]> rtime.felk.cvut.cz Git - can-eth-gw-linux.git/blob - drivers/net/hippi/rrunner.c
Merge tag 'for-linus-20121212' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowe...
[can-eth-gw-linux.git] / drivers / net / hippi / rrunner.c
1 /*
2  * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board.
3  *
4  * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>.
5  *
6  * Thanks to Essential Communication for providing us with hardware
7  * and very comprehensive documentation without which I would not have
8  * been able to write this driver. A special thank you to John Gibbon
9  * for sorting out the legal issues, with the NDA, allowing the code to
10  * be released under the GPL.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the
18  * stupid bugs in my code.
19  *
20  * Softnet support and various other patches from Val Henson of
21  * ODS/Essential.
22  *
23  * PCI DMA mapping code partly based on work by Francois Romieu.
24  */
25
26
27 #define DEBUG 1
28 #define RX_DMA_SKBUFF 1
29 #define PKT_COPY_THRESHOLD 512
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/pci.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/hippidevice.h>
39 #include <linux/skbuff.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
42 #include <linux/mm.h>
43 #include <linux/slab.h>
44 #include <net/sock.h>
45
46 #include <asm/cache.h>
47 #include <asm/byteorder.h>
48 #include <asm/io.h>
49 #include <asm/irq.h>
50 #include <asm/uaccess.h>
51
52 #define rr_if_busy(dev)     netif_queue_stopped(dev)
53 #define rr_if_running(dev)  netif_running(dev)
54
55 #include "rrunner.h"
56
57 #define RUN_AT(x) (jiffies + (x))
58
59
60 MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>");
61 MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver");
62 MODULE_LICENSE("GPL");
63
64 static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002  Jes Sorensen (jes@wildopensource.com)\n";
65
66
67 static const struct net_device_ops rr_netdev_ops = {
68         .ndo_open               = rr_open,
69         .ndo_stop               = rr_close,
70         .ndo_do_ioctl           = rr_ioctl,
71         .ndo_start_xmit         = rr_start_xmit,
72         .ndo_change_mtu         = hippi_change_mtu,
73         .ndo_set_mac_address    = hippi_mac_addr,
74 };
75
76 /*
77  * Implementation notes:
78  *
79  * The DMA engine only allows for DMA within physical 64KB chunks of
80  * memory. The current approach of the driver (and stack) is to use
81  * linear blocks of memory for the skbuffs. However, as the data block
82  * is always the first part of the skb and skbs are 2^n aligned so we
83  * are guarantted to get the whole block within one 64KB align 64KB
84  * chunk.
85  *
86  * On the long term, relying on being able to allocate 64KB linear
87  * chunks of memory is not feasible and the skb handling code and the
88  * stack will need to know about I/O vectors or something similar.
89  */
90
91 static int __devinit rr_init_one(struct pci_dev *pdev,
92         const struct pci_device_id *ent)
93 {
94         struct net_device *dev;
95         static int version_disp;
96         u8 pci_latency;
97         struct rr_private *rrpriv;
98         void *tmpptr;
99         dma_addr_t ring_dma;
100         int ret = -ENOMEM;
101
102         dev = alloc_hippi_dev(sizeof(struct rr_private));
103         if (!dev)
104                 goto out3;
105
106         ret = pci_enable_device(pdev);
107         if (ret) {
108                 ret = -ENODEV;
109                 goto out2;
110         }
111
112         rrpriv = netdev_priv(dev);
113
114         SET_NETDEV_DEV(dev, &pdev->dev);
115
116         ret = pci_request_regions(pdev, "rrunner");
117         if (ret < 0)
118                 goto out;
119
120         pci_set_drvdata(pdev, dev);
121
122         rrpriv->pci_dev = pdev;
123
124         spin_lock_init(&rrpriv->lock);
125
126         dev->netdev_ops = &rr_netdev_ops;
127
128         /* display version info if adapter is found */
129         if (!version_disp) {
130                 /* set display flag to TRUE so that */
131                 /* we only display this string ONCE */
132                 version_disp = 1;
133                 printk(version);
134         }
135
136         pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
137         if (pci_latency <= 0x58){
138                 pci_latency = 0x58;
139                 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency);
140         }
141
142         pci_set_master(pdev);
143
144         printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI "
145                "at 0x%llx, irq %i, PCI latency %i\n", dev->name,
146                (unsigned long long)pci_resource_start(pdev, 0),
147                pdev->irq, pci_latency);
148
149         /*
150          * Remap the MMIO regs into kernel space.
151          */
152         rrpriv->regs = pci_iomap(pdev, 0, 0x1000);
153         if (!rrpriv->regs) {
154                 printk(KERN_ERR "%s:  Unable to map I/O register, "
155                         "RoadRunner will be disabled.\n", dev->name);
156                 ret = -EIO;
157                 goto out;
158         }
159
160         tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
161         rrpriv->tx_ring = tmpptr;
162         rrpriv->tx_ring_dma = ring_dma;
163
164         if (!tmpptr) {
165                 ret = -ENOMEM;
166                 goto out;
167         }
168
169         tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
170         rrpriv->rx_ring = tmpptr;
171         rrpriv->rx_ring_dma = ring_dma;
172
173         if (!tmpptr) {
174                 ret = -ENOMEM;
175                 goto out;
176         }
177
178         tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma);
179         rrpriv->evt_ring = tmpptr;
180         rrpriv->evt_ring_dma = ring_dma;
181
182         if (!tmpptr) {
183                 ret = -ENOMEM;
184                 goto out;
185         }
186
187         /*
188          * Don't access any register before this point!
189          */
190 #ifdef __BIG_ENDIAN
191         writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP,
192                 &rrpriv->regs->HostCtrl);
193 #endif
194         /*
195          * Need to add a case for little-endian 64-bit hosts here.
196          */
197
198         rr_init(dev);
199
200         ret = register_netdev(dev);
201         if (ret)
202                 goto out;
203         return 0;
204
205  out:
206         if (rrpriv->rx_ring)
207                 pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring,
208                                     rrpriv->rx_ring_dma);
209         if (rrpriv->tx_ring)
210                 pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring,
211                                     rrpriv->tx_ring_dma);
212         if (rrpriv->regs)
213                 pci_iounmap(pdev, rrpriv->regs);
214         if (pdev) {
215                 pci_release_regions(pdev);
216                 pci_set_drvdata(pdev, NULL);
217         }
218  out2:
219         free_netdev(dev);
220  out3:
221         return ret;
222 }
223
224 static void __devexit rr_remove_one (struct pci_dev *pdev)
225 {
226         struct net_device *dev = pci_get_drvdata(pdev);
227         struct rr_private *rr = netdev_priv(dev);
228
229         if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)) {
230                 printk(KERN_ERR "%s: trying to unload running NIC\n",
231                        dev->name);
232                 writel(HALT_NIC, &rr->regs->HostCtrl);
233         }
234
235         unregister_netdev(dev);
236         pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring,
237                             rr->evt_ring_dma);
238         pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring,
239                             rr->rx_ring_dma);
240         pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring,
241                             rr->tx_ring_dma);
242         pci_iounmap(pdev, rr->regs);
243         pci_release_regions(pdev);
244         pci_disable_device(pdev);
245         pci_set_drvdata(pdev, NULL);
246         free_netdev(dev);
247 }
248
249
250 /*
251  * Commands are considered to be slow, thus there is no reason to
252  * inline this.
253  */
254 static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd)
255 {
256         struct rr_regs __iomem *regs;
257         u32 idx;
258
259         regs = rrpriv->regs;
260         /*
261          * This is temporary - it will go away in the final version.
262          * We probably also want to make this function inline.
263          */
264         if (readl(&regs->HostCtrl) & NIC_HALTED){
265                 printk("issuing command for halted NIC, code 0x%x, "
266                        "HostCtrl %08x\n", cmd->code, readl(&regs->HostCtrl));
267                 if (readl(&regs->Mode) & FATAL_ERR)
268                         printk("error codes Fail1 %02x, Fail2 %02x\n",
269                                readl(&regs->Fail1), readl(&regs->Fail2));
270         }
271
272         idx = rrpriv->info->cmd_ctrl.pi;
273
274         writel(*(u32*)(cmd), &regs->CmdRing[idx]);
275         wmb();
276
277         idx = (idx - 1) % CMD_RING_ENTRIES;
278         rrpriv->info->cmd_ctrl.pi = idx;
279         wmb();
280
281         if (readl(&regs->Mode) & FATAL_ERR)
282                 printk("error code %02x\n", readl(&regs->Fail1));
283 }
284
285
286 /*
287  * Reset the board in a sensible manner. The NIC is already halted
288  * when we get here and a spin-lock is held.
289  */
290 static int rr_reset(struct net_device *dev)
291 {
292         struct rr_private *rrpriv;
293         struct rr_regs __iomem *regs;
294         u32 start_pc;
295         int i;
296
297         rrpriv = netdev_priv(dev);
298         regs = rrpriv->regs;
299
300         rr_load_firmware(dev);
301
302         writel(0x01000000, &regs->TX_state);
303         writel(0xff800000, &regs->RX_state);
304         writel(0, &regs->AssistState);
305         writel(CLEAR_INTA, &regs->LocalCtrl);
306         writel(0x01, &regs->BrkPt);
307         writel(0, &regs->Timer);
308         writel(0, &regs->TimerRef);
309         writel(RESET_DMA, &regs->DmaReadState);
310         writel(RESET_DMA, &regs->DmaWriteState);
311         writel(0, &regs->DmaWriteHostHi);
312         writel(0, &regs->DmaWriteHostLo);
313         writel(0, &regs->DmaReadHostHi);
314         writel(0, &regs->DmaReadHostLo);
315         writel(0, &regs->DmaReadLen);
316         writel(0, &regs->DmaWriteLen);
317         writel(0, &regs->DmaWriteLcl);
318         writel(0, &regs->DmaWriteIPchecksum);
319         writel(0, &regs->DmaReadLcl);
320         writel(0, &regs->DmaReadIPchecksum);
321         writel(0, &regs->PciState);
322 #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN
323         writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, &regs->Mode);
324 #elif (BITS_PER_LONG == 64)
325         writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, &regs->Mode);
326 #else
327         writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, &regs->Mode);
328 #endif
329
330 #if 0
331         /*
332          * Don't worry, this is just black magic.
333          */
334         writel(0xdf000, &regs->RxBase);
335         writel(0xdf000, &regs->RxPrd);
336         writel(0xdf000, &regs->RxCon);
337         writel(0xce000, &regs->TxBase);
338         writel(0xce000, &regs->TxPrd);
339         writel(0xce000, &regs->TxCon);
340         writel(0, &regs->RxIndPro);
341         writel(0, &regs->RxIndCon);
342         writel(0, &regs->RxIndRef);
343         writel(0, &regs->TxIndPro);
344         writel(0, &regs->TxIndCon);
345         writel(0, &regs->TxIndRef);
346         writel(0xcc000, &regs->pad10[0]);
347         writel(0, &regs->DrCmndPro);
348         writel(0, &regs->DrCmndCon);
349         writel(0, &regs->DwCmndPro);
350         writel(0, &regs->DwCmndCon);
351         writel(0, &regs->DwCmndRef);
352         writel(0, &regs->DrDataPro);
353         writel(0, &regs->DrDataCon);
354         writel(0, &regs->DrDataRef);
355         writel(0, &regs->DwDataPro);
356         writel(0, &regs->DwDataCon);
357         writel(0, &regs->DwDataRef);
358 #endif
359
360         writel(0xffffffff, &regs->MbEvent);
361         writel(0, &regs->Event);
362
363         writel(0, &regs->TxPi);
364         writel(0, &regs->IpRxPi);
365
366         writel(0, &regs->EvtCon);
367         writel(0, &regs->EvtPrd);
368
369         rrpriv->info->evt_ctrl.pi = 0;
370
371         for (i = 0; i < CMD_RING_ENTRIES; i++)
372                 writel(0, &regs->CmdRing[i]);
373
374 /*
375  * Why 32 ? is this not cache line size dependent?
376  */
377         writel(RBURST_64|WBURST_64, &regs->PciState);
378         wmb();
379
380         start_pc = rr_read_eeprom_word(rrpriv,
381                         offsetof(struct eeprom, rncd_info.FwStart));
382
383 #if (DEBUG > 1)
384         printk("%s: Executing firmware at address 0x%06x\n",
385                dev->name, start_pc);
386 #endif
387
388         writel(start_pc + 0x800, &regs->Pc);
389         wmb();
390         udelay(5);
391
392         writel(start_pc, &regs->Pc);
393         wmb();
394
395         return 0;
396 }
397
398
399 /*
400  * Read a string from the EEPROM.
401  */
402 static unsigned int rr_read_eeprom(struct rr_private *rrpriv,
403                                 unsigned long offset,
404                                 unsigned char *buf,
405                                 unsigned long length)
406 {
407         struct rr_regs __iomem *regs = rrpriv->regs;
408         u32 misc, io, host, i;
409
410         io = readl(&regs->ExtIo);
411         writel(0, &regs->ExtIo);
412         misc = readl(&regs->LocalCtrl);
413         writel(0, &regs->LocalCtrl);
414         host = readl(&regs->HostCtrl);
415         writel(host | HALT_NIC, &regs->HostCtrl);
416         mb();
417
418         for (i = 0; i < length; i++){
419                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
420                 mb();
421                 buf[i] = (readl(&regs->WinData) >> 24) & 0xff;
422                 mb();
423         }
424
425         writel(host, &regs->HostCtrl);
426         writel(misc, &regs->LocalCtrl);
427         writel(io, &regs->ExtIo);
428         mb();
429         return i;
430 }
431
432
433 /*
434  * Shortcut to read one word (4 bytes) out of the EEPROM and convert
435  * it to our CPU byte-order.
436  */
437 static u32 rr_read_eeprom_word(struct rr_private *rrpriv,
438                             size_t offset)
439 {
440         __be32 word;
441
442         if ((rr_read_eeprom(rrpriv, offset,
443                             (unsigned char *)&word, 4) == 4))
444                 return be32_to_cpu(word);
445         return 0;
446 }
447
448
449 /*
450  * Write a string to the EEPROM.
451  *
452  * This is only called when the firmware is not running.
453  */
454 static unsigned int write_eeprom(struct rr_private *rrpriv,
455                                  unsigned long offset,
456                                  unsigned char *buf,
457                                  unsigned long length)
458 {
459         struct rr_regs __iomem *regs = rrpriv->regs;
460         u32 misc, io, data, i, j, ready, error = 0;
461
462         io = readl(&regs->ExtIo);
463         writel(0, &regs->ExtIo);
464         misc = readl(&regs->LocalCtrl);
465         writel(ENABLE_EEPROM_WRITE, &regs->LocalCtrl);
466         mb();
467
468         for (i = 0; i < length; i++){
469                 writel((EEPROM_BASE + ((offset+i) << 3)), &regs->WinBase);
470                 mb();
471                 data = buf[i] << 24;
472                 /*
473                  * Only try to write the data if it is not the same
474                  * value already.
475                  */
476                 if ((readl(&regs->WinData) & 0xff000000) != data){
477                         writel(data, &regs->WinData);
478                         ready = 0;
479                         j = 0;
480                         mb();
481                         while(!ready){
482                                 udelay(20);
483                                 if ((readl(&regs->WinData) & 0xff000000) ==
484                                     data)
485                                         ready = 1;
486                                 mb();
487                                 if (j++ > 5000){
488                                         printk("data mismatch: %08x, "
489                                                "WinData %08x\n", data,
490                                                readl(&regs->WinData));
491                                         ready = 1;
492                                         error = 1;
493                                 }
494                         }
495                 }
496         }
497
498         writel(misc, &regs->LocalCtrl);
499         writel(io, &regs->ExtIo);
500         mb();
501
502         return error;
503 }
504
505
506 static int __devinit rr_init(struct net_device *dev)
507 {
508         struct rr_private *rrpriv;
509         struct rr_regs __iomem *regs;
510         u32 sram_size, rev;
511
512         rrpriv = netdev_priv(dev);
513         regs = rrpriv->regs;
514
515         rev = readl(&regs->FwRev);
516         rrpriv->fw_rev = rev;
517         if (rev > 0x00020024)
518                 printk("  Firmware revision: %i.%i.%i\n", (rev >> 16),
519                        ((rev >> 8) & 0xff), (rev & 0xff));
520         else if (rev >= 0x00020000) {
521                 printk("  Firmware revision: %i.%i.%i (2.0.37 or "
522                        "later is recommended)\n", (rev >> 16),
523                        ((rev >> 8) & 0xff), (rev & 0xff));
524         }else{
525                 printk("  Firmware revision too old: %i.%i.%i, please "
526                        "upgrade to 2.0.37 or later.\n",
527                        (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff));
528         }
529
530 #if (DEBUG > 2)
531         printk("  Maximum receive rings %i\n", readl(&regs->MaxRxRng));
532 #endif
533
534         /*
535          * Read the hardware address from the eeprom.  The HW address
536          * is not really necessary for HIPPI but awfully convenient.
537          * The pointer arithmetic to put it in dev_addr is ugly, but
538          * Donald Becker does it this way for the GigE version of this
539          * card and it's shorter and more portable than any
540          * other method I've seen.  -VAL
541          */
542
543         *(__be16 *)(dev->dev_addr) =
544           htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA)));
545         *(__be32 *)(dev->dev_addr+2) =
546           htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4])));
547
548         printk("  MAC: %pM\n", dev->dev_addr);
549
550         sram_size = rr_read_eeprom_word(rrpriv, 8);
551         printk("  SRAM size 0x%06x\n", sram_size);
552
553         return 0;
554 }
555
556
557 static int rr_init1(struct net_device *dev)
558 {
559         struct rr_private *rrpriv;
560         struct rr_regs __iomem *regs;
561         unsigned long myjif, flags;
562         struct cmd cmd;
563         u32 hostctrl;
564         int ecode = 0;
565         short i;
566
567         rrpriv = netdev_priv(dev);
568         regs = rrpriv->regs;
569
570         spin_lock_irqsave(&rrpriv->lock, flags);
571
572         hostctrl = readl(&regs->HostCtrl);
573         writel(hostctrl | HALT_NIC | RR_CLEAR_INT, &regs->HostCtrl);
574         wmb();
575
576         if (hostctrl & PARITY_ERR){
577                 printk("%s: Parity error halting NIC - this is serious!\n",
578                        dev->name);
579                 spin_unlock_irqrestore(&rrpriv->lock, flags);
580                 ecode = -EFAULT;
581                 goto error;
582         }
583
584         set_rxaddr(regs, rrpriv->rx_ctrl_dma);
585         set_infoaddr(regs, rrpriv->info_dma);
586
587         rrpriv->info->evt_ctrl.entry_size = sizeof(struct event);
588         rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES;
589         rrpriv->info->evt_ctrl.mode = 0;
590         rrpriv->info->evt_ctrl.pi = 0;
591         set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma);
592
593         rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd);
594         rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES;
595         rrpriv->info->cmd_ctrl.mode = 0;
596         rrpriv->info->cmd_ctrl.pi = 15;
597
598         for (i = 0; i < CMD_RING_ENTRIES; i++) {
599                 writel(0, &regs->CmdRing[i]);
600         }
601
602         for (i = 0; i < TX_RING_ENTRIES; i++) {
603                 rrpriv->tx_ring[i].size = 0;
604                 set_rraddr(&rrpriv->tx_ring[i].addr, 0);
605                 rrpriv->tx_skbuff[i] = NULL;
606         }
607         rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc);
608         rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES;
609         rrpriv->info->tx_ctrl.mode = 0;
610         rrpriv->info->tx_ctrl.pi = 0;
611         set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma);
612
613         /*
614          * Set dirty_tx before we start receiving interrupts, otherwise
615          * the interrupt handler might think it is supposed to process
616          * tx ints before we are up and running, which may cause a null
617          * pointer access in the int handler.
618          */
619         rrpriv->tx_full = 0;
620         rrpriv->cur_rx = 0;
621         rrpriv->dirty_rx = rrpriv->dirty_tx = 0;
622
623         rr_reset(dev);
624
625         /* Tuning values */
626         writel(0x5000, &regs->ConRetry);
627         writel(0x100, &regs->ConRetryTmr);
628         writel(0x500000, &regs->ConTmout);
629         writel(0x60, &regs->IntrTmr);
630         writel(0x500000, &regs->TxDataMvTimeout);
631         writel(0x200000, &regs->RxDataMvTimeout);
632         writel(0x80, &regs->WriteDmaThresh);
633         writel(0x80, &regs->ReadDmaThresh);
634
635         rrpriv->fw_running = 0;
636         wmb();
637
638         hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR);
639         writel(hostctrl, &regs->HostCtrl);
640         wmb();
641
642         spin_unlock_irqrestore(&rrpriv->lock, flags);
643
644         for (i = 0; i < RX_RING_ENTRIES; i++) {
645                 struct sk_buff *skb;
646                 dma_addr_t addr;
647
648                 rrpriv->rx_ring[i].mode = 0;
649                 skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC);
650                 if (!skb) {
651                         printk(KERN_WARNING "%s: Unable to allocate memory "
652                                "for receive ring - halting NIC\n", dev->name);
653                         ecode = -ENOMEM;
654                         goto error;
655                 }
656                 rrpriv->rx_skbuff[i] = skb;
657                 addr = pci_map_single(rrpriv->pci_dev, skb->data,
658                         dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
659                 /*
660                  * Sanity test to see if we conflict with the DMA
661                  * limitations of the Roadrunner.
662                  */
663                 if ((((unsigned long)skb->data) & 0xfff) > ~65320)
664                         printk("skb alloc error\n");
665
666                 set_rraddr(&rrpriv->rx_ring[i].addr, addr);
667                 rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN;
668         }
669
670         rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc);
671         rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES;
672         rrpriv->rx_ctrl[4].mode = 8;
673         rrpriv->rx_ctrl[4].pi = 0;
674         wmb();
675         set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma);
676
677         udelay(1000);
678
679         /*
680          * Now start the FirmWare.
681          */
682         cmd.code = C_START_FW;
683         cmd.ring = 0;
684         cmd.index = 0;
685
686         rr_issue_cmd(rrpriv, &cmd);
687
688         /*
689          * Give the FirmWare time to chew on the `get running' command.
690          */
691         myjif = jiffies + 5 * HZ;
692         while (time_before(jiffies, myjif) && !rrpriv->fw_running)
693                 cpu_relax();
694
695         netif_start_queue(dev);
696
697         return ecode;
698
699  error:
700         /*
701          * We might have gotten here because we are out of memory,
702          * make sure we release everything we allocated before failing
703          */
704         for (i = 0; i < RX_RING_ENTRIES; i++) {
705                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
706
707                 if (skb) {
708                         pci_unmap_single(rrpriv->pci_dev,
709                                          rrpriv->rx_ring[i].addr.addrlo,
710                                          dev->mtu + HIPPI_HLEN,
711                                          PCI_DMA_FROMDEVICE);
712                         rrpriv->rx_ring[i].size = 0;
713                         set_rraddr(&rrpriv->rx_ring[i].addr, 0);
714                         dev_kfree_skb(skb);
715                         rrpriv->rx_skbuff[i] = NULL;
716                 }
717         }
718         return ecode;
719 }
720
721
722 /*
723  * All events are considered to be slow (RX/TX ints do not generate
724  * events) and are handled here, outside the main interrupt handler,
725  * to reduce the size of the handler.
726  */
727 static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx)
728 {
729         struct rr_private *rrpriv;
730         struct rr_regs __iomem *regs;
731         u32 tmp;
732
733         rrpriv = netdev_priv(dev);
734         regs = rrpriv->regs;
735
736         while (prodidx != eidx){
737                 switch (rrpriv->evt_ring[eidx].code){
738                 case E_NIC_UP:
739                         tmp = readl(&regs->FwRev);
740                         printk(KERN_INFO "%s: Firmware revision %i.%i.%i "
741                                "up and running\n", dev->name,
742                                (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff));
743                         rrpriv->fw_running = 1;
744                         writel(RX_RING_ENTRIES - 1, &regs->IpRxPi);
745                         wmb();
746                         break;
747                 case E_LINK_ON:
748                         printk(KERN_INFO "%s: Optical link ON\n", dev->name);
749                         break;
750                 case E_LINK_OFF:
751                         printk(KERN_INFO "%s: Optical link OFF\n", dev->name);
752                         break;
753                 case E_RX_IDLE:
754                         printk(KERN_WARNING "%s: RX data not moving\n",
755                                dev->name);
756                         goto drop;
757                 case E_WATCHDOG:
758                         printk(KERN_INFO "%s: The watchdog is here to see "
759                                "us\n", dev->name);
760                         break;
761                 case E_INTERN_ERR:
762                         printk(KERN_ERR "%s: HIPPI Internal NIC error\n",
763                                dev->name);
764                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
765                                &regs->HostCtrl);
766                         wmb();
767                         break;
768                 case E_HOST_ERR:
769                         printk(KERN_ERR "%s: Host software error\n",
770                                dev->name);
771                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
772                                &regs->HostCtrl);
773                         wmb();
774                         break;
775                 /*
776                  * TX events.
777                  */
778                 case E_CON_REJ:
779                         printk(KERN_WARNING "%s: Connection rejected\n",
780                                dev->name);
781                         dev->stats.tx_aborted_errors++;
782                         break;
783                 case E_CON_TMOUT:
784                         printk(KERN_WARNING "%s: Connection timeout\n",
785                                dev->name);
786                         break;
787                 case E_DISC_ERR:
788                         printk(KERN_WARNING "%s: HIPPI disconnect error\n",
789                                dev->name);
790                         dev->stats.tx_aborted_errors++;
791                         break;
792                 case E_INT_PRTY:
793                         printk(KERN_ERR "%s: HIPPI Internal Parity error\n",
794                                dev->name);
795                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
796                                &regs->HostCtrl);
797                         wmb();
798                         break;
799                 case E_TX_IDLE:
800                         printk(KERN_WARNING "%s: Transmitter idle\n",
801                                dev->name);
802                         break;
803                 case E_TX_LINK_DROP:
804                         printk(KERN_WARNING "%s: Link lost during transmit\n",
805                                dev->name);
806                         dev->stats.tx_aborted_errors++;
807                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
808                                &regs->HostCtrl);
809                         wmb();
810                         break;
811                 case E_TX_INV_RNG:
812                         printk(KERN_ERR "%s: Invalid send ring block\n",
813                                dev->name);
814                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
815                                &regs->HostCtrl);
816                         wmb();
817                         break;
818                 case E_TX_INV_BUF:
819                         printk(KERN_ERR "%s: Invalid send buffer address\n",
820                                dev->name);
821                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
822                                &regs->HostCtrl);
823                         wmb();
824                         break;
825                 case E_TX_INV_DSC:
826                         printk(KERN_ERR "%s: Invalid descriptor address\n",
827                                dev->name);
828                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
829                                &regs->HostCtrl);
830                         wmb();
831                         break;
832                 /*
833                  * RX events.
834                  */
835                 case E_RX_RNG_OUT:
836                         printk(KERN_INFO "%s: Receive ring full\n", dev->name);
837                         break;
838
839                 case E_RX_PAR_ERR:
840                         printk(KERN_WARNING "%s: Receive parity error\n",
841                                dev->name);
842                         goto drop;
843                 case E_RX_LLRC_ERR:
844                         printk(KERN_WARNING "%s: Receive LLRC error\n",
845                                dev->name);
846                         goto drop;
847                 case E_PKT_LN_ERR:
848                         printk(KERN_WARNING "%s: Receive packet length "
849                                "error\n", dev->name);
850                         goto drop;
851                 case E_DTA_CKSM_ERR:
852                         printk(KERN_WARNING "%s: Data checksum error\n",
853                                dev->name);
854                         goto drop;
855                 case E_SHT_BST:
856                         printk(KERN_WARNING "%s: Unexpected short burst "
857                                "error\n", dev->name);
858                         goto drop;
859                 case E_STATE_ERR:
860                         printk(KERN_WARNING "%s: Recv. state transition"
861                                " error\n", dev->name);
862                         goto drop;
863                 case E_UNEXP_DATA:
864                         printk(KERN_WARNING "%s: Unexpected data error\n",
865                                dev->name);
866                         goto drop;
867                 case E_LST_LNK_ERR:
868                         printk(KERN_WARNING "%s: Link lost error\n",
869                                dev->name);
870                         goto drop;
871                 case E_FRM_ERR:
872                         printk(KERN_WARNING "%s: Framming Error\n",
873                                dev->name);
874                         goto drop;
875                 case E_FLG_SYN_ERR:
876                         printk(KERN_WARNING "%s: Flag sync. lost during "
877                                "packet\n", dev->name);
878                         goto drop;
879                 case E_RX_INV_BUF:
880                         printk(KERN_ERR "%s: Invalid receive buffer "
881                                "address\n", dev->name);
882                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
883                                &regs->HostCtrl);
884                         wmb();
885                         break;
886                 case E_RX_INV_DSC:
887                         printk(KERN_ERR "%s: Invalid receive descriptor "
888                                "address\n", dev->name);
889                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
890                                &regs->HostCtrl);
891                         wmb();
892                         break;
893                 case E_RNG_BLK:
894                         printk(KERN_ERR "%s: Invalid ring block\n",
895                                dev->name);
896                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
897                                &regs->HostCtrl);
898                         wmb();
899                         break;
900                 drop:
901                         /* Label packet to be dropped.
902                          * Actual dropping occurs in rx
903                          * handling.
904                          *
905                          * The index of packet we get to drop is
906                          * the index of the packet following
907                          * the bad packet. -kbf
908                          */
909                         {
910                                 u16 index = rrpriv->evt_ring[eidx].index;
911                                 index = (index + (RX_RING_ENTRIES - 1)) %
912                                         RX_RING_ENTRIES;
913                                 rrpriv->rx_ring[index].mode |=
914                                         (PACKET_BAD | PACKET_END);
915                         }
916                         break;
917                 default:
918                         printk(KERN_WARNING "%s: Unhandled event 0x%02x\n",
919                                dev->name, rrpriv->evt_ring[eidx].code);
920                 }
921                 eidx = (eidx + 1) % EVT_RING_ENTRIES;
922         }
923
924         rrpriv->info->evt_ctrl.pi = eidx;
925         wmb();
926         return eidx;
927 }
928
929
930 static void rx_int(struct net_device *dev, u32 rxlimit, u32 index)
931 {
932         struct rr_private *rrpriv = netdev_priv(dev);
933         struct rr_regs __iomem *regs = rrpriv->regs;
934
935         do {
936                 struct rx_desc *desc;
937                 u32 pkt_len;
938
939                 desc = &(rrpriv->rx_ring[index]);
940                 pkt_len = desc->size;
941 #if (DEBUG > 2)
942                 printk("index %i, rxlimit %i\n", index, rxlimit);
943                 printk("len %x, mode %x\n", pkt_len, desc->mode);
944 #endif
945                 if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){
946                         dev->stats.rx_dropped++;
947                         goto defer;
948                 }
949
950                 if (pkt_len > 0){
951                         struct sk_buff *skb, *rx_skb;
952
953                         rx_skb = rrpriv->rx_skbuff[index];
954
955                         if (pkt_len < PKT_COPY_THRESHOLD) {
956                                 skb = alloc_skb(pkt_len, GFP_ATOMIC);
957                                 if (skb == NULL){
958                                         printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len);
959                                         dev->stats.rx_dropped++;
960                                         goto defer;
961                                 } else {
962                                         pci_dma_sync_single_for_cpu(rrpriv->pci_dev,
963                                                                     desc->addr.addrlo,
964                                                                     pkt_len,
965                                                                     PCI_DMA_FROMDEVICE);
966
967                                         memcpy(skb_put(skb, pkt_len),
968                                                rx_skb->data, pkt_len);
969
970                                         pci_dma_sync_single_for_device(rrpriv->pci_dev,
971                                                                        desc->addr.addrlo,
972                                                                        pkt_len,
973                                                                        PCI_DMA_FROMDEVICE);
974                                 }
975                         }else{
976                                 struct sk_buff *newskb;
977
978                                 newskb = alloc_skb(dev->mtu + HIPPI_HLEN,
979                                         GFP_ATOMIC);
980                                 if (newskb){
981                                         dma_addr_t addr;
982
983                                         pci_unmap_single(rrpriv->pci_dev,
984                                                 desc->addr.addrlo, dev->mtu +
985                                                 HIPPI_HLEN, PCI_DMA_FROMDEVICE);
986                                         skb = rx_skb;
987                                         skb_put(skb, pkt_len);
988                                         rrpriv->rx_skbuff[index] = newskb;
989                                         addr = pci_map_single(rrpriv->pci_dev,
990                                                 newskb->data,
991                                                 dev->mtu + HIPPI_HLEN,
992                                                 PCI_DMA_FROMDEVICE);
993                                         set_rraddr(&desc->addr, addr);
994                                 } else {
995                                         printk("%s: Out of memory, deferring "
996                                                "packet\n", dev->name);
997                                         dev->stats.rx_dropped++;
998                                         goto defer;
999                                 }
1000                         }
1001                         skb->protocol = hippi_type_trans(skb, dev);
1002
1003                         netif_rx(skb);          /* send it up */
1004
1005                         dev->stats.rx_packets++;
1006                         dev->stats.rx_bytes += pkt_len;
1007                 }
1008         defer:
1009                 desc->mode = 0;
1010                 desc->size = dev->mtu + HIPPI_HLEN;
1011
1012                 if ((index & 7) == 7)
1013                         writel(index, &regs->IpRxPi);
1014
1015                 index = (index + 1) % RX_RING_ENTRIES;
1016         } while(index != rxlimit);
1017
1018         rrpriv->cur_rx = index;
1019         wmb();
1020 }
1021
1022
1023 static irqreturn_t rr_interrupt(int irq, void *dev_id)
1024 {
1025         struct rr_private *rrpriv;
1026         struct rr_regs __iomem *regs;
1027         struct net_device *dev = (struct net_device *)dev_id;
1028         u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon;
1029
1030         rrpriv = netdev_priv(dev);
1031         regs = rrpriv->regs;
1032
1033         if (!(readl(&regs->HostCtrl) & RR_INT))
1034                 return IRQ_NONE;
1035
1036         spin_lock(&rrpriv->lock);
1037
1038         prodidx = readl(&regs->EvtPrd);
1039         txcsmr = (prodidx >> 8) & 0xff;
1040         rxlimit = (prodidx >> 16) & 0xff;
1041         prodidx &= 0xff;
1042
1043 #if (DEBUG > 2)
1044         printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name,
1045                prodidx, rrpriv->info->evt_ctrl.pi);
1046 #endif
1047         /*
1048          * Order here is important.  We must handle events
1049          * before doing anything else in order to catch
1050          * such things as LLRC errors, etc -kbf
1051          */
1052
1053         eidx = rrpriv->info->evt_ctrl.pi;
1054         if (prodidx != eidx)
1055                 eidx = rr_handle_event(dev, prodidx, eidx);
1056
1057         rxindex = rrpriv->cur_rx;
1058         if (rxindex != rxlimit)
1059                 rx_int(dev, rxlimit, rxindex);
1060
1061         txcon = rrpriv->dirty_tx;
1062         if (txcsmr != txcon) {
1063                 do {
1064                         /* Due to occational firmware TX producer/consumer out
1065                          * of sync. error need to check entry in ring -kbf
1066                          */
1067                         if(rrpriv->tx_skbuff[txcon]){
1068                                 struct tx_desc *desc;
1069                                 struct sk_buff *skb;
1070
1071                                 desc = &(rrpriv->tx_ring[txcon]);
1072                                 skb = rrpriv->tx_skbuff[txcon];
1073
1074                                 dev->stats.tx_packets++;
1075                                 dev->stats.tx_bytes += skb->len;
1076
1077                                 pci_unmap_single(rrpriv->pci_dev,
1078                                                  desc->addr.addrlo, skb->len,
1079                                                  PCI_DMA_TODEVICE);
1080                                 dev_kfree_skb_irq(skb);
1081
1082                                 rrpriv->tx_skbuff[txcon] = NULL;
1083                                 desc->size = 0;
1084                                 set_rraddr(&rrpriv->tx_ring[txcon].addr, 0);
1085                                 desc->mode = 0;
1086                         }
1087                         txcon = (txcon + 1) % TX_RING_ENTRIES;
1088                 } while (txcsmr != txcon);
1089                 wmb();
1090
1091                 rrpriv->dirty_tx = txcon;
1092                 if (rrpriv->tx_full && rr_if_busy(dev) &&
1093                     (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES)
1094                      != rrpriv->dirty_tx)){
1095                         rrpriv->tx_full = 0;
1096                         netif_wake_queue(dev);
1097                 }
1098         }
1099
1100         eidx |= ((txcsmr << 8) | (rxlimit << 16));
1101         writel(eidx, &regs->EvtCon);
1102         wmb();
1103
1104         spin_unlock(&rrpriv->lock);
1105         return IRQ_HANDLED;
1106 }
1107
1108 static inline void rr_raz_tx(struct rr_private *rrpriv,
1109                              struct net_device *dev)
1110 {
1111         int i;
1112
1113         for (i = 0; i < TX_RING_ENTRIES; i++) {
1114                 struct sk_buff *skb = rrpriv->tx_skbuff[i];
1115
1116                 if (skb) {
1117                         struct tx_desc *desc = &(rrpriv->tx_ring[i]);
1118
1119                         pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1120                                 skb->len, PCI_DMA_TODEVICE);
1121                         desc->size = 0;
1122                         set_rraddr(&desc->addr, 0);
1123                         dev_kfree_skb(skb);
1124                         rrpriv->tx_skbuff[i] = NULL;
1125                 }
1126         }
1127 }
1128
1129
1130 static inline void rr_raz_rx(struct rr_private *rrpriv,
1131                              struct net_device *dev)
1132 {
1133         int i;
1134
1135         for (i = 0; i < RX_RING_ENTRIES; i++) {
1136                 struct sk_buff *skb = rrpriv->rx_skbuff[i];
1137
1138                 if (skb) {
1139                         struct rx_desc *desc = &(rrpriv->rx_ring[i]);
1140
1141                         pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo,
1142                                 dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE);
1143                         desc->size = 0;
1144                         set_rraddr(&desc->addr, 0);
1145                         dev_kfree_skb(skb);
1146                         rrpriv->rx_skbuff[i] = NULL;
1147                 }
1148         }
1149 }
1150
1151 static void rr_timer(unsigned long data)
1152 {
1153         struct net_device *dev = (struct net_device *)data;
1154         struct rr_private *rrpriv = netdev_priv(dev);
1155         struct rr_regs __iomem *regs = rrpriv->regs;
1156         unsigned long flags;
1157
1158         if (readl(&regs->HostCtrl) & NIC_HALTED){
1159                 printk("%s: Restarting nic\n", dev->name);
1160                 memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl));
1161                 memset(rrpriv->info, 0, sizeof(struct rr_info));
1162                 wmb();
1163
1164                 rr_raz_tx(rrpriv, dev);
1165                 rr_raz_rx(rrpriv, dev);
1166
1167                 if (rr_init1(dev)) {
1168                         spin_lock_irqsave(&rrpriv->lock, flags);
1169                         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT,
1170                                &regs->HostCtrl);
1171                         spin_unlock_irqrestore(&rrpriv->lock, flags);
1172                 }
1173         }
1174         rrpriv->timer.expires = RUN_AT(5*HZ);
1175         add_timer(&rrpriv->timer);
1176 }
1177
1178
1179 static int rr_open(struct net_device *dev)
1180 {
1181         struct rr_private *rrpriv = netdev_priv(dev);
1182         struct pci_dev *pdev = rrpriv->pci_dev;
1183         struct rr_regs __iomem *regs;
1184         int ecode = 0;
1185         unsigned long flags;
1186         dma_addr_t dma_addr;
1187
1188         regs = rrpriv->regs;
1189
1190         if (rrpriv->fw_rev < 0x00020000) {
1191                 printk(KERN_WARNING "%s: trying to configure device with "
1192                        "obsolete firmware\n", dev->name);
1193                 ecode = -EBUSY;
1194                 goto error;
1195         }
1196
1197         rrpriv->rx_ctrl = pci_alloc_consistent(pdev,
1198                                                256 * sizeof(struct ring_ctrl),
1199                                                &dma_addr);
1200         if (!rrpriv->rx_ctrl) {
1201                 ecode = -ENOMEM;
1202                 goto error;
1203         }
1204         rrpriv->rx_ctrl_dma = dma_addr;
1205         memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl));
1206
1207         rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info),
1208                                             &dma_addr);
1209         if (!rrpriv->info) {
1210                 ecode = -ENOMEM;
1211                 goto error;
1212         }
1213         rrpriv->info_dma = dma_addr;
1214         memset(rrpriv->info, 0, sizeof(struct rr_info));
1215         wmb();
1216
1217         spin_lock_irqsave(&rrpriv->lock, flags);
1218         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1219         readl(&regs->HostCtrl);
1220         spin_unlock_irqrestore(&rrpriv->lock, flags);
1221
1222         if (request_irq(pdev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) {
1223                 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1224                        dev->name, pdev->irq);
1225                 ecode = -EAGAIN;
1226                 goto error;
1227         }
1228
1229         if ((ecode = rr_init1(dev)))
1230                 goto error;
1231
1232         /* Set the timer to switch to check for link beat and perhaps switch
1233            to an alternate media type. */
1234         init_timer(&rrpriv->timer);
1235         rrpriv->timer.expires = RUN_AT(5*HZ);           /* 5 sec. watchdog */
1236         rrpriv->timer.data = (unsigned long)dev;
1237         rrpriv->timer.function = rr_timer;               /* timer handler */
1238         add_timer(&rrpriv->timer);
1239
1240         netif_start_queue(dev);
1241
1242         return ecode;
1243
1244  error:
1245         spin_lock_irqsave(&rrpriv->lock, flags);
1246         writel(readl(&regs->HostCtrl)|HALT_NIC|RR_CLEAR_INT, &regs->HostCtrl);
1247         spin_unlock_irqrestore(&rrpriv->lock, flags);
1248
1249         if (rrpriv->info) {
1250                 pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1251                                     rrpriv->info_dma);
1252                 rrpriv->info = NULL;
1253         }
1254         if (rrpriv->rx_ctrl) {
1255                 pci_free_consistent(pdev, sizeof(struct ring_ctrl),
1256                                     rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1257                 rrpriv->rx_ctrl = NULL;
1258         }
1259
1260         netif_stop_queue(dev);
1261
1262         return ecode;
1263 }
1264
1265
1266 static void rr_dump(struct net_device *dev)
1267 {
1268         struct rr_private *rrpriv;
1269         struct rr_regs __iomem *regs;
1270         u32 index, cons;
1271         short i;
1272         int len;
1273
1274         rrpriv = netdev_priv(dev);
1275         regs = rrpriv->regs;
1276
1277         printk("%s: dumping NIC TX rings\n", dev->name);
1278
1279         printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n",
1280                readl(&regs->RxPrd), readl(&regs->TxPrd),
1281                readl(&regs->EvtPrd), readl(&regs->TxPi),
1282                rrpriv->info->tx_ctrl.pi);
1283
1284         printk("Error code 0x%x\n", readl(&regs->Fail1));
1285
1286         index = (((readl(&regs->EvtPrd) >> 8) & 0xff) - 1) % TX_RING_ENTRIES;
1287         cons = rrpriv->dirty_tx;
1288         printk("TX ring index %i, TX consumer %i\n",
1289                index, cons);
1290
1291         if (rrpriv->tx_skbuff[index]){
1292                 len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len);
1293                 printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size);
1294                 for (i = 0; i < len; i++){
1295                         if (!(i & 7))
1296                                 printk("\n");
1297                         printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]);
1298                 }
1299                 printk("\n");
1300         }
1301
1302         if (rrpriv->tx_skbuff[cons]){
1303                 len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len);
1304                 printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len);
1305                 printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n",
1306                        rrpriv->tx_ring[cons].mode,
1307                        rrpriv->tx_ring[cons].size,
1308                        (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo,
1309                        (unsigned long)rrpriv->tx_skbuff[cons]->data,
1310                        (unsigned int)rrpriv->tx_skbuff[cons]->truesize);
1311                 for (i = 0; i < len; i++){
1312                         if (!(i & 7))
1313                                 printk("\n");
1314                         printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size);
1315                 }
1316                 printk("\n");
1317         }
1318
1319         printk("dumping TX ring info:\n");
1320         for (i = 0; i < TX_RING_ENTRIES; i++)
1321                 printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n",
1322                        rrpriv->tx_ring[i].mode,
1323                        rrpriv->tx_ring[i].size,
1324                        (unsigned long long) rrpriv->tx_ring[i].addr.addrlo);
1325
1326 }
1327
1328
1329 static int rr_close(struct net_device *dev)
1330 {
1331         struct rr_private *rrpriv = netdev_priv(dev);
1332         struct rr_regs __iomem *regs = rrpriv->regs;
1333         struct pci_dev *pdev = rrpriv->pci_dev;
1334         unsigned long flags;
1335         u32 tmp;
1336         short i;
1337
1338         netif_stop_queue(dev);
1339
1340
1341         /*
1342          * Lock to make sure we are not cleaning up while another CPU
1343          * is handling interrupts.
1344          */
1345         spin_lock_irqsave(&rrpriv->lock, flags);
1346
1347         tmp = readl(&regs->HostCtrl);
1348         if (tmp & NIC_HALTED){
1349                 printk("%s: NIC already halted\n", dev->name);
1350                 rr_dump(dev);
1351         }else{
1352                 tmp |= HALT_NIC | RR_CLEAR_INT;
1353                 writel(tmp, &regs->HostCtrl);
1354                 readl(&regs->HostCtrl);
1355         }
1356
1357         rrpriv->fw_running = 0;
1358
1359         del_timer_sync(&rrpriv->timer);
1360
1361         writel(0, &regs->TxPi);
1362         writel(0, &regs->IpRxPi);
1363
1364         writel(0, &regs->EvtCon);
1365         writel(0, &regs->EvtPrd);
1366
1367         for (i = 0; i < CMD_RING_ENTRIES; i++)
1368                 writel(0, &regs->CmdRing[i]);
1369
1370         rrpriv->info->tx_ctrl.entries = 0;
1371         rrpriv->info->cmd_ctrl.pi = 0;
1372         rrpriv->info->evt_ctrl.pi = 0;
1373         rrpriv->rx_ctrl[4].entries = 0;
1374
1375         rr_raz_tx(rrpriv, dev);
1376         rr_raz_rx(rrpriv, dev);
1377
1378         pci_free_consistent(pdev, 256 * sizeof(struct ring_ctrl),
1379                             rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma);
1380         rrpriv->rx_ctrl = NULL;
1381
1382         pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info,
1383                             rrpriv->info_dma);
1384         rrpriv->info = NULL;
1385
1386         free_irq(pdev->irq, dev);
1387         spin_unlock_irqrestore(&rrpriv->lock, flags);
1388
1389         return 0;
1390 }
1391
1392
1393 static netdev_tx_t rr_start_xmit(struct sk_buff *skb,
1394                                  struct net_device *dev)
1395 {
1396         struct rr_private *rrpriv = netdev_priv(dev);
1397         struct rr_regs __iomem *regs = rrpriv->regs;
1398         struct hippi_cb *hcb = (struct hippi_cb *) skb->cb;
1399         struct ring_ctrl *txctrl;
1400         unsigned long flags;
1401         u32 index, len = skb->len;
1402         u32 *ifield;
1403         struct sk_buff *new_skb;
1404
1405         if (readl(&regs->Mode) & FATAL_ERR)
1406                 printk("error codes Fail1 %02x, Fail2 %02x\n",
1407                        readl(&regs->Fail1), readl(&regs->Fail2));
1408
1409         /*
1410          * We probably need to deal with tbusy here to prevent overruns.
1411          */
1412
1413         if (skb_headroom(skb) < 8){
1414                 printk("incoming skb too small - reallocating\n");
1415                 if (!(new_skb = dev_alloc_skb(len + 8))) {
1416                         dev_kfree_skb(skb);
1417                         netif_wake_queue(dev);
1418                         return NETDEV_TX_OK;
1419                 }
1420                 skb_reserve(new_skb, 8);
1421                 skb_put(new_skb, len);
1422                 skb_copy_from_linear_data(skb, new_skb->data, len);
1423                 dev_kfree_skb(skb);
1424                 skb = new_skb;
1425         }
1426
1427         ifield = (u32 *)skb_push(skb, 8);
1428
1429         ifield[0] = 0;
1430         ifield[1] = hcb->ifield;
1431
1432         /*
1433          * We don't need the lock before we are actually going to start
1434          * fiddling with the control blocks.
1435          */
1436         spin_lock_irqsave(&rrpriv->lock, flags);
1437
1438         txctrl = &rrpriv->info->tx_ctrl;
1439
1440         index = txctrl->pi;
1441
1442         rrpriv->tx_skbuff[index] = skb;
1443         set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single(
1444                 rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE));
1445         rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */
1446         rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END;
1447         txctrl->pi = (index + 1) % TX_RING_ENTRIES;
1448         wmb();
1449         writel(txctrl->pi, &regs->TxPi);
1450
1451         if (txctrl->pi == rrpriv->dirty_tx){
1452                 rrpriv->tx_full = 1;
1453                 netif_stop_queue(dev);
1454         }
1455
1456         spin_unlock_irqrestore(&rrpriv->lock, flags);
1457
1458         return NETDEV_TX_OK;
1459 }
1460
1461
1462 /*
1463  * Read the firmware out of the EEPROM and put it into the SRAM
1464  * (or from user space - later)
1465  *
1466  * This operation requires the NIC to be halted and is performed with
1467  * interrupts disabled and with the spinlock hold.
1468  */
1469 static int rr_load_firmware(struct net_device *dev)
1470 {
1471         struct rr_private *rrpriv;
1472         struct rr_regs __iomem *regs;
1473         size_t eptr, segptr;
1474         int i, j;
1475         u32 localctrl, sptr, len, tmp;
1476         u32 p2len, p2size, nr_seg, revision, io, sram_size;
1477
1478         rrpriv = netdev_priv(dev);
1479         regs = rrpriv->regs;
1480
1481         if (dev->flags & IFF_UP)
1482                 return -EBUSY;
1483
1484         if (!(readl(&regs->HostCtrl) & NIC_HALTED)){
1485                 printk("%s: Trying to load firmware to a running NIC.\n",
1486                        dev->name);
1487                 return -EBUSY;
1488         }
1489
1490         localctrl = readl(&regs->LocalCtrl);
1491         writel(0, &regs->LocalCtrl);
1492
1493         writel(0, &regs->EvtPrd);
1494         writel(0, &regs->RxPrd);
1495         writel(0, &regs->TxPrd);
1496
1497         /*
1498          * First wipe the entire SRAM, otherwise we might run into all
1499          * kinds of trouble ... sigh, this took almost all afternoon
1500          * to track down ;-(
1501          */
1502         io = readl(&regs->ExtIo);
1503         writel(0, &regs->ExtIo);
1504         sram_size = rr_read_eeprom_word(rrpriv, 8);
1505
1506         for (i = 200; i < sram_size / 4; i++){
1507                 writel(i * 4, &regs->WinBase);
1508                 mb();
1509                 writel(0, &regs->WinData);
1510                 mb();
1511         }
1512         writel(io, &regs->ExtIo);
1513         mb();
1514
1515         eptr = rr_read_eeprom_word(rrpriv,
1516                        offsetof(struct eeprom, rncd_info.AddrRunCodeSegs));
1517         eptr = ((eptr & 0x1fffff) >> 3);
1518
1519         p2len = rr_read_eeprom_word(rrpriv, 0x83*4);
1520         p2len = (p2len << 2);
1521         p2size = rr_read_eeprom_word(rrpriv, 0x84*4);
1522         p2size = ((p2size & 0x1fffff) >> 3);
1523
1524         if ((eptr < p2size) || (eptr > (p2size + p2len))){
1525                 printk("%s: eptr is invalid\n", dev->name);
1526                 goto out;
1527         }
1528
1529         revision = rr_read_eeprom_word(rrpriv,
1530                         offsetof(struct eeprom, manf.HeaderFmt));
1531
1532         if (revision != 1){
1533                 printk("%s: invalid firmware format (%i)\n",
1534                        dev->name, revision);
1535                 goto out;
1536         }
1537
1538         nr_seg = rr_read_eeprom_word(rrpriv, eptr);
1539         eptr +=4;
1540 #if (DEBUG > 1)
1541         printk("%s: nr_seg %i\n", dev->name, nr_seg);
1542 #endif
1543
1544         for (i = 0; i < nr_seg; i++){
1545                 sptr = rr_read_eeprom_word(rrpriv, eptr);
1546                 eptr += 4;
1547                 len = rr_read_eeprom_word(rrpriv, eptr);
1548                 eptr += 4;
1549                 segptr = rr_read_eeprom_word(rrpriv, eptr);
1550                 segptr = ((segptr & 0x1fffff) >> 3);
1551                 eptr += 4;
1552 #if (DEBUG > 1)
1553                 printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n",
1554                        dev->name, i, sptr, len, segptr);
1555 #endif
1556                 for (j = 0; j < len; j++){
1557                         tmp = rr_read_eeprom_word(rrpriv, segptr);
1558                         writel(sptr, &regs->WinBase);
1559                         mb();
1560                         writel(tmp, &regs->WinData);
1561                         mb();
1562                         segptr += 4;
1563                         sptr += 4;
1564                 }
1565         }
1566
1567 out:
1568         writel(localctrl, &regs->LocalCtrl);
1569         mb();
1570         return 0;
1571 }
1572
1573
1574 static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1575 {
1576         struct rr_private *rrpriv;
1577         unsigned char *image, *oldimage;
1578         unsigned long flags;
1579         unsigned int i;
1580         int error = -EOPNOTSUPP;
1581
1582         rrpriv = netdev_priv(dev);
1583
1584         switch(cmd){
1585         case SIOCRRGFW:
1586                 if (!capable(CAP_SYS_RAWIO)){
1587                         return -EPERM;
1588                 }
1589
1590                 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1591                 if (!image)
1592                         return -ENOMEM;
1593
1594                 if (rrpriv->fw_running){
1595                         printk("%s: Firmware already running\n", dev->name);
1596                         error = -EPERM;
1597                         goto gf_out;
1598                 }
1599
1600                 spin_lock_irqsave(&rrpriv->lock, flags);
1601                 i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1602                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1603                 if (i != EEPROM_BYTES){
1604                         printk(KERN_ERR "%s: Error reading EEPROM\n",
1605                                dev->name);
1606                         error = -EFAULT;
1607                         goto gf_out;
1608                 }
1609                 error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES);
1610                 if (error)
1611                         error = -EFAULT;
1612         gf_out:
1613                 kfree(image);
1614                 return error;
1615
1616         case SIOCRRPFW:
1617                 if (!capable(CAP_SYS_RAWIO)){
1618                         return -EPERM;
1619                 }
1620
1621                 image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1622                 oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL);
1623                 if (!image || !oldimage) {
1624                         error = -ENOMEM;
1625                         goto wf_out;
1626                 }
1627
1628                 error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES);
1629                 if (error) {
1630                         error = -EFAULT;
1631                         goto wf_out;
1632                 }
1633
1634                 if (rrpriv->fw_running){
1635                         printk("%s: Firmware already running\n", dev->name);
1636                         error = -EPERM;
1637                         goto wf_out;
1638                 }
1639
1640                 printk("%s: Updating EEPROM firmware\n", dev->name);
1641
1642                 spin_lock_irqsave(&rrpriv->lock, flags);
1643                 error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES);
1644                 if (error)
1645                         printk(KERN_ERR "%s: Error writing EEPROM\n",
1646                                dev->name);
1647
1648                 i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES);
1649                 spin_unlock_irqrestore(&rrpriv->lock, flags);
1650
1651                 if (i != EEPROM_BYTES)
1652                         printk(KERN_ERR "%s: Error reading back EEPROM "
1653                                "image\n", dev->name);
1654
1655                 error = memcmp(image, oldimage, EEPROM_BYTES);
1656                 if (error){
1657                         printk(KERN_ERR "%s: Error verifying EEPROM image\n",
1658                                dev->name);
1659                         error = -EFAULT;
1660                 }
1661         wf_out:
1662                 kfree(oldimage);
1663                 kfree(image);
1664                 return error;
1665
1666         case SIOCRRID:
1667                 return put_user(0x52523032, (int __user *)rq->ifr_data);
1668         default:
1669                 return error;
1670         }
1671 }
1672
1673 static DEFINE_PCI_DEVICE_TABLE(rr_pci_tbl) = {
1674         { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER,
1675                 PCI_ANY_ID, PCI_ANY_ID, },
1676         { 0,}
1677 };
1678 MODULE_DEVICE_TABLE(pci, rr_pci_tbl);
1679
1680 static struct pci_driver rr_driver = {
1681         .name           = "rrunner",
1682         .id_table       = rr_pci_tbl,
1683         .probe          = rr_init_one,
1684         .remove         = __devexit_p(rr_remove_one),
1685 };
1686
1687 static int __init rr_init_module(void)
1688 {
1689         return pci_register_driver(&rr_driver);
1690 }
1691
1692 static void __exit rr_cleanup_module(void)
1693 {
1694         pci_unregister_driver(&rr_driver);
1695 }
1696
1697 module_init(rr_init_module);
1698 module_exit(rr_cleanup_module);