]> rtime.felk.cvut.cz Git - can-eth-gw-linux.git/blob - net/core/filter.c
Merge tag 'for-linus-20121212' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowe...
[can-eth-gw-linux.git] / net / core / filter.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Author:
5  *     Jay Schulist <jschlst@samba.org>
6  *
7  * Based on the design of:
8  *     - The Berkeley Packet Filter
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * Andi Kleen - Fix a few bad bugs and races.
16  * Kris Katterjohn - Added many additional checks in sk_chk_filter()
17  */
18
19 #include <linux/module.h>
20 #include <linux/types.h>
21 #include <linux/mm.h>
22 #include <linux/fcntl.h>
23 #include <linux/socket.h>
24 #include <linux/in.h>
25 #include <linux/inet.h>
26 #include <linux/netdevice.h>
27 #include <linux/if_packet.h>
28 #include <linux/gfp.h>
29 #include <net/ip.h>
30 #include <net/protocol.h>
31 #include <net/netlink.h>
32 #include <linux/skbuff.h>
33 #include <net/sock.h>
34 #include <linux/errno.h>
35 #include <linux/timer.h>
36 #include <asm/uaccess.h>
37 #include <asm/unaligned.h>
38 #include <linux/filter.h>
39 #include <linux/reciprocal_div.h>
40 #include <linux/ratelimit.h>
41 #include <linux/seccomp.h>
42
43 /* No hurry in this branch
44  *
45  * Exported for the bpf jit load helper.
46  */
47 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
48 {
49         u8 *ptr = NULL;
50
51         if (k >= SKF_NET_OFF)
52                 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
53         else if (k >= SKF_LL_OFF)
54                 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
55
56         if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
57                 return ptr;
58         return NULL;
59 }
60
61 static inline void *load_pointer(const struct sk_buff *skb, int k,
62                                  unsigned int size, void *buffer)
63 {
64         if (k >= 0)
65                 return skb_header_pointer(skb, k, size, buffer);
66         return bpf_internal_load_pointer_neg_helper(skb, k, size);
67 }
68
69 /**
70  *      sk_filter - run a packet through a socket filter
71  *      @sk: sock associated with &sk_buff
72  *      @skb: buffer to filter
73  *
74  * Run the filter code and then cut skb->data to correct size returned by
75  * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
76  * than pkt_len we keep whole skb->data. This is the socket level
77  * wrapper to sk_run_filter. It returns 0 if the packet should
78  * be accepted or -EPERM if the packet should be tossed.
79  *
80  */
81 int sk_filter(struct sock *sk, struct sk_buff *skb)
82 {
83         int err;
84         struct sk_filter *filter;
85
86         /*
87          * If the skb was allocated from pfmemalloc reserves, only
88          * allow SOCK_MEMALLOC sockets to use it as this socket is
89          * helping free memory
90          */
91         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
92                 return -ENOMEM;
93
94         err = security_sock_rcv_skb(sk, skb);
95         if (err)
96                 return err;
97
98         rcu_read_lock();
99         filter = rcu_dereference(sk->sk_filter);
100         if (filter) {
101                 unsigned int pkt_len = SK_RUN_FILTER(filter, skb);
102
103                 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
104         }
105         rcu_read_unlock();
106
107         return err;
108 }
109 EXPORT_SYMBOL(sk_filter);
110
111 /**
112  *      sk_run_filter - run a filter on a socket
113  *      @skb: buffer to run the filter on
114  *      @fentry: filter to apply
115  *
116  * Decode and apply filter instructions to the skb->data.
117  * Return length to keep, 0 for none. @skb is the data we are
118  * filtering, @filter is the array of filter instructions.
119  * Because all jumps are guaranteed to be before last instruction,
120  * and last instruction guaranteed to be a RET, we dont need to check
121  * flen. (We used to pass to this function the length of filter)
122  */
123 unsigned int sk_run_filter(const struct sk_buff *skb,
124                            const struct sock_filter *fentry)
125 {
126         void *ptr;
127         u32 A = 0;                      /* Accumulator */
128         u32 X = 0;                      /* Index Register */
129         u32 mem[BPF_MEMWORDS];          /* Scratch Memory Store */
130         u32 tmp;
131         int k;
132
133         /*
134          * Process array of filter instructions.
135          */
136         for (;; fentry++) {
137 #if defined(CONFIG_X86_32)
138 #define K (fentry->k)
139 #else
140                 const u32 K = fentry->k;
141 #endif
142
143                 switch (fentry->code) {
144                 case BPF_S_ALU_ADD_X:
145                         A += X;
146                         continue;
147                 case BPF_S_ALU_ADD_K:
148                         A += K;
149                         continue;
150                 case BPF_S_ALU_SUB_X:
151                         A -= X;
152                         continue;
153                 case BPF_S_ALU_SUB_K:
154                         A -= K;
155                         continue;
156                 case BPF_S_ALU_MUL_X:
157                         A *= X;
158                         continue;
159                 case BPF_S_ALU_MUL_K:
160                         A *= K;
161                         continue;
162                 case BPF_S_ALU_DIV_X:
163                         if (X == 0)
164                                 return 0;
165                         A /= X;
166                         continue;
167                 case BPF_S_ALU_DIV_K:
168                         A = reciprocal_divide(A, K);
169                         continue;
170                 case BPF_S_ALU_MOD_X:
171                         if (X == 0)
172                                 return 0;
173                         A %= X;
174                         continue;
175                 case BPF_S_ALU_MOD_K:
176                         A %= K;
177                         continue;
178                 case BPF_S_ALU_AND_X:
179                         A &= X;
180                         continue;
181                 case BPF_S_ALU_AND_K:
182                         A &= K;
183                         continue;
184                 case BPF_S_ALU_OR_X:
185                         A |= X;
186                         continue;
187                 case BPF_S_ALU_OR_K:
188                         A |= K;
189                         continue;
190                 case BPF_S_ANC_ALU_XOR_X:
191                 case BPF_S_ALU_XOR_X:
192                         A ^= X;
193                         continue;
194                 case BPF_S_ALU_XOR_K:
195                         A ^= K;
196                         continue;
197                 case BPF_S_ALU_LSH_X:
198                         A <<= X;
199                         continue;
200                 case BPF_S_ALU_LSH_K:
201                         A <<= K;
202                         continue;
203                 case BPF_S_ALU_RSH_X:
204                         A >>= X;
205                         continue;
206                 case BPF_S_ALU_RSH_K:
207                         A >>= K;
208                         continue;
209                 case BPF_S_ALU_NEG:
210                         A = -A;
211                         continue;
212                 case BPF_S_JMP_JA:
213                         fentry += K;
214                         continue;
215                 case BPF_S_JMP_JGT_K:
216                         fentry += (A > K) ? fentry->jt : fentry->jf;
217                         continue;
218                 case BPF_S_JMP_JGE_K:
219                         fentry += (A >= K) ? fentry->jt : fentry->jf;
220                         continue;
221                 case BPF_S_JMP_JEQ_K:
222                         fentry += (A == K) ? fentry->jt : fentry->jf;
223                         continue;
224                 case BPF_S_JMP_JSET_K:
225                         fentry += (A & K) ? fentry->jt : fentry->jf;
226                         continue;
227                 case BPF_S_JMP_JGT_X:
228                         fentry += (A > X) ? fentry->jt : fentry->jf;
229                         continue;
230                 case BPF_S_JMP_JGE_X:
231                         fentry += (A >= X) ? fentry->jt : fentry->jf;
232                         continue;
233                 case BPF_S_JMP_JEQ_X:
234                         fentry += (A == X) ? fentry->jt : fentry->jf;
235                         continue;
236                 case BPF_S_JMP_JSET_X:
237                         fentry += (A & X) ? fentry->jt : fentry->jf;
238                         continue;
239                 case BPF_S_LD_W_ABS:
240                         k = K;
241 load_w:
242                         ptr = load_pointer(skb, k, 4, &tmp);
243                         if (ptr != NULL) {
244                                 A = get_unaligned_be32(ptr);
245                                 continue;
246                         }
247                         return 0;
248                 case BPF_S_LD_H_ABS:
249                         k = K;
250 load_h:
251                         ptr = load_pointer(skb, k, 2, &tmp);
252                         if (ptr != NULL) {
253                                 A = get_unaligned_be16(ptr);
254                                 continue;
255                         }
256                         return 0;
257                 case BPF_S_LD_B_ABS:
258                         k = K;
259 load_b:
260                         ptr = load_pointer(skb, k, 1, &tmp);
261                         if (ptr != NULL) {
262                                 A = *(u8 *)ptr;
263                                 continue;
264                         }
265                         return 0;
266                 case BPF_S_LD_W_LEN:
267                         A = skb->len;
268                         continue;
269                 case BPF_S_LDX_W_LEN:
270                         X = skb->len;
271                         continue;
272                 case BPF_S_LD_W_IND:
273                         k = X + K;
274                         goto load_w;
275                 case BPF_S_LD_H_IND:
276                         k = X + K;
277                         goto load_h;
278                 case BPF_S_LD_B_IND:
279                         k = X + K;
280                         goto load_b;
281                 case BPF_S_LDX_B_MSH:
282                         ptr = load_pointer(skb, K, 1, &tmp);
283                         if (ptr != NULL) {
284                                 X = (*(u8 *)ptr & 0xf) << 2;
285                                 continue;
286                         }
287                         return 0;
288                 case BPF_S_LD_IMM:
289                         A = K;
290                         continue;
291                 case BPF_S_LDX_IMM:
292                         X = K;
293                         continue;
294                 case BPF_S_LD_MEM:
295                         A = mem[K];
296                         continue;
297                 case BPF_S_LDX_MEM:
298                         X = mem[K];
299                         continue;
300                 case BPF_S_MISC_TAX:
301                         X = A;
302                         continue;
303                 case BPF_S_MISC_TXA:
304                         A = X;
305                         continue;
306                 case BPF_S_RET_K:
307                         return K;
308                 case BPF_S_RET_A:
309                         return A;
310                 case BPF_S_ST:
311                         mem[K] = A;
312                         continue;
313                 case BPF_S_STX:
314                         mem[K] = X;
315                         continue;
316                 case BPF_S_ANC_PROTOCOL:
317                         A = ntohs(skb->protocol);
318                         continue;
319                 case BPF_S_ANC_PKTTYPE:
320                         A = skb->pkt_type;
321                         continue;
322                 case BPF_S_ANC_IFINDEX:
323                         if (!skb->dev)
324                                 return 0;
325                         A = skb->dev->ifindex;
326                         continue;
327                 case BPF_S_ANC_MARK:
328                         A = skb->mark;
329                         continue;
330                 case BPF_S_ANC_QUEUE:
331                         A = skb->queue_mapping;
332                         continue;
333                 case BPF_S_ANC_HATYPE:
334                         if (!skb->dev)
335                                 return 0;
336                         A = skb->dev->type;
337                         continue;
338                 case BPF_S_ANC_RXHASH:
339                         A = skb->rxhash;
340                         continue;
341                 case BPF_S_ANC_CPU:
342                         A = raw_smp_processor_id();
343                         continue;
344                 case BPF_S_ANC_NLATTR: {
345                         struct nlattr *nla;
346
347                         if (skb_is_nonlinear(skb))
348                                 return 0;
349                         if (A > skb->len - sizeof(struct nlattr))
350                                 return 0;
351
352                         nla = nla_find((struct nlattr *)&skb->data[A],
353                                        skb->len - A, X);
354                         if (nla)
355                                 A = (void *)nla - (void *)skb->data;
356                         else
357                                 A = 0;
358                         continue;
359                 }
360                 case BPF_S_ANC_NLATTR_NEST: {
361                         struct nlattr *nla;
362
363                         if (skb_is_nonlinear(skb))
364                                 return 0;
365                         if (A > skb->len - sizeof(struct nlattr))
366                                 return 0;
367
368                         nla = (struct nlattr *)&skb->data[A];
369                         if (nla->nla_len > A - skb->len)
370                                 return 0;
371
372                         nla = nla_find_nested(nla, X);
373                         if (nla)
374                                 A = (void *)nla - (void *)skb->data;
375                         else
376                                 A = 0;
377                         continue;
378                 }
379 #ifdef CONFIG_SECCOMP_FILTER
380                 case BPF_S_ANC_SECCOMP_LD_W:
381                         A = seccomp_bpf_load(fentry->k);
382                         continue;
383 #endif
384                 default:
385                         WARN_RATELIMIT(1, "Unknown code:%u jt:%u tf:%u k:%u\n",
386                                        fentry->code, fentry->jt,
387                                        fentry->jf, fentry->k);
388                         return 0;
389                 }
390         }
391
392         return 0;
393 }
394 EXPORT_SYMBOL(sk_run_filter);
395
396 /*
397  * Security :
398  * A BPF program is able to use 16 cells of memory to store intermediate
399  * values (check u32 mem[BPF_MEMWORDS] in sk_run_filter())
400  * As we dont want to clear mem[] array for each packet going through
401  * sk_run_filter(), we check that filter loaded by user never try to read
402  * a cell if not previously written, and we check all branches to be sure
403  * a malicious user doesn't try to abuse us.
404  */
405 static int check_load_and_stores(struct sock_filter *filter, int flen)
406 {
407         u16 *masks, memvalid = 0; /* one bit per cell, 16 cells */
408         int pc, ret = 0;
409
410         BUILD_BUG_ON(BPF_MEMWORDS > 16);
411         masks = kmalloc(flen * sizeof(*masks), GFP_KERNEL);
412         if (!masks)
413                 return -ENOMEM;
414         memset(masks, 0xff, flen * sizeof(*masks));
415
416         for (pc = 0; pc < flen; pc++) {
417                 memvalid &= masks[pc];
418
419                 switch (filter[pc].code) {
420                 case BPF_S_ST:
421                 case BPF_S_STX:
422                         memvalid |= (1 << filter[pc].k);
423                         break;
424                 case BPF_S_LD_MEM:
425                 case BPF_S_LDX_MEM:
426                         if (!(memvalid & (1 << filter[pc].k))) {
427                                 ret = -EINVAL;
428                                 goto error;
429                         }
430                         break;
431                 case BPF_S_JMP_JA:
432                         /* a jump must set masks on target */
433                         masks[pc + 1 + filter[pc].k] &= memvalid;
434                         memvalid = ~0;
435                         break;
436                 case BPF_S_JMP_JEQ_K:
437                 case BPF_S_JMP_JEQ_X:
438                 case BPF_S_JMP_JGE_K:
439                 case BPF_S_JMP_JGE_X:
440                 case BPF_S_JMP_JGT_K:
441                 case BPF_S_JMP_JGT_X:
442                 case BPF_S_JMP_JSET_X:
443                 case BPF_S_JMP_JSET_K:
444                         /* a jump must set masks on targets */
445                         masks[pc + 1 + filter[pc].jt] &= memvalid;
446                         masks[pc + 1 + filter[pc].jf] &= memvalid;
447                         memvalid = ~0;
448                         break;
449                 }
450         }
451 error:
452         kfree(masks);
453         return ret;
454 }
455
456 /**
457  *      sk_chk_filter - verify socket filter code
458  *      @filter: filter to verify
459  *      @flen: length of filter
460  *
461  * Check the user's filter code. If we let some ugly
462  * filter code slip through kaboom! The filter must contain
463  * no references or jumps that are out of range, no illegal
464  * instructions, and must end with a RET instruction.
465  *
466  * All jumps are forward as they are not signed.
467  *
468  * Returns 0 if the rule set is legal or -EINVAL if not.
469  */
470 int sk_chk_filter(struct sock_filter *filter, unsigned int flen)
471 {
472         /*
473          * Valid instructions are initialized to non-0.
474          * Invalid instructions are initialized to 0.
475          */
476         static const u8 codes[] = {
477                 [BPF_ALU|BPF_ADD|BPF_K]  = BPF_S_ALU_ADD_K,
478                 [BPF_ALU|BPF_ADD|BPF_X]  = BPF_S_ALU_ADD_X,
479                 [BPF_ALU|BPF_SUB|BPF_K]  = BPF_S_ALU_SUB_K,
480                 [BPF_ALU|BPF_SUB|BPF_X]  = BPF_S_ALU_SUB_X,
481                 [BPF_ALU|BPF_MUL|BPF_K]  = BPF_S_ALU_MUL_K,
482                 [BPF_ALU|BPF_MUL|BPF_X]  = BPF_S_ALU_MUL_X,
483                 [BPF_ALU|BPF_DIV|BPF_X]  = BPF_S_ALU_DIV_X,
484                 [BPF_ALU|BPF_MOD|BPF_K]  = BPF_S_ALU_MOD_K,
485                 [BPF_ALU|BPF_MOD|BPF_X]  = BPF_S_ALU_MOD_X,
486                 [BPF_ALU|BPF_AND|BPF_K]  = BPF_S_ALU_AND_K,
487                 [BPF_ALU|BPF_AND|BPF_X]  = BPF_S_ALU_AND_X,
488                 [BPF_ALU|BPF_OR|BPF_K]   = BPF_S_ALU_OR_K,
489                 [BPF_ALU|BPF_OR|BPF_X]   = BPF_S_ALU_OR_X,
490                 [BPF_ALU|BPF_XOR|BPF_K]  = BPF_S_ALU_XOR_K,
491                 [BPF_ALU|BPF_XOR|BPF_X]  = BPF_S_ALU_XOR_X,
492                 [BPF_ALU|BPF_LSH|BPF_K]  = BPF_S_ALU_LSH_K,
493                 [BPF_ALU|BPF_LSH|BPF_X]  = BPF_S_ALU_LSH_X,
494                 [BPF_ALU|BPF_RSH|BPF_K]  = BPF_S_ALU_RSH_K,
495                 [BPF_ALU|BPF_RSH|BPF_X]  = BPF_S_ALU_RSH_X,
496                 [BPF_ALU|BPF_NEG]        = BPF_S_ALU_NEG,
497                 [BPF_LD|BPF_W|BPF_ABS]   = BPF_S_LD_W_ABS,
498                 [BPF_LD|BPF_H|BPF_ABS]   = BPF_S_LD_H_ABS,
499                 [BPF_LD|BPF_B|BPF_ABS]   = BPF_S_LD_B_ABS,
500                 [BPF_LD|BPF_W|BPF_LEN]   = BPF_S_LD_W_LEN,
501                 [BPF_LD|BPF_W|BPF_IND]   = BPF_S_LD_W_IND,
502                 [BPF_LD|BPF_H|BPF_IND]   = BPF_S_LD_H_IND,
503                 [BPF_LD|BPF_B|BPF_IND]   = BPF_S_LD_B_IND,
504                 [BPF_LD|BPF_IMM]         = BPF_S_LD_IMM,
505                 [BPF_LDX|BPF_W|BPF_LEN]  = BPF_S_LDX_W_LEN,
506                 [BPF_LDX|BPF_B|BPF_MSH]  = BPF_S_LDX_B_MSH,
507                 [BPF_LDX|BPF_IMM]        = BPF_S_LDX_IMM,
508                 [BPF_MISC|BPF_TAX]       = BPF_S_MISC_TAX,
509                 [BPF_MISC|BPF_TXA]       = BPF_S_MISC_TXA,
510                 [BPF_RET|BPF_K]          = BPF_S_RET_K,
511                 [BPF_RET|BPF_A]          = BPF_S_RET_A,
512                 [BPF_ALU|BPF_DIV|BPF_K]  = BPF_S_ALU_DIV_K,
513                 [BPF_LD|BPF_MEM]         = BPF_S_LD_MEM,
514                 [BPF_LDX|BPF_MEM]        = BPF_S_LDX_MEM,
515                 [BPF_ST]                 = BPF_S_ST,
516                 [BPF_STX]                = BPF_S_STX,
517                 [BPF_JMP|BPF_JA]         = BPF_S_JMP_JA,
518                 [BPF_JMP|BPF_JEQ|BPF_K]  = BPF_S_JMP_JEQ_K,
519                 [BPF_JMP|BPF_JEQ|BPF_X]  = BPF_S_JMP_JEQ_X,
520                 [BPF_JMP|BPF_JGE|BPF_K]  = BPF_S_JMP_JGE_K,
521                 [BPF_JMP|BPF_JGE|BPF_X]  = BPF_S_JMP_JGE_X,
522                 [BPF_JMP|BPF_JGT|BPF_K]  = BPF_S_JMP_JGT_K,
523                 [BPF_JMP|BPF_JGT|BPF_X]  = BPF_S_JMP_JGT_X,
524                 [BPF_JMP|BPF_JSET|BPF_K] = BPF_S_JMP_JSET_K,
525                 [BPF_JMP|BPF_JSET|BPF_X] = BPF_S_JMP_JSET_X,
526         };
527         int pc;
528
529         if (flen == 0 || flen > BPF_MAXINSNS)
530                 return -EINVAL;
531
532         /* check the filter code now */
533         for (pc = 0; pc < flen; pc++) {
534                 struct sock_filter *ftest = &filter[pc];
535                 u16 code = ftest->code;
536
537                 if (code >= ARRAY_SIZE(codes))
538                         return -EINVAL;
539                 code = codes[code];
540                 if (!code)
541                         return -EINVAL;
542                 /* Some instructions need special checks */
543                 switch (code) {
544                 case BPF_S_ALU_DIV_K:
545                         /* check for division by zero */
546                         if (ftest->k == 0)
547                                 return -EINVAL;
548                         ftest->k = reciprocal_value(ftest->k);
549                         break;
550                 case BPF_S_ALU_MOD_K:
551                         /* check for division by zero */
552                         if (ftest->k == 0)
553                                 return -EINVAL;
554                         break;
555                 case BPF_S_LD_MEM:
556                 case BPF_S_LDX_MEM:
557                 case BPF_S_ST:
558                 case BPF_S_STX:
559                         /* check for invalid memory addresses */
560                         if (ftest->k >= BPF_MEMWORDS)
561                                 return -EINVAL;
562                         break;
563                 case BPF_S_JMP_JA:
564                         /*
565                          * Note, the large ftest->k might cause loops.
566                          * Compare this with conditional jumps below,
567                          * where offsets are limited. --ANK (981016)
568                          */
569                         if (ftest->k >= (unsigned int)(flen-pc-1))
570                                 return -EINVAL;
571                         break;
572                 case BPF_S_JMP_JEQ_K:
573                 case BPF_S_JMP_JEQ_X:
574                 case BPF_S_JMP_JGE_K:
575                 case BPF_S_JMP_JGE_X:
576                 case BPF_S_JMP_JGT_K:
577                 case BPF_S_JMP_JGT_X:
578                 case BPF_S_JMP_JSET_X:
579                 case BPF_S_JMP_JSET_K:
580                         /* for conditionals both must be safe */
581                         if (pc + ftest->jt + 1 >= flen ||
582                             pc + ftest->jf + 1 >= flen)
583                                 return -EINVAL;
584                         break;
585                 case BPF_S_LD_W_ABS:
586                 case BPF_S_LD_H_ABS:
587                 case BPF_S_LD_B_ABS:
588 #define ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE:        \
589                                 code = BPF_S_ANC_##CODE;        \
590                                 break
591                         switch (ftest->k) {
592                         ANCILLARY(PROTOCOL);
593                         ANCILLARY(PKTTYPE);
594                         ANCILLARY(IFINDEX);
595                         ANCILLARY(NLATTR);
596                         ANCILLARY(NLATTR_NEST);
597                         ANCILLARY(MARK);
598                         ANCILLARY(QUEUE);
599                         ANCILLARY(HATYPE);
600                         ANCILLARY(RXHASH);
601                         ANCILLARY(CPU);
602                         ANCILLARY(ALU_XOR_X);
603                         }
604                 }
605                 ftest->code = code;
606         }
607
608         /* last instruction must be a RET code */
609         switch (filter[flen - 1].code) {
610         case BPF_S_RET_K:
611         case BPF_S_RET_A:
612                 return check_load_and_stores(filter, flen);
613         }
614         return -EINVAL;
615 }
616 EXPORT_SYMBOL(sk_chk_filter);
617
618 /**
619  *      sk_filter_release_rcu - Release a socket filter by rcu_head
620  *      @rcu: rcu_head that contains the sk_filter to free
621  */
622 void sk_filter_release_rcu(struct rcu_head *rcu)
623 {
624         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
625
626         bpf_jit_free(fp);
627         kfree(fp);
628 }
629 EXPORT_SYMBOL(sk_filter_release_rcu);
630
631 static int __sk_prepare_filter(struct sk_filter *fp)
632 {
633         int err;
634
635         fp->bpf_func = sk_run_filter;
636
637         err = sk_chk_filter(fp->insns, fp->len);
638         if (err)
639                 return err;
640
641         bpf_jit_compile(fp);
642         return 0;
643 }
644
645 /**
646  *      sk_unattached_filter_create - create an unattached filter
647  *      @fprog: the filter program
648  *      @pfp: the unattached filter that is created
649  *
650  * Create a filter independent of any socket. We first run some
651  * sanity checks on it to make sure it does not explode on us later.
652  * If an error occurs or there is insufficient memory for the filter
653  * a negative errno code is returned. On success the return is zero.
654  */
655 int sk_unattached_filter_create(struct sk_filter **pfp,
656                                 struct sock_fprog *fprog)
657 {
658         struct sk_filter *fp;
659         unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
660         int err;
661
662         /* Make sure new filter is there and in the right amounts. */
663         if (fprog->filter == NULL)
664                 return -EINVAL;
665
666         fp = kmalloc(fsize + sizeof(*fp), GFP_KERNEL);
667         if (!fp)
668                 return -ENOMEM;
669         memcpy(fp->insns, fprog->filter, fsize);
670
671         atomic_set(&fp->refcnt, 1);
672         fp->len = fprog->len;
673
674         err = __sk_prepare_filter(fp);
675         if (err)
676                 goto free_mem;
677
678         *pfp = fp;
679         return 0;
680 free_mem:
681         kfree(fp);
682         return err;
683 }
684 EXPORT_SYMBOL_GPL(sk_unattached_filter_create);
685
686 void sk_unattached_filter_destroy(struct sk_filter *fp)
687 {
688         sk_filter_release(fp);
689 }
690 EXPORT_SYMBOL_GPL(sk_unattached_filter_destroy);
691
692 /**
693  *      sk_attach_filter - attach a socket filter
694  *      @fprog: the filter program
695  *      @sk: the socket to use
696  *
697  * Attach the user's filter code. We first run some sanity checks on
698  * it to make sure it does not explode on us later. If an error
699  * occurs or there is insufficient memory for the filter a negative
700  * errno code is returned. On success the return is zero.
701  */
702 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
703 {
704         struct sk_filter *fp, *old_fp;
705         unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
706         int err;
707
708         /* Make sure new filter is there and in the right amounts. */
709         if (fprog->filter == NULL)
710                 return -EINVAL;
711
712         fp = sock_kmalloc(sk, fsize+sizeof(*fp), GFP_KERNEL);
713         if (!fp)
714                 return -ENOMEM;
715         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
716                 sock_kfree_s(sk, fp, fsize+sizeof(*fp));
717                 return -EFAULT;
718         }
719
720         atomic_set(&fp->refcnt, 1);
721         fp->len = fprog->len;
722
723         err = __sk_prepare_filter(fp);
724         if (err) {
725                 sk_filter_uncharge(sk, fp);
726                 return err;
727         }
728
729         old_fp = rcu_dereference_protected(sk->sk_filter,
730                                            sock_owned_by_user(sk));
731         rcu_assign_pointer(sk->sk_filter, fp);
732
733         if (old_fp)
734                 sk_filter_uncharge(sk, old_fp);
735         return 0;
736 }
737 EXPORT_SYMBOL_GPL(sk_attach_filter);
738
739 int sk_detach_filter(struct sock *sk)
740 {
741         int ret = -ENOENT;
742         struct sk_filter *filter;
743
744         filter = rcu_dereference_protected(sk->sk_filter,
745                                            sock_owned_by_user(sk));
746         if (filter) {
747                 RCU_INIT_POINTER(sk->sk_filter, NULL);
748                 sk_filter_uncharge(sk, filter);
749                 ret = 0;
750         }
751         return ret;
752 }
753 EXPORT_SYMBOL_GPL(sk_detach_filter);