]> rtime.felk.cvut.cz Git - can-eth-gw-linux.git/blob - lib/rbtree.c
rbtree: adjust node color in __rb_erase_color() only when necessary
[can-eth-gw-linux.git] / lib / rbtree.c
1 /*
2   Red Black Trees
3   (C) 1999  Andrea Arcangeli <andrea@suse.de>
4   (C) 2002  David Woodhouse <dwmw2@infradead.org>
5   
6   This program is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2 of the License, or
9   (at your option) any later version.
10
11   This program is distributed in the hope that it will be useful,
12   but WITHOUT ANY WARRANTY; without even the implied warranty of
13   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14   GNU General Public License for more details.
15
16   You should have received a copy of the GNU General Public License
17   along with this program; if not, write to the Free Software
18   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
20   linux/lib/rbtree.c
21 */
22
23 #include <linux/rbtree.h>
24 #include <linux/export.h>
25
26 /*
27  * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
28  *
29  *  1) A node is either red or black
30  *  2) The root is black
31  *  3) All leaves (NULL) are black
32  *  4) Both children of every red node are black
33  *  5) Every simple path from root to leaves contains the same number
34  *     of black nodes.
35  *
36  *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
37  *  consecutive red nodes in a path and every red node is therefore followed by
38  *  a black. So if B is the number of black nodes on every simple path (as per
39  *  5), then the longest possible path due to 4 is 2B.
40  *
41  *  We shall indicate color with case, where black nodes are uppercase and red
42  *  nodes will be lowercase.
43  */
44
45 #define RB_RED          0
46 #define RB_BLACK        1
47
48 #define rb_color(r)   ((r)->__rb_parent_color & 1)
49 #define rb_is_red(r)   (!rb_color(r))
50 #define rb_is_black(r) rb_color(r)
51 #define rb_set_red(r)  do { (r)->__rb_parent_color &= ~1; } while (0)
52 #define rb_set_black(r)  do { (r)->__rb_parent_color |= 1; } while (0)
53
54 static inline void rb_set_parent(struct rb_node *rb, struct rb_node *p)
55 {
56         rb->__rb_parent_color = rb_color(rb) | (unsigned long)p;
57 }
58 static inline void rb_set_color(struct rb_node *rb, int color)
59 {
60         rb->__rb_parent_color = (rb->__rb_parent_color & ~1) | color;
61 }
62
63 static inline void rb_set_parent_color(struct rb_node *rb,
64                                        struct rb_node *p, int color)
65 {
66         rb->__rb_parent_color = (unsigned long)p | color;
67 }
68
69 static inline struct rb_node *rb_red_parent(struct rb_node *red)
70 {
71         return (struct rb_node *)red->__rb_parent_color;
72 }
73
74 static void __rb_rotate_left(struct rb_node *node, struct rb_root *root)
75 {
76         struct rb_node *right = node->rb_right;
77         struct rb_node *parent = rb_parent(node);
78
79         if ((node->rb_right = right->rb_left))
80                 rb_set_parent(right->rb_left, node);
81         right->rb_left = node;
82
83         rb_set_parent(right, parent);
84
85         if (parent)
86         {
87                 if (node == parent->rb_left)
88                         parent->rb_left = right;
89                 else
90                         parent->rb_right = right;
91         }
92         else
93                 root->rb_node = right;
94         rb_set_parent(node, right);
95 }
96
97 static void __rb_rotate_right(struct rb_node *node, struct rb_root *root)
98 {
99         struct rb_node *left = node->rb_left;
100         struct rb_node *parent = rb_parent(node);
101
102         if ((node->rb_left = left->rb_right))
103                 rb_set_parent(left->rb_right, node);
104         left->rb_right = node;
105
106         rb_set_parent(left, parent);
107
108         if (parent)
109         {
110                 if (node == parent->rb_right)
111                         parent->rb_right = left;
112                 else
113                         parent->rb_left = left;
114         }
115         else
116                 root->rb_node = left;
117         rb_set_parent(node, left);
118 }
119
120 /*
121  * Helper function for rotations:
122  * - old's parent and color get assigned to new
123  * - old gets assigned new as a parent and 'color' as a color.
124  */
125 static inline void
126 __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
127                         struct rb_root *root, int color)
128 {
129         struct rb_node *parent = rb_parent(old);
130         new->__rb_parent_color = old->__rb_parent_color;
131         rb_set_parent_color(old, new, color);
132         if (parent) {
133                 if (parent->rb_left == old)
134                         parent->rb_left = new;
135                 else
136                         parent->rb_right = new;
137         } else
138                 root->rb_node = new;
139 }
140
141 void rb_insert_color(struct rb_node *node, struct rb_root *root)
142 {
143         struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
144
145         while (true) {
146                 /*
147                  * Loop invariant: node is red
148                  *
149                  * If there is a black parent, we are done.
150                  * Otherwise, take some corrective action as we don't
151                  * want a red root or two consecutive red nodes.
152                  */
153                 if (!parent) {
154                         rb_set_parent_color(node, NULL, RB_BLACK);
155                         break;
156                 } else if (rb_is_black(parent))
157                         break;
158
159                 gparent = rb_red_parent(parent);
160
161                 if (parent == gparent->rb_left) {
162                         tmp = gparent->rb_right;
163                         if (tmp && rb_is_red(tmp)) {
164                                 /*
165                                  * Case 1 - color flips
166                                  *
167                                  *       G            g
168                                  *      / \          / \
169                                  *     p   u  -->   P   U
170                                  *    /            /
171                                  *   n            N
172                                  *
173                                  * However, since g's parent might be red, and
174                                  * 4) does not allow this, we need to recurse
175                                  * at g.
176                                  */
177                                 rb_set_parent_color(tmp, gparent, RB_BLACK);
178                                 rb_set_parent_color(parent, gparent, RB_BLACK);
179                                 node = gparent;
180                                 parent = rb_parent(node);
181                                 rb_set_parent_color(node, parent, RB_RED);
182                                 continue;
183                         }
184
185                         if (parent->rb_right == node) {
186                                 /*
187                                  * Case 2 - left rotate at parent
188                                  *
189                                  *      G             G
190                                  *     / \           / \
191                                  *    p   U  -->    n   U
192                                  *     \           /
193                                  *      n         p
194                                  *
195                                  * This still leaves us in violation of 4), the
196                                  * continuation into Case 3 will fix that.
197                                  */
198                                 parent->rb_right = tmp = node->rb_left;
199                                 node->rb_left = parent;
200                                 if (tmp)
201                                         rb_set_parent_color(tmp, parent,
202                                                             RB_BLACK);
203                                 rb_set_parent_color(parent, node, RB_RED);
204                                 parent = node;
205                         }
206
207                         /*
208                          * Case 3 - right rotate at gparent
209                          *
210                          *        G           P
211                          *       / \         / \
212                          *      p   U  -->  n   g
213                          *     /                 \
214                          *    n                   U
215                          */
216                         gparent->rb_left = tmp = parent->rb_right;
217                         parent->rb_right = gparent;
218                         if (tmp)
219                                 rb_set_parent_color(tmp, gparent, RB_BLACK);
220                         __rb_rotate_set_parents(gparent, parent, root, RB_RED);
221                         break;
222                 } else {
223                         tmp = gparent->rb_left;
224                         if (tmp && rb_is_red(tmp)) {
225                                 /* Case 1 - color flips */
226                                 rb_set_parent_color(tmp, gparent, RB_BLACK);
227                                 rb_set_parent_color(parent, gparent, RB_BLACK);
228                                 node = gparent;
229                                 parent = rb_parent(node);
230                                 rb_set_parent_color(node, parent, RB_RED);
231                                 continue;
232                         }
233
234                         if (parent->rb_left == node) {
235                                 /* Case 2 - right rotate at parent */
236                                 parent->rb_left = tmp = node->rb_right;
237                                 node->rb_right = parent;
238                                 if (tmp)
239                                         rb_set_parent_color(tmp, parent,
240                                                             RB_BLACK);
241                                 rb_set_parent_color(parent, node, RB_RED);
242                                 parent = node;
243                         }
244
245                         /* Case 3 - left rotate at gparent */
246                         gparent->rb_right = tmp = parent->rb_left;
247                         parent->rb_left = gparent;
248                         if (tmp)
249                                 rb_set_parent_color(tmp, gparent, RB_BLACK);
250                         __rb_rotate_set_parents(gparent, parent, root, RB_RED);
251                         break;
252                 }
253         }
254 }
255 EXPORT_SYMBOL(rb_insert_color);
256
257 static void __rb_erase_color(struct rb_node *node, struct rb_node *parent,
258                              struct rb_root *root)
259 {
260         struct rb_node *other;
261
262         while (true) {
263                 /*
264                  * Loop invariant: all leaf paths going through node have a
265                  * black node count that is 1 lower than other leaf paths.
266                  *
267                  * If node is red, we can flip it to black to adjust.
268                  * If node is the root, all leaf paths go through it.
269                  * Otherwise, we need to adjust the tree through color flips
270                  * and tree rotations as per one of the 4 cases below.
271                  */
272                 if (node && rb_is_red(node)) {
273                         rb_set_black(node);
274                         break;
275                 } else if (!parent) {
276                         break;
277                 } else if (parent->rb_left == node) {
278                         other = parent->rb_right;
279                         if (rb_is_red(other))
280                         {
281                                 rb_set_black(other);
282                                 rb_set_red(parent);
283                                 __rb_rotate_left(parent, root);
284                                 other = parent->rb_right;
285                         }
286                         if ((!other->rb_left || rb_is_black(other->rb_left)) &&
287                             (!other->rb_right || rb_is_black(other->rb_right)))
288                         {
289                                 rb_set_red(other);
290                                 node = parent;
291                                 parent = rb_parent(node);
292                         }
293                         else
294                         {
295                                 if (!other->rb_right || rb_is_black(other->rb_right))
296                                 {
297                                         rb_set_black(other->rb_left);
298                                         rb_set_red(other);
299                                         __rb_rotate_right(other, root);
300                                         other = parent->rb_right;
301                                 }
302                                 rb_set_color(other, rb_color(parent));
303                                 rb_set_black(parent);
304                                 rb_set_black(other->rb_right);
305                                 __rb_rotate_left(parent, root);
306                                 break;
307                         }
308                 } else {
309                         other = parent->rb_left;
310                         if (rb_is_red(other))
311                         {
312                                 rb_set_black(other);
313                                 rb_set_red(parent);
314                                 __rb_rotate_right(parent, root);
315                                 other = parent->rb_left;
316                         }
317                         if ((!other->rb_left || rb_is_black(other->rb_left)) &&
318                             (!other->rb_right || rb_is_black(other->rb_right)))
319                         {
320                                 rb_set_red(other);
321                                 node = parent;
322                                 parent = rb_parent(node);
323                         }
324                         else
325                         {
326                                 if (!other->rb_left || rb_is_black(other->rb_left))
327                                 {
328                                         rb_set_black(other->rb_right);
329                                         rb_set_red(other);
330                                         __rb_rotate_left(other, root);
331                                         other = parent->rb_left;
332                                 }
333                                 rb_set_color(other, rb_color(parent));
334                                 rb_set_black(parent);
335                                 rb_set_black(other->rb_left);
336                                 __rb_rotate_right(parent, root);
337                                 break;
338                         }
339                 }
340         }
341 }
342
343 void rb_erase(struct rb_node *node, struct rb_root *root)
344 {
345         struct rb_node *child, *parent;
346         int color;
347
348         if (!node->rb_left)
349                 child = node->rb_right;
350         else if (!node->rb_right)
351                 child = node->rb_left;
352         else
353         {
354                 struct rb_node *old = node, *left;
355
356                 node = node->rb_right;
357                 while ((left = node->rb_left) != NULL)
358                         node = left;
359
360                 if (rb_parent(old)) {
361                         if (rb_parent(old)->rb_left == old)
362                                 rb_parent(old)->rb_left = node;
363                         else
364                                 rb_parent(old)->rb_right = node;
365                 } else
366                         root->rb_node = node;
367
368                 child = node->rb_right;
369                 parent = rb_parent(node);
370                 color = rb_color(node);
371
372                 if (parent == old) {
373                         parent = node;
374                 } else {
375                         if (child)
376                                 rb_set_parent(child, parent);
377                         parent->rb_left = child;
378
379                         node->rb_right = old->rb_right;
380                         rb_set_parent(old->rb_right, node);
381                 }
382
383                 node->__rb_parent_color = old->__rb_parent_color;
384                 node->rb_left = old->rb_left;
385                 rb_set_parent(old->rb_left, node);
386
387                 goto color;
388         }
389
390         parent = rb_parent(node);
391         color = rb_color(node);
392
393         if (child)
394                 rb_set_parent(child, parent);
395         if (parent)
396         {
397                 if (parent->rb_left == node)
398                         parent->rb_left = child;
399                 else
400                         parent->rb_right = child;
401         }
402         else
403                 root->rb_node = child;
404
405  color:
406         if (color == RB_BLACK)
407                 __rb_erase_color(child, parent, root);
408 }
409 EXPORT_SYMBOL(rb_erase);
410
411 static void rb_augment_path(struct rb_node *node, rb_augment_f func, void *data)
412 {
413         struct rb_node *parent;
414
415 up:
416         func(node, data);
417         parent = rb_parent(node);
418         if (!parent)
419                 return;
420
421         if (node == parent->rb_left && parent->rb_right)
422                 func(parent->rb_right, data);
423         else if (parent->rb_left)
424                 func(parent->rb_left, data);
425
426         node = parent;
427         goto up;
428 }
429
430 /*
431  * after inserting @node into the tree, update the tree to account for
432  * both the new entry and any damage done by rebalance
433  */
434 void rb_augment_insert(struct rb_node *node, rb_augment_f func, void *data)
435 {
436         if (node->rb_left)
437                 node = node->rb_left;
438         else if (node->rb_right)
439                 node = node->rb_right;
440
441         rb_augment_path(node, func, data);
442 }
443 EXPORT_SYMBOL(rb_augment_insert);
444
445 /*
446  * before removing the node, find the deepest node on the rebalance path
447  * that will still be there after @node gets removed
448  */
449 struct rb_node *rb_augment_erase_begin(struct rb_node *node)
450 {
451         struct rb_node *deepest;
452
453         if (!node->rb_right && !node->rb_left)
454                 deepest = rb_parent(node);
455         else if (!node->rb_right)
456                 deepest = node->rb_left;
457         else if (!node->rb_left)
458                 deepest = node->rb_right;
459         else {
460                 deepest = rb_next(node);
461                 if (deepest->rb_right)
462                         deepest = deepest->rb_right;
463                 else if (rb_parent(deepest) != node)
464                         deepest = rb_parent(deepest);
465         }
466
467         return deepest;
468 }
469 EXPORT_SYMBOL(rb_augment_erase_begin);
470
471 /*
472  * after removal, update the tree to account for the removed entry
473  * and any rebalance damage.
474  */
475 void rb_augment_erase_end(struct rb_node *node, rb_augment_f func, void *data)
476 {
477         if (node)
478                 rb_augment_path(node, func, data);
479 }
480 EXPORT_SYMBOL(rb_augment_erase_end);
481
482 /*
483  * This function returns the first node (in sort order) of the tree.
484  */
485 struct rb_node *rb_first(const struct rb_root *root)
486 {
487         struct rb_node  *n;
488
489         n = root->rb_node;
490         if (!n)
491                 return NULL;
492         while (n->rb_left)
493                 n = n->rb_left;
494         return n;
495 }
496 EXPORT_SYMBOL(rb_first);
497
498 struct rb_node *rb_last(const struct rb_root *root)
499 {
500         struct rb_node  *n;
501
502         n = root->rb_node;
503         if (!n)
504                 return NULL;
505         while (n->rb_right)
506                 n = n->rb_right;
507         return n;
508 }
509 EXPORT_SYMBOL(rb_last);
510
511 struct rb_node *rb_next(const struct rb_node *node)
512 {
513         struct rb_node *parent;
514
515         if (RB_EMPTY_NODE(node))
516                 return NULL;
517
518         /* If we have a right-hand child, go down and then left as far
519            as we can. */
520         if (node->rb_right) {
521                 node = node->rb_right; 
522                 while (node->rb_left)
523                         node=node->rb_left;
524                 return (struct rb_node *)node;
525         }
526
527         /* No right-hand children.  Everything down and left is
528            smaller than us, so any 'next' node must be in the general
529            direction of our parent. Go up the tree; any time the
530            ancestor is a right-hand child of its parent, keep going
531            up. First time it's a left-hand child of its parent, said
532            parent is our 'next' node. */
533         while ((parent = rb_parent(node)) && node == parent->rb_right)
534                 node = parent;
535
536         return parent;
537 }
538 EXPORT_SYMBOL(rb_next);
539
540 struct rb_node *rb_prev(const struct rb_node *node)
541 {
542         struct rb_node *parent;
543
544         if (RB_EMPTY_NODE(node))
545                 return NULL;
546
547         /* If we have a left-hand child, go down and then right as far
548            as we can. */
549         if (node->rb_left) {
550                 node = node->rb_left; 
551                 while (node->rb_right)
552                         node=node->rb_right;
553                 return (struct rb_node *)node;
554         }
555
556         /* No left-hand children. Go up till we find an ancestor which
557            is a right-hand child of its parent */
558         while ((parent = rb_parent(node)) && node == parent->rb_left)
559                 node = parent;
560
561         return parent;
562 }
563 EXPORT_SYMBOL(rb_prev);
564
565 void rb_replace_node(struct rb_node *victim, struct rb_node *new,
566                      struct rb_root *root)
567 {
568         struct rb_node *parent = rb_parent(victim);
569
570         /* Set the surrounding nodes to point to the replacement */
571         if (parent) {
572                 if (victim == parent->rb_left)
573                         parent->rb_left = new;
574                 else
575                         parent->rb_right = new;
576         } else {
577                 root->rb_node = new;
578         }
579         if (victim->rb_left)
580                 rb_set_parent(victim->rb_left, new);
581         if (victim->rb_right)
582                 rb_set_parent(victim->rb_right, new);
583
584         /* Copy the pointers/colour from the victim to the replacement */
585         *new = *victim;
586 }
587 EXPORT_SYMBOL(rb_replace_node);