]> rtime.felk.cvut.cz Git - can-eth-gw-linux.git/blob - fs/btrfs/super.c
Fix bug
[can-eth-gw-linux.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/btrfs.h>
61
62 static const struct super_operations btrfs_super_ops;
63 static struct file_system_type btrfs_fs_type;
64
65 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
66                                       char nbuf[16])
67 {
68         char *errstr = NULL;
69
70         switch (errno) {
71         case -EIO:
72                 errstr = "IO failure";
73                 break;
74         case -ENOMEM:
75                 errstr = "Out of memory";
76                 break;
77         case -EROFS:
78                 errstr = "Readonly filesystem";
79                 break;
80         case -EEXIST:
81                 errstr = "Object already exists";
82                 break;
83         default:
84                 if (nbuf) {
85                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
86                                 errstr = nbuf;
87                 }
88                 break;
89         }
90
91         return errstr;
92 }
93
94 static void __save_error_info(struct btrfs_fs_info *fs_info)
95 {
96         /*
97          * today we only save the error info into ram.  Long term we'll
98          * also send it down to the disk
99          */
100         fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
101 }
102
103 static void save_error_info(struct btrfs_fs_info *fs_info)
104 {
105         __save_error_info(fs_info);
106 }
107
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 {
111         struct super_block *sb = fs_info->sb;
112
113         if (sb->s_flags & MS_RDONLY)
114                 return;
115
116         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117                 sb->s_flags |= MS_RDONLY;
118                 printk(KERN_INFO "btrfs is forced readonly\n");
119                 __btrfs_scrub_cancel(fs_info);
120 //              WARN_ON(1);
121         }
122 }
123
124 #ifdef CONFIG_PRINTK
125 /*
126  * __btrfs_std_error decodes expected errors from the caller and
127  * invokes the approciate error response.
128  */
129 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
130                        unsigned int line, int errno, const char *fmt, ...)
131 {
132         struct super_block *sb = fs_info->sb;
133         char nbuf[16];
134         const char *errstr;
135         va_list args;
136         va_start(args, fmt);
137
138         /*
139          * Special case: if the error is EROFS, and we're already
140          * under MS_RDONLY, then it is safe here.
141          */
142         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
143                 return;
144
145         errstr = btrfs_decode_error(fs_info, errno, nbuf);
146         if (fmt) {
147                 struct va_format vaf = {
148                         .fmt = fmt,
149                         .va = &args,
150                 };
151
152                 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
153                         sb->s_id, function, line, errstr, &vaf);
154         } else {
155                 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
156                         sb->s_id, function, line, errstr);
157         }
158
159         /* Don't go through full error handling during mount */
160         if (sb->s_flags & MS_BORN) {
161                 save_error_info(fs_info);
162                 btrfs_handle_error(fs_info);
163         }
164         va_end(args);
165 }
166
167 static const char * const logtypes[] = {
168         "emergency",
169         "alert",
170         "critical",
171         "error",
172         "warning",
173         "notice",
174         "info",
175         "debug",
176 };
177
178 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
179 {
180         struct super_block *sb = fs_info->sb;
181         char lvl[4];
182         struct va_format vaf;
183         va_list args;
184         const char *type = logtypes[4];
185         int kern_level;
186
187         va_start(args, fmt);
188
189         kern_level = printk_get_level(fmt);
190         if (kern_level) {
191                 size_t size = printk_skip_level(fmt) - fmt;
192                 memcpy(lvl, fmt,  size);
193                 lvl[size] = '\0';
194                 fmt += size;
195                 type = logtypes[kern_level - '0'];
196         } else
197                 *lvl = '\0';
198
199         vaf.fmt = fmt;
200         vaf.va = &args;
201
202         printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
203
204         va_end(args);
205 }
206
207 #else
208
209 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
210                        unsigned int line, int errno, const char *fmt, ...)
211 {
212         struct super_block *sb = fs_info->sb;
213
214         /*
215          * Special case: if the error is EROFS, and we're already
216          * under MS_RDONLY, then it is safe here.
217          */
218         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
219                 return;
220
221         /* Don't go through full error handling during mount */
222         if (sb->s_flags & MS_BORN) {
223                 save_error_info(fs_info);
224                 btrfs_handle_error(fs_info);
225         }
226 }
227 #endif
228
229 /*
230  * We only mark the transaction aborted and then set the file system read-only.
231  * This will prevent new transactions from starting or trying to join this
232  * one.
233  *
234  * This means that error recovery at the call site is limited to freeing
235  * any local memory allocations and passing the error code up without
236  * further cleanup. The transaction should complete as it normally would
237  * in the call path but will return -EIO.
238  *
239  * We'll complete the cleanup in btrfs_end_transaction and
240  * btrfs_commit_transaction.
241  */
242 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
243                                struct btrfs_root *root, const char *function,
244                                unsigned int line, int errno)
245 {
246         WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted\n");
247         trans->aborted = errno;
248         /* Nothing used. The other threads that have joined this
249          * transaction may be able to continue. */
250         if (!trans->blocks_used) {
251                 char nbuf[16];
252                 const char *errstr;
253
254                 errstr = btrfs_decode_error(root->fs_info, errno, nbuf);
255                 btrfs_printk(root->fs_info,
256                              "%s:%d: Aborting unused transaction(%s).\n",
257                              function, line, errstr);
258                 return;
259         }
260         trans->transaction->aborted = errno;
261         __btrfs_std_error(root->fs_info, function, line, errno, NULL);
262 }
263 /*
264  * __btrfs_panic decodes unexpected, fatal errors from the caller,
265  * issues an alert, and either panics or BUGs, depending on mount options.
266  */
267 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
268                    unsigned int line, int errno, const char *fmt, ...)
269 {
270         char nbuf[16];
271         char *s_id = "<unknown>";
272         const char *errstr;
273         struct va_format vaf = { .fmt = fmt };
274         va_list args;
275
276         if (fs_info)
277                 s_id = fs_info->sb->s_id;
278
279         va_start(args, fmt);
280         vaf.va = &args;
281
282         errstr = btrfs_decode_error(fs_info, errno, nbuf);
283         if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
284                 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
285                         s_id, function, line, &vaf, errstr);
286
287         printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
288                s_id, function, line, &vaf, errstr);
289         va_end(args);
290         /* Caller calls BUG() */
291 }
292
293 static void btrfs_put_super(struct super_block *sb)
294 {
295         (void)close_ctree(btrfs_sb(sb)->tree_root);
296         /* FIXME: need to fix VFS to return error? */
297         /* AV: return it _where_?  ->put_super() can be triggered by any number
298          * of async events, up to and including delivery of SIGKILL to the
299          * last process that kept it busy.  Or segfault in the aforementioned
300          * process...  Whom would you report that to?
301          */
302 }
303
304 enum {
305         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
306         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
307         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
308         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
309         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
310         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
311         Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
312         Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
313         Opt_check_integrity, Opt_check_integrity_including_extent_data,
314         Opt_check_integrity_print_mask, Opt_fatal_errors,
315         Opt_err,
316 };
317
318 static match_table_t tokens = {
319         {Opt_degraded, "degraded"},
320         {Opt_subvol, "subvol=%s"},
321         {Opt_subvolid, "subvolid=%d"},
322         {Opt_device, "device=%s"},
323         {Opt_nodatasum, "nodatasum"},
324         {Opt_nodatacow, "nodatacow"},
325         {Opt_nobarrier, "nobarrier"},
326         {Opt_max_inline, "max_inline=%s"},
327         {Opt_alloc_start, "alloc_start=%s"},
328         {Opt_thread_pool, "thread_pool=%d"},
329         {Opt_compress, "compress"},
330         {Opt_compress_type, "compress=%s"},
331         {Opt_compress_force, "compress-force"},
332         {Opt_compress_force_type, "compress-force=%s"},
333         {Opt_ssd, "ssd"},
334         {Opt_ssd_spread, "ssd_spread"},
335         {Opt_nossd, "nossd"},
336         {Opt_noacl, "noacl"},
337         {Opt_notreelog, "notreelog"},
338         {Opt_flushoncommit, "flushoncommit"},
339         {Opt_ratio, "metadata_ratio=%d"},
340         {Opt_discard, "discard"},
341         {Opt_space_cache, "space_cache"},
342         {Opt_clear_cache, "clear_cache"},
343         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
344         {Opt_enospc_debug, "enospc_debug"},
345         {Opt_subvolrootid, "subvolrootid=%d"},
346         {Opt_defrag, "autodefrag"},
347         {Opt_inode_cache, "inode_cache"},
348         {Opt_no_space_cache, "nospace_cache"},
349         {Opt_recovery, "recovery"},
350         {Opt_skip_balance, "skip_balance"},
351         {Opt_check_integrity, "check_int"},
352         {Opt_check_integrity_including_extent_data, "check_int_data"},
353         {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
354         {Opt_fatal_errors, "fatal_errors=%s"},
355         {Opt_err, NULL},
356 };
357
358 /*
359  * Regular mount options parser.  Everything that is needed only when
360  * reading in a new superblock is parsed here.
361  * XXX JDM: This needs to be cleaned up for remount.
362  */
363 int btrfs_parse_options(struct btrfs_root *root, char *options)
364 {
365         struct btrfs_fs_info *info = root->fs_info;
366         substring_t args[MAX_OPT_ARGS];
367         char *p, *num, *orig = NULL;
368         u64 cache_gen;
369         int intarg;
370         int ret = 0;
371         char *compress_type;
372         bool compress_force = false;
373
374         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
375         if (cache_gen)
376                 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
377
378         if (!options)
379                 goto out;
380
381         /*
382          * strsep changes the string, duplicate it because parse_options
383          * gets called twice
384          */
385         options = kstrdup(options, GFP_NOFS);
386         if (!options)
387                 return -ENOMEM;
388
389         orig = options;
390
391         while ((p = strsep(&options, ",")) != NULL) {
392                 int token;
393                 if (!*p)
394                         continue;
395
396                 token = match_token(p, tokens, args);
397                 switch (token) {
398                 case Opt_degraded:
399                         printk(KERN_INFO "btrfs: allowing degraded mounts\n");
400                         btrfs_set_opt(info->mount_opt, DEGRADED);
401                         break;
402                 case Opt_subvol:
403                 case Opt_subvolid:
404                 case Opt_subvolrootid:
405                 case Opt_device:
406                         /*
407                          * These are parsed by btrfs_parse_early_options
408                          * and can be happily ignored here.
409                          */
410                         break;
411                 case Opt_nodatasum:
412                         printk(KERN_INFO "btrfs: setting nodatasum\n");
413                         btrfs_set_opt(info->mount_opt, NODATASUM);
414                         break;
415                 case Opt_nodatacow:
416                         if (!btrfs_test_opt(root, COMPRESS) ||
417                                 !btrfs_test_opt(root, FORCE_COMPRESS)) {
418                                         printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n");
419                         } else {
420                                 printk(KERN_INFO "btrfs: setting nodatacow\n");
421                         }
422                         info->compress_type = BTRFS_COMPRESS_NONE;
423                         btrfs_clear_opt(info->mount_opt, COMPRESS);
424                         btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
425                         btrfs_set_opt(info->mount_opt, NODATACOW);
426                         btrfs_set_opt(info->mount_opt, NODATASUM);
427                         break;
428                 case Opt_compress_force:
429                 case Opt_compress_force_type:
430                         compress_force = true;
431                 case Opt_compress:
432                 case Opt_compress_type:
433                         if (token == Opt_compress ||
434                             token == Opt_compress_force ||
435                             strcmp(args[0].from, "zlib") == 0) {
436                                 compress_type = "zlib";
437                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
438                                 btrfs_set_opt(info->mount_opt, COMPRESS);
439                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
440                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
441                         } else if (strcmp(args[0].from, "lzo") == 0) {
442                                 compress_type = "lzo";
443                                 info->compress_type = BTRFS_COMPRESS_LZO;
444                                 btrfs_set_opt(info->mount_opt, COMPRESS);
445                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
446                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
447                                 btrfs_set_fs_incompat(info, COMPRESS_LZO);
448                         } else if (strncmp(args[0].from, "no", 2) == 0) {
449                                 compress_type = "no";
450                                 info->compress_type = BTRFS_COMPRESS_NONE;
451                                 btrfs_clear_opt(info->mount_opt, COMPRESS);
452                                 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
453                                 compress_force = false;
454                         } else {
455                                 ret = -EINVAL;
456                                 goto out;
457                         }
458
459                         if (compress_force) {
460                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
461                                 pr_info("btrfs: force %s compression\n",
462                                         compress_type);
463                         } else
464                                 pr_info("btrfs: use %s compression\n",
465                                         compress_type);
466                         break;
467                 case Opt_ssd:
468                         printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
469                         btrfs_set_opt(info->mount_opt, SSD);
470                         break;
471                 case Opt_ssd_spread:
472                         printk(KERN_INFO "btrfs: use spread ssd "
473                                "allocation scheme\n");
474                         btrfs_set_opt(info->mount_opt, SSD);
475                         btrfs_set_opt(info->mount_opt, SSD_SPREAD);
476                         break;
477                 case Opt_nossd:
478                         printk(KERN_INFO "btrfs: not using ssd allocation "
479                                "scheme\n");
480                         btrfs_set_opt(info->mount_opt, NOSSD);
481                         btrfs_clear_opt(info->mount_opt, SSD);
482                         btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
483                         break;
484                 case Opt_nobarrier:
485                         printk(KERN_INFO "btrfs: turning off barriers\n");
486                         btrfs_set_opt(info->mount_opt, NOBARRIER);
487                         break;
488                 case Opt_thread_pool:
489                         intarg = 0;
490                         match_int(&args[0], &intarg);
491                         if (intarg)
492                                 info->thread_pool_size = intarg;
493                         break;
494                 case Opt_max_inline:
495                         num = match_strdup(&args[0]);
496                         if (num) {
497                                 info->max_inline = memparse(num, NULL);
498                                 kfree(num);
499
500                                 if (info->max_inline) {
501                                         info->max_inline = max_t(u64,
502                                                 info->max_inline,
503                                                 root->sectorsize);
504                                 }
505                                 printk(KERN_INFO "btrfs: max_inline at %llu\n",
506                                         (unsigned long long)info->max_inline);
507                         }
508                         break;
509                 case Opt_alloc_start:
510                         num = match_strdup(&args[0]);
511                         if (num) {
512                                 info->alloc_start = memparse(num, NULL);
513                                 kfree(num);
514                                 printk(KERN_INFO
515                                         "btrfs: allocations start at %llu\n",
516                                         (unsigned long long)info->alloc_start);
517                         }
518                         break;
519                 case Opt_noacl:
520                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
521                         break;
522                 case Opt_notreelog:
523                         printk(KERN_INFO "btrfs: disabling tree log\n");
524                         btrfs_set_opt(info->mount_opt, NOTREELOG);
525                         break;
526                 case Opt_flushoncommit:
527                         printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
528                         btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
529                         break;
530                 case Opt_ratio:
531                         intarg = 0;
532                         match_int(&args[0], &intarg);
533                         if (intarg) {
534                                 info->metadata_ratio = intarg;
535                                 printk(KERN_INFO "btrfs: metadata ratio %d\n",
536                                        info->metadata_ratio);
537                         }
538                         break;
539                 case Opt_discard:
540                         btrfs_set_opt(info->mount_opt, DISCARD);
541                         break;
542                 case Opt_space_cache:
543                         btrfs_set_opt(info->mount_opt, SPACE_CACHE);
544                         break;
545                 case Opt_no_space_cache:
546                         printk(KERN_INFO "btrfs: disabling disk space caching\n");
547                         btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
548                         break;
549                 case Opt_inode_cache:
550                         printk(KERN_INFO "btrfs: enabling inode map caching\n");
551                         btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
552                         break;
553                 case Opt_clear_cache:
554                         printk(KERN_INFO "btrfs: force clearing of disk cache\n");
555                         btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
556                         break;
557                 case Opt_user_subvol_rm_allowed:
558                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
559                         break;
560                 case Opt_enospc_debug:
561                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
562                         break;
563                 case Opt_defrag:
564                         printk(KERN_INFO "btrfs: enabling auto defrag\n");
565                         btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
566                         break;
567                 case Opt_recovery:
568                         printk(KERN_INFO "btrfs: enabling auto recovery\n");
569                         btrfs_set_opt(info->mount_opt, RECOVERY);
570                         break;
571                 case Opt_skip_balance:
572                         btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
573                         break;
574 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
575                 case Opt_check_integrity_including_extent_data:
576                         printk(KERN_INFO "btrfs: enabling check integrity"
577                                " including extent data\n");
578                         btrfs_set_opt(info->mount_opt,
579                                       CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
580                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
581                         break;
582                 case Opt_check_integrity:
583                         printk(KERN_INFO "btrfs: enabling check integrity\n");
584                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
585                         break;
586                 case Opt_check_integrity_print_mask:
587                         intarg = 0;
588                         match_int(&args[0], &intarg);
589                         if (intarg) {
590                                 info->check_integrity_print_mask = intarg;
591                                 printk(KERN_INFO "btrfs:"
592                                        " check_integrity_print_mask 0x%x\n",
593                                        info->check_integrity_print_mask);
594                         }
595                         break;
596 #else
597                 case Opt_check_integrity_including_extent_data:
598                 case Opt_check_integrity:
599                 case Opt_check_integrity_print_mask:
600                         printk(KERN_ERR "btrfs: support for check_integrity*"
601                                " not compiled in!\n");
602                         ret = -EINVAL;
603                         goto out;
604 #endif
605                 case Opt_fatal_errors:
606                         if (strcmp(args[0].from, "panic") == 0)
607                                 btrfs_set_opt(info->mount_opt,
608                                               PANIC_ON_FATAL_ERROR);
609                         else if (strcmp(args[0].from, "bug") == 0)
610                                 btrfs_clear_opt(info->mount_opt,
611                                               PANIC_ON_FATAL_ERROR);
612                         else {
613                                 ret = -EINVAL;
614                                 goto out;
615                         }
616                         break;
617                 case Opt_err:
618                         printk(KERN_INFO "btrfs: unrecognized mount option "
619                                "'%s'\n", p);
620                         ret = -EINVAL;
621                         goto out;
622                 default:
623                         break;
624                 }
625         }
626 out:
627         if (!ret && btrfs_test_opt(root, SPACE_CACHE))
628                 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
629         kfree(orig);
630         return ret;
631 }
632
633 /*
634  * Parse mount options that are required early in the mount process.
635  *
636  * All other options will be parsed on much later in the mount process and
637  * only when we need to allocate a new super block.
638  */
639 static int btrfs_parse_early_options(const char *options, fmode_t flags,
640                 void *holder, char **subvol_name, u64 *subvol_objectid,
641                 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
642 {
643         substring_t args[MAX_OPT_ARGS];
644         char *device_name, *opts, *orig, *p;
645         int error = 0;
646         int intarg;
647
648         if (!options)
649                 return 0;
650
651         /*
652          * strsep changes the string, duplicate it because parse_options
653          * gets called twice
654          */
655         opts = kstrdup(options, GFP_KERNEL);
656         if (!opts)
657                 return -ENOMEM;
658         orig = opts;
659
660         while ((p = strsep(&opts, ",")) != NULL) {
661                 int token;
662                 if (!*p)
663                         continue;
664
665                 token = match_token(p, tokens, args);
666                 switch (token) {
667                 case Opt_subvol:
668                         kfree(*subvol_name);
669                         *subvol_name = match_strdup(&args[0]);
670                         break;
671                 case Opt_subvolid:
672                         intarg = 0;
673                         error = match_int(&args[0], &intarg);
674                         if (!error) {
675                                 /* we want the original fs_tree */
676                                 if (!intarg)
677                                         *subvol_objectid =
678                                                 BTRFS_FS_TREE_OBJECTID;
679                                 else
680                                         *subvol_objectid = intarg;
681                         }
682                         break;
683                 case Opt_subvolrootid:
684                         intarg = 0;
685                         error = match_int(&args[0], &intarg);
686                         if (!error) {
687                                 /* we want the original fs_tree */
688                                 if (!intarg)
689                                         *subvol_rootid =
690                                                 BTRFS_FS_TREE_OBJECTID;
691                                 else
692                                         *subvol_rootid = intarg;
693                         }
694                         break;
695                 case Opt_device:
696                         device_name = match_strdup(&args[0]);
697                         if (!device_name) {
698                                 error = -ENOMEM;
699                                 goto out;
700                         }
701                         error = btrfs_scan_one_device(device_name,
702                                         flags, holder, fs_devices);
703                         kfree(device_name);
704                         if (error)
705                                 goto out;
706                         break;
707                 default:
708                         break;
709                 }
710         }
711
712 out:
713         kfree(orig);
714         return error;
715 }
716
717 static struct dentry *get_default_root(struct super_block *sb,
718                                        u64 subvol_objectid)
719 {
720         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
721         struct btrfs_root *root = fs_info->tree_root;
722         struct btrfs_root *new_root;
723         struct btrfs_dir_item *di;
724         struct btrfs_path *path;
725         struct btrfs_key location;
726         struct inode *inode;
727         u64 dir_id;
728         int new = 0;
729
730         /*
731          * We have a specific subvol we want to mount, just setup location and
732          * go look up the root.
733          */
734         if (subvol_objectid) {
735                 location.objectid = subvol_objectid;
736                 location.type = BTRFS_ROOT_ITEM_KEY;
737                 location.offset = (u64)-1;
738                 goto find_root;
739         }
740
741         path = btrfs_alloc_path();
742         if (!path)
743                 return ERR_PTR(-ENOMEM);
744         path->leave_spinning = 1;
745
746         /*
747          * Find the "default" dir item which points to the root item that we
748          * will mount by default if we haven't been given a specific subvolume
749          * to mount.
750          */
751         dir_id = btrfs_super_root_dir(fs_info->super_copy);
752         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
753         if (IS_ERR(di)) {
754                 btrfs_free_path(path);
755                 return ERR_CAST(di);
756         }
757         if (!di) {
758                 /*
759                  * Ok the default dir item isn't there.  This is weird since
760                  * it's always been there, but don't freak out, just try and
761                  * mount to root most subvolume.
762                  */
763                 btrfs_free_path(path);
764                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
765                 new_root = fs_info->fs_root;
766                 goto setup_root;
767         }
768
769         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
770         btrfs_free_path(path);
771
772 find_root:
773         new_root = btrfs_read_fs_root_no_name(fs_info, &location);
774         if (IS_ERR(new_root))
775                 return ERR_CAST(new_root);
776
777         if (btrfs_root_refs(&new_root->root_item) == 0)
778                 return ERR_PTR(-ENOENT);
779
780         dir_id = btrfs_root_dirid(&new_root->root_item);
781 setup_root:
782         location.objectid = dir_id;
783         location.type = BTRFS_INODE_ITEM_KEY;
784         location.offset = 0;
785
786         inode = btrfs_iget(sb, &location, new_root, &new);
787         if (IS_ERR(inode))
788                 return ERR_CAST(inode);
789
790         /*
791          * If we're just mounting the root most subvol put the inode and return
792          * a reference to the dentry.  We will have already gotten a reference
793          * to the inode in btrfs_fill_super so we're good to go.
794          */
795         if (!new && sb->s_root->d_inode == inode) {
796                 iput(inode);
797                 return dget(sb->s_root);
798         }
799
800         return d_obtain_alias(inode);
801 }
802
803 static int btrfs_fill_super(struct super_block *sb,
804                             struct btrfs_fs_devices *fs_devices,
805                             void *data, int silent)
806 {
807         struct inode *inode;
808         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
809         struct btrfs_key key;
810         int err;
811
812         sb->s_maxbytes = MAX_LFS_FILESIZE;
813         sb->s_magic = BTRFS_SUPER_MAGIC;
814         sb->s_op = &btrfs_super_ops;
815         sb->s_d_op = &btrfs_dentry_operations;
816         sb->s_export_op = &btrfs_export_ops;
817         sb->s_xattr = btrfs_xattr_handlers;
818         sb->s_time_gran = 1;
819 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
820         sb->s_flags |= MS_POSIXACL;
821 #endif
822         sb->s_flags |= MS_I_VERSION;
823         err = open_ctree(sb, fs_devices, (char *)data);
824         if (err) {
825                 printk("btrfs: open_ctree failed\n");
826                 return err;
827         }
828
829         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
830         key.type = BTRFS_INODE_ITEM_KEY;
831         key.offset = 0;
832         inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
833         if (IS_ERR(inode)) {
834                 err = PTR_ERR(inode);
835                 goto fail_close;
836         }
837
838         sb->s_root = d_make_root(inode);
839         if (!sb->s_root) {
840                 err = -ENOMEM;
841                 goto fail_close;
842         }
843
844         save_mount_options(sb, data);
845         cleancache_init_fs(sb);
846         sb->s_flags |= MS_ACTIVE;
847         return 0;
848
849 fail_close:
850         close_ctree(fs_info->tree_root);
851         return err;
852 }
853
854 int btrfs_sync_fs(struct super_block *sb, int wait)
855 {
856         struct btrfs_trans_handle *trans;
857         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
858         struct btrfs_root *root = fs_info->tree_root;
859
860         trace_btrfs_sync_fs(wait);
861
862         if (!wait) {
863                 filemap_flush(fs_info->btree_inode->i_mapping);
864                 return 0;
865         }
866
867         btrfs_wait_ordered_extents(root, 0);
868
869         trans = btrfs_attach_transaction(root);
870         if (IS_ERR(trans)) {
871                 /* no transaction, don't bother */
872                 if (PTR_ERR(trans) == -ENOENT)
873                         return 0;
874                 return PTR_ERR(trans);
875         }
876         return btrfs_commit_transaction(trans, root);
877 }
878
879 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
880 {
881         struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
882         struct btrfs_root *root = info->tree_root;
883         char *compress_type;
884
885         if (btrfs_test_opt(root, DEGRADED))
886                 seq_puts(seq, ",degraded");
887         if (btrfs_test_opt(root, NODATASUM))
888                 seq_puts(seq, ",nodatasum");
889         if (btrfs_test_opt(root, NODATACOW))
890                 seq_puts(seq, ",nodatacow");
891         if (btrfs_test_opt(root, NOBARRIER))
892                 seq_puts(seq, ",nobarrier");
893         if (info->max_inline != 8192 * 1024)
894                 seq_printf(seq, ",max_inline=%llu",
895                            (unsigned long long)info->max_inline);
896         if (info->alloc_start != 0)
897                 seq_printf(seq, ",alloc_start=%llu",
898                            (unsigned long long)info->alloc_start);
899         if (info->thread_pool_size !=  min_t(unsigned long,
900                                              num_online_cpus() + 2, 8))
901                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
902         if (btrfs_test_opt(root, COMPRESS)) {
903                 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
904                         compress_type = "zlib";
905                 else
906                         compress_type = "lzo";
907                 if (btrfs_test_opt(root, FORCE_COMPRESS))
908                         seq_printf(seq, ",compress-force=%s", compress_type);
909                 else
910                         seq_printf(seq, ",compress=%s", compress_type);
911         }
912         if (btrfs_test_opt(root, NOSSD))
913                 seq_puts(seq, ",nossd");
914         if (btrfs_test_opt(root, SSD_SPREAD))
915                 seq_puts(seq, ",ssd_spread");
916         else if (btrfs_test_opt(root, SSD))
917                 seq_puts(seq, ",ssd");
918         if (btrfs_test_opt(root, NOTREELOG))
919                 seq_puts(seq, ",notreelog");
920         if (btrfs_test_opt(root, FLUSHONCOMMIT))
921                 seq_puts(seq, ",flushoncommit");
922         if (btrfs_test_opt(root, DISCARD))
923                 seq_puts(seq, ",discard");
924         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
925                 seq_puts(seq, ",noacl");
926         if (btrfs_test_opt(root, SPACE_CACHE))
927                 seq_puts(seq, ",space_cache");
928         else
929                 seq_puts(seq, ",nospace_cache");
930         if (btrfs_test_opt(root, CLEAR_CACHE))
931                 seq_puts(seq, ",clear_cache");
932         if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
933                 seq_puts(seq, ",user_subvol_rm_allowed");
934         if (btrfs_test_opt(root, ENOSPC_DEBUG))
935                 seq_puts(seq, ",enospc_debug");
936         if (btrfs_test_opt(root, AUTO_DEFRAG))
937                 seq_puts(seq, ",autodefrag");
938         if (btrfs_test_opt(root, INODE_MAP_CACHE))
939                 seq_puts(seq, ",inode_cache");
940         if (btrfs_test_opt(root, SKIP_BALANCE))
941                 seq_puts(seq, ",skip_balance");
942         if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
943                 seq_puts(seq, ",fatal_errors=panic");
944         return 0;
945 }
946
947 static int btrfs_test_super(struct super_block *s, void *data)
948 {
949         struct btrfs_fs_info *p = data;
950         struct btrfs_fs_info *fs_info = btrfs_sb(s);
951
952         return fs_info->fs_devices == p->fs_devices;
953 }
954
955 static int btrfs_set_super(struct super_block *s, void *data)
956 {
957         int err = set_anon_super(s, data);
958         if (!err)
959                 s->s_fs_info = data;
960         return err;
961 }
962
963 /*
964  * subvolumes are identified by ino 256
965  */
966 static inline int is_subvolume_inode(struct inode *inode)
967 {
968         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
969                 return 1;
970         return 0;
971 }
972
973 /*
974  * This will strip out the subvol=%s argument for an argument string and add
975  * subvolid=0 to make sure we get the actual tree root for path walking to the
976  * subvol we want.
977  */
978 static char *setup_root_args(char *args)
979 {
980         unsigned len = strlen(args) + 2 + 1;
981         char *src, *dst, *buf;
982
983         /*
984          * We need the same args as before, but with this substitution:
985          * s!subvol=[^,]+!subvolid=0!
986          *
987          * Since the replacement string is up to 2 bytes longer than the
988          * original, allocate strlen(args) + 2 + 1 bytes.
989          */
990
991         src = strstr(args, "subvol=");
992         /* This shouldn't happen, but just in case.. */
993         if (!src)
994                 return NULL;
995
996         buf = dst = kmalloc(len, GFP_NOFS);
997         if (!buf)
998                 return NULL;
999
1000         /*
1001          * If the subvol= arg is not at the start of the string,
1002          * copy whatever precedes it into buf.
1003          */
1004         if (src != args) {
1005                 *src++ = '\0';
1006                 strcpy(buf, args);
1007                 dst += strlen(args);
1008         }
1009
1010         strcpy(dst, "subvolid=0");
1011         dst += strlen("subvolid=0");
1012
1013         /*
1014          * If there is a "," after the original subvol=... string,
1015          * copy that suffix into our buffer.  Otherwise, we're done.
1016          */
1017         src = strchr(src, ',');
1018         if (src)
1019                 strcpy(dst, src);
1020
1021         return buf;
1022 }
1023
1024 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1025                                    const char *device_name, char *data)
1026 {
1027         struct dentry *root;
1028         struct vfsmount *mnt;
1029         char *newargs;
1030
1031         newargs = setup_root_args(data);
1032         if (!newargs)
1033                 return ERR_PTR(-ENOMEM);
1034         mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1035                              newargs);
1036         kfree(newargs);
1037         if (IS_ERR(mnt))
1038                 return ERR_CAST(mnt);
1039
1040         root = mount_subtree(mnt, subvol_name);
1041
1042         if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1043                 struct super_block *s = root->d_sb;
1044                 dput(root);
1045                 root = ERR_PTR(-EINVAL);
1046                 deactivate_locked_super(s);
1047                 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1048                                 subvol_name);
1049         }
1050
1051         return root;
1052 }
1053
1054 /*
1055  * Find a superblock for the given device / mount point.
1056  *
1057  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1058  *        for multiple device setup.  Make sure to keep it in sync.
1059  */
1060 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1061                 const char *device_name, void *data)
1062 {
1063         struct block_device *bdev = NULL;
1064         struct super_block *s;
1065         struct dentry *root;
1066         struct btrfs_fs_devices *fs_devices = NULL;
1067         struct btrfs_fs_info *fs_info = NULL;
1068         fmode_t mode = FMODE_READ;
1069         char *subvol_name = NULL;
1070         u64 subvol_objectid = 0;
1071         u64 subvol_rootid = 0;
1072         int error = 0;
1073
1074         if (!(flags & MS_RDONLY))
1075                 mode |= FMODE_WRITE;
1076
1077         error = btrfs_parse_early_options(data, mode, fs_type,
1078                                           &subvol_name, &subvol_objectid,
1079                                           &subvol_rootid, &fs_devices);
1080         if (error) {
1081                 kfree(subvol_name);
1082                 return ERR_PTR(error);
1083         }
1084
1085         if (subvol_name) {
1086                 root = mount_subvol(subvol_name, flags, device_name, data);
1087                 kfree(subvol_name);
1088                 return root;
1089         }
1090
1091         error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1092         if (error)
1093                 return ERR_PTR(error);
1094
1095         /*
1096          * Setup a dummy root and fs_info for test/set super.  This is because
1097          * we don't actually fill this stuff out until open_ctree, but we need
1098          * it for searching for existing supers, so this lets us do that and
1099          * then open_ctree will properly initialize everything later.
1100          */
1101         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1102         if (!fs_info)
1103                 return ERR_PTR(-ENOMEM);
1104
1105         fs_info->fs_devices = fs_devices;
1106
1107         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1108         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1109         if (!fs_info->super_copy || !fs_info->super_for_commit) {
1110                 error = -ENOMEM;
1111                 goto error_fs_info;
1112         }
1113
1114         error = btrfs_open_devices(fs_devices, mode, fs_type);
1115         if (error)
1116                 goto error_fs_info;
1117
1118         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1119                 error = -EACCES;
1120                 goto error_close_devices;
1121         }
1122
1123         bdev = fs_devices->latest_bdev;
1124         s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1125                  fs_info);
1126         if (IS_ERR(s)) {
1127                 error = PTR_ERR(s);
1128                 goto error_close_devices;
1129         }
1130
1131         if (s->s_root) {
1132                 btrfs_close_devices(fs_devices);
1133                 free_fs_info(fs_info);
1134                 if ((flags ^ s->s_flags) & MS_RDONLY)
1135                         error = -EBUSY;
1136         } else {
1137                 char b[BDEVNAME_SIZE];
1138
1139                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1140                 btrfs_sb(s)->bdev_holder = fs_type;
1141                 error = btrfs_fill_super(s, fs_devices, data,
1142                                          flags & MS_SILENT ? 1 : 0);
1143         }
1144
1145         root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1146         if (IS_ERR(root))
1147                 deactivate_locked_super(s);
1148
1149         return root;
1150
1151 error_close_devices:
1152         btrfs_close_devices(fs_devices);
1153 error_fs_info:
1154         free_fs_info(fs_info);
1155         return ERR_PTR(error);
1156 }
1157
1158 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1159 {
1160         spin_lock_irq(&workers->lock);
1161         workers->max_workers = new_limit;
1162         spin_unlock_irq(&workers->lock);
1163 }
1164
1165 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1166                                      int new_pool_size, int old_pool_size)
1167 {
1168         if (new_pool_size == old_pool_size)
1169                 return;
1170
1171         fs_info->thread_pool_size = new_pool_size;
1172
1173         printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1174                old_pool_size, new_pool_size);
1175
1176         btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1177         btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1178         btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1179         btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1180         btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1181         btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1182         btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1183         btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1184         btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1185         btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1186         btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1187         btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1188         btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1189         btrfs_set_max_workers(&fs_info->scrub_workers, new_pool_size);
1190 }
1191
1192 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1193 {
1194         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1195         struct btrfs_root *root = fs_info->tree_root;
1196         unsigned old_flags = sb->s_flags;
1197         unsigned long old_opts = fs_info->mount_opt;
1198         unsigned long old_compress_type = fs_info->compress_type;
1199         u64 old_max_inline = fs_info->max_inline;
1200         u64 old_alloc_start = fs_info->alloc_start;
1201         int old_thread_pool_size = fs_info->thread_pool_size;
1202         unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1203         int ret;
1204
1205         ret = btrfs_parse_options(root, data);
1206         if (ret) {
1207                 ret = -EINVAL;
1208                 goto restore;
1209         }
1210
1211         btrfs_resize_thread_pool(fs_info,
1212                 fs_info->thread_pool_size, old_thread_pool_size);
1213
1214         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1215                 return 0;
1216
1217         if (*flags & MS_RDONLY) {
1218                 sb->s_flags |= MS_RDONLY;
1219
1220                 ret = btrfs_commit_super(root);
1221                 if (ret)
1222                         goto restore;
1223         } else {
1224                 if (fs_info->fs_devices->rw_devices == 0) {
1225                         ret = -EACCES;
1226                         goto restore;
1227                 }
1228
1229                 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1230                         ret = -EINVAL;
1231                         goto restore;
1232                 }
1233
1234                 ret = btrfs_cleanup_fs_roots(fs_info);
1235                 if (ret)
1236                         goto restore;
1237
1238                 /* recover relocation */
1239                 ret = btrfs_recover_relocation(root);
1240                 if (ret)
1241                         goto restore;
1242
1243                 ret = btrfs_resume_balance_async(fs_info);
1244                 if (ret)
1245                         goto restore;
1246
1247                 sb->s_flags &= ~MS_RDONLY;
1248         }
1249
1250         return 0;
1251
1252 restore:
1253         /* We've hit an error - don't reset MS_RDONLY */
1254         if (sb->s_flags & MS_RDONLY)
1255                 old_flags |= MS_RDONLY;
1256         sb->s_flags = old_flags;
1257         fs_info->mount_opt = old_opts;
1258         fs_info->compress_type = old_compress_type;
1259         fs_info->max_inline = old_max_inline;
1260         fs_info->alloc_start = old_alloc_start;
1261         btrfs_resize_thread_pool(fs_info,
1262                 old_thread_pool_size, fs_info->thread_pool_size);
1263         fs_info->metadata_ratio = old_metadata_ratio;
1264         return ret;
1265 }
1266
1267 /* Used to sort the devices by max_avail(descending sort) */
1268 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1269                                        const void *dev_info2)
1270 {
1271         if (((struct btrfs_device_info *)dev_info1)->max_avail >
1272             ((struct btrfs_device_info *)dev_info2)->max_avail)
1273                 return -1;
1274         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1275                  ((struct btrfs_device_info *)dev_info2)->max_avail)
1276                 return 1;
1277         else
1278         return 0;
1279 }
1280
1281 /*
1282  * sort the devices by max_avail, in which max free extent size of each device
1283  * is stored.(Descending Sort)
1284  */
1285 static inline void btrfs_descending_sort_devices(
1286                                         struct btrfs_device_info *devices,
1287                                         size_t nr_devices)
1288 {
1289         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1290              btrfs_cmp_device_free_bytes, NULL);
1291 }
1292
1293 /*
1294  * The helper to calc the free space on the devices that can be used to store
1295  * file data.
1296  */
1297 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1298 {
1299         struct btrfs_fs_info *fs_info = root->fs_info;
1300         struct btrfs_device_info *devices_info;
1301         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1302         struct btrfs_device *device;
1303         u64 skip_space;
1304         u64 type;
1305         u64 avail_space;
1306         u64 used_space;
1307         u64 min_stripe_size;
1308         int min_stripes = 1, num_stripes = 1;
1309         int i = 0, nr_devices;
1310         int ret;
1311
1312         nr_devices = fs_info->fs_devices->open_devices;
1313         BUG_ON(!nr_devices);
1314
1315         devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1316                                GFP_NOFS);
1317         if (!devices_info)
1318                 return -ENOMEM;
1319
1320         /* calc min stripe number for data space alloction */
1321         type = btrfs_get_alloc_profile(root, 1);
1322         if (type & BTRFS_BLOCK_GROUP_RAID0) {
1323                 min_stripes = 2;
1324                 num_stripes = nr_devices;
1325         } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1326                 min_stripes = 2;
1327                 num_stripes = 2;
1328         } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1329                 min_stripes = 4;
1330                 num_stripes = 4;
1331         }
1332
1333         if (type & BTRFS_BLOCK_GROUP_DUP)
1334                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1335         else
1336                 min_stripe_size = BTRFS_STRIPE_LEN;
1337
1338         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1339                 if (!device->in_fs_metadata || !device->bdev)
1340                         continue;
1341
1342                 avail_space = device->total_bytes - device->bytes_used;
1343
1344                 /* align with stripe_len */
1345                 do_div(avail_space, BTRFS_STRIPE_LEN);
1346                 avail_space *= BTRFS_STRIPE_LEN;
1347
1348                 /*
1349                  * In order to avoid overwritting the superblock on the drive,
1350                  * btrfs starts at an offset of at least 1MB when doing chunk
1351                  * allocation.
1352                  */
1353                 skip_space = 1024 * 1024;
1354
1355                 /* user can set the offset in fs_info->alloc_start. */
1356                 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1357                     device->total_bytes)
1358                         skip_space = max(fs_info->alloc_start, skip_space);
1359
1360                 /*
1361                  * btrfs can not use the free space in [0, skip_space - 1],
1362                  * we must subtract it from the total. In order to implement
1363                  * it, we account the used space in this range first.
1364                  */
1365                 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1366                                                      &used_space);
1367                 if (ret) {
1368                         kfree(devices_info);
1369                         return ret;
1370                 }
1371
1372                 /* calc the free space in [0, skip_space - 1] */
1373                 skip_space -= used_space;
1374
1375                 /*
1376                  * we can use the free space in [0, skip_space - 1], subtract
1377                  * it from the total.
1378                  */
1379                 if (avail_space && avail_space >= skip_space)
1380                         avail_space -= skip_space;
1381                 else
1382                         avail_space = 0;
1383
1384                 if (avail_space < min_stripe_size)
1385                         continue;
1386
1387                 devices_info[i].dev = device;
1388                 devices_info[i].max_avail = avail_space;
1389
1390                 i++;
1391         }
1392
1393         nr_devices = i;
1394
1395         btrfs_descending_sort_devices(devices_info, nr_devices);
1396
1397         i = nr_devices - 1;
1398         avail_space = 0;
1399         while (nr_devices >= min_stripes) {
1400                 if (num_stripes > nr_devices)
1401                         num_stripes = nr_devices;
1402
1403                 if (devices_info[i].max_avail >= min_stripe_size) {
1404                         int j;
1405                         u64 alloc_size;
1406
1407                         avail_space += devices_info[i].max_avail * num_stripes;
1408                         alloc_size = devices_info[i].max_avail;
1409                         for (j = i + 1 - num_stripes; j <= i; j++)
1410                                 devices_info[j].max_avail -= alloc_size;
1411                 }
1412                 i--;
1413                 nr_devices--;
1414         }
1415
1416         kfree(devices_info);
1417         *free_bytes = avail_space;
1418         return 0;
1419 }
1420
1421 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1422 {
1423         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1424         struct btrfs_super_block *disk_super = fs_info->super_copy;
1425         struct list_head *head = &fs_info->space_info;
1426         struct btrfs_space_info *found;
1427         u64 total_used = 0;
1428         u64 total_free_data = 0;
1429         int bits = dentry->d_sb->s_blocksize_bits;
1430         __be32 *fsid = (__be32 *)fs_info->fsid;
1431         int ret;
1432
1433         /* holding chunk_muext to avoid allocating new chunks */
1434         mutex_lock(&fs_info->chunk_mutex);
1435         rcu_read_lock();
1436         list_for_each_entry_rcu(found, head, list) {
1437                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1438                         total_free_data += found->disk_total - found->disk_used;
1439                         total_free_data -=
1440                                 btrfs_account_ro_block_groups_free_space(found);
1441                 }
1442
1443                 total_used += found->disk_used;
1444         }
1445         rcu_read_unlock();
1446
1447         buf->f_namelen = BTRFS_NAME_LEN;
1448         buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1449         buf->f_bfree = buf->f_blocks - (total_used >> bits);
1450         buf->f_bsize = dentry->d_sb->s_blocksize;
1451         buf->f_type = BTRFS_SUPER_MAGIC;
1452         buf->f_bavail = total_free_data;
1453         ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1454         if (ret) {
1455                 mutex_unlock(&fs_info->chunk_mutex);
1456                 return ret;
1457         }
1458         buf->f_bavail += total_free_data;
1459         buf->f_bavail = buf->f_bavail >> bits;
1460         mutex_unlock(&fs_info->chunk_mutex);
1461
1462         /* We treat it as constant endianness (it doesn't matter _which_)
1463            because we want the fsid to come out the same whether mounted
1464            on a big-endian or little-endian host */
1465         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1466         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1467         /* Mask in the root object ID too, to disambiguate subvols */
1468         buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1469         buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1470
1471         return 0;
1472 }
1473
1474 static void btrfs_kill_super(struct super_block *sb)
1475 {
1476         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1477         kill_anon_super(sb);
1478         free_fs_info(fs_info);
1479 }
1480
1481 static struct file_system_type btrfs_fs_type = {
1482         .owner          = THIS_MODULE,
1483         .name           = "btrfs",
1484         .mount          = btrfs_mount,
1485         .kill_sb        = btrfs_kill_super,
1486         .fs_flags       = FS_REQUIRES_DEV,
1487 };
1488
1489 /*
1490  * used by btrfsctl to scan devices when no FS is mounted
1491  */
1492 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1493                                 unsigned long arg)
1494 {
1495         struct btrfs_ioctl_vol_args *vol;
1496         struct btrfs_fs_devices *fs_devices;
1497         int ret = -ENOTTY;
1498
1499         if (!capable(CAP_SYS_ADMIN))
1500                 return -EPERM;
1501
1502         vol = memdup_user((void __user *)arg, sizeof(*vol));
1503         if (IS_ERR(vol))
1504                 return PTR_ERR(vol);
1505
1506         switch (cmd) {
1507         case BTRFS_IOC_SCAN_DEV:
1508                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1509                                             &btrfs_fs_type, &fs_devices);
1510                 break;
1511         case BTRFS_IOC_DEVICES_READY:
1512                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1513                                             &btrfs_fs_type, &fs_devices);
1514                 if (ret)
1515                         break;
1516                 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1517                 break;
1518         }
1519
1520         kfree(vol);
1521         return ret;
1522 }
1523
1524 static int btrfs_freeze(struct super_block *sb)
1525 {
1526         struct btrfs_trans_handle *trans;
1527         struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1528
1529         trans = btrfs_attach_transaction(root);
1530         if (IS_ERR(trans)) {
1531                 /* no transaction, don't bother */
1532                 if (PTR_ERR(trans) == -ENOENT)
1533                         return 0;
1534                 return PTR_ERR(trans);
1535         }
1536         return btrfs_commit_transaction(trans, root);
1537 }
1538
1539 static int btrfs_unfreeze(struct super_block *sb)
1540 {
1541         return 0;
1542 }
1543
1544 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1545 {
1546         struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1547         struct btrfs_fs_devices *cur_devices;
1548         struct btrfs_device *dev, *first_dev = NULL;
1549         struct list_head *head;
1550         struct rcu_string *name;
1551
1552         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1553         cur_devices = fs_info->fs_devices;
1554         while (cur_devices) {
1555                 head = &cur_devices->devices;
1556                 list_for_each_entry(dev, head, dev_list) {
1557                         if (dev->missing)
1558                                 continue;
1559                         if (!first_dev || dev->devid < first_dev->devid)
1560                                 first_dev = dev;
1561                 }
1562                 cur_devices = cur_devices->seed;
1563         }
1564
1565         if (first_dev) {
1566                 rcu_read_lock();
1567                 name = rcu_dereference(first_dev->name);
1568                 seq_escape(m, name->str, " \t\n\\");
1569                 rcu_read_unlock();
1570         } else {
1571                 WARN_ON(1);
1572         }
1573         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1574         return 0;
1575 }
1576
1577 static const struct super_operations btrfs_super_ops = {
1578         .drop_inode     = btrfs_drop_inode,
1579         .evict_inode    = btrfs_evict_inode,
1580         .put_super      = btrfs_put_super,
1581         .sync_fs        = btrfs_sync_fs,
1582         .show_options   = btrfs_show_options,
1583         .show_devname   = btrfs_show_devname,
1584         .write_inode    = btrfs_write_inode,
1585         .alloc_inode    = btrfs_alloc_inode,
1586         .destroy_inode  = btrfs_destroy_inode,
1587         .statfs         = btrfs_statfs,
1588         .remount_fs     = btrfs_remount,
1589         .freeze_fs      = btrfs_freeze,
1590         .unfreeze_fs    = btrfs_unfreeze,
1591 };
1592
1593 static const struct file_operations btrfs_ctl_fops = {
1594         .unlocked_ioctl  = btrfs_control_ioctl,
1595         .compat_ioctl = btrfs_control_ioctl,
1596         .owner   = THIS_MODULE,
1597         .llseek = noop_llseek,
1598 };
1599
1600 static struct miscdevice btrfs_misc = {
1601         .minor          = BTRFS_MINOR,
1602         .name           = "btrfs-control",
1603         .fops           = &btrfs_ctl_fops
1604 };
1605
1606 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1607 MODULE_ALIAS("devname:btrfs-control");
1608
1609 static int btrfs_interface_init(void)
1610 {
1611         return misc_register(&btrfs_misc);
1612 }
1613
1614 static void btrfs_interface_exit(void)
1615 {
1616         if (misc_deregister(&btrfs_misc) < 0)
1617                 printk(KERN_INFO "btrfs: misc_deregister failed for control device\n");
1618 }
1619
1620 static int __init init_btrfs_fs(void)
1621 {
1622         int err;
1623
1624         err = btrfs_init_sysfs();
1625         if (err)
1626                 return err;
1627
1628         btrfs_init_compress();
1629
1630         err = btrfs_init_cachep();
1631         if (err)
1632                 goto free_compress;
1633
1634         err = extent_io_init();
1635         if (err)
1636                 goto free_cachep;
1637
1638         err = extent_map_init();
1639         if (err)
1640                 goto free_extent_io;
1641
1642         err = ordered_data_init();
1643         if (err)
1644                 goto free_extent_map;
1645
1646         err = btrfs_delayed_inode_init();
1647         if (err)
1648                 goto free_ordered_data;
1649
1650         err = btrfs_interface_init();
1651         if (err)
1652                 goto free_delayed_inode;
1653
1654         err = register_filesystem(&btrfs_fs_type);
1655         if (err)
1656                 goto unregister_ioctl;
1657
1658         btrfs_init_lockdep();
1659
1660         printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1661         return 0;
1662
1663 unregister_ioctl:
1664         btrfs_interface_exit();
1665 free_delayed_inode:
1666         btrfs_delayed_inode_exit();
1667 free_ordered_data:
1668         ordered_data_exit();
1669 free_extent_map:
1670         extent_map_exit();
1671 free_extent_io:
1672         extent_io_exit();
1673 free_cachep:
1674         btrfs_destroy_cachep();
1675 free_compress:
1676         btrfs_exit_compress();
1677         btrfs_exit_sysfs();
1678         return err;
1679 }
1680
1681 static void __exit exit_btrfs_fs(void)
1682 {
1683         btrfs_destroy_cachep();
1684         btrfs_delayed_inode_exit();
1685         ordered_data_exit();
1686         extent_map_exit();
1687         extent_io_exit();
1688         btrfs_interface_exit();
1689         unregister_filesystem(&btrfs_fs_type);
1690         btrfs_exit_sysfs();
1691         btrfs_cleanup_fs_uuids();
1692         btrfs_exit_compress();
1693 }
1694
1695 module_init(init_btrfs_fs)
1696 module_exit(exit_btrfs_fs)
1697
1698 MODULE_LICENSE("GPL");