugepaged_exit() must not run from under us */
1616         VM_BUG_ON(khugepaged_test_exit(mm));
1617         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1618                 free_mm_slot(mm_slot);
1619                 return 0;
1620         }
1621
1622         spin_lock(&khugepaged_mm_lock);
1623         insert_to_mm_slots_hash(mm, mm_slot);
1624         /*
1625          * Insert just behind the scanning cursor, to let the area settle
1626          * down a little.
1627          */
1628         wakeup = list_empty(&khugepaged_scan.mm_head);
1629         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1630         spin_unlock(&khugepaged_mm_lock);
1631
1632         atomic_inc(&mm->mm_count);
1633         if (wakeup)
1634                 wake_up_interruptible(&khugepaged_wait);
1635
1636         return 0;
1637 }
1638
1639 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1640 {
1641         unsigned long hstart, hend;
1642         if (!vma->anon_vma)
1643                 /*
1644                  * Not yet faulted in so we will register later in the
1645                  * page fault if needed.
1646                  */
1647                 return 0;
1648         if (vma->vm_ops)
1649                 /* khugepaged not yet working on file or special mappings */
1650                 return 0;
1651         /*
1652          * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1653          * true too, verify it here.
1654          */
1655         VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1656         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1657         hend = vma->vm_end & HPAGE_PMD_MASK;
1658         if (hstart < hend)
1659                 return khugepaged_enter(vma);
1660         return 0;
1661 }
1662
1663 void __khugepaged_exit(struct mm_struct *mm)
1664 {
1665         struct mm_slot *mm_slot;
1666         int free = 0;
1667
1668         spin_lock(&khugepaged_mm_lock);
1669         mm_slot = get_mm_slot(mm);
1670         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1671                 hlist_del(&mm_slot->hash);
1672                 list_del(&mm_slot->mm_node);
1673                 free = 1;
1674         }
1675         spin_unlock(&khugepaged_mm_lock);
1676
1677         if (free) {
1678                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1679                 free_mm_slot(mm_slot);
1680                 mmdrop(mm);
1681         } else if (mm_slot) {
1682                 /*
1683                  * This is required to serialize against
1684                  * khugepaged_test_exit() (which is guaranteed to run
1685                  * under mmap sem read mode). Stop here (after we
1686                  * return all pagetables will be destroyed) until
1687                  * khugepaged has finished working on the pagetables
1688                  * under the mmap_sem.
1689                  */
1690                 down_write(&mm->mmap_sem);
1691                 up_write(&mm->mmap_sem);
1692         }
1693 }
1694
1695 static void release_pte_page(struct page *page)
1696 {
1697         /* 0 stands for page_is_file_cache(page) == false */
1698         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1699         unlock_page(page);
1700         putback_lru_page(page);
1701 }
1702
1703 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1704 {
1705         while (--_pte >= pte) {
1706                 pte_t pteval = *_pte;
1707                 if (!pte_none(pteval))
1708                         release_pte_page(pte_page(pteval));
1709         }
1710 }
1711
1712 static void release_all_pte_pages(pte_t *pte)
1713 {
1714         release_pte_pages(pte, pte + HPAGE_PMD_NR);
1715 }
1716
1717 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1718                                         unsigned long address,
1719                                         pte_t *pte)
1720 {
1721         struct page *page;
1722         pte_t *_pte;
1723         int referenced = 0, isolated = 0, none = 0;
1724         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1725              _pte++, address += PAGE_SIZE) {
1726                 pte_t pteval = *_pte;
1727                 if (pte_none(pteval)) {
1728                         if (++none <= khugepaged_max_ptes_none)
1729                                 continue;
1730                         else {
1731                                 release_pte_pages(pte, _pte);
1732                                 goto out;
1733                         }
1734                 }
1735                 if (!pte_present(pteval) || !pte_write(pteval)) {
1736                         release_pte_pages(pte, _pte);
1737                         goto out;
1738                 }
1739                 page = vm_normal_page(vma, address, pteval);
1740                 if (unlikely(!page)) {
1741                         release_pte_pages(pte, _pte);
1742                         goto out;
1743                 }
1744                 VM_BUG_ON(PageCompound(page));
1745                 BUG_ON(!PageAnon(page));
1746                 VM_BUG_ON(!PageSwapBacked(page));
1747
1748                 /* cannot use mapcount: can't collapse if there's a gup pin */
1749                 if (page_count(page) != 1) {
1750                         release_pte_pages(pte, _pte);
1751                         goto out;
1752                 }
1753                 /*
1754                  * We can do it before isolate_lru_page because the
1755                  * page can't be freed from under us. NOTE: PG_lock
1756                  * is needed to serialize against split_huge_page
1757                  * when invoked from the VM.
1758                  */
1759                 if (!trylock_page(page)) {
1760                         release_pte_pages(pte, _pte);
1761                         goto out;
1762                 }
1763                 /*
1764                  * Isolate the page to avoid collapsing an hugepage
1765                  * currently in use by the VM.
1766                  */
1767                 if (isolate_lru_page(page)) {
1768                         unlock_page(page);
1769                         release_pte_pages(pte, _pte);
1770                         goto out;
1771                 }
1772                 /* 0 stands for page_is_file_cache(page) == false */
1773                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1774                 VM_BUG_ON(!PageLocked(page));
1775                 VM_BUG_ON(PageLRU(page));
1776
1777                 /* If there is no mapped pte young don't collapse the page */
1778                 if (pte_young(pteval) || PageReferenced(page) ||
1779                     mmu_notifier_test_young(vma->vm_mm, address))
1780                         referenced = 1;
1781         }
1782         if (unlikely(!referenced))
1783                 release_all_pte_pages(pte);
1784         else
1785                 isolated = 1;
1786 out:
1787         return isolated;
1788 }
1789
1790 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1791                                       struct vm_area_struct *vma,
1792                                       unsigned long address,
1793                                       spinlock_t *ptl)
1794 {
1795         pte_t *_pte;
1796         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1797                 pte_t pteval = *_pte;
1798                 struct page *src_page;
1799
1800                 if (pte_none(pteval)) {
1801                         clear_user_highpage(page, address);
1802                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1803                 } else {
1804                         src_page = pte_page(pteval);
1805                         copy_user_highpage(page, src_page, address, vma);
1806                         VM_BUG_ON(page_mapcount(src_page) != 1);
1807                         VM_BUG_ON(page_count(src_page) != 2);
1808                         release_pte_page(src_page);
1809                         /*
1810                          * ptl mostly unnecessary, but preempt has to
1811                          * be disabled to update the per-cpu stats
1812                          * inside page_remove_rmap().
1813                          */
1814                         spin_lock(ptl);
1815                         /*
1816                          * paravirt calls inside pte_clear here are
1817                          * superfluous.
1818                          */
1819                         pte_clear(vma->vm_mm, address, _pte);
1820                         page_remove_rmap(src_page);
1821                         spin_unlock(ptl);
1822                         free_page_and_swap_cache(src_page);
1823                 }
1824
1825                 address += PAGE_SIZE;
1826                 page++;
1827         }
1828 }
1829
1830 static void collapse_huge_page(struct mm_struct *mm,
1831                                unsigned long address,
1832                                struct page **hpage,
1833                                struct vm_area_struct *vma,
1834                                int node)
1835 {
1836         pgd_t *pgd;
1837         pud_t *pud;
1838         pmd_t *pmd, _pmd;
1839         pte_t *pte;
1840         pgtable_t pgtable;
1841         struct page *new_page;
1842         spinlock_t *ptl;
1843         int isolated;
1844         unsigned long hstart, hend;
1845
1846         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1847 #ifndef CONFIG_NUMA
1848         up_read(&mm->mmap_sem);
1849         VM_BUG_ON(!*hpage);
1850         new_page = *hpage;
1851 #else
1852         VM_BUG_ON(*hpage);
1853         /*
1854          * Allocate the page while the vma is still valid and under
1855          * the mmap_sem read mode so there is no memory allocation
1856          * later when we take the mmap_sem in write mode. This is more
1857          * friendly behavior (OTOH it may actually hide bugs) to
1858          * filesystems in userland with daemons allocating memory in
1859          * the userland I/O paths.  Allocating memory with the
1860          * mmap_sem in read mode is good idea also to allow greater
1861          * scalability.
1862          */
1863         new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1864                                       node, __GFP_OTHER_NODE);
1865
1866         /*
1867          * After allocating the hugepage, release the mmap_sem read lock in
1868          * preparation for taking it in write mode.
1869          */
1870         up_read(&mm->mmap_sem);
1871         if (unlikely(!new_page)) {
1872                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1873                 *hpage = ERR_PTR(-ENOMEM);
1874                 return;
1875         }
1876 #endif
1877
1878         count_vm_event(THP_COLLAPSE_ALLOC);
1879         if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1880 #ifdef CONFIG_NUMA
1881                 put_page(new_page);
1882 #endif
1883                 return;
1884         }
1885
1886         /*
1887          * Prevent all access to pagetables with the exception of
1888          * gup_fast later hanlded by the ptep_clear_flush and the VM
1889          * handled by the anon_vma lock + PG_lock.
1890          */
1891         down_write(&mm->mmap_sem);
1892         if (unlikely(khugepaged_test_exit(mm)))
1893                 goto out;
1894
1895         vma = find_vma(mm, address);
1896         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1897         hend = vma->vm_end & HPAGE_PMD_MASK;
1898         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1899                 goto out;
1900
1901         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1902             (vma->vm_flags & VM_NOHUGEPAGE))
1903                 goto out;
1904
1905         if (!vma->anon_vma || vma->vm_ops)
1906                 goto out;
1907         if (is_vma_temporary_stack(vma))
1908                 goto out;
1909         /*
1910          * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1911          * true too, verify it here.
1912          */
1913         VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1914
1915         pgd = pgd_offset(mm, address);
1916         if (!pgd_present(*pgd))
1917                 goto out;
1918
1919         pud = pud_offset(pgd, address);
1920         if (!pud_present(*pud))
1921                 goto out;
1922
1923         pmd = pmd_offset(pud, address);
1924         /* pmd can't go away or become huge under us */
1925         if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1926                 goto out;
1927
1928         anon_vma_lock(vma->anon_vma);
1929
1930         pte = pte_offset_map(pmd, address);
1931         ptl = pte_lockptr(mm, pmd);
1932
1933         spin_lock(&mm->page_table_lock); /* probably unnecessary */
1934         /*
1935          * After this gup_fast can't run anymore. This also removes
1936          * any huge TLB entry from the CPU so we won't allow
1937          * huge and small TLB entries for the same virtual address
1938          * to avoid the risk of CPU bugs in that area.
1939          */
1940         _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1941         spin_unlock(&mm->page_table_lock);
1942
1943         spin_lock(ptl);
1944         isolated = __collapse_huge_page_isolate(vma, address, pte);
1945         spin_unlock(ptl);
1946
1947         if (unlikely(!isolated)) {
1948                 pte_unmap(pte);
1949                 spin_lock(&mm->page_table_lock);
1950                 BUG_ON(!pmd_none(*pmd));
1951                 set_pmd_at(mm, address, pmd, _pmd);
1952                 spin_unlock(&mm->page_table_lock);
1953                 anon_vma_unlock(vma->anon_vma);
1954                 goto out;
1955         }
1956
1957         /*
1958          * All pages are isolated and locked so anon_vma rmap
1959          * can't run anymore.
1960          */
1961         anon_vma_unlock(vma->anon_vma);
1962
1963         __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1964         pte_unmap(pte);
1965         __SetPageUptodate(new_page);
1966         pgtable = pmd_pgtable(_pmd);
1967         VM_BUG_ON(page_count(pgtable) != 1);
1968         VM_BUG_ON(page_mapcount(pgtable) != 0);
1969
1970         _pmd = mk_pmd(new_page, vma->vm_page_prot);
1971         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1972         _pmd = pmd_mkhuge(_pmd);
1973
1974         /*
1975          * spin_lock() below is not the equivalent of smp_wmb(), so
1976          * this is needed to avoid the copy_huge_page writes to become
1977          * visible after the set_pmd_at() write.
1978          */
1979         smp_wmb();
1980
1981         spin_lock(&mm->page_table_lock);
1982         BUG_ON(!pmd_none(*pmd));
1983         page_add_new_anon_rmap(new_page, vma, address);
1984         set_pmd_at(mm, address, pmd, _pmd);
1985         update_mmu_cache(vma, address, _pmd);
1986         prepare_pmd_huge_pte(pgtable, mm);
1987         spin_unlock(&mm->page_table_lock);
1988
1989 #ifndef CONFIG_NUMA
1990         *hpage = NULL;
1991 #endif
1992         khugepaged_pages_collapsed++;
1993 out_up_write:
1994         up_write(&mm->mmap_sem);
1995         return;
1996
1997 out:
1998         mem_cgroup_uncharge_page(new_page);
1999 #ifdef CONFIG_NUMA
2000         put_page(new_page);
2001 #endif
2002         goto out_up_write;
2003 }
2004
2005 static int khugepaged_scan_pmd(struct mm_struct *mm,
2006                                struct vm_area_struct *vma,
2007                                unsigned long address,
2008                                struct page **hpage)
2009 {
2010         pgd_t *pgd;
2011         pud_t *pud;
2012         pmd_t *pmd;
2013         pte_t *pte, *_pte;
2014         int ret = 0, referenced = 0, none = 0;
2015         struct page *page;
2016         unsigned long _address;
2017         spinlock_t *ptl;
2018         int node = -1;
2019
2020         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2021
2022         pgd = pgd_offset(mm, address);
2023         if (!pgd_present(*pgd))
2024                 goto out;
2025
2026         pud = pud_offset(pgd, address);
2027         if (!pud_present(*pud))
2028                 goto out;
2029
2030         pmd = pmd_offset(pud, address);
2031         if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2032                 goto out;
2033
2034         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2035         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2036              _pte++, _address += PAGE_SIZE) {
2037                 pte_t pteval = *_pte;
2038                 if (pte_none(pteval)) {
2039                         if (++none <= khugepaged_max_ptes_none)
2040                                 continue;
2041                         else
2042                                 goto out_unmap;
2043                 }
2044                 if (!pte_present(pteval) || !pte_write(pteval))
2045                         goto out_unmap;
2046                 page = vm_normal_page(vma, _address, pteval);
2047                 if (unlikely(!page))
2048                         goto out_unmap;
2049                 /*
2050                  * Chose the node of the first page. This could
2051                  * be more sophisticated and look at more pages,
2052                  * but isn't for now.
2053                  */
2054                 if (node == -1)
2055                         node = page_to_nid(page);
2056                 VM_BUG_ON(PageCompound(page));
2057                 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2058                         goto out_unmap;
2059                 /* cannot use mapcount: can't collapse if there's a gup pin */
2060                 if (page_count(page) != 1)
2061                         goto out_unmap;
2062                 if (pte_young(pteval) || PageReferenced(page) ||
2063                     mmu_notifier_test_young(vma->vm_mm, address))
2064                         referenced = 1;
2065         }
2066         if (referenced)
2067                 ret = 1;
2068 out_unmap:
2069         pte_unmap_unlock(pte, ptl);
2070         if (ret)
2071                 /* collapse_huge_page will return with the mmap_sem released */
2072                 collapse_huge_page(mm, address, hpage, vma, node);
2073 out:
2074         return ret;
2075 }
2076
2077 static void collect_mm_slot(struct mm_slot *mm_slot)
2078 {
2079         struct mm_struct *mm = mm_slot->mm;
2080
2081         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2082
2083         if (khugepaged_test_exit(mm)) {
2084                 /* free mm_slot */
2085                 hlist_del(&mm_slot->hash);
2086                 list_del(&mm_slot->mm_node);
2087
2088                 /*
2089                  * Not strictly needed because the mm exited already.
2090                  *
2091                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2092                  */
2093
2094                 /* khugepaged_mm_lock actually not necessary for the below */
2095                 free_mm_slot(mm_slot);
2096                 mmdrop(mm);
2097         }
2098 }
2099
2100 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2101                                             struct page **hpage)
2102         __releases(&khugepaged_mm_lock)
2103         __acquires(&khugepaged_mm_lock)
2104 {
2105         struct mm_slot *mm_slot;
2106         struct mm_struct *mm;
2107         struct vm_area_struct *vma;
2108         int progress = 0;
2109
2110         VM_BUG_ON(!pages);
2111         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2112
2113         if (khugepaged_scan.mm_slot)
2114                 mm_slot = khugepaged_scan.mm_slot;
2115         else {
2116                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2117                                      struct mm_slot, mm_node);
2118                 khugepaged_scan.address = 0;
2119                 khugepaged_scan.mm_slot = mm_slot;
2120         }
2121         spin_unlock(&khugepaged_mm_lock);
2122
2123         mm = mm_slot->mm;
2124         down_read(&mm->mmap_sem);
2125         if (unlikely(khugepaged_test_exit(mm)))
2126                 vma = NULL;
2127         else
2128                 vma = find_vma(mm, khugepaged_scan.address);
2129
2130         progress++;
2131         for (; vma; vma = vma->vm_next) {
2132                 unsigned long hstart, hend;
2133
2134                 cond_resched();
2135                 if (unlikely(khugepaged_test_exit(mm))) {
2136                         progress++;
2137                         break;
2138                 }
2139
2140                 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2141                      !khugepaged_always()) ||
2142                     (vma->vm_flags & VM_NOHUGEPAGE)) {
2143                 skip:
2144                         progress++;
2145                         continue;
2146                 }
2147                 if (!vma->anon_vma || vma->vm_ops)
2148                         goto skip;
2149                 if (is_vma_temporary_stack(vma))
2150                         goto skip;
2151                 /*
2152                  * If is_pfn_mapping() is true is_learn_pfn_mapping()
2153                  * must be true too, verify it here.
2154                  */
2155                 VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2156                           vma->vm_flags & VM_NO_THP);
2157
2158                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2159                 hend = vma->vm_end & HPAGE_PMD_MASK;
2160                 if (hstart >= hend)
2161                         goto skip;
2162                 if (khugepaged_scan.address > hend)
2163                         goto skip;
2164                 if (khugepaged_scan.address < hstart)
2165                         khugepaged_scan.address = hstart;
2166                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2167
2168                 while (khugepaged_scan.address < hend) {
2169                         int ret;
2170                         cond_resched();
2171                         if (unlikely(khugepaged_test_exit(mm)))
2172                                 goto breakouterloop;
2173
2174                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2175                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2176                                   hend);
2177                         ret = khugepaged_scan_pmd(mm, vma,
2178                                                   khugepaged_scan.address,
2179                                                   hpage);
2180                         /* move to next address */
2181                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2182                         progress += HPAGE_PMD_NR;
2183                         if (ret)
2184                                 /* we released mmap_sem so break loop */
2185                                 goto breakouterloop_mmap_sem;
2186                         if (progress >= pages)
2187                                 goto breakouterloop;
2188                 }
2189         }
2190 breakouterloop:
2191         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2192 breakouterloop_mmap_sem:
2193
2194         spin_lock(&khugepaged_mm_lock);
2195         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2196         /*
2197          * Release the current mm_slot if this mm is about to die, or
2198          * if we scanned all vmas of this mm.
2199          */
2200         if (khugepaged_test_exit(mm) || !vma) {
2201                 /*
2202                  * Make sure that if mm_users is reaching zero while
2203                  * khugepaged runs here, khugepaged_exit will find
2204                  * mm_slot not pointing to the exiting mm.
2205                  */
2206                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2207                         khugepaged_scan.mm_slot = list_entry(
2208                                 mm_slot->mm_node.next,
2209                                 struct mm_slot, mm_node);
2210                         khugepaged_scan.address = 0;
2211                 } else {
2212                         khugepaged_scan.mm_slot = NULL;
2213                         khugepaged_full_scans++;
2214                 }
2215
2216                 collect_mm_slot(mm_slot);
2217         }
2218
2219         return progress;
2220 }
2221
2222 static int khugepaged_has_work(void)
2223 {
2224         return !list_empty(&khugepaged_scan.mm_head) &&
2225                 khugepaged_enabled();
2226 }
2227
2228 static int khugepaged_wait_event(void)
2229 {
2230         return !list_empty(&khugepaged_scan.mm_head) ||
2231                 !khugepaged_enabled();
2232 }
2233
2234 static void khugepaged_do_scan(struct page **hpage)
2235 {
2236         unsigned int progress = 0, pass_through_head = 0;
2237         unsigned int pages = khugepaged_pages_to_scan;
2238
2239         barrier(); /* write khugepaged_pages_to_scan to local stack */
2240
2241         while (progress < pages) {
2242                 cond_resched();
2243
2244 #ifndef CONFIG_NUMA
2245                 if (!*hpage) {
2246                         *hpage = alloc_hugepage(khugepaged_defrag());
2247                         if (unlikely(!*hpage)) {
2248                                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2249                                 break;
2250                         }
2251                         count_vm_event(THP_COLLAPSE_ALLOC);
2252                 }
2253 #else
2254                 if (IS_ERR(*hpage))
2255                         break;
2256 #endif
2257
2258                 if (unlikely(kthread_should_stop() || freezing(current)))
2259                         break;
2260
2261                 spin_lock(&khugepaged_mm_lock);
2262                 if (!khugepaged_scan.mm_slot)
2263                         pass_through_head++;
2264                 if (khugepaged_has_work() &&
2265                     pass_through_head < 2)
2266                         progress += khugepaged_scan_mm_slot(pages - progress,
2267                                                             hpage);
2268                 else
2269                         progress = pages;
2270                 spin_unlock(&khugepaged_mm_lock);
2271         }
2272 }
2273
2274 static void khugepaged_alloc_sleep(void)
2275 {
2276         wait_event_freezable_timeout(khugepaged_wait, false,
2277                         msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2278 }
2279
2280 #ifndef CONFIG_NUMA
2281 static struct page *khugepaged_alloc_hugepage(void)
2282 {
2283         struct page *hpage;
2284
2285         do {
2286                 hpage = alloc_hugepage(khugepaged_defrag());
2287                 if (!hpage) {
2288                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2289                         khugepaged_alloc_sleep();
2290                 } else
2291                         count_vm_event(THP_COLLAPSE_ALLOC);
2292         } while (unlikely(!hpage) &&
2293                  likely(khugepaged_enabled()));
2294         return hpage;
2295 }
2296 #endif
2297
2298 static void khugepaged_loop(void)
2299 {
2300         struct page *hpage;
2301
2302 #ifdef CONFIG_NUMA
2303         hpage = NULL;
2304 #endif
2305         while (likely(khugepaged_enabled())) {
2306 #ifndef CONFIG_NUMA
2307                 hpage = khugepaged_alloc_hugepage();
2308                 if (unlikely(!hpage))
2309                         break;
2310 #else
2311                 if (IS_ERR(hpage)) {
2312                         khugepaged_alloc_sleep();
2313                         hpage = NULL;
2314                 }
2315 #endif
2316
2317                 khugepaged_do_scan(&hpage);
2318 #ifndef CONFIG_NUMA
2319                 if (hpage)
2320                         put_page(hpage);
2321 #endif
2322                 try_to_freeze();
2323                 if (unlikely(kthread_should_stop()))
2324                         break;
2325                 if (khugepaged_has_work()) {
2326                         if (!khugepaged_scan_sleep_millisecs)
2327                                 continue;
2328                         wait_event_freezable_timeout(khugepaged_wait, false,
2329                             msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2330                 } else if (khugepaged_enabled())
2331                         wait_event_freezable(khugepaged_wait,
2332                                              khugepaged_wait_event());
2333         }
2334 }
2335
2336 static int khugepaged(void *none)
2337 {
2338         struct mm_slot *mm_slot;
2339
2340         set_freezable();
2341         set_user_nice(current, 19);
2342
2343         /* serialize with start_khugepaged() */
2344         mutex_lock(&khugepaged_mutex);
2345
2346         for (;;) {
2347                 mutex_unlock(&khugepaged_mutex);
2348                 VM_BUG_ON(khugepaged_thread != current);
2349                 khugepaged_loop();
2350                 VM_BUG_ON(khugepaged_thread != current);
2351
2352                 mutex_lock(&khugepaged_mutex);
2353                 if (!khugepaged_enabled())
2354                         break;
2355                 if (unlikely(kthread_should_stop()))
2356                         break;
2357         }
2358
2359         spin_lock(&khugepaged_mm_lock);
2360         mm_slot = khugepaged_scan.mm_slot;
2361         khugepaged_scan.mm_slot = NULL;
2362         if (mm_slot)
2363                 collect_mm_slot(mm_slot);
2364         spin_unlock(&khugepaged_mm_lock);
2365
2366         khugepaged_thread = NULL;
2367         mutex_unlock(&khugepaged_mutex);
2368
2369         return 0;
2370 }
2371
2372 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2373 {
2374         struct page *page;
2375
2376         spin_lock(&mm->page_table_lock);
2377         if (unlikely(!pmd_trans_huge(*pmd))) {
2378                 spin_unlock(&mm->page_table_lock);
2379                 return;
2380         }
2381         page = pmd_page(*pmd);
2382         VM_BUG_ON(!page_count(page));
2383         get_page(page);
2384         spin_unlock(&mm->page_table_lock);
2385
2386         split_huge_page(page);
2387
2388         put_page(page);
2389         BUG_ON(pmd_trans_huge(*pmd));
2390 }
2391
2392 static void split_huge_page_address(struct mm_struct *mm,
2393                                     unsigned long address)
2394 {
2395         pgd_t *pgd;
2396         pud_t *pud;
2397         pmd_t *pmd;
2398
2399         VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2400
2401         pgd = pgd_offset(mm, address);
2402         if (!pgd_present(*pgd))
2403                 return;
2404
2405         pud = pud_offset(pgd, address);
2406         if (!pud_present(*pud))
2407                 return;
2408
2409         pmd = pmd_offset(pud, address);
2410         if (!pmd_present(*pmd))
2411                 return;
2412         /*
2413          * Caller holds the mmap_sem write mode, so a huge pmd cannot
2414          * materialize from under us.
2415          */
2416         split_huge_page_pmd(mm, pmd);
2417 }
2418
2419 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2420                              unsigned long start,
2421                              unsigned long end,
2422                              long adjust_next)
2423 {
2424         /*
2425          * If the new start address isn't hpage aligned and it could
2426          * previously contain an hugepage: check if we need to split
2427          * an huge pmd.
2428          */
2429         if (start & ~HPAGE_PMD_MASK &&
2430             (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2431             (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2432                 split_huge_page_address(vma->vm_mm, start);
2433
2434         /*
2435          * If the new end address isn't hpage aligned and it could
2436          * previously contain an hugepage: check if we need to split
2437          * an huge pmd.
2438          */
2439         if (end & ~HPAGE_PMD_MASK &&
2440             (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2441             (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2442                 split_huge_page_address(vma->vm_mm, end);
2443
2444         /*
2445          * If we're also updating the vma->vm_next->vm_start, if the new
2446          * vm_next->vm_start isn't page aligned and it could previously
2447          * contain an hugepage: check if we need to split an huge pmd.
2448          */
2449         if (adjust_next > 0) {
2450                 struct vm_area_struct *next = vma->vm_next;
2451                 unsigned long nstart = next->vm_start;
2452                 nstart += adjust_next << PAGE_SHIFT;
2453                 if (nstart & ~HPAGE_PMD_MASK &&
2454                     (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2455                     (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2456                         split_huge_page_address(next->vm_mm, nstart);
2457         }
2458 }