]> rtime.felk.cvut.cz Git - can-eth-gw-linux.git/blob - drivers/net/ethernet/intel/e1000e/80003es2lan.c
Merge tag 'for-linus-20121212' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowe...
[can-eth-gw-linux.git] / drivers / net / ethernet / intel / e1000e / 80003es2lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 80003ES2LAN Gigabit Ethernet Controller (Copper)
31  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
32  */
33
34 #include "e1000.h"
35
36 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL       0x00
37 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL        0x02
38 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL         0x10
39 #define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE  0x1F
40
41 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS    0x0008
42 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS    0x0800
43 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING   0x0010
44
45 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
46 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT   0x0000
47 #define E1000_KMRNCTRLSTA_OPMODE_E_IDLE          0x2000
48
49 #define E1000_KMRNCTRLSTA_OPMODE_MASK            0x000C
50 #define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO     0x0004
51
52 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
53 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN        0x00010000
54
55 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN       0x8
56 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN     0x9
57
58 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */
59 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE   0x0002 /* 1=Reversal Disab. */
60 #define GG82563_PSCR_CROSSOVER_MODE_MASK         0x0060
61 #define GG82563_PSCR_CROSSOVER_MODE_MDI          0x0000 /* 00=Manual MDI */
62 #define GG82563_PSCR_CROSSOVER_MODE_MDIX         0x0020 /* 01=Manual MDIX */
63 #define GG82563_PSCR_CROSSOVER_MODE_AUTO         0x0060 /* 11=Auto crossover */
64
65 /* PHY Specific Control Register 2 (Page 0, Register 26) */
66 #define GG82563_PSCR2_REVERSE_AUTO_NEG           0x2000
67                                                 /* 1=Reverse Auto-Negotiation */
68
69 /* MAC Specific Control Register (Page 2, Register 21) */
70 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
71 #define GG82563_MSCR_TX_CLK_MASK                 0x0007
72 #define GG82563_MSCR_TX_CLK_10MBPS_2_5           0x0004
73 #define GG82563_MSCR_TX_CLK_100MBPS_25           0x0005
74 #define GG82563_MSCR_TX_CLK_1000MBPS_25          0x0007
75
76 #define GG82563_MSCR_ASSERT_CRS_ON_TX            0x0010 /* 1=Assert */
77
78 /* DSP Distance Register (Page 5, Register 26) */
79 #define GG82563_DSPD_CABLE_LENGTH                0x0007 /* 0 = <50M
80                                                            1 = 50-80M
81                                                            2 = 80-110M
82                                                            3 = 110-140M
83                                                            4 = >140M */
84
85 /* Kumeran Mode Control Register (Page 193, Register 16) */
86 #define GG82563_KMCR_PASS_FALSE_CARRIER          0x0800
87
88 /* Max number of times Kumeran read/write should be validated */
89 #define GG82563_MAX_KMRN_RETRY  0x5
90
91 /* Power Management Control Register (Page 193, Register 20) */
92 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE      0x0001
93                                            /* 1=Enable SERDES Electrical Idle */
94
95 /* In-Band Control Register (Page 194, Register 18) */
96 #define GG82563_ICR_DIS_PADDING                  0x0010 /* Disable Padding */
97
98 /*
99  * A table for the GG82563 cable length where the range is defined
100  * with a lower bound at "index" and the upper bound at
101  * "index + 5".
102  */
103 static const u16 e1000_gg82563_cable_length_table[] = {
104          0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
105 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
106                 ARRAY_SIZE(e1000_gg82563_cable_length_table)
107
108 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
109 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
110 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
111 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
112 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
113 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
114 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
115 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
116 static s32  e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
117                                             u16 *data);
118 static s32  e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
119                                              u16 data);
120 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
121
122 /**
123  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
124  *  @hw: pointer to the HW structure
125  **/
126 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
127 {
128         struct e1000_phy_info *phy = &hw->phy;
129         s32 ret_val;
130
131         if (hw->phy.media_type != e1000_media_type_copper) {
132                 phy->type       = e1000_phy_none;
133                 return 0;
134         } else {
135                 phy->ops.power_up = e1000_power_up_phy_copper;
136                 phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
137         }
138
139         phy->addr               = 1;
140         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
141         phy->reset_delay_us      = 100;
142         phy->type               = e1000_phy_gg82563;
143
144         /* This can only be done after all function pointers are setup. */
145         ret_val = e1000e_get_phy_id(hw);
146
147         /* Verify phy id */
148         if (phy->id != GG82563_E_PHY_ID)
149                 return -E1000_ERR_PHY;
150
151         return ret_val;
152 }
153
154 /**
155  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
156  *  @hw: pointer to the HW structure
157  **/
158 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
159 {
160         struct e1000_nvm_info *nvm = &hw->nvm;
161         u32 eecd = er32(EECD);
162         u16 size;
163
164         nvm->opcode_bits        = 8;
165         nvm->delay_usec  = 1;
166         switch (nvm->override) {
167         case e1000_nvm_override_spi_large:
168                 nvm->page_size    = 32;
169                 nvm->address_bits = 16;
170                 break;
171         case e1000_nvm_override_spi_small:
172                 nvm->page_size    = 8;
173                 nvm->address_bits = 8;
174                 break;
175         default:
176                 nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
177                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
178                 break;
179         }
180
181         nvm->type = e1000_nvm_eeprom_spi;
182
183         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
184                           E1000_EECD_SIZE_EX_SHIFT);
185
186         /*
187          * Added to a constant, "size" becomes the left-shift value
188          * for setting word_size.
189          */
190         size += NVM_WORD_SIZE_BASE_SHIFT;
191
192         /* EEPROM access above 16k is unsupported */
193         if (size > 14)
194                 size = 14;
195         nvm->word_size  = 1 << size;
196
197         return 0;
198 }
199
200 /**
201  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
202  *  @hw: pointer to the HW structure
203  **/
204 static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
205 {
206         struct e1000_mac_info *mac = &hw->mac;
207
208         /* Set media type and media-dependent function pointers */
209         switch (hw->adapter->pdev->device) {
210         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
211                 hw->phy.media_type = e1000_media_type_internal_serdes;
212                 mac->ops.check_for_link = e1000e_check_for_serdes_link;
213                 mac->ops.setup_physical_interface =
214                     e1000e_setup_fiber_serdes_link;
215                 break;
216         default:
217                 hw->phy.media_type = e1000_media_type_copper;
218                 mac->ops.check_for_link = e1000e_check_for_copper_link;
219                 mac->ops.setup_physical_interface =
220                     e1000_setup_copper_link_80003es2lan;
221                 break;
222         }
223
224         /* Set mta register count */
225         mac->mta_reg_count = 128;
226         /* Set rar entry count */
227         mac->rar_entry_count = E1000_RAR_ENTRIES;
228         /* FWSM register */
229         mac->has_fwsm = true;
230         /* ARC supported; valid only if manageability features are enabled. */
231         mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
232         /* Adaptive IFS not supported */
233         mac->adaptive_ifs = false;
234
235         /* set lan id for port to determine which phy lock to use */
236         hw->mac.ops.set_lan_id(hw);
237
238         return 0;
239 }
240
241 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
242 {
243         struct e1000_hw *hw = &adapter->hw;
244         s32 rc;
245
246         rc = e1000_init_mac_params_80003es2lan(hw);
247         if (rc)
248                 return rc;
249
250         rc = e1000_init_nvm_params_80003es2lan(hw);
251         if (rc)
252                 return rc;
253
254         rc = e1000_init_phy_params_80003es2lan(hw);
255         if (rc)
256                 return rc;
257
258         return 0;
259 }
260
261 /**
262  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
263  *  @hw: pointer to the HW structure
264  *
265  *  A wrapper to acquire access rights to the correct PHY.
266  **/
267 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
268 {
269         u16 mask;
270
271         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
272         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
273 }
274
275 /**
276  *  e1000_release_phy_80003es2lan - Release rights to access PHY
277  *  @hw: pointer to the HW structure
278  *
279  *  A wrapper to release access rights to the correct PHY.
280  **/
281 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
282 {
283         u16 mask;
284
285         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
286         e1000_release_swfw_sync_80003es2lan(hw, mask);
287 }
288
289 /**
290  *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
291  *  @hw: pointer to the HW structure
292  *
293  *  Acquire the semaphore to access the Kumeran interface.
294  *
295  **/
296 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
297 {
298         u16 mask;
299
300         mask = E1000_SWFW_CSR_SM;
301
302         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
303 }
304
305 /**
306  *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
307  *  @hw: pointer to the HW structure
308  *
309  *  Release the semaphore used to access the Kumeran interface
310  **/
311 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
312 {
313         u16 mask;
314
315         mask = E1000_SWFW_CSR_SM;
316
317         e1000_release_swfw_sync_80003es2lan(hw, mask);
318 }
319
320 /**
321  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
322  *  @hw: pointer to the HW structure
323  *
324  *  Acquire the semaphore to access the EEPROM.
325  **/
326 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
327 {
328         s32 ret_val;
329
330         ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
331         if (ret_val)
332                 return ret_val;
333
334         ret_val = e1000e_acquire_nvm(hw);
335
336         if (ret_val)
337                 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
338
339         return ret_val;
340 }
341
342 /**
343  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
344  *  @hw: pointer to the HW structure
345  *
346  *  Release the semaphore used to access the EEPROM.
347  **/
348 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
349 {
350         e1000e_release_nvm(hw);
351         e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
352 }
353
354 /**
355  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
356  *  @hw: pointer to the HW structure
357  *  @mask: specifies which semaphore to acquire
358  *
359  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
360  *  will also specify which port we're acquiring the lock for.
361  **/
362 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
363 {
364         u32 swfw_sync;
365         u32 swmask = mask;
366         u32 fwmask = mask << 16;
367         s32 i = 0;
368         s32 timeout = 50;
369
370         while (i < timeout) {
371                 if (e1000e_get_hw_semaphore(hw))
372                         return -E1000_ERR_SWFW_SYNC;
373
374                 swfw_sync = er32(SW_FW_SYNC);
375                 if (!(swfw_sync & (fwmask | swmask)))
376                         break;
377
378                 /*
379                  * Firmware currently using resource (fwmask)
380                  * or other software thread using resource (swmask)
381                  */
382                 e1000e_put_hw_semaphore(hw);
383                 mdelay(5);
384                 i++;
385         }
386
387         if (i == timeout) {
388                 e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
389                 return -E1000_ERR_SWFW_SYNC;
390         }
391
392         swfw_sync |= swmask;
393         ew32(SW_FW_SYNC, swfw_sync);
394
395         e1000e_put_hw_semaphore(hw);
396
397         return 0;
398 }
399
400 /**
401  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
402  *  @hw: pointer to the HW structure
403  *  @mask: specifies which semaphore to acquire
404  *
405  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
406  *  will also specify which port we're releasing the lock for.
407  **/
408 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
409 {
410         u32 swfw_sync;
411
412         while (e1000e_get_hw_semaphore(hw) != 0)
413                 ; /* Empty */
414
415         swfw_sync = er32(SW_FW_SYNC);
416         swfw_sync &= ~mask;
417         ew32(SW_FW_SYNC, swfw_sync);
418
419         e1000e_put_hw_semaphore(hw);
420 }
421
422 /**
423  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
424  *  @hw: pointer to the HW structure
425  *  @offset: offset of the register to read
426  *  @data: pointer to the data returned from the operation
427  *
428  *  Read the GG82563 PHY register.
429  **/
430 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
431                                                   u32 offset, u16 *data)
432 {
433         s32 ret_val;
434         u32 page_select;
435         u16 temp;
436
437         ret_val = e1000_acquire_phy_80003es2lan(hw);
438         if (ret_val)
439                 return ret_val;
440
441         /* Select Configuration Page */
442         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
443                 page_select = GG82563_PHY_PAGE_SELECT;
444         } else {
445                 /*
446                  * Use Alternative Page Select register to access
447                  * registers 30 and 31
448                  */
449                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
450         }
451
452         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
453         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
454         if (ret_val) {
455                 e1000_release_phy_80003es2lan(hw);
456                 return ret_val;
457         }
458
459         if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
460                 /*
461                  * The "ready" bit in the MDIC register may be incorrectly set
462                  * before the device has completed the "Page Select" MDI
463                  * transaction.  So we wait 200us after each MDI command...
464                  */
465                 udelay(200);
466
467                 /* ...and verify the command was successful. */
468                 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
469
470                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
471                         e1000_release_phy_80003es2lan(hw);
472                         return -E1000_ERR_PHY;
473                 }
474
475                 udelay(200);
476
477                 ret_val = e1000e_read_phy_reg_mdic(hw,
478                                                   MAX_PHY_REG_ADDRESS & offset,
479                                                   data);
480
481                 udelay(200);
482         } else {
483                 ret_val = e1000e_read_phy_reg_mdic(hw,
484                                                   MAX_PHY_REG_ADDRESS & offset,
485                                                   data);
486         }
487
488         e1000_release_phy_80003es2lan(hw);
489
490         return ret_val;
491 }
492
493 /**
494  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
495  *  @hw: pointer to the HW structure
496  *  @offset: offset of the register to read
497  *  @data: value to write to the register
498  *
499  *  Write to the GG82563 PHY register.
500  **/
501 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
502                                                    u32 offset, u16 data)
503 {
504         s32 ret_val;
505         u32 page_select;
506         u16 temp;
507
508         ret_val = e1000_acquire_phy_80003es2lan(hw);
509         if (ret_val)
510                 return ret_val;
511
512         /* Select Configuration Page */
513         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
514                 page_select = GG82563_PHY_PAGE_SELECT;
515         } else {
516                 /*
517                  * Use Alternative Page Select register to access
518                  * registers 30 and 31
519                  */
520                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
521         }
522
523         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
524         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
525         if (ret_val) {
526                 e1000_release_phy_80003es2lan(hw);
527                 return ret_val;
528         }
529
530         if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
531                 /*
532                  * The "ready" bit in the MDIC register may be incorrectly set
533                  * before the device has completed the "Page Select" MDI
534                  * transaction.  So we wait 200us after each MDI command...
535                  */
536                 udelay(200);
537
538                 /* ...and verify the command was successful. */
539                 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
540
541                 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
542                         e1000_release_phy_80003es2lan(hw);
543                         return -E1000_ERR_PHY;
544                 }
545
546                 udelay(200);
547
548                 ret_val = e1000e_write_phy_reg_mdic(hw,
549                                                   MAX_PHY_REG_ADDRESS & offset,
550                                                   data);
551
552                 udelay(200);
553         } else {
554                 ret_val = e1000e_write_phy_reg_mdic(hw,
555                                                   MAX_PHY_REG_ADDRESS & offset,
556                                                   data);
557         }
558
559         e1000_release_phy_80003es2lan(hw);
560
561         return ret_val;
562 }
563
564 /**
565  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
566  *  @hw: pointer to the HW structure
567  *  @offset: offset of the register to read
568  *  @words: number of words to write
569  *  @data: buffer of data to write to the NVM
570  *
571  *  Write "words" of data to the ESB2 NVM.
572  **/
573 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
574                                        u16 words, u16 *data)
575 {
576         return e1000e_write_nvm_spi(hw, offset, words, data);
577 }
578
579 /**
580  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
581  *  @hw: pointer to the HW structure
582  *
583  *  Wait a specific amount of time for manageability processes to complete.
584  *  This is a function pointer entry point called by the phy module.
585  **/
586 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
587 {
588         s32 timeout = PHY_CFG_TIMEOUT;
589         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
590
591         if (hw->bus.func == 1)
592                 mask = E1000_NVM_CFG_DONE_PORT_1;
593
594         while (timeout) {
595                 if (er32(EEMNGCTL) & mask)
596                         break;
597                 usleep_range(1000, 2000);
598                 timeout--;
599         }
600         if (!timeout) {
601                 e_dbg("MNG configuration cycle has not completed.\n");
602                 return -E1000_ERR_RESET;
603         }
604
605         return 0;
606 }
607
608 /**
609  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
610  *  @hw: pointer to the HW structure
611  *
612  *  Force the speed and duplex settings onto the PHY.  This is a
613  *  function pointer entry point called by the phy module.
614  **/
615 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
616 {
617         s32 ret_val;
618         u16 phy_data;
619         bool link;
620
621         /*
622          * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
623          * forced whenever speed and duplex are forced.
624          */
625         ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
626         if (ret_val)
627                 return ret_val;
628
629         phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
630         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
631         if (ret_val)
632                 return ret_val;
633
634         e_dbg("GG82563 PSCR: %X\n", phy_data);
635
636         ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
637         if (ret_val)
638                 return ret_val;
639
640         e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
641
642         /* Reset the phy to commit changes. */
643         phy_data |= MII_CR_RESET;
644
645         ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
646         if (ret_val)
647                 return ret_val;
648
649         udelay(1);
650
651         if (hw->phy.autoneg_wait_to_complete) {
652                 e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
653
654                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
655                                                      100000, &link);
656                 if (ret_val)
657                         return ret_val;
658
659                 if (!link) {
660                         /*
661                          * We didn't get link.
662                          * Reset the DSP and cross our fingers.
663                          */
664                         ret_val = e1000e_phy_reset_dsp(hw);
665                         if (ret_val)
666                                 return ret_val;
667                 }
668
669                 /* Try once more */
670                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
671                                                      100000, &link);
672                 if (ret_val)
673                         return ret_val;
674         }
675
676         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
677         if (ret_val)
678                 return ret_val;
679
680         /*
681          * Resetting the phy means we need to verify the TX_CLK corresponds
682          * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
683          */
684         phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
685         if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
686                 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
687         else
688                 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
689
690         /*
691          * In addition, we must re-enable CRS on Tx for both half and full
692          * duplex.
693          */
694         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
695         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
696
697         return ret_val;
698 }
699
700 /**
701  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
702  *  @hw: pointer to the HW structure
703  *
704  *  Find the approximate cable length as measured by the GG82563 PHY.
705  *  This is a function pointer entry point called by the phy module.
706  **/
707 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
708 {
709         struct e1000_phy_info *phy = &hw->phy;
710         s32 ret_val = 0;
711         u16 phy_data, index;
712
713         ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
714         if (ret_val)
715                 return ret_val;
716
717         index = phy_data & GG82563_DSPD_CABLE_LENGTH;
718
719         if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
720                 return -E1000_ERR_PHY;
721
722         phy->min_cable_length = e1000_gg82563_cable_length_table[index];
723         phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
724
725         phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
726
727         return 0;
728 }
729
730 /**
731  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
732  *  @hw: pointer to the HW structure
733  *  @speed: pointer to speed buffer
734  *  @duplex: pointer to duplex buffer
735  *
736  *  Retrieve the current speed and duplex configuration.
737  **/
738 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
739                                               u16 *duplex)
740 {
741         s32 ret_val;
742
743         if (hw->phy.media_type == e1000_media_type_copper) {
744                 ret_val = e1000e_get_speed_and_duplex_copper(hw,
745                                                                     speed,
746                                                                     duplex);
747                 hw->phy.ops.cfg_on_link_up(hw);
748         } else {
749                 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
750                                                                   speed,
751                                                                   duplex);
752         }
753
754         return ret_val;
755 }
756
757 /**
758  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
759  *  @hw: pointer to the HW structure
760  *
761  *  Perform a global reset to the ESB2 controller.
762  **/
763 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
764 {
765         u32 ctrl;
766         s32 ret_val;
767         u16 kum_reg_data;
768
769         /*
770          * Prevent the PCI-E bus from sticking if there is no TLP connection
771          * on the last TLP read/write transaction when MAC is reset.
772          */
773         ret_val = e1000e_disable_pcie_master(hw);
774         if (ret_val)
775                 e_dbg("PCI-E Master disable polling has failed.\n");
776
777         e_dbg("Masking off all interrupts\n");
778         ew32(IMC, 0xffffffff);
779
780         ew32(RCTL, 0);
781         ew32(TCTL, E1000_TCTL_PSP);
782         e1e_flush();
783
784         usleep_range(10000, 20000);
785
786         ctrl = er32(CTRL);
787
788         ret_val = e1000_acquire_phy_80003es2lan(hw);
789         e_dbg("Issuing a global reset to MAC\n");
790         ew32(CTRL, ctrl | E1000_CTRL_RST);
791         e1000_release_phy_80003es2lan(hw);
792
793         /* Disable IBIST slave mode (far-end loopback) */
794         e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
795                                         &kum_reg_data);
796         kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
797         e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
798                                          kum_reg_data);
799
800         ret_val = e1000e_get_auto_rd_done(hw);
801         if (ret_val)
802                 /* We don't want to continue accessing MAC registers. */
803                 return ret_val;
804
805         /* Clear any pending interrupt events. */
806         ew32(IMC, 0xffffffff);
807         er32(ICR);
808
809         return e1000_check_alt_mac_addr_generic(hw);
810 }
811
812 /**
813  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
814  *  @hw: pointer to the HW structure
815  *
816  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
817  **/
818 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
819 {
820         struct e1000_mac_info *mac = &hw->mac;
821         u32 reg_data;
822         s32 ret_val;
823         u16 kum_reg_data;
824         u16 i;
825
826         e1000_initialize_hw_bits_80003es2lan(hw);
827
828         /* Initialize identification LED */
829         ret_val = mac->ops.id_led_init(hw);
830         if (ret_val)
831                 e_dbg("Error initializing identification LED\n");
832                 /* This is not fatal and we should not stop init due to this */
833
834         /* Disabling VLAN filtering */
835         e_dbg("Initializing the IEEE VLAN\n");
836         mac->ops.clear_vfta(hw);
837
838         /* Setup the receive address. */
839         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
840
841         /* Zero out the Multicast HASH table */
842         e_dbg("Zeroing the MTA\n");
843         for (i = 0; i < mac->mta_reg_count; i++)
844                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
845
846         /* Setup link and flow control */
847         ret_val = mac->ops.setup_link(hw);
848
849         /* Disable IBIST slave mode (far-end loopback) */
850         e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
851                                         &kum_reg_data);
852         kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
853         e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
854                                          kum_reg_data);
855
856         /* Set the transmit descriptor write-back policy */
857         reg_data = er32(TXDCTL(0));
858         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
859                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
860         ew32(TXDCTL(0), reg_data);
861
862         /* ...for both queues. */
863         reg_data = er32(TXDCTL(1));
864         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
865                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
866         ew32(TXDCTL(1), reg_data);
867
868         /* Enable retransmit on late collisions */
869         reg_data = er32(TCTL);
870         reg_data |= E1000_TCTL_RTLC;
871         ew32(TCTL, reg_data);
872
873         /* Configure Gigabit Carry Extend Padding */
874         reg_data = er32(TCTL_EXT);
875         reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
876         reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
877         ew32(TCTL_EXT, reg_data);
878
879         /* Configure Transmit Inter-Packet Gap */
880         reg_data = er32(TIPG);
881         reg_data &= ~E1000_TIPG_IPGT_MASK;
882         reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
883         ew32(TIPG, reg_data);
884
885         reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
886         reg_data &= ~0x00100000;
887         E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
888
889         /* default to true to enable the MDIC W/A */
890         hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
891
892         ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
893                                       E1000_KMRNCTRLSTA_OFFSET >>
894                                       E1000_KMRNCTRLSTA_OFFSET_SHIFT,
895                                       &i);
896         if (!ret_val) {
897                 if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
898                      E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
899                         hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
900         }
901
902         /*
903          * Clear all of the statistics registers (clear on read).  It is
904          * important that we do this after we have tried to establish link
905          * because the symbol error count will increment wildly if there
906          * is no link.
907          */
908         e1000_clear_hw_cntrs_80003es2lan(hw);
909
910         return ret_val;
911 }
912
913 /**
914  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
915  *  @hw: pointer to the HW structure
916  *
917  *  Initializes required hardware-dependent bits needed for normal operation.
918  **/
919 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
920 {
921         u32 reg;
922
923         /* Transmit Descriptor Control 0 */
924         reg = er32(TXDCTL(0));
925         reg |= (1 << 22);
926         ew32(TXDCTL(0), reg);
927
928         /* Transmit Descriptor Control 1 */
929         reg = er32(TXDCTL(1));
930         reg |= (1 << 22);
931         ew32(TXDCTL(1), reg);
932
933         /* Transmit Arbitration Control 0 */
934         reg = er32(TARC(0));
935         reg &= ~(0xF << 27); /* 30:27 */
936         if (hw->phy.media_type != e1000_media_type_copper)
937                 reg &= ~(1 << 20);
938         ew32(TARC(0), reg);
939
940         /* Transmit Arbitration Control 1 */
941         reg = er32(TARC(1));
942         if (er32(TCTL) & E1000_TCTL_MULR)
943                 reg &= ~(1 << 28);
944         else
945                 reg |= (1 << 28);
946         ew32(TARC(1), reg);
947
948         /*
949          * Disable IPv6 extension header parsing because some malformed
950          * IPv6 headers can hang the Rx.
951          */
952         reg = er32(RFCTL);
953         reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
954         ew32(RFCTL, reg);
955 }
956
957 /**
958  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
959  *  @hw: pointer to the HW structure
960  *
961  *  Setup some GG82563 PHY registers for obtaining link
962  **/
963 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
964 {
965         struct e1000_phy_info *phy = &hw->phy;
966         s32 ret_val;
967         u32 ctrl_ext;
968         u16 data;
969
970         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
971         if (ret_val)
972                 return ret_val;
973
974         data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
975         /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
976         data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
977
978         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
979         if (ret_val)
980                 return ret_val;
981
982         /*
983          * Options:
984          *   MDI/MDI-X = 0 (default)
985          *   0 - Auto for all speeds
986          *   1 - MDI mode
987          *   2 - MDI-X mode
988          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
989          */
990         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
991         if (ret_val)
992                 return ret_val;
993
994         data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
995
996         switch (phy->mdix) {
997         case 1:
998                 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
999                 break;
1000         case 2:
1001                 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
1002                 break;
1003         case 0:
1004         default:
1005                 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
1006                 break;
1007         }
1008
1009         /*
1010          * Options:
1011          *   disable_polarity_correction = 0 (default)
1012          *       Automatic Correction for Reversed Cable Polarity
1013          *   0 - Disabled
1014          *   1 - Enabled
1015          */
1016         data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1017         if (phy->disable_polarity_correction)
1018                 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1019
1020         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
1021         if (ret_val)
1022                 return ret_val;
1023
1024         /* SW Reset the PHY so all changes take effect */
1025         ret_val = e1000e_commit_phy(hw);
1026         if (ret_val) {
1027                 e_dbg("Error Resetting the PHY\n");
1028                 return ret_val;
1029         }
1030
1031         /* Bypass Rx and Tx FIFO's */
1032         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1033                                         E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
1034                                         E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
1035                                         E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
1036         if (ret_val)
1037                 return ret_val;
1038
1039         ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1040                                        E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1041                                        &data);
1042         if (ret_val)
1043                 return ret_val;
1044         data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
1045         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1046                                         E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1047                                         data);
1048         if (ret_val)
1049                 return ret_val;
1050
1051         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
1052         if (ret_val)
1053                 return ret_val;
1054
1055         data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1056         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
1057         if (ret_val)
1058                 return ret_val;
1059
1060         ctrl_ext = er32(CTRL_EXT);
1061         ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1062         ew32(CTRL_EXT, ctrl_ext);
1063
1064         ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
1065         if (ret_val)
1066                 return ret_val;
1067
1068         /*
1069          * Do not init these registers when the HW is in IAMT mode, since the
1070          * firmware will have already initialized them.  We only initialize
1071          * them if the HW is not in IAMT mode.
1072          */
1073         if (!hw->mac.ops.check_mng_mode(hw)) {
1074                 /* Enable Electrical Idle on the PHY */
1075                 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1076                 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
1077                 if (ret_val)
1078                         return ret_val;
1079
1080                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
1081                 if (ret_val)
1082                         return ret_val;
1083
1084                 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1085                 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1086                 if (ret_val)
1087                         return ret_val;
1088         }
1089
1090         /*
1091          * Workaround: Disable padding in Kumeran interface in the MAC
1092          * and in the PHY to avoid CRC errors.
1093          */
1094         ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1095         if (ret_val)
1096                 return ret_val;
1097
1098         data |= GG82563_ICR_DIS_PADDING;
1099         ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1100         if (ret_val)
1101                 return ret_val;
1102
1103         return 0;
1104 }
1105
1106 /**
1107  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1108  *  @hw: pointer to the HW structure
1109  *
1110  *  Essentially a wrapper for setting up all things "copper" related.
1111  *  This is a function pointer entry point called by the mac module.
1112  **/
1113 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1114 {
1115         u32 ctrl;
1116         s32 ret_val;
1117         u16 reg_data;
1118
1119         ctrl = er32(CTRL);
1120         ctrl |= E1000_CTRL_SLU;
1121         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1122         ew32(CTRL, ctrl);
1123
1124         /*
1125          * Set the mac to wait the maximum time between each
1126          * iteration and increase the max iterations when
1127          * polling the phy; this fixes erroneous timeouts at 10Mbps.
1128          */
1129         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1130                                                    0xFFFF);
1131         if (ret_val)
1132                 return ret_val;
1133         ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1134                                                   &reg_data);
1135         if (ret_val)
1136                 return ret_val;
1137         reg_data |= 0x3F;
1138         ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1139                                                    reg_data);
1140         if (ret_val)
1141                 return ret_val;
1142         ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1143                                       E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1144                                       &reg_data);
1145         if (ret_val)
1146                 return ret_val;
1147         reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1148         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1149                                         E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1150                                         reg_data);
1151         if (ret_val)
1152                 return ret_val;
1153
1154         ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1155         if (ret_val)
1156                 return ret_val;
1157
1158         return e1000e_setup_copper_link(hw);
1159 }
1160
1161 /**
1162  *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1163  *  @hw: pointer to the HW structure
1164  *  @duplex: current duplex setting
1165  *
1166  *  Configure the KMRN interface by applying last minute quirks for
1167  *  10/100 operation.
1168  **/
1169 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1170 {
1171         s32 ret_val = 0;
1172         u16 speed;
1173         u16 duplex;
1174
1175         if (hw->phy.media_type == e1000_media_type_copper) {
1176                 ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1177                                                              &duplex);
1178                 if (ret_val)
1179                         return ret_val;
1180
1181                 if (speed == SPEED_1000)
1182                         ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1183                 else
1184                         ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1185         }
1186
1187         return ret_val;
1188 }
1189
1190 /**
1191  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1192  *  @hw: pointer to the HW structure
1193  *  @duplex: current duplex setting
1194  *
1195  *  Configure the KMRN interface by applying last minute quirks for
1196  *  10/100 operation.
1197  **/
1198 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1199 {
1200         s32 ret_val;
1201         u32 tipg;
1202         u32 i = 0;
1203         u16 reg_data, reg_data2;
1204
1205         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1206         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1207                                        E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1208                                        reg_data);
1209         if (ret_val)
1210                 return ret_val;
1211
1212         /* Configure Transmit Inter-Packet Gap */
1213         tipg = er32(TIPG);
1214         tipg &= ~E1000_TIPG_IPGT_MASK;
1215         tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1216         ew32(TIPG, tipg);
1217
1218         do {
1219                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1220                 if (ret_val)
1221                         return ret_val;
1222
1223                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1224                 if (ret_val)
1225                         return ret_val;
1226                 i++;
1227         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1228
1229         if (duplex == HALF_DUPLEX)
1230                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1231         else
1232                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1233
1234         return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1235 }
1236
1237 /**
1238  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1239  *  @hw: pointer to the HW structure
1240  *
1241  *  Configure the KMRN interface by applying last minute quirks for
1242  *  gigabit operation.
1243  **/
1244 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1245 {
1246         s32 ret_val;
1247         u16 reg_data, reg_data2;
1248         u32 tipg;
1249         u32 i = 0;
1250
1251         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1252         ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1253                                        E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1254                                        reg_data);
1255         if (ret_val)
1256                 return ret_val;
1257
1258         /* Configure Transmit Inter-Packet Gap */
1259         tipg = er32(TIPG);
1260         tipg &= ~E1000_TIPG_IPGT_MASK;
1261         tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1262         ew32(TIPG, tipg);
1263
1264         do {
1265                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1266                 if (ret_val)
1267                         return ret_val;
1268
1269                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1270                 if (ret_val)
1271                         return ret_val;
1272                 i++;
1273         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1274
1275         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1276
1277         return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1278 }
1279
1280 /**
1281  *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1282  *  @hw: pointer to the HW structure
1283  *  @offset: register offset to be read
1284  *  @data: pointer to the read data
1285  *
1286  *  Acquire semaphore, then read the PHY register at offset
1287  *  using the kumeran interface.  The information retrieved is stored in data.
1288  *  Release the semaphore before exiting.
1289  **/
1290 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1291                                            u16 *data)
1292 {
1293         u32 kmrnctrlsta;
1294         s32 ret_val = 0;
1295
1296         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1297         if (ret_val)
1298                 return ret_val;
1299
1300         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1301                        E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1302         ew32(KMRNCTRLSTA, kmrnctrlsta);
1303         e1e_flush();
1304
1305         udelay(2);
1306
1307         kmrnctrlsta = er32(KMRNCTRLSTA);
1308         *data = (u16)kmrnctrlsta;
1309
1310         e1000_release_mac_csr_80003es2lan(hw);
1311
1312         return ret_val;
1313 }
1314
1315 /**
1316  *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1317  *  @hw: pointer to the HW structure
1318  *  @offset: register offset to write to
1319  *  @data: data to write at register offset
1320  *
1321  *  Acquire semaphore, then write the data to PHY register
1322  *  at the offset using the kumeran interface.  Release semaphore
1323  *  before exiting.
1324  **/
1325 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1326                                             u16 data)
1327 {
1328         u32 kmrnctrlsta;
1329         s32 ret_val = 0;
1330
1331         ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1332         if (ret_val)
1333                 return ret_val;
1334
1335         kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1336                        E1000_KMRNCTRLSTA_OFFSET) | data;
1337         ew32(KMRNCTRLSTA, kmrnctrlsta);
1338         e1e_flush();
1339
1340         udelay(2);
1341
1342         e1000_release_mac_csr_80003es2lan(hw);
1343
1344         return ret_val;
1345 }
1346
1347 /**
1348  *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1349  *  @hw: pointer to the HW structure
1350  **/
1351 static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1352 {
1353         s32 ret_val = 0;
1354
1355         /*
1356          * If there's an alternate MAC address place it in RAR0
1357          * so that it will override the Si installed default perm
1358          * address.
1359          */
1360         ret_val = e1000_check_alt_mac_addr_generic(hw);
1361         if (ret_val)
1362                 return ret_val;
1363
1364         return e1000_read_mac_addr_generic(hw);
1365 }
1366
1367 /**
1368  * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1369  * @hw: pointer to the HW structure
1370  *
1371  * In the case of a PHY power down to save power, or to turn off link during a
1372  * driver unload, or wake on lan is not enabled, remove the link.
1373  **/
1374 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1375 {
1376         /* If the management interface is not enabled, then power down */
1377         if (!(hw->mac.ops.check_mng_mode(hw) ||
1378               hw->phy.ops.check_reset_block(hw)))
1379                 e1000_power_down_phy_copper(hw);
1380 }
1381
1382 /**
1383  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1384  *  @hw: pointer to the HW structure
1385  *
1386  *  Clears the hardware counters by reading the counter registers.
1387  **/
1388 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1389 {
1390         e1000e_clear_hw_cntrs_base(hw);
1391
1392         er32(PRC64);
1393         er32(PRC127);
1394         er32(PRC255);
1395         er32(PRC511);
1396         er32(PRC1023);
1397         er32(PRC1522);
1398         er32(PTC64);
1399         er32(PTC127);
1400         er32(PTC255);
1401         er32(PTC511);
1402         er32(PTC1023);
1403         er32(PTC1522);
1404
1405         er32(ALGNERRC);
1406         er32(RXERRC);
1407         er32(TNCRS);
1408         er32(CEXTERR);
1409         er32(TSCTC);
1410         er32(TSCTFC);
1411
1412         er32(MGTPRC);
1413         er32(MGTPDC);
1414         er32(MGTPTC);
1415
1416         er32(IAC);
1417         er32(ICRXOC);
1418
1419         er32(ICRXPTC);
1420         er32(ICRXATC);
1421         er32(ICTXPTC);
1422         er32(ICTXATC);
1423         er32(ICTXQEC);
1424         er32(ICTXQMTC);
1425         er32(ICRXDMTC);
1426 }
1427
1428 static const struct e1000_mac_operations es2_mac_ops = {
1429         .read_mac_addr          = e1000_read_mac_addr_80003es2lan,
1430         .id_led_init            = e1000e_id_led_init_generic,
1431         .blink_led              = e1000e_blink_led_generic,
1432         .check_mng_mode         = e1000e_check_mng_mode_generic,
1433         /* check_for_link dependent on media type */
1434         .cleanup_led            = e1000e_cleanup_led_generic,
1435         .clear_hw_cntrs         = e1000_clear_hw_cntrs_80003es2lan,
1436         .get_bus_info           = e1000e_get_bus_info_pcie,
1437         .set_lan_id             = e1000_set_lan_id_multi_port_pcie,
1438         .get_link_up_info       = e1000_get_link_up_info_80003es2lan,
1439         .led_on                 = e1000e_led_on_generic,
1440         .led_off                = e1000e_led_off_generic,
1441         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1442         .write_vfta             = e1000_write_vfta_generic,
1443         .clear_vfta             = e1000_clear_vfta_generic,
1444         .reset_hw               = e1000_reset_hw_80003es2lan,
1445         .init_hw                = e1000_init_hw_80003es2lan,
1446         .setup_link             = e1000e_setup_link_generic,
1447         /* setup_physical_interface dependent on media type */
1448         .setup_led              = e1000e_setup_led_generic,
1449         .config_collision_dist  = e1000e_config_collision_dist_generic,
1450         .rar_set                = e1000e_rar_set_generic,
1451 };
1452
1453 static const struct e1000_phy_operations es2_phy_ops = {
1454         .acquire                = e1000_acquire_phy_80003es2lan,
1455         .check_polarity         = e1000_check_polarity_m88,
1456         .check_reset_block      = e1000e_check_reset_block_generic,
1457         .commit                 = e1000e_phy_sw_reset,
1458         .force_speed_duplex     = e1000_phy_force_speed_duplex_80003es2lan,
1459         .get_cfg_done           = e1000_get_cfg_done_80003es2lan,
1460         .get_cable_length       = e1000_get_cable_length_80003es2lan,
1461         .get_info               = e1000e_get_phy_info_m88,
1462         .read_reg               = e1000_read_phy_reg_gg82563_80003es2lan,
1463         .release                = e1000_release_phy_80003es2lan,
1464         .reset                  = e1000e_phy_hw_reset_generic,
1465         .set_d0_lplu_state      = NULL,
1466         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1467         .write_reg              = e1000_write_phy_reg_gg82563_80003es2lan,
1468         .cfg_on_link_up         = e1000_cfg_on_link_up_80003es2lan,
1469 };
1470
1471 static const struct e1000_nvm_operations es2_nvm_ops = {
1472         .acquire                = e1000_acquire_nvm_80003es2lan,
1473         .read                   = e1000e_read_nvm_eerd,
1474         .release                = e1000_release_nvm_80003es2lan,
1475         .reload                 = e1000e_reload_nvm_generic,
1476         .update                 = e1000e_update_nvm_checksum_generic,
1477         .valid_led_default      = e1000e_valid_led_default,
1478         .validate               = e1000e_validate_nvm_checksum_generic,
1479         .write                  = e1000_write_nvm_80003es2lan,
1480 };
1481
1482 const struct e1000_info e1000_es2_info = {
1483         .mac                    = e1000_80003es2lan,
1484         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1485                                   | FLAG_HAS_JUMBO_FRAMES
1486                                   | FLAG_HAS_WOL
1487                                   | FLAG_APME_IN_CTRL3
1488                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1489                                   | FLAG_RX_NEEDS_RESTART /* errata */
1490                                   | FLAG_TARC_SET_BIT_ZERO /* errata */
1491                                   | FLAG_APME_CHECK_PORT_B
1492                                   | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1493         .flags2                 = FLAG2_DMA_BURST,
1494         .pba                    = 38,
1495         .max_hw_frame_size      = DEFAULT_JUMBO,
1496         .get_variants           = e1000_get_variants_80003es2lan,
1497         .mac_ops                = &es2_mac_ops,
1498         .phy_ops                = &es2_phy_ops,
1499         .nvm_ops                = &es2_nvm_ops,
1500 };
1501