]> rtime.felk.cvut.cz Git - can-eth-gw-linux.git/blob - drivers/net/ethernet/sfc/falcon.c
Merge tag 'for-linus-20121212' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowe...
[can-eth-gw-linux.git] / drivers / net / ethernet / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2010 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "spi.h"
23 #include "nic.h"
24 #include "regs.h"
25 #include "io.h"
26 #include "phy.h"
27 #include "workarounds.h"
28 #include "selftest.h"
29
30 /* Hardware control for SFC4000 (aka Falcon). */
31
32 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method);
33
34 static const unsigned int
35 /* "Large" EEPROM device: Atmel AT25640 or similar
36  * 8 KB, 16-bit address, 32 B write block */
37 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
38                      | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
39                      | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
40 /* Default flash device: Atmel AT25F1024
41  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
42 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
43                       | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
44                       | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
45                       | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
46                       | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
47
48 /**************************************************************************
49  *
50  * I2C bus - this is a bit-bashing interface using GPIO pins
51  * Note that it uses the output enables to tristate the outputs
52  * SDA is the data pin and SCL is the clock
53  *
54  **************************************************************************
55  */
56 static void falcon_setsda(void *data, int state)
57 {
58         struct efx_nic *efx = (struct efx_nic *)data;
59         efx_oword_t reg;
60
61         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
62         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
63         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
64 }
65
66 static void falcon_setscl(void *data, int state)
67 {
68         struct efx_nic *efx = (struct efx_nic *)data;
69         efx_oword_t reg;
70
71         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
72         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
73         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
74 }
75
76 static int falcon_getsda(void *data)
77 {
78         struct efx_nic *efx = (struct efx_nic *)data;
79         efx_oword_t reg;
80
81         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
82         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
83 }
84
85 static int falcon_getscl(void *data)
86 {
87         struct efx_nic *efx = (struct efx_nic *)data;
88         efx_oword_t reg;
89
90         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
91         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
92 }
93
94 static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
95         .setsda         = falcon_setsda,
96         .setscl         = falcon_setscl,
97         .getsda         = falcon_getsda,
98         .getscl         = falcon_getscl,
99         .udelay         = 5,
100         /* Wait up to 50 ms for slave to let us pull SCL high */
101         .timeout        = DIV_ROUND_UP(HZ, 20),
102 };
103
104 static void falcon_push_irq_moderation(struct efx_channel *channel)
105 {
106         efx_dword_t timer_cmd;
107         struct efx_nic *efx = channel->efx;
108
109         /* Set timer register */
110         if (channel->irq_moderation) {
111                 EFX_POPULATE_DWORD_2(timer_cmd,
112                                      FRF_AB_TC_TIMER_MODE,
113                                      FFE_BB_TIMER_MODE_INT_HLDOFF,
114                                      FRF_AB_TC_TIMER_VAL,
115                                      channel->irq_moderation - 1);
116         } else {
117                 EFX_POPULATE_DWORD_2(timer_cmd,
118                                      FRF_AB_TC_TIMER_MODE,
119                                      FFE_BB_TIMER_MODE_DIS,
120                                      FRF_AB_TC_TIMER_VAL, 0);
121         }
122         BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
123         efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
124                                channel->channel);
125 }
126
127 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
128
129 static void falcon_prepare_flush(struct efx_nic *efx)
130 {
131         falcon_deconfigure_mac_wrapper(efx);
132
133         /* Wait for the tx and rx fifo's to get to the next packet boundary
134          * (~1ms without back-pressure), then to drain the remainder of the
135          * fifo's at data path speeds (negligible), with a healthy margin. */
136         msleep(10);
137 }
138
139 /* Acknowledge a legacy interrupt from Falcon
140  *
141  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
142  *
143  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
144  * BIU. Interrupt acknowledge is read sensitive so must write instead
145  * (then read to ensure the BIU collector is flushed)
146  *
147  * NB most hardware supports MSI interrupts
148  */
149 inline void falcon_irq_ack_a1(struct efx_nic *efx)
150 {
151         efx_dword_t reg;
152
153         EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
154         efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
155         efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
156 }
157
158
159 irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
160 {
161         struct efx_nic *efx = dev_id;
162         efx_oword_t *int_ker = efx->irq_status.addr;
163         int syserr;
164         int queues;
165
166         /* Check to see if this is our interrupt.  If it isn't, we
167          * exit without having touched the hardware.
168          */
169         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
170                 netif_vdbg(efx, intr, efx->net_dev,
171                            "IRQ %d on CPU %d not for me\n", irq,
172                            raw_smp_processor_id());
173                 return IRQ_NONE;
174         }
175         efx->last_irq_cpu = raw_smp_processor_id();
176         netif_vdbg(efx, intr, efx->net_dev,
177                    "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
178                    irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
179
180         /* Check to see if we have a serious error condition */
181         syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
182         if (unlikely(syserr))
183                 return efx_nic_fatal_interrupt(efx);
184
185         /* Determine interrupting queues, clear interrupt status
186          * register and acknowledge the device interrupt.
187          */
188         BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
189         queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
190         EFX_ZERO_OWORD(*int_ker);
191         wmb(); /* Ensure the vector is cleared before interrupt ack */
192         falcon_irq_ack_a1(efx);
193
194         if (queues & 1)
195                 efx_schedule_channel_irq(efx_get_channel(efx, 0));
196         if (queues & 2)
197                 efx_schedule_channel_irq(efx_get_channel(efx, 1));
198         return IRQ_HANDLED;
199 }
200 /**************************************************************************
201  *
202  * EEPROM/flash
203  *
204  **************************************************************************
205  */
206
207 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
208
209 static int falcon_spi_poll(struct efx_nic *efx)
210 {
211         efx_oword_t reg;
212         efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
213         return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
214 }
215
216 /* Wait for SPI command completion */
217 static int falcon_spi_wait(struct efx_nic *efx)
218 {
219         /* Most commands will finish quickly, so we start polling at
220          * very short intervals.  Sometimes the command may have to
221          * wait for VPD or expansion ROM access outside of our
222          * control, so we allow up to 100 ms. */
223         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
224         int i;
225
226         for (i = 0; i < 10; i++) {
227                 if (!falcon_spi_poll(efx))
228                         return 0;
229                 udelay(10);
230         }
231
232         for (;;) {
233                 if (!falcon_spi_poll(efx))
234                         return 0;
235                 if (time_after_eq(jiffies, timeout)) {
236                         netif_err(efx, hw, efx->net_dev,
237                                   "timed out waiting for SPI\n");
238                         return -ETIMEDOUT;
239                 }
240                 schedule_timeout_uninterruptible(1);
241         }
242 }
243
244 int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi,
245                    unsigned int command, int address,
246                    const void *in, void *out, size_t len)
247 {
248         bool addressed = (address >= 0);
249         bool reading = (out != NULL);
250         efx_oword_t reg;
251         int rc;
252
253         /* Input validation */
254         if (len > FALCON_SPI_MAX_LEN)
255                 return -EINVAL;
256
257         /* Check that previous command is not still running */
258         rc = falcon_spi_poll(efx);
259         if (rc)
260                 return rc;
261
262         /* Program address register, if we have an address */
263         if (addressed) {
264                 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
265                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
266         }
267
268         /* Program data register, if we have data */
269         if (in != NULL) {
270                 memcpy(&reg, in, len);
271                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
272         }
273
274         /* Issue read/write command */
275         EFX_POPULATE_OWORD_7(reg,
276                              FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
277                              FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
278                              FRF_AB_EE_SPI_HCMD_DABCNT, len,
279                              FRF_AB_EE_SPI_HCMD_READ, reading,
280                              FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
281                              FRF_AB_EE_SPI_HCMD_ADBCNT,
282                              (addressed ? spi->addr_len : 0),
283                              FRF_AB_EE_SPI_HCMD_ENC, command);
284         efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
285
286         /* Wait for read/write to complete */
287         rc = falcon_spi_wait(efx);
288         if (rc)
289                 return rc;
290
291         /* Read data */
292         if (out != NULL) {
293                 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
294                 memcpy(out, &reg, len);
295         }
296
297         return 0;
298 }
299
300 static size_t
301 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
302 {
303         return min(FALCON_SPI_MAX_LEN,
304                    (spi->block_size - (start & (spi->block_size - 1))));
305 }
306
307 static inline u8
308 efx_spi_munge_command(const struct efx_spi_device *spi,
309                       const u8 command, const unsigned int address)
310 {
311         return command | (((address >> 8) & spi->munge_address) << 3);
312 }
313
314 /* Wait up to 10 ms for buffered write completion */
315 int
316 falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi)
317 {
318         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
319         u8 status;
320         int rc;
321
322         for (;;) {
323                 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
324                                     &status, sizeof(status));
325                 if (rc)
326                         return rc;
327                 if (!(status & SPI_STATUS_NRDY))
328                         return 0;
329                 if (time_after_eq(jiffies, timeout)) {
330                         netif_err(efx, hw, efx->net_dev,
331                                   "SPI write timeout on device %d"
332                                   " last status=0x%02x\n",
333                                   spi->device_id, status);
334                         return -ETIMEDOUT;
335                 }
336                 schedule_timeout_uninterruptible(1);
337         }
338 }
339
340 int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi,
341                     loff_t start, size_t len, size_t *retlen, u8 *buffer)
342 {
343         size_t block_len, pos = 0;
344         unsigned int command;
345         int rc = 0;
346
347         while (pos < len) {
348                 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
349
350                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
351                 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
352                                     buffer + pos, block_len);
353                 if (rc)
354                         break;
355                 pos += block_len;
356
357                 /* Avoid locking up the system */
358                 cond_resched();
359                 if (signal_pending(current)) {
360                         rc = -EINTR;
361                         break;
362                 }
363         }
364
365         if (retlen)
366                 *retlen = pos;
367         return rc;
368 }
369
370 int
371 falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi,
372                  loff_t start, size_t len, size_t *retlen, const u8 *buffer)
373 {
374         u8 verify_buffer[FALCON_SPI_MAX_LEN];
375         size_t block_len, pos = 0;
376         unsigned int command;
377         int rc = 0;
378
379         while (pos < len) {
380                 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
381                 if (rc)
382                         break;
383
384                 block_len = min(len - pos,
385                                 falcon_spi_write_limit(spi, start + pos));
386                 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
387                 rc = falcon_spi_cmd(efx, spi, command, start + pos,
388                                     buffer + pos, NULL, block_len);
389                 if (rc)
390                         break;
391
392                 rc = falcon_spi_wait_write(efx, spi);
393                 if (rc)
394                         break;
395
396                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
397                 rc = falcon_spi_cmd(efx, spi, command, start + pos,
398                                     NULL, verify_buffer, block_len);
399                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
400                         rc = -EIO;
401                         break;
402                 }
403
404                 pos += block_len;
405
406                 /* Avoid locking up the system */
407                 cond_resched();
408                 if (signal_pending(current)) {
409                         rc = -EINTR;
410                         break;
411                 }
412         }
413
414         if (retlen)
415                 *retlen = pos;
416         return rc;
417 }
418
419 /**************************************************************************
420  *
421  * MAC wrapper
422  *
423  **************************************************************************
424  */
425
426 static void falcon_push_multicast_hash(struct efx_nic *efx)
427 {
428         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
429
430         WARN_ON(!mutex_is_locked(&efx->mac_lock));
431
432         efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
433         efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
434 }
435
436 static void falcon_reset_macs(struct efx_nic *efx)
437 {
438         struct falcon_nic_data *nic_data = efx->nic_data;
439         efx_oword_t reg, mac_ctrl;
440         int count;
441
442         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
443                 /* It's not safe to use GLB_CTL_REG to reset the
444                  * macs, so instead use the internal MAC resets
445                  */
446                 EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
447                 efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
448
449                 for (count = 0; count < 10000; count++) {
450                         efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
451                         if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
452                             0)
453                                 return;
454                         udelay(10);
455                 }
456
457                 netif_err(efx, hw, efx->net_dev,
458                           "timed out waiting for XMAC core reset\n");
459         }
460
461         /* Mac stats will fail whist the TX fifo is draining */
462         WARN_ON(nic_data->stats_disable_count == 0);
463
464         efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
465         EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
466         efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
467
468         efx_reado(efx, &reg, FR_AB_GLB_CTL);
469         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
470         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
471         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
472         efx_writeo(efx, &reg, FR_AB_GLB_CTL);
473
474         count = 0;
475         while (1) {
476                 efx_reado(efx, &reg, FR_AB_GLB_CTL);
477                 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
478                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
479                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
480                         netif_dbg(efx, hw, efx->net_dev,
481                                   "Completed MAC reset after %d loops\n",
482                                   count);
483                         break;
484                 }
485                 if (count > 20) {
486                         netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
487                         break;
488                 }
489                 count++;
490                 udelay(10);
491         }
492
493         /* Ensure the correct MAC is selected before statistics
494          * are re-enabled by the caller */
495         efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
496
497         falcon_setup_xaui(efx);
498 }
499
500 void falcon_drain_tx_fifo(struct efx_nic *efx)
501 {
502         efx_oword_t reg;
503
504         if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
505             (efx->loopback_mode != LOOPBACK_NONE))
506                 return;
507
508         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
509         /* There is no point in draining more than once */
510         if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
511                 return;
512
513         falcon_reset_macs(efx);
514 }
515
516 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
517 {
518         efx_oword_t reg;
519
520         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
521                 return;
522
523         /* Isolate the MAC -> RX */
524         efx_reado(efx, &reg, FR_AZ_RX_CFG);
525         EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
526         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
527
528         /* Isolate TX -> MAC */
529         falcon_drain_tx_fifo(efx);
530 }
531
532 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
533 {
534         struct efx_link_state *link_state = &efx->link_state;
535         efx_oword_t reg;
536         int link_speed, isolate;
537
538         isolate = !!ACCESS_ONCE(efx->reset_pending);
539
540         switch (link_state->speed) {
541         case 10000: link_speed = 3; break;
542         case 1000:  link_speed = 2; break;
543         case 100:   link_speed = 1; break;
544         default:    link_speed = 0; break;
545         }
546         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
547          * as advertised.  Disable to ensure packets are not
548          * indefinitely held and TX queue can be flushed at any point
549          * while the link is down. */
550         EFX_POPULATE_OWORD_5(reg,
551                              FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
552                              FRF_AB_MAC_BCAD_ACPT, 1,
553                              FRF_AB_MAC_UC_PROM, efx->promiscuous,
554                              FRF_AB_MAC_LINK_STATUS, 1, /* always set */
555                              FRF_AB_MAC_SPEED, link_speed);
556         /* On B0, MAC backpressure can be disabled and packets get
557          * discarded. */
558         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
559                 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
560                                     !link_state->up || isolate);
561         }
562
563         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
564
565         /* Restore the multicast hash registers. */
566         falcon_push_multicast_hash(efx);
567
568         efx_reado(efx, &reg, FR_AZ_RX_CFG);
569         /* Enable XOFF signal from RX FIFO (we enabled it during NIC
570          * initialisation but it may read back as 0) */
571         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
572         /* Unisolate the MAC -> RX */
573         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
574                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
575         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
576 }
577
578 static void falcon_stats_request(struct efx_nic *efx)
579 {
580         struct falcon_nic_data *nic_data = efx->nic_data;
581         efx_oword_t reg;
582
583         WARN_ON(nic_data->stats_pending);
584         WARN_ON(nic_data->stats_disable_count);
585
586         if (nic_data->stats_dma_done == NULL)
587                 return; /* no mac selected */
588
589         *nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
590         nic_data->stats_pending = true;
591         wmb(); /* ensure done flag is clear */
592
593         /* Initiate DMA transfer of stats */
594         EFX_POPULATE_OWORD_2(reg,
595                              FRF_AB_MAC_STAT_DMA_CMD, 1,
596                              FRF_AB_MAC_STAT_DMA_ADR,
597                              efx->stats_buffer.dma_addr);
598         efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
599
600         mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
601 }
602
603 static void falcon_stats_complete(struct efx_nic *efx)
604 {
605         struct falcon_nic_data *nic_data = efx->nic_data;
606
607         if (!nic_data->stats_pending)
608                 return;
609
610         nic_data->stats_pending = false;
611         if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
612                 rmb(); /* read the done flag before the stats */
613                 falcon_update_stats_xmac(efx);
614         } else {
615                 netif_err(efx, hw, efx->net_dev,
616                           "timed out waiting for statistics\n");
617         }
618 }
619
620 static void falcon_stats_timer_func(unsigned long context)
621 {
622         struct efx_nic *efx = (struct efx_nic *)context;
623         struct falcon_nic_data *nic_data = efx->nic_data;
624
625         spin_lock(&efx->stats_lock);
626
627         falcon_stats_complete(efx);
628         if (nic_data->stats_disable_count == 0)
629                 falcon_stats_request(efx);
630
631         spin_unlock(&efx->stats_lock);
632 }
633
634 static bool falcon_loopback_link_poll(struct efx_nic *efx)
635 {
636         struct efx_link_state old_state = efx->link_state;
637
638         WARN_ON(!mutex_is_locked(&efx->mac_lock));
639         WARN_ON(!LOOPBACK_INTERNAL(efx));
640
641         efx->link_state.fd = true;
642         efx->link_state.fc = efx->wanted_fc;
643         efx->link_state.up = true;
644         efx->link_state.speed = 10000;
645
646         return !efx_link_state_equal(&efx->link_state, &old_state);
647 }
648
649 static int falcon_reconfigure_port(struct efx_nic *efx)
650 {
651         int rc;
652
653         WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
654
655         /* Poll the PHY link state *before* reconfiguring it. This means we
656          * will pick up the correct speed (in loopback) to select the correct
657          * MAC.
658          */
659         if (LOOPBACK_INTERNAL(efx))
660                 falcon_loopback_link_poll(efx);
661         else
662                 efx->phy_op->poll(efx);
663
664         falcon_stop_nic_stats(efx);
665         falcon_deconfigure_mac_wrapper(efx);
666
667         falcon_reset_macs(efx);
668
669         efx->phy_op->reconfigure(efx);
670         rc = falcon_reconfigure_xmac(efx);
671         BUG_ON(rc);
672
673         falcon_start_nic_stats(efx);
674
675         /* Synchronise efx->link_state with the kernel */
676         efx_link_status_changed(efx);
677
678         return 0;
679 }
680
681 /**************************************************************************
682  *
683  * PHY access via GMII
684  *
685  **************************************************************************
686  */
687
688 /* Wait for GMII access to complete */
689 static int falcon_gmii_wait(struct efx_nic *efx)
690 {
691         efx_oword_t md_stat;
692         int count;
693
694         /* wait up to 50ms - taken max from datasheet */
695         for (count = 0; count < 5000; count++) {
696                 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
697                 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
698                         if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
699                             EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
700                                 netif_err(efx, hw, efx->net_dev,
701                                           "error from GMII access "
702                                           EFX_OWORD_FMT"\n",
703                                           EFX_OWORD_VAL(md_stat));
704                                 return -EIO;
705                         }
706                         return 0;
707                 }
708                 udelay(10);
709         }
710         netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
711         return -ETIMEDOUT;
712 }
713
714 /* Write an MDIO register of a PHY connected to Falcon. */
715 static int falcon_mdio_write(struct net_device *net_dev,
716                              int prtad, int devad, u16 addr, u16 value)
717 {
718         struct efx_nic *efx = netdev_priv(net_dev);
719         struct falcon_nic_data *nic_data = efx->nic_data;
720         efx_oword_t reg;
721         int rc;
722
723         netif_vdbg(efx, hw, efx->net_dev,
724                    "writing MDIO %d register %d.%d with 0x%04x\n",
725                     prtad, devad, addr, value);
726
727         mutex_lock(&nic_data->mdio_lock);
728
729         /* Check MDIO not currently being accessed */
730         rc = falcon_gmii_wait(efx);
731         if (rc)
732                 goto out;
733
734         /* Write the address/ID register */
735         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
736         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
737
738         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
739                              FRF_AB_MD_DEV_ADR, devad);
740         efx_writeo(efx, &reg, FR_AB_MD_ID);
741
742         /* Write data */
743         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
744         efx_writeo(efx, &reg, FR_AB_MD_TXD);
745
746         EFX_POPULATE_OWORD_2(reg,
747                              FRF_AB_MD_WRC, 1,
748                              FRF_AB_MD_GC, 0);
749         efx_writeo(efx, &reg, FR_AB_MD_CS);
750
751         /* Wait for data to be written */
752         rc = falcon_gmii_wait(efx);
753         if (rc) {
754                 /* Abort the write operation */
755                 EFX_POPULATE_OWORD_2(reg,
756                                      FRF_AB_MD_WRC, 0,
757                                      FRF_AB_MD_GC, 1);
758                 efx_writeo(efx, &reg, FR_AB_MD_CS);
759                 udelay(10);
760         }
761
762 out:
763         mutex_unlock(&nic_data->mdio_lock);
764         return rc;
765 }
766
767 /* Read an MDIO register of a PHY connected to Falcon. */
768 static int falcon_mdio_read(struct net_device *net_dev,
769                             int prtad, int devad, u16 addr)
770 {
771         struct efx_nic *efx = netdev_priv(net_dev);
772         struct falcon_nic_data *nic_data = efx->nic_data;
773         efx_oword_t reg;
774         int rc;
775
776         mutex_lock(&nic_data->mdio_lock);
777
778         /* Check MDIO not currently being accessed */
779         rc = falcon_gmii_wait(efx);
780         if (rc)
781                 goto out;
782
783         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
784         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
785
786         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
787                              FRF_AB_MD_DEV_ADR, devad);
788         efx_writeo(efx, &reg, FR_AB_MD_ID);
789
790         /* Request data to be read */
791         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
792         efx_writeo(efx, &reg, FR_AB_MD_CS);
793
794         /* Wait for data to become available */
795         rc = falcon_gmii_wait(efx);
796         if (rc == 0) {
797                 efx_reado(efx, &reg, FR_AB_MD_RXD);
798                 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
799                 netif_vdbg(efx, hw, efx->net_dev,
800                            "read from MDIO %d register %d.%d, got %04x\n",
801                            prtad, devad, addr, rc);
802         } else {
803                 /* Abort the read operation */
804                 EFX_POPULATE_OWORD_2(reg,
805                                      FRF_AB_MD_RIC, 0,
806                                      FRF_AB_MD_GC, 1);
807                 efx_writeo(efx, &reg, FR_AB_MD_CS);
808
809                 netif_dbg(efx, hw, efx->net_dev,
810                           "read from MDIO %d register %d.%d, got error %d\n",
811                           prtad, devad, addr, rc);
812         }
813
814 out:
815         mutex_unlock(&nic_data->mdio_lock);
816         return rc;
817 }
818
819 /* This call is responsible for hooking in the MAC and PHY operations */
820 static int falcon_probe_port(struct efx_nic *efx)
821 {
822         struct falcon_nic_data *nic_data = efx->nic_data;
823         int rc;
824
825         switch (efx->phy_type) {
826         case PHY_TYPE_SFX7101:
827                 efx->phy_op = &falcon_sfx7101_phy_ops;
828                 break;
829         case PHY_TYPE_QT2022C2:
830         case PHY_TYPE_QT2025C:
831                 efx->phy_op = &falcon_qt202x_phy_ops;
832                 break;
833         case PHY_TYPE_TXC43128:
834                 efx->phy_op = &falcon_txc_phy_ops;
835                 break;
836         default:
837                 netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
838                           efx->phy_type);
839                 return -ENODEV;
840         }
841
842         /* Fill out MDIO structure and loopback modes */
843         mutex_init(&nic_data->mdio_lock);
844         efx->mdio.mdio_read = falcon_mdio_read;
845         efx->mdio.mdio_write = falcon_mdio_write;
846         rc = efx->phy_op->probe(efx);
847         if (rc != 0)
848                 return rc;
849
850         /* Initial assumption */
851         efx->link_state.speed = 10000;
852         efx->link_state.fd = true;
853
854         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
855         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
856                 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
857         else
858                 efx->wanted_fc = EFX_FC_RX;
859         if (efx->mdio.mmds & MDIO_DEVS_AN)
860                 efx->wanted_fc |= EFX_FC_AUTO;
861
862         /* Allocate buffer for stats */
863         rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
864                                   FALCON_MAC_STATS_SIZE);
865         if (rc)
866                 return rc;
867         netif_dbg(efx, probe, efx->net_dev,
868                   "stats buffer at %llx (virt %p phys %llx)\n",
869                   (u64)efx->stats_buffer.dma_addr,
870                   efx->stats_buffer.addr,
871                   (u64)virt_to_phys(efx->stats_buffer.addr));
872         nic_data->stats_dma_done = efx->stats_buffer.addr + XgDmaDone_offset;
873
874         return 0;
875 }
876
877 static void falcon_remove_port(struct efx_nic *efx)
878 {
879         efx->phy_op->remove(efx);
880         efx_nic_free_buffer(efx, &efx->stats_buffer);
881 }
882
883 /* Global events are basically PHY events */
884 static bool
885 falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
886 {
887         struct efx_nic *efx = channel->efx;
888         struct falcon_nic_data *nic_data = efx->nic_data;
889
890         if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
891             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
892             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
893                 /* Ignored */
894                 return true;
895
896         if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
897             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
898                 nic_data->xmac_poll_required = true;
899                 return true;
900         }
901
902         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
903             EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
904             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
905                 netif_err(efx, rx_err, efx->net_dev,
906                           "channel %d seen global RX_RESET event. Resetting.\n",
907                           channel->channel);
908
909                 atomic_inc(&efx->rx_reset);
910                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
911                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
912                 return true;
913         }
914
915         return false;
916 }
917
918 /**************************************************************************
919  *
920  * Falcon test code
921  *
922  **************************************************************************/
923
924 static int
925 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
926 {
927         struct falcon_nic_data *nic_data = efx->nic_data;
928         struct falcon_nvconfig *nvconfig;
929         struct efx_spi_device *spi;
930         void *region;
931         int rc, magic_num, struct_ver;
932         __le16 *word, *limit;
933         u32 csum;
934
935         if (efx_spi_present(&nic_data->spi_flash))
936                 spi = &nic_data->spi_flash;
937         else if (efx_spi_present(&nic_data->spi_eeprom))
938                 spi = &nic_data->spi_eeprom;
939         else
940                 return -EINVAL;
941
942         region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
943         if (!region)
944                 return -ENOMEM;
945         nvconfig = region + FALCON_NVCONFIG_OFFSET;
946
947         mutex_lock(&nic_data->spi_lock);
948         rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
949         mutex_unlock(&nic_data->spi_lock);
950         if (rc) {
951                 netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
952                           efx_spi_present(&nic_data->spi_flash) ?
953                           "flash" : "EEPROM");
954                 rc = -EIO;
955                 goto out;
956         }
957
958         magic_num = le16_to_cpu(nvconfig->board_magic_num);
959         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
960
961         rc = -EINVAL;
962         if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
963                 netif_err(efx, hw, efx->net_dev,
964                           "NVRAM bad magic 0x%x\n", magic_num);
965                 goto out;
966         }
967         if (struct_ver < 2) {
968                 netif_err(efx, hw, efx->net_dev,
969                           "NVRAM has ancient version 0x%x\n", struct_ver);
970                 goto out;
971         } else if (struct_ver < 4) {
972                 word = &nvconfig->board_magic_num;
973                 limit = (__le16 *) (nvconfig + 1);
974         } else {
975                 word = region;
976                 limit = region + FALCON_NVCONFIG_END;
977         }
978         for (csum = 0; word < limit; ++word)
979                 csum += le16_to_cpu(*word);
980
981         if (~csum & 0xffff) {
982                 netif_err(efx, hw, efx->net_dev,
983                           "NVRAM has incorrect checksum\n");
984                 goto out;
985         }
986
987         rc = 0;
988         if (nvconfig_out)
989                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
990
991  out:
992         kfree(region);
993         return rc;
994 }
995
996 static int falcon_test_nvram(struct efx_nic *efx)
997 {
998         return falcon_read_nvram(efx, NULL);
999 }
1000
1001 static const struct efx_nic_register_test falcon_b0_register_tests[] = {
1002         { FR_AZ_ADR_REGION,
1003           EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1004         { FR_AZ_RX_CFG,
1005           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1006         { FR_AZ_TX_CFG,
1007           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1008         { FR_AZ_TX_RESERVED,
1009           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1010         { FR_AB_MAC_CTRL,
1011           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1012         { FR_AZ_SRM_TX_DC_CFG,
1013           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1014         { FR_AZ_RX_DC_CFG,
1015           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1016         { FR_AZ_RX_DC_PF_WM,
1017           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1018         { FR_BZ_DP_CTRL,
1019           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1020         { FR_AB_GM_CFG2,
1021           EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1022         { FR_AB_GMF_CFG0,
1023           EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1024         { FR_AB_XM_GLB_CFG,
1025           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1026         { FR_AB_XM_TX_CFG,
1027           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1028         { FR_AB_XM_RX_CFG,
1029           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1030         { FR_AB_XM_RX_PARAM,
1031           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1032         { FR_AB_XM_FC,
1033           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1034         { FR_AB_XM_ADR_LO,
1035           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1036         { FR_AB_XX_SD_CTL,
1037           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1038 };
1039
1040 static int
1041 falcon_b0_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
1042 {
1043         enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1044         int rc, rc2;
1045
1046         mutex_lock(&efx->mac_lock);
1047         if (efx->loopback_modes) {
1048                 /* We need the 312 clock from the PHY to test the XMAC
1049                  * registers, so move into XGMII loopback if available */
1050                 if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1051                         efx->loopback_mode = LOOPBACK_XGMII;
1052                 else
1053                         efx->loopback_mode = __ffs(efx->loopback_modes);
1054         }
1055         __efx_reconfigure_port(efx);
1056         mutex_unlock(&efx->mac_lock);
1057
1058         efx_reset_down(efx, reset_method);
1059
1060         tests->registers =
1061                 efx_nic_test_registers(efx, falcon_b0_register_tests,
1062                                        ARRAY_SIZE(falcon_b0_register_tests))
1063                 ? -1 : 1;
1064
1065         rc = falcon_reset_hw(efx, reset_method);
1066         rc2 = efx_reset_up(efx, reset_method, rc == 0);
1067         return rc ? rc : rc2;
1068 }
1069
1070 /**************************************************************************
1071  *
1072  * Device reset
1073  *
1074  **************************************************************************
1075  */
1076
1077 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1078 {
1079         switch (reason) {
1080         case RESET_TYPE_RX_RECOVERY:
1081         case RESET_TYPE_RX_DESC_FETCH:
1082         case RESET_TYPE_TX_DESC_FETCH:
1083         case RESET_TYPE_TX_SKIP:
1084                 /* These can occasionally occur due to hardware bugs.
1085                  * We try to reset without disrupting the link.
1086                  */
1087                 return RESET_TYPE_INVISIBLE;
1088         default:
1089                 return RESET_TYPE_ALL;
1090         }
1091 }
1092
1093 static int falcon_map_reset_flags(u32 *flags)
1094 {
1095         enum {
1096                 FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1097                                           ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1098                 FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1099                 FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1100         };
1101
1102         if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1103                 *flags &= ~FALCON_RESET_WORLD;
1104                 return RESET_TYPE_WORLD;
1105         }
1106
1107         if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1108                 *flags &= ~FALCON_RESET_ALL;
1109                 return RESET_TYPE_ALL;
1110         }
1111
1112         if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1113                 *flags &= ~FALCON_RESET_INVISIBLE;
1114                 return RESET_TYPE_INVISIBLE;
1115         }
1116
1117         return -EINVAL;
1118 }
1119
1120 /* Resets NIC to known state.  This routine must be called in process
1121  * context and is allowed to sleep. */
1122 static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1123 {
1124         struct falcon_nic_data *nic_data = efx->nic_data;
1125         efx_oword_t glb_ctl_reg_ker;
1126         int rc;
1127
1128         netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1129                   RESET_TYPE(method));
1130
1131         /* Initiate device reset */
1132         if (method == RESET_TYPE_WORLD) {
1133                 rc = pci_save_state(efx->pci_dev);
1134                 if (rc) {
1135                         netif_err(efx, drv, efx->net_dev,
1136                                   "failed to backup PCI state of primary "
1137                                   "function prior to hardware reset\n");
1138                         goto fail1;
1139                 }
1140                 if (efx_nic_is_dual_func(efx)) {
1141                         rc = pci_save_state(nic_data->pci_dev2);
1142                         if (rc) {
1143                                 netif_err(efx, drv, efx->net_dev,
1144                                           "failed to backup PCI state of "
1145                                           "secondary function prior to "
1146                                           "hardware reset\n");
1147                                 goto fail2;
1148                         }
1149                 }
1150
1151                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1152                                      FRF_AB_EXT_PHY_RST_DUR,
1153                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
1154                                      FRF_AB_SWRST, 1);
1155         } else {
1156                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1157                                      /* exclude PHY from "invisible" reset */
1158                                      FRF_AB_EXT_PHY_RST_CTL,
1159                                      method == RESET_TYPE_INVISIBLE,
1160                                      /* exclude EEPROM/flash and PCIe */
1161                                      FRF_AB_PCIE_CORE_RST_CTL, 1,
1162                                      FRF_AB_PCIE_NSTKY_RST_CTL, 1,
1163                                      FRF_AB_PCIE_SD_RST_CTL, 1,
1164                                      FRF_AB_EE_RST_CTL, 1,
1165                                      FRF_AB_EXT_PHY_RST_DUR,
1166                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
1167                                      FRF_AB_SWRST, 1);
1168         }
1169         efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1170
1171         netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
1172         schedule_timeout_uninterruptible(HZ / 20);
1173
1174         /* Restore PCI configuration if needed */
1175         if (method == RESET_TYPE_WORLD) {
1176                 if (efx_nic_is_dual_func(efx))
1177                         pci_restore_state(nic_data->pci_dev2);
1178                 pci_restore_state(efx->pci_dev);
1179                 netif_dbg(efx, drv, efx->net_dev,
1180                           "successfully restored PCI config\n");
1181         }
1182
1183         /* Assert that reset complete */
1184         efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1185         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
1186                 rc = -ETIMEDOUT;
1187                 netif_err(efx, hw, efx->net_dev,
1188                           "timed out waiting for hardware reset\n");
1189                 goto fail3;
1190         }
1191         netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
1192
1193         return 0;
1194
1195         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
1196 fail2:
1197         pci_restore_state(efx->pci_dev);
1198 fail1:
1199 fail3:
1200         return rc;
1201 }
1202
1203 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1204 {
1205         struct falcon_nic_data *nic_data = efx->nic_data;
1206         int rc;
1207
1208         mutex_lock(&nic_data->spi_lock);
1209         rc = __falcon_reset_hw(efx, method);
1210         mutex_unlock(&nic_data->spi_lock);
1211
1212         return rc;
1213 }
1214
1215 static void falcon_monitor(struct efx_nic *efx)
1216 {
1217         bool link_changed;
1218         int rc;
1219
1220         BUG_ON(!mutex_is_locked(&efx->mac_lock));
1221
1222         rc = falcon_board(efx)->type->monitor(efx);
1223         if (rc) {
1224                 netif_err(efx, hw, efx->net_dev,
1225                           "Board sensor %s; shutting down PHY\n",
1226                           (rc == -ERANGE) ? "reported fault" : "failed");
1227                 efx->phy_mode |= PHY_MODE_LOW_POWER;
1228                 rc = __efx_reconfigure_port(efx);
1229                 WARN_ON(rc);
1230         }
1231
1232         if (LOOPBACK_INTERNAL(efx))
1233                 link_changed = falcon_loopback_link_poll(efx);
1234         else
1235                 link_changed = efx->phy_op->poll(efx);
1236
1237         if (link_changed) {
1238                 falcon_stop_nic_stats(efx);
1239                 falcon_deconfigure_mac_wrapper(efx);
1240
1241                 falcon_reset_macs(efx);
1242                 rc = falcon_reconfigure_xmac(efx);
1243                 BUG_ON(rc);
1244
1245                 falcon_start_nic_stats(efx);
1246
1247                 efx_link_status_changed(efx);
1248         }
1249
1250         falcon_poll_xmac(efx);
1251 }
1252
1253 /* Zeroes out the SRAM contents.  This routine must be called in
1254  * process context and is allowed to sleep.
1255  */
1256 static int falcon_reset_sram(struct efx_nic *efx)
1257 {
1258         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
1259         int count;
1260
1261         /* Set the SRAM wake/sleep GPIO appropriately. */
1262         efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1263         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
1264         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
1265         efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1266
1267         /* Initiate SRAM reset */
1268         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
1269                              FRF_AZ_SRM_INIT_EN, 1,
1270                              FRF_AZ_SRM_NB_SZ, 0);
1271         efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1272
1273         /* Wait for SRAM reset to complete */
1274         count = 0;
1275         do {
1276                 netif_dbg(efx, hw, efx->net_dev,
1277                           "waiting for SRAM reset (attempt %d)...\n", count);
1278
1279                 /* SRAM reset is slow; expect around 16ms */
1280                 schedule_timeout_uninterruptible(HZ / 50);
1281
1282                 /* Check for reset complete */
1283                 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1284                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
1285                         netif_dbg(efx, hw, efx->net_dev,
1286                                   "SRAM reset complete\n");
1287
1288                         return 0;
1289                 }
1290         } while (++count < 20); /* wait up to 0.4 sec */
1291
1292         netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
1293         return -ETIMEDOUT;
1294 }
1295
1296 static void falcon_spi_device_init(struct efx_nic *efx,
1297                                   struct efx_spi_device *spi_device,
1298                                   unsigned int device_id, u32 device_type)
1299 {
1300         if (device_type != 0) {
1301                 spi_device->device_id = device_id;
1302                 spi_device->size =
1303                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
1304                 spi_device->addr_len =
1305                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
1306                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
1307                                              spi_device->addr_len == 1);
1308                 spi_device->erase_command =
1309                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
1310                 spi_device->erase_size =
1311                         1 << SPI_DEV_TYPE_FIELD(device_type,
1312                                                 SPI_DEV_TYPE_ERASE_SIZE);
1313                 spi_device->block_size =
1314                         1 << SPI_DEV_TYPE_FIELD(device_type,
1315                                                 SPI_DEV_TYPE_BLOCK_SIZE);
1316         } else {
1317                 spi_device->size = 0;
1318         }
1319 }
1320
1321 /* Extract non-volatile configuration */
1322 static int falcon_probe_nvconfig(struct efx_nic *efx)
1323 {
1324         struct falcon_nic_data *nic_data = efx->nic_data;
1325         struct falcon_nvconfig *nvconfig;
1326         int rc;
1327
1328         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
1329         if (!nvconfig)
1330                 return -ENOMEM;
1331
1332         rc = falcon_read_nvram(efx, nvconfig);
1333         if (rc)
1334                 goto out;
1335
1336         efx->phy_type = nvconfig->board_v2.port0_phy_type;
1337         efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
1338
1339         if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
1340                 falcon_spi_device_init(
1341                         efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
1342                         le32_to_cpu(nvconfig->board_v3
1343                                     .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
1344                 falcon_spi_device_init(
1345                         efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
1346                         le32_to_cpu(nvconfig->board_v3
1347                                     .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
1348         }
1349
1350         /* Read the MAC addresses */
1351         memcpy(efx->net_dev->perm_addr, nvconfig->mac_address[0], ETH_ALEN);
1352
1353         netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
1354                   efx->phy_type, efx->mdio.prtad);
1355
1356         rc = falcon_probe_board(efx,
1357                                 le16_to_cpu(nvconfig->board_v2.board_revision));
1358 out:
1359         kfree(nvconfig);
1360         return rc;
1361 }
1362
1363 static void falcon_dimension_resources(struct efx_nic *efx)
1364 {
1365         efx->rx_dc_base = 0x20000;
1366         efx->tx_dc_base = 0x26000;
1367 }
1368
1369 /* Probe all SPI devices on the NIC */
1370 static void falcon_probe_spi_devices(struct efx_nic *efx)
1371 {
1372         struct falcon_nic_data *nic_data = efx->nic_data;
1373         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
1374         int boot_dev;
1375
1376         efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
1377         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1378         efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1379
1380         if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
1381                 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
1382                             FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
1383                 netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
1384                           boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
1385                           "flash" : "EEPROM");
1386         } else {
1387                 /* Disable VPD and set clock dividers to safe
1388                  * values for initial programming. */
1389                 boot_dev = -1;
1390                 netif_dbg(efx, probe, efx->net_dev,
1391                           "Booted from internal ASIC settings;"
1392                           " setting SPI config\n");
1393                 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
1394                                      /* 125 MHz / 7 ~= 20 MHz */
1395                                      FRF_AB_EE_SF_CLOCK_DIV, 7,
1396                                      /* 125 MHz / 63 ~= 2 MHz */
1397                                      FRF_AB_EE_EE_CLOCK_DIV, 63);
1398                 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1399         }
1400
1401         mutex_init(&nic_data->spi_lock);
1402
1403         if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
1404                 falcon_spi_device_init(efx, &nic_data->spi_flash,
1405                                        FFE_AB_SPI_DEVICE_FLASH,
1406                                        default_flash_type);
1407         if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
1408                 falcon_spi_device_init(efx, &nic_data->spi_eeprom,
1409                                        FFE_AB_SPI_DEVICE_EEPROM,
1410                                        large_eeprom_type);
1411 }
1412
1413 static int falcon_probe_nic(struct efx_nic *efx)
1414 {
1415         struct falcon_nic_data *nic_data;
1416         struct falcon_board *board;
1417         int rc;
1418
1419         /* Allocate storage for hardware specific data */
1420         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1421         if (!nic_data)
1422                 return -ENOMEM;
1423         efx->nic_data = nic_data;
1424
1425         rc = -ENODEV;
1426
1427         if (efx_nic_fpga_ver(efx) != 0) {
1428                 netif_err(efx, probe, efx->net_dev,
1429                           "Falcon FPGA not supported\n");
1430                 goto fail1;
1431         }
1432
1433         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1434                 efx_oword_t nic_stat;
1435                 struct pci_dev *dev;
1436                 u8 pci_rev = efx->pci_dev->revision;
1437
1438                 if ((pci_rev == 0xff) || (pci_rev == 0)) {
1439                         netif_err(efx, probe, efx->net_dev,
1440                                   "Falcon rev A0 not supported\n");
1441                         goto fail1;
1442                 }
1443                 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1444                 if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
1445                         netif_err(efx, probe, efx->net_dev,
1446                                   "Falcon rev A1 1G not supported\n");
1447                         goto fail1;
1448                 }
1449                 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
1450                         netif_err(efx, probe, efx->net_dev,
1451                                   "Falcon rev A1 PCI-X not supported\n");
1452                         goto fail1;
1453                 }
1454
1455                 dev = pci_dev_get(efx->pci_dev);
1456                 while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
1457                                              PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
1458                                              dev))) {
1459                         if (dev->bus == efx->pci_dev->bus &&
1460                             dev->devfn == efx->pci_dev->devfn + 1) {
1461                                 nic_data->pci_dev2 = dev;
1462                                 break;
1463                         }
1464                 }
1465                 if (!nic_data->pci_dev2) {
1466                         netif_err(efx, probe, efx->net_dev,
1467                                   "failed to find secondary function\n");
1468                         rc = -ENODEV;
1469                         goto fail2;
1470                 }
1471         }
1472
1473         /* Now we can reset the NIC */
1474         rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
1475         if (rc) {
1476                 netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
1477                 goto fail3;
1478         }
1479
1480         /* Allocate memory for INT_KER */
1481         rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
1482         if (rc)
1483                 goto fail4;
1484         BUG_ON(efx->irq_status.dma_addr & 0x0f);
1485
1486         netif_dbg(efx, probe, efx->net_dev,
1487                   "INT_KER at %llx (virt %p phys %llx)\n",
1488                   (u64)efx->irq_status.dma_addr,
1489                   efx->irq_status.addr,
1490                   (u64)virt_to_phys(efx->irq_status.addr));
1491
1492         falcon_probe_spi_devices(efx);
1493
1494         /* Read in the non-volatile configuration */
1495         rc = falcon_probe_nvconfig(efx);
1496         if (rc) {
1497                 if (rc == -EINVAL)
1498                         netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
1499                 goto fail5;
1500         }
1501
1502         efx->timer_quantum_ns = 4968; /* 621 cycles */
1503
1504         /* Initialise I2C adapter */
1505         board = falcon_board(efx);
1506         board->i2c_adap.owner = THIS_MODULE;
1507         board->i2c_data = falcon_i2c_bit_operations;
1508         board->i2c_data.data = efx;
1509         board->i2c_adap.algo_data = &board->i2c_data;
1510         board->i2c_adap.dev.parent = &efx->pci_dev->dev;
1511         strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
1512                 sizeof(board->i2c_adap.name));
1513         rc = i2c_bit_add_bus(&board->i2c_adap);
1514         if (rc)
1515                 goto fail5;
1516
1517         rc = falcon_board(efx)->type->init(efx);
1518         if (rc) {
1519                 netif_err(efx, probe, efx->net_dev,
1520                           "failed to initialise board\n");
1521                 goto fail6;
1522         }
1523
1524         nic_data->stats_disable_count = 1;
1525         setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
1526                     (unsigned long)efx);
1527
1528         return 0;
1529
1530  fail6:
1531         BUG_ON(i2c_del_adapter(&board->i2c_adap));
1532         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1533  fail5:
1534         efx_nic_free_buffer(efx, &efx->irq_status);
1535  fail4:
1536  fail3:
1537         if (nic_data->pci_dev2) {
1538                 pci_dev_put(nic_data->pci_dev2);
1539                 nic_data->pci_dev2 = NULL;
1540         }
1541  fail2:
1542  fail1:
1543         kfree(efx->nic_data);
1544         return rc;
1545 }
1546
1547 static void falcon_init_rx_cfg(struct efx_nic *efx)
1548 {
1549         /* Prior to Siena the RX DMA engine will split each frame at
1550          * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
1551          * be so large that that never happens. */
1552         const unsigned huge_buf_size = (3 * 4096) >> 5;
1553         /* RX control FIFO thresholds (32 entries) */
1554         const unsigned ctrl_xon_thr = 20;
1555         const unsigned ctrl_xoff_thr = 25;
1556         efx_oword_t reg;
1557
1558         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1559         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1560                 /* Data FIFO size is 5.5K */
1561                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
1562                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
1563                                     huge_buf_size);
1564                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
1565                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
1566                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
1567                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
1568         } else {
1569                 /* Data FIFO size is 80K; register fields moved */
1570                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
1571                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
1572                                     huge_buf_size);
1573                 /* Send XON and XOFF at ~3 * max MTU away from empty/full */
1574                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
1575                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
1576                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
1577                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
1578                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1579
1580                 /* Enable hash insertion. This is broken for the
1581                  * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
1582                  * IPv4 hashes. */
1583                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
1584                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
1585                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
1586         }
1587         /* Always enable XOFF signal from RX FIFO.  We enable
1588          * or disable transmission of pause frames at the MAC. */
1589         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1590         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1591 }
1592
1593 /* This call performs hardware-specific global initialisation, such as
1594  * defining the descriptor cache sizes and number of RSS channels.
1595  * It does not set up any buffers, descriptor rings or event queues.
1596  */
1597 static int falcon_init_nic(struct efx_nic *efx)
1598 {
1599         efx_oword_t temp;
1600         int rc;
1601
1602         /* Use on-chip SRAM */
1603         efx_reado(efx, &temp, FR_AB_NIC_STAT);
1604         EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
1605         efx_writeo(efx, &temp, FR_AB_NIC_STAT);
1606
1607         rc = falcon_reset_sram(efx);
1608         if (rc)
1609                 return rc;
1610
1611         /* Clear the parity enables on the TX data fifos as
1612          * they produce false parity errors because of timing issues
1613          */
1614         if (EFX_WORKAROUND_5129(efx)) {
1615                 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
1616                 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
1617                 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
1618         }
1619
1620         if (EFX_WORKAROUND_7244(efx)) {
1621                 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
1622                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
1623                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
1624                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
1625                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
1626                 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
1627         }
1628
1629         /* XXX This is documented only for Falcon A0/A1 */
1630         /* Setup RX.  Wait for descriptor is broken and must
1631          * be disabled.  RXDP recovery shouldn't be needed, but is.
1632          */
1633         efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
1634         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
1635         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
1636         if (EFX_WORKAROUND_5583(efx))
1637                 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
1638         efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
1639
1640         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
1641          * descriptors (which is bad).
1642          */
1643         efx_reado(efx, &temp, FR_AZ_TX_CFG);
1644         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
1645         efx_writeo(efx, &temp, FR_AZ_TX_CFG);
1646
1647         falcon_init_rx_cfg(efx);
1648
1649         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1650                 /* Set hash key for IPv4 */
1651                 memcpy(&temp, efx->rx_hash_key, sizeof(temp));
1652                 efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
1653
1654                 /* Set destination of both TX and RX Flush events */
1655                 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
1656                 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
1657         }
1658
1659         efx_nic_init_common(efx);
1660
1661         return 0;
1662 }
1663
1664 static void falcon_remove_nic(struct efx_nic *efx)
1665 {
1666         struct falcon_nic_data *nic_data = efx->nic_data;
1667         struct falcon_board *board = falcon_board(efx);
1668         int rc;
1669
1670         board->type->fini(efx);
1671
1672         /* Remove I2C adapter and clear it in preparation for a retry */
1673         rc = i2c_del_adapter(&board->i2c_adap);
1674         BUG_ON(rc);
1675         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1676
1677         efx_nic_free_buffer(efx, &efx->irq_status);
1678
1679         __falcon_reset_hw(efx, RESET_TYPE_ALL);
1680
1681         /* Release the second function after the reset */
1682         if (nic_data->pci_dev2) {
1683                 pci_dev_put(nic_data->pci_dev2);
1684                 nic_data->pci_dev2 = NULL;
1685         }
1686
1687         /* Tear down the private nic state */
1688         kfree(efx->nic_data);
1689         efx->nic_data = NULL;
1690 }
1691
1692 static void falcon_update_nic_stats(struct efx_nic *efx)
1693 {
1694         struct falcon_nic_data *nic_data = efx->nic_data;
1695         efx_oword_t cnt;
1696
1697         if (nic_data->stats_disable_count)
1698                 return;
1699
1700         efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
1701         efx->n_rx_nodesc_drop_cnt +=
1702                 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
1703
1704         if (nic_data->stats_pending &&
1705             *nic_data->stats_dma_done == FALCON_STATS_DONE) {
1706                 nic_data->stats_pending = false;
1707                 rmb(); /* read the done flag before the stats */
1708                 falcon_update_stats_xmac(efx);
1709         }
1710 }
1711
1712 void falcon_start_nic_stats(struct efx_nic *efx)
1713 {
1714         struct falcon_nic_data *nic_data = efx->nic_data;
1715
1716         spin_lock_bh(&efx->stats_lock);
1717         if (--nic_data->stats_disable_count == 0)
1718                 falcon_stats_request(efx);
1719         spin_unlock_bh(&efx->stats_lock);
1720 }
1721
1722 void falcon_stop_nic_stats(struct efx_nic *efx)
1723 {
1724         struct falcon_nic_data *nic_data = efx->nic_data;
1725         int i;
1726
1727         might_sleep();
1728
1729         spin_lock_bh(&efx->stats_lock);
1730         ++nic_data->stats_disable_count;
1731         spin_unlock_bh(&efx->stats_lock);
1732
1733         del_timer_sync(&nic_data->stats_timer);
1734
1735         /* Wait enough time for the most recent transfer to
1736          * complete. */
1737         for (i = 0; i < 4 && nic_data->stats_pending; i++) {
1738                 if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
1739                         break;
1740                 msleep(1);
1741         }
1742
1743         spin_lock_bh(&efx->stats_lock);
1744         falcon_stats_complete(efx);
1745         spin_unlock_bh(&efx->stats_lock);
1746 }
1747
1748 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1749 {
1750         falcon_board(efx)->type->set_id_led(efx, mode);
1751 }
1752
1753 /**************************************************************************
1754  *
1755  * Wake on LAN
1756  *
1757  **************************************************************************
1758  */
1759
1760 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1761 {
1762         wol->supported = 0;
1763         wol->wolopts = 0;
1764         memset(&wol->sopass, 0, sizeof(wol->sopass));
1765 }
1766
1767 static int falcon_set_wol(struct efx_nic *efx, u32 type)
1768 {
1769         if (type != 0)
1770                 return -EINVAL;
1771         return 0;
1772 }
1773
1774 /**************************************************************************
1775  *
1776  * Revision-dependent attributes used by efx.c and nic.c
1777  *
1778  **************************************************************************
1779  */
1780
1781 const struct efx_nic_type falcon_a1_nic_type = {
1782         .probe = falcon_probe_nic,
1783         .remove = falcon_remove_nic,
1784         .init = falcon_init_nic,
1785         .dimension_resources = falcon_dimension_resources,
1786         .fini = efx_port_dummy_op_void,
1787         .monitor = falcon_monitor,
1788         .map_reset_reason = falcon_map_reset_reason,
1789         .map_reset_flags = falcon_map_reset_flags,
1790         .reset = falcon_reset_hw,
1791         .probe_port = falcon_probe_port,
1792         .remove_port = falcon_remove_port,
1793         .handle_global_event = falcon_handle_global_event,
1794         .prepare_flush = falcon_prepare_flush,
1795         .update_stats = falcon_update_nic_stats,
1796         .start_stats = falcon_start_nic_stats,
1797         .stop_stats = falcon_stop_nic_stats,
1798         .set_id_led = falcon_set_id_led,
1799         .push_irq_moderation = falcon_push_irq_moderation,
1800         .reconfigure_port = falcon_reconfigure_port,
1801         .reconfigure_mac = falcon_reconfigure_xmac,
1802         .check_mac_fault = falcon_xmac_check_fault,
1803         .get_wol = falcon_get_wol,
1804         .set_wol = falcon_set_wol,
1805         .resume_wol = efx_port_dummy_op_void,
1806         .test_nvram = falcon_test_nvram,
1807
1808         .revision = EFX_REV_FALCON_A1,
1809         .mem_map_size = 0x20000,
1810         .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
1811         .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
1812         .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
1813         .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
1814         .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
1815         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1816         .rx_buffer_padding = 0x24,
1817         .max_interrupt_mode = EFX_INT_MODE_MSI,
1818         .phys_addr_channels = 4,
1819         .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
1820         .offload_features = NETIF_F_IP_CSUM,
1821 };
1822
1823 const struct efx_nic_type falcon_b0_nic_type = {
1824         .probe = falcon_probe_nic,
1825         .remove = falcon_remove_nic,
1826         .init = falcon_init_nic,
1827         .dimension_resources = falcon_dimension_resources,
1828         .fini = efx_port_dummy_op_void,
1829         .monitor = falcon_monitor,
1830         .map_reset_reason = falcon_map_reset_reason,
1831         .map_reset_flags = falcon_map_reset_flags,
1832         .reset = falcon_reset_hw,
1833         .probe_port = falcon_probe_port,
1834         .remove_port = falcon_remove_port,
1835         .handle_global_event = falcon_handle_global_event,
1836         .prepare_flush = falcon_prepare_flush,
1837         .update_stats = falcon_update_nic_stats,
1838         .start_stats = falcon_start_nic_stats,
1839         .stop_stats = falcon_stop_nic_stats,
1840         .set_id_led = falcon_set_id_led,
1841         .push_irq_moderation = falcon_push_irq_moderation,
1842         .reconfigure_port = falcon_reconfigure_port,
1843         .reconfigure_mac = falcon_reconfigure_xmac,
1844         .check_mac_fault = falcon_xmac_check_fault,
1845         .get_wol = falcon_get_wol,
1846         .set_wol = falcon_set_wol,
1847         .resume_wol = efx_port_dummy_op_void,
1848         .test_chip = falcon_b0_test_chip,
1849         .test_nvram = falcon_test_nvram,
1850
1851         .revision = EFX_REV_FALCON_B0,
1852         /* Map everything up to and including the RSS indirection
1853          * table.  Don't map MSI-X table, MSI-X PBA since Linux
1854          * requires that they not be mapped.  */
1855         .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
1856                          FR_BZ_RX_INDIRECTION_TBL_STEP *
1857                          FR_BZ_RX_INDIRECTION_TBL_ROWS),
1858         .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
1859         .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
1860         .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
1861         .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
1862         .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
1863         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1864         .rx_buffer_hash_size = 0x10,
1865         .rx_buffer_padding = 0,
1866         .max_interrupt_mode = EFX_INT_MODE_MSIX,
1867         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
1868                                    * interrupt handler only supports 32
1869                                    * channels */
1870         .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
1871         .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
1872 };
1873