]> rtime.felk.cvut.cz Git - can-eth-gw-linux.git/blob - drivers/net/ethernet/intel/igbvf/netdev.c
mm/bootmem.c: remove unused wrapper function reserve_bootmem_generic()
[can-eth-gw-linux.git] / drivers / net / ethernet / intel / igbvf / netdev.c
1 /*******************************************************************************
2
3   Intel(R) 82576 Virtual Function Linux driver
4   Copyright(c) 2009 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/pci.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/delay.h>
37 #include <linux/netdevice.h>
38 #include <linux/tcp.h>
39 #include <linux/ipv6.h>
40 #include <linux/slab.h>
41 #include <net/checksum.h>
42 #include <net/ip6_checksum.h>
43 #include <linux/mii.h>
44 #include <linux/ethtool.h>
45 #include <linux/if_vlan.h>
46 #include <linux/prefetch.h>
47
48 #include "igbvf.h"
49
50 #define DRV_VERSION "2.0.1-k"
51 char igbvf_driver_name[] = "igbvf";
52 const char igbvf_driver_version[] = DRV_VERSION;
53 static const char igbvf_driver_string[] =
54                   "Intel(R) Gigabit Virtual Function Network Driver";
55 static const char igbvf_copyright[] =
56                   "Copyright (c) 2009 - 2012 Intel Corporation.";
57
58 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59 static int debug = -1;
60 module_param(debug, int, 0);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62
63 static int igbvf_poll(struct napi_struct *napi, int budget);
64 static void igbvf_reset(struct igbvf_adapter *);
65 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
66 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
67
68 static struct igbvf_info igbvf_vf_info = {
69         .mac                    = e1000_vfadapt,
70         .flags                  = 0,
71         .pba                    = 10,
72         .init_ops               = e1000_init_function_pointers_vf,
73 };
74
75 static struct igbvf_info igbvf_i350_vf_info = {
76         .mac                    = e1000_vfadapt_i350,
77         .flags                  = 0,
78         .pba                    = 10,
79         .init_ops               = e1000_init_function_pointers_vf,
80 };
81
82 static const struct igbvf_info *igbvf_info_tbl[] = {
83         [board_vf]              = &igbvf_vf_info,
84         [board_i350_vf]         = &igbvf_i350_vf_info,
85 };
86
87 /**
88  * igbvf_desc_unused - calculate if we have unused descriptors
89  **/
90 static int igbvf_desc_unused(struct igbvf_ring *ring)
91 {
92         if (ring->next_to_clean > ring->next_to_use)
93                 return ring->next_to_clean - ring->next_to_use - 1;
94
95         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
96 }
97
98 /**
99  * igbvf_receive_skb - helper function to handle Rx indications
100  * @adapter: board private structure
101  * @status: descriptor status field as written by hardware
102  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
103  * @skb: pointer to sk_buff to be indicated to stack
104  **/
105 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
106                               struct net_device *netdev,
107                               struct sk_buff *skb,
108                               u32 status, u16 vlan)
109 {
110         if (status & E1000_RXD_STAT_VP) {
111                 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
112                 if (test_bit(vid, adapter->active_vlans))
113                         __vlan_hwaccel_put_tag(skb, vid);
114         }
115         netif_receive_skb(skb);
116 }
117
118 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
119                                          u32 status_err, struct sk_buff *skb)
120 {
121         skb_checksum_none_assert(skb);
122
123         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
124         if ((status_err & E1000_RXD_STAT_IXSM) ||
125             (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
126                 return;
127
128         /* TCP/UDP checksum error bit is set */
129         if (status_err &
130             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
131                 /* let the stack verify checksum errors */
132                 adapter->hw_csum_err++;
133                 return;
134         }
135
136         /* It must be a TCP or UDP packet with a valid checksum */
137         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
138                 skb->ip_summed = CHECKSUM_UNNECESSARY;
139
140         adapter->hw_csum_good++;
141 }
142
143 /**
144  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
145  * @rx_ring: address of ring structure to repopulate
146  * @cleaned_count: number of buffers to repopulate
147  **/
148 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
149                                    int cleaned_count)
150 {
151         struct igbvf_adapter *adapter = rx_ring->adapter;
152         struct net_device *netdev = adapter->netdev;
153         struct pci_dev *pdev = adapter->pdev;
154         union e1000_adv_rx_desc *rx_desc;
155         struct igbvf_buffer *buffer_info;
156         struct sk_buff *skb;
157         unsigned int i;
158         int bufsz;
159
160         i = rx_ring->next_to_use;
161         buffer_info = &rx_ring->buffer_info[i];
162
163         if (adapter->rx_ps_hdr_size)
164                 bufsz = adapter->rx_ps_hdr_size;
165         else
166                 bufsz = adapter->rx_buffer_len;
167
168         while (cleaned_count--) {
169                 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
170
171                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
172                         if (!buffer_info->page) {
173                                 buffer_info->page = alloc_page(GFP_ATOMIC);
174                                 if (!buffer_info->page) {
175                                         adapter->alloc_rx_buff_failed++;
176                                         goto no_buffers;
177                                 }
178                                 buffer_info->page_offset = 0;
179                         } else {
180                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
181                         }
182                         buffer_info->page_dma =
183                                 dma_map_page(&pdev->dev, buffer_info->page,
184                                              buffer_info->page_offset,
185                                              PAGE_SIZE / 2,
186                                              DMA_FROM_DEVICE);
187                 }
188
189                 if (!buffer_info->skb) {
190                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
191                         if (!skb) {
192                                 adapter->alloc_rx_buff_failed++;
193                                 goto no_buffers;
194                         }
195
196                         buffer_info->skb = skb;
197                         buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
198                                                           bufsz,
199                                                           DMA_FROM_DEVICE);
200                 }
201                 /* Refresh the desc even if buffer_addrs didn't change because
202                  * each write-back erases this info. */
203                 if (adapter->rx_ps_hdr_size) {
204                         rx_desc->read.pkt_addr =
205                              cpu_to_le64(buffer_info->page_dma);
206                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
207                 } else {
208                         rx_desc->read.pkt_addr =
209                              cpu_to_le64(buffer_info->dma);
210                         rx_desc->read.hdr_addr = 0;
211                 }
212
213                 i++;
214                 if (i == rx_ring->count)
215                         i = 0;
216                 buffer_info = &rx_ring->buffer_info[i];
217         }
218
219 no_buffers:
220         if (rx_ring->next_to_use != i) {
221                 rx_ring->next_to_use = i;
222                 if (i == 0)
223                         i = (rx_ring->count - 1);
224                 else
225                         i--;
226
227                 /* Force memory writes to complete before letting h/w
228                  * know there are new descriptors to fetch.  (Only
229                  * applicable for weak-ordered memory model archs,
230                  * such as IA-64). */
231                 wmb();
232                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
233         }
234 }
235
236 /**
237  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
238  * @adapter: board private structure
239  *
240  * the return value indicates whether actual cleaning was done, there
241  * is no guarantee that everything was cleaned
242  **/
243 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
244                                int *work_done, int work_to_do)
245 {
246         struct igbvf_ring *rx_ring = adapter->rx_ring;
247         struct net_device *netdev = adapter->netdev;
248         struct pci_dev *pdev = adapter->pdev;
249         union e1000_adv_rx_desc *rx_desc, *next_rxd;
250         struct igbvf_buffer *buffer_info, *next_buffer;
251         struct sk_buff *skb;
252         bool cleaned = false;
253         int cleaned_count = 0;
254         unsigned int total_bytes = 0, total_packets = 0;
255         unsigned int i;
256         u32 length, hlen, staterr;
257
258         i = rx_ring->next_to_clean;
259         rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
260         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
261
262         while (staterr & E1000_RXD_STAT_DD) {
263                 if (*work_done >= work_to_do)
264                         break;
265                 (*work_done)++;
266                 rmb(); /* read descriptor and rx_buffer_info after status DD */
267
268                 buffer_info = &rx_ring->buffer_info[i];
269
270                 /* HW will not DMA in data larger than the given buffer, even
271                  * if it parses the (NFS, of course) header to be larger.  In
272                  * that case, it fills the header buffer and spills the rest
273                  * into the page.
274                  */
275                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
276                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
277                 if (hlen > adapter->rx_ps_hdr_size)
278                         hlen = adapter->rx_ps_hdr_size;
279
280                 length = le16_to_cpu(rx_desc->wb.upper.length);
281                 cleaned = true;
282                 cleaned_count++;
283
284                 skb = buffer_info->skb;
285                 prefetch(skb->data - NET_IP_ALIGN);
286                 buffer_info->skb = NULL;
287                 if (!adapter->rx_ps_hdr_size) {
288                         dma_unmap_single(&pdev->dev, buffer_info->dma,
289                                          adapter->rx_buffer_len,
290                                          DMA_FROM_DEVICE);
291                         buffer_info->dma = 0;
292                         skb_put(skb, length);
293                         goto send_up;
294                 }
295
296                 if (!skb_shinfo(skb)->nr_frags) {
297                         dma_unmap_single(&pdev->dev, buffer_info->dma,
298                                          adapter->rx_ps_hdr_size,
299                                          DMA_FROM_DEVICE);
300                         skb_put(skb, hlen);
301                 }
302
303                 if (length) {
304                         dma_unmap_page(&pdev->dev, buffer_info->page_dma,
305                                        PAGE_SIZE / 2,
306                                        DMA_FROM_DEVICE);
307                         buffer_info->page_dma = 0;
308
309                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
310                                            buffer_info->page,
311                                            buffer_info->page_offset,
312                                            length);
313
314                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
315                             (page_count(buffer_info->page) != 1))
316                                 buffer_info->page = NULL;
317                         else
318                                 get_page(buffer_info->page);
319
320                         skb->len += length;
321                         skb->data_len += length;
322                         skb->truesize += PAGE_SIZE / 2;
323                 }
324 send_up:
325                 i++;
326                 if (i == rx_ring->count)
327                         i = 0;
328                 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
329                 prefetch(next_rxd);
330                 next_buffer = &rx_ring->buffer_info[i];
331
332                 if (!(staterr & E1000_RXD_STAT_EOP)) {
333                         buffer_info->skb = next_buffer->skb;
334                         buffer_info->dma = next_buffer->dma;
335                         next_buffer->skb = skb;
336                         next_buffer->dma = 0;
337                         goto next_desc;
338                 }
339
340                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
341                         dev_kfree_skb_irq(skb);
342                         goto next_desc;
343                 }
344
345                 total_bytes += skb->len;
346                 total_packets++;
347
348                 igbvf_rx_checksum_adv(adapter, staterr, skb);
349
350                 skb->protocol = eth_type_trans(skb, netdev);
351
352                 igbvf_receive_skb(adapter, netdev, skb, staterr,
353                                   rx_desc->wb.upper.vlan);
354
355 next_desc:
356                 rx_desc->wb.upper.status_error = 0;
357
358                 /* return some buffers to hardware, one at a time is too slow */
359                 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
360                         igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
361                         cleaned_count = 0;
362                 }
363
364                 /* use prefetched values */
365                 rx_desc = next_rxd;
366                 buffer_info = next_buffer;
367
368                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
369         }
370
371         rx_ring->next_to_clean = i;
372         cleaned_count = igbvf_desc_unused(rx_ring);
373
374         if (cleaned_count)
375                 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
376
377         adapter->total_rx_packets += total_packets;
378         adapter->total_rx_bytes += total_bytes;
379         adapter->net_stats.rx_bytes += total_bytes;
380         adapter->net_stats.rx_packets += total_packets;
381         return cleaned;
382 }
383
384 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
385                             struct igbvf_buffer *buffer_info)
386 {
387         if (buffer_info->dma) {
388                 if (buffer_info->mapped_as_page)
389                         dma_unmap_page(&adapter->pdev->dev,
390                                        buffer_info->dma,
391                                        buffer_info->length,
392                                        DMA_TO_DEVICE);
393                 else
394                         dma_unmap_single(&adapter->pdev->dev,
395                                          buffer_info->dma,
396                                          buffer_info->length,
397                                          DMA_TO_DEVICE);
398                 buffer_info->dma = 0;
399         }
400         if (buffer_info->skb) {
401                 dev_kfree_skb_any(buffer_info->skb);
402                 buffer_info->skb = NULL;
403         }
404         buffer_info->time_stamp = 0;
405 }
406
407 /**
408  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
409  * @adapter: board private structure
410  *
411  * Return 0 on success, negative on failure
412  **/
413 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
414                              struct igbvf_ring *tx_ring)
415 {
416         struct pci_dev *pdev = adapter->pdev;
417         int size;
418
419         size = sizeof(struct igbvf_buffer) * tx_ring->count;
420         tx_ring->buffer_info = vzalloc(size);
421         if (!tx_ring->buffer_info)
422                 goto err;
423
424         /* round up to nearest 4K */
425         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
426         tx_ring->size = ALIGN(tx_ring->size, 4096);
427
428         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
429                                            &tx_ring->dma, GFP_KERNEL);
430
431         if (!tx_ring->desc)
432                 goto err;
433
434         tx_ring->adapter = adapter;
435         tx_ring->next_to_use = 0;
436         tx_ring->next_to_clean = 0;
437
438         return 0;
439 err:
440         vfree(tx_ring->buffer_info);
441         dev_err(&adapter->pdev->dev,
442                 "Unable to allocate memory for the transmit descriptor ring\n");
443         return -ENOMEM;
444 }
445
446 /**
447  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
448  * @adapter: board private structure
449  *
450  * Returns 0 on success, negative on failure
451  **/
452 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
453                              struct igbvf_ring *rx_ring)
454 {
455         struct pci_dev *pdev = adapter->pdev;
456         int size, desc_len;
457
458         size = sizeof(struct igbvf_buffer) * rx_ring->count;
459         rx_ring->buffer_info = vzalloc(size);
460         if (!rx_ring->buffer_info)
461                 goto err;
462
463         desc_len = sizeof(union e1000_adv_rx_desc);
464
465         /* Round up to nearest 4K */
466         rx_ring->size = rx_ring->count * desc_len;
467         rx_ring->size = ALIGN(rx_ring->size, 4096);
468
469         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
470                                            &rx_ring->dma, GFP_KERNEL);
471
472         if (!rx_ring->desc)
473                 goto err;
474
475         rx_ring->next_to_clean = 0;
476         rx_ring->next_to_use = 0;
477
478         rx_ring->adapter = adapter;
479
480         return 0;
481
482 err:
483         vfree(rx_ring->buffer_info);
484         rx_ring->buffer_info = NULL;
485         dev_err(&adapter->pdev->dev,
486                 "Unable to allocate memory for the receive descriptor ring\n");
487         return -ENOMEM;
488 }
489
490 /**
491  * igbvf_clean_tx_ring - Free Tx Buffers
492  * @tx_ring: ring to be cleaned
493  **/
494 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
495 {
496         struct igbvf_adapter *adapter = tx_ring->adapter;
497         struct igbvf_buffer *buffer_info;
498         unsigned long size;
499         unsigned int i;
500
501         if (!tx_ring->buffer_info)
502                 return;
503
504         /* Free all the Tx ring sk_buffs */
505         for (i = 0; i < tx_ring->count; i++) {
506                 buffer_info = &tx_ring->buffer_info[i];
507                 igbvf_put_txbuf(adapter, buffer_info);
508         }
509
510         size = sizeof(struct igbvf_buffer) * tx_ring->count;
511         memset(tx_ring->buffer_info, 0, size);
512
513         /* Zero out the descriptor ring */
514         memset(tx_ring->desc, 0, tx_ring->size);
515
516         tx_ring->next_to_use = 0;
517         tx_ring->next_to_clean = 0;
518
519         writel(0, adapter->hw.hw_addr + tx_ring->head);
520         writel(0, adapter->hw.hw_addr + tx_ring->tail);
521 }
522
523 /**
524  * igbvf_free_tx_resources - Free Tx Resources per Queue
525  * @tx_ring: ring to free resources from
526  *
527  * Free all transmit software resources
528  **/
529 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
530 {
531         struct pci_dev *pdev = tx_ring->adapter->pdev;
532
533         igbvf_clean_tx_ring(tx_ring);
534
535         vfree(tx_ring->buffer_info);
536         tx_ring->buffer_info = NULL;
537
538         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
539                           tx_ring->dma);
540
541         tx_ring->desc = NULL;
542 }
543
544 /**
545  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
546  * @adapter: board private structure
547  **/
548 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
549 {
550         struct igbvf_adapter *adapter = rx_ring->adapter;
551         struct igbvf_buffer *buffer_info;
552         struct pci_dev *pdev = adapter->pdev;
553         unsigned long size;
554         unsigned int i;
555
556         if (!rx_ring->buffer_info)
557                 return;
558
559         /* Free all the Rx ring sk_buffs */
560         for (i = 0; i < rx_ring->count; i++) {
561                 buffer_info = &rx_ring->buffer_info[i];
562                 if (buffer_info->dma) {
563                         if (adapter->rx_ps_hdr_size){
564                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
565                                                  adapter->rx_ps_hdr_size,
566                                                  DMA_FROM_DEVICE);
567                         } else {
568                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
569                                                  adapter->rx_buffer_len,
570                                                  DMA_FROM_DEVICE);
571                         }
572                         buffer_info->dma = 0;
573                 }
574
575                 if (buffer_info->skb) {
576                         dev_kfree_skb(buffer_info->skb);
577                         buffer_info->skb = NULL;
578                 }
579
580                 if (buffer_info->page) {
581                         if (buffer_info->page_dma)
582                                 dma_unmap_page(&pdev->dev,
583                                                buffer_info->page_dma,
584                                                PAGE_SIZE / 2,
585                                                DMA_FROM_DEVICE);
586                         put_page(buffer_info->page);
587                         buffer_info->page = NULL;
588                         buffer_info->page_dma = 0;
589                         buffer_info->page_offset = 0;
590                 }
591         }
592
593         size = sizeof(struct igbvf_buffer) * rx_ring->count;
594         memset(rx_ring->buffer_info, 0, size);
595
596         /* Zero out the descriptor ring */
597         memset(rx_ring->desc, 0, rx_ring->size);
598
599         rx_ring->next_to_clean = 0;
600         rx_ring->next_to_use = 0;
601
602         writel(0, adapter->hw.hw_addr + rx_ring->head);
603         writel(0, adapter->hw.hw_addr + rx_ring->tail);
604 }
605
606 /**
607  * igbvf_free_rx_resources - Free Rx Resources
608  * @rx_ring: ring to clean the resources from
609  *
610  * Free all receive software resources
611  **/
612
613 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
614 {
615         struct pci_dev *pdev = rx_ring->adapter->pdev;
616
617         igbvf_clean_rx_ring(rx_ring);
618
619         vfree(rx_ring->buffer_info);
620         rx_ring->buffer_info = NULL;
621
622         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
623                           rx_ring->dma);
624         rx_ring->desc = NULL;
625 }
626
627 /**
628  * igbvf_update_itr - update the dynamic ITR value based on statistics
629  * @adapter: pointer to adapter
630  * @itr_setting: current adapter->itr
631  * @packets: the number of packets during this measurement interval
632  * @bytes: the number of bytes during this measurement interval
633  *
634  *      Stores a new ITR value based on packets and byte
635  *      counts during the last interrupt.  The advantage of per interrupt
636  *      computation is faster updates and more accurate ITR for the current
637  *      traffic pattern.  Constants in this function were computed
638  *      based on theoretical maximum wire speed and thresholds were set based
639  *      on testing data as well as attempting to minimize response time
640  *      while increasing bulk throughput.
641  **/
642 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
643                                            enum latency_range itr_setting,
644                                            int packets, int bytes)
645 {
646         enum latency_range retval = itr_setting;
647
648         if (packets == 0)
649                 goto update_itr_done;
650
651         switch (itr_setting) {
652         case lowest_latency:
653                 /* handle TSO and jumbo frames */
654                 if (bytes/packets > 8000)
655                         retval = bulk_latency;
656                 else if ((packets < 5) && (bytes > 512))
657                         retval = low_latency;
658                 break;
659         case low_latency:  /* 50 usec aka 20000 ints/s */
660                 if (bytes > 10000) {
661                         /* this if handles the TSO accounting */
662                         if (bytes/packets > 8000)
663                                 retval = bulk_latency;
664                         else if ((packets < 10) || ((bytes/packets) > 1200))
665                                 retval = bulk_latency;
666                         else if ((packets > 35))
667                                 retval = lowest_latency;
668                 } else if (bytes/packets > 2000) {
669                         retval = bulk_latency;
670                 } else if (packets <= 2 && bytes < 512) {
671                         retval = lowest_latency;
672                 }
673                 break;
674         case bulk_latency: /* 250 usec aka 4000 ints/s */
675                 if (bytes > 25000) {
676                         if (packets > 35)
677                                 retval = low_latency;
678                 } else if (bytes < 6000) {
679                         retval = low_latency;
680                 }
681                 break;
682         default:
683                 break;
684         }
685
686 update_itr_done:
687         return retval;
688 }
689
690 static int igbvf_range_to_itr(enum latency_range current_range)
691 {
692         int new_itr;
693
694         switch (current_range) {
695         /* counts and packets in update_itr are dependent on these numbers */
696         case lowest_latency:
697                 new_itr = IGBVF_70K_ITR;
698                 break;
699         case low_latency:
700                 new_itr = IGBVF_20K_ITR;
701                 break;
702         case bulk_latency:
703                 new_itr = IGBVF_4K_ITR;
704                 break;
705         default:
706                 new_itr = IGBVF_START_ITR;
707                 break;
708         }
709         return new_itr;
710 }
711
712 static void igbvf_set_itr(struct igbvf_adapter *adapter)
713 {
714         u32 new_itr;
715
716         adapter->tx_ring->itr_range =
717                         igbvf_update_itr(adapter,
718                                          adapter->tx_ring->itr_val,
719                                          adapter->total_tx_packets,
720                                          adapter->total_tx_bytes);
721
722         /* conservative mode (itr 3) eliminates the lowest_latency setting */
723         if (adapter->requested_itr == 3 &&
724             adapter->tx_ring->itr_range == lowest_latency)
725                 adapter->tx_ring->itr_range = low_latency;
726
727         new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
728
729
730         if (new_itr != adapter->tx_ring->itr_val) {
731                 u32 current_itr = adapter->tx_ring->itr_val;
732                 /*
733                  * this attempts to bias the interrupt rate towards Bulk
734                  * by adding intermediate steps when interrupt rate is
735                  * increasing
736                  */
737                 new_itr = new_itr > current_itr ?
738                              min(current_itr + (new_itr >> 2), new_itr) :
739                              new_itr;
740                 adapter->tx_ring->itr_val = new_itr;
741
742                 adapter->tx_ring->set_itr = 1;
743         }
744
745         adapter->rx_ring->itr_range =
746                         igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
747                                          adapter->total_rx_packets,
748                                          adapter->total_rx_bytes);
749         if (adapter->requested_itr == 3 &&
750             adapter->rx_ring->itr_range == lowest_latency)
751                 adapter->rx_ring->itr_range = low_latency;
752
753         new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
754
755         if (new_itr != adapter->rx_ring->itr_val) {
756                 u32 current_itr = adapter->rx_ring->itr_val;
757                 new_itr = new_itr > current_itr ?
758                              min(current_itr + (new_itr >> 2), new_itr) :
759                              new_itr;
760                 adapter->rx_ring->itr_val = new_itr;
761
762                 adapter->rx_ring->set_itr = 1;
763         }
764 }
765
766 /**
767  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
768  * @adapter: board private structure
769  *
770  * returns true if ring is completely cleaned
771  **/
772 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
773 {
774         struct igbvf_adapter *adapter = tx_ring->adapter;
775         struct net_device *netdev = adapter->netdev;
776         struct igbvf_buffer *buffer_info;
777         struct sk_buff *skb;
778         union e1000_adv_tx_desc *tx_desc, *eop_desc;
779         unsigned int total_bytes = 0, total_packets = 0;
780         unsigned int i, eop, count = 0;
781         bool cleaned = false;
782
783         i = tx_ring->next_to_clean;
784         eop = tx_ring->buffer_info[i].next_to_watch;
785         eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
786
787         while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
788                (count < tx_ring->count)) {
789                 rmb();  /* read buffer_info after eop_desc status */
790                 for (cleaned = false; !cleaned; count++) {
791                         tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
792                         buffer_info = &tx_ring->buffer_info[i];
793                         cleaned = (i == eop);
794                         skb = buffer_info->skb;
795
796                         if (skb) {
797                                 unsigned int segs, bytecount;
798
799                                 /* gso_segs is currently only valid for tcp */
800                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
801                                 /* multiply data chunks by size of headers */
802                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
803                                             skb->len;
804                                 total_packets += segs;
805                                 total_bytes += bytecount;
806                         }
807
808                         igbvf_put_txbuf(adapter, buffer_info);
809                         tx_desc->wb.status = 0;
810
811                         i++;
812                         if (i == tx_ring->count)
813                                 i = 0;
814                 }
815                 eop = tx_ring->buffer_info[i].next_to_watch;
816                 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
817         }
818
819         tx_ring->next_to_clean = i;
820
821         if (unlikely(count &&
822                      netif_carrier_ok(netdev) &&
823                      igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
824                 /* Make sure that anybody stopping the queue after this
825                  * sees the new next_to_clean.
826                  */
827                 smp_mb();
828                 if (netif_queue_stopped(netdev) &&
829                     !(test_bit(__IGBVF_DOWN, &adapter->state))) {
830                         netif_wake_queue(netdev);
831                         ++adapter->restart_queue;
832                 }
833         }
834
835         adapter->net_stats.tx_bytes += total_bytes;
836         adapter->net_stats.tx_packets += total_packets;
837         return count < tx_ring->count;
838 }
839
840 static irqreturn_t igbvf_msix_other(int irq, void *data)
841 {
842         struct net_device *netdev = data;
843         struct igbvf_adapter *adapter = netdev_priv(netdev);
844         struct e1000_hw *hw = &adapter->hw;
845
846         adapter->int_counter1++;
847
848         netif_carrier_off(netdev);
849         hw->mac.get_link_status = 1;
850         if (!test_bit(__IGBVF_DOWN, &adapter->state))
851                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
852
853         ew32(EIMS, adapter->eims_other);
854
855         return IRQ_HANDLED;
856 }
857
858 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
859 {
860         struct net_device *netdev = data;
861         struct igbvf_adapter *adapter = netdev_priv(netdev);
862         struct e1000_hw *hw = &adapter->hw;
863         struct igbvf_ring *tx_ring = adapter->tx_ring;
864
865         if (tx_ring->set_itr) {
866                 writel(tx_ring->itr_val,
867                        adapter->hw.hw_addr + tx_ring->itr_register);
868                 adapter->tx_ring->set_itr = 0;
869         }
870
871         adapter->total_tx_bytes = 0;
872         adapter->total_tx_packets = 0;
873
874         /* auto mask will automatically reenable the interrupt when we write
875          * EICS */
876         if (!igbvf_clean_tx_irq(tx_ring))
877                 /* Ring was not completely cleaned, so fire another interrupt */
878                 ew32(EICS, tx_ring->eims_value);
879         else
880                 ew32(EIMS, tx_ring->eims_value);
881
882         return IRQ_HANDLED;
883 }
884
885 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
886 {
887         struct net_device *netdev = data;
888         struct igbvf_adapter *adapter = netdev_priv(netdev);
889
890         adapter->int_counter0++;
891
892         /* Write the ITR value calculated at the end of the
893          * previous interrupt.
894          */
895         if (adapter->rx_ring->set_itr) {
896                 writel(adapter->rx_ring->itr_val,
897                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
898                 adapter->rx_ring->set_itr = 0;
899         }
900
901         if (napi_schedule_prep(&adapter->rx_ring->napi)) {
902                 adapter->total_rx_bytes = 0;
903                 adapter->total_rx_packets = 0;
904                 __napi_schedule(&adapter->rx_ring->napi);
905         }
906
907         return IRQ_HANDLED;
908 }
909
910 #define IGBVF_NO_QUEUE -1
911
912 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
913                                 int tx_queue, int msix_vector)
914 {
915         struct e1000_hw *hw = &adapter->hw;
916         u32 ivar, index;
917
918         /* 82576 uses a table-based method for assigning vectors.
919            Each queue has a single entry in the table to which we write
920            a vector number along with a "valid" bit.  Sadly, the layout
921            of the table is somewhat counterintuitive. */
922         if (rx_queue > IGBVF_NO_QUEUE) {
923                 index = (rx_queue >> 1);
924                 ivar = array_er32(IVAR0, index);
925                 if (rx_queue & 0x1) {
926                         /* vector goes into third byte of register */
927                         ivar = ivar & 0xFF00FFFF;
928                         ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
929                 } else {
930                         /* vector goes into low byte of register */
931                         ivar = ivar & 0xFFFFFF00;
932                         ivar |= msix_vector | E1000_IVAR_VALID;
933                 }
934                 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
935                 array_ew32(IVAR0, index, ivar);
936         }
937         if (tx_queue > IGBVF_NO_QUEUE) {
938                 index = (tx_queue >> 1);
939                 ivar = array_er32(IVAR0, index);
940                 if (tx_queue & 0x1) {
941                         /* vector goes into high byte of register */
942                         ivar = ivar & 0x00FFFFFF;
943                         ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
944                 } else {
945                         /* vector goes into second byte of register */
946                         ivar = ivar & 0xFFFF00FF;
947                         ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
948                 }
949                 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
950                 array_ew32(IVAR0, index, ivar);
951         }
952 }
953
954 /**
955  * igbvf_configure_msix - Configure MSI-X hardware
956  *
957  * igbvf_configure_msix sets up the hardware to properly
958  * generate MSI-X interrupts.
959  **/
960 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
961 {
962         u32 tmp;
963         struct e1000_hw *hw = &adapter->hw;
964         struct igbvf_ring *tx_ring = adapter->tx_ring;
965         struct igbvf_ring *rx_ring = adapter->rx_ring;
966         int vector = 0;
967
968         adapter->eims_enable_mask = 0;
969
970         igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
971         adapter->eims_enable_mask |= tx_ring->eims_value;
972         writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
973         igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
974         adapter->eims_enable_mask |= rx_ring->eims_value;
975         writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
976
977         /* set vector for other causes, i.e. link changes */
978
979         tmp = (vector++ | E1000_IVAR_VALID);
980
981         ew32(IVAR_MISC, tmp);
982
983         adapter->eims_enable_mask = (1 << (vector)) - 1;
984         adapter->eims_other = 1 << (vector - 1);
985         e1e_flush();
986 }
987
988 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
989 {
990         if (adapter->msix_entries) {
991                 pci_disable_msix(adapter->pdev);
992                 kfree(adapter->msix_entries);
993                 adapter->msix_entries = NULL;
994         }
995 }
996
997 /**
998  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
999  *
1000  * Attempt to configure interrupts using the best available
1001  * capabilities of the hardware and kernel.
1002  **/
1003 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1004 {
1005         int err = -ENOMEM;
1006         int i;
1007
1008         /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1009         adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1010                                         GFP_KERNEL);
1011         if (adapter->msix_entries) {
1012                 for (i = 0; i < 3; i++)
1013                         adapter->msix_entries[i].entry = i;
1014
1015                 err = pci_enable_msix(adapter->pdev,
1016                                       adapter->msix_entries, 3);
1017         }
1018
1019         if (err) {
1020                 /* MSI-X failed */
1021                 dev_err(&adapter->pdev->dev,
1022                         "Failed to initialize MSI-X interrupts.\n");
1023                 igbvf_reset_interrupt_capability(adapter);
1024         }
1025 }
1026
1027 /**
1028  * igbvf_request_msix - Initialize MSI-X interrupts
1029  *
1030  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1031  * kernel.
1032  **/
1033 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1034 {
1035         struct net_device *netdev = adapter->netdev;
1036         int err = 0, vector = 0;
1037
1038         if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1039                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1040                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1041         } else {
1042                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1043                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1044         }
1045
1046         err = request_irq(adapter->msix_entries[vector].vector,
1047                           igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1048                           netdev);
1049         if (err)
1050                 goto out;
1051
1052         adapter->tx_ring->itr_register = E1000_EITR(vector);
1053         adapter->tx_ring->itr_val = adapter->current_itr;
1054         vector++;
1055
1056         err = request_irq(adapter->msix_entries[vector].vector,
1057                           igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1058                           netdev);
1059         if (err)
1060                 goto out;
1061
1062         adapter->rx_ring->itr_register = E1000_EITR(vector);
1063         adapter->rx_ring->itr_val = adapter->current_itr;
1064         vector++;
1065
1066         err = request_irq(adapter->msix_entries[vector].vector,
1067                           igbvf_msix_other, 0, netdev->name, netdev);
1068         if (err)
1069                 goto out;
1070
1071         igbvf_configure_msix(adapter);
1072         return 0;
1073 out:
1074         return err;
1075 }
1076
1077 /**
1078  * igbvf_alloc_queues - Allocate memory for all rings
1079  * @adapter: board private structure to initialize
1080  **/
1081 static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1082 {
1083         struct net_device *netdev = adapter->netdev;
1084
1085         adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1086         if (!adapter->tx_ring)
1087                 return -ENOMEM;
1088
1089         adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1090         if (!adapter->rx_ring) {
1091                 kfree(adapter->tx_ring);
1092                 return -ENOMEM;
1093         }
1094
1095         netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1096
1097         return 0;
1098 }
1099
1100 /**
1101  * igbvf_request_irq - initialize interrupts
1102  *
1103  * Attempts to configure interrupts using the best available
1104  * capabilities of the hardware and kernel.
1105  **/
1106 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1107 {
1108         int err = -1;
1109
1110         /* igbvf supports msi-x only */
1111         if (adapter->msix_entries)
1112                 err = igbvf_request_msix(adapter);
1113
1114         if (!err)
1115                 return err;
1116
1117         dev_err(&adapter->pdev->dev,
1118                 "Unable to allocate interrupt, Error: %d\n", err);
1119
1120         return err;
1121 }
1122
1123 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1124 {
1125         struct net_device *netdev = adapter->netdev;
1126         int vector;
1127
1128         if (adapter->msix_entries) {
1129                 for (vector = 0; vector < 3; vector++)
1130                         free_irq(adapter->msix_entries[vector].vector, netdev);
1131         }
1132 }
1133
1134 /**
1135  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1136  **/
1137 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1138 {
1139         struct e1000_hw *hw = &adapter->hw;
1140
1141         ew32(EIMC, ~0);
1142
1143         if (adapter->msix_entries)
1144                 ew32(EIAC, 0);
1145 }
1146
1147 /**
1148  * igbvf_irq_enable - Enable default interrupt generation settings
1149  **/
1150 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1151 {
1152         struct e1000_hw *hw = &adapter->hw;
1153
1154         ew32(EIAC, adapter->eims_enable_mask);
1155         ew32(EIAM, adapter->eims_enable_mask);
1156         ew32(EIMS, adapter->eims_enable_mask);
1157 }
1158
1159 /**
1160  * igbvf_poll - NAPI Rx polling callback
1161  * @napi: struct associated with this polling callback
1162  * @budget: amount of packets driver is allowed to process this poll
1163  **/
1164 static int igbvf_poll(struct napi_struct *napi, int budget)
1165 {
1166         struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1167         struct igbvf_adapter *adapter = rx_ring->adapter;
1168         struct e1000_hw *hw = &adapter->hw;
1169         int work_done = 0;
1170
1171         igbvf_clean_rx_irq(adapter, &work_done, budget);
1172
1173         /* If not enough Rx work done, exit the polling mode */
1174         if (work_done < budget) {
1175                 napi_complete(napi);
1176
1177                 if (adapter->requested_itr & 3)
1178                         igbvf_set_itr(adapter);
1179
1180                 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1181                         ew32(EIMS, adapter->rx_ring->eims_value);
1182         }
1183
1184         return work_done;
1185 }
1186
1187 /**
1188  * igbvf_set_rlpml - set receive large packet maximum length
1189  * @adapter: board private structure
1190  *
1191  * Configure the maximum size of packets that will be received
1192  */
1193 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1194 {
1195         int max_frame_size;
1196         struct e1000_hw *hw = &adapter->hw;
1197
1198         max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1199         e1000_rlpml_set_vf(hw, max_frame_size);
1200 }
1201
1202 static int igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1203 {
1204         struct igbvf_adapter *adapter = netdev_priv(netdev);
1205         struct e1000_hw *hw = &adapter->hw;
1206
1207         if (hw->mac.ops.set_vfta(hw, vid, true)) {
1208                 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1209                 return -EINVAL;
1210         }
1211         set_bit(vid, adapter->active_vlans);
1212         return 0;
1213 }
1214
1215 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1216 {
1217         struct igbvf_adapter *adapter = netdev_priv(netdev);
1218         struct e1000_hw *hw = &adapter->hw;
1219
1220         if (hw->mac.ops.set_vfta(hw, vid, false)) {
1221                 dev_err(&adapter->pdev->dev,
1222                         "Failed to remove vlan id %d\n", vid);
1223                 return -EINVAL;
1224         }
1225         clear_bit(vid, adapter->active_vlans);
1226         return 0;
1227 }
1228
1229 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1230 {
1231         u16 vid;
1232
1233         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1234                 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1235 }
1236
1237 /**
1238  * igbvf_configure_tx - Configure Transmit Unit after Reset
1239  * @adapter: board private structure
1240  *
1241  * Configure the Tx unit of the MAC after a reset.
1242  **/
1243 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1244 {
1245         struct e1000_hw *hw = &adapter->hw;
1246         struct igbvf_ring *tx_ring = adapter->tx_ring;
1247         u64 tdba;
1248         u32 txdctl, dca_txctrl;
1249
1250         /* disable transmits */
1251         txdctl = er32(TXDCTL(0));
1252         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1253         e1e_flush();
1254         msleep(10);
1255
1256         /* Setup the HW Tx Head and Tail descriptor pointers */
1257         ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1258         tdba = tx_ring->dma;
1259         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1260         ew32(TDBAH(0), (tdba >> 32));
1261         ew32(TDH(0), 0);
1262         ew32(TDT(0), 0);
1263         tx_ring->head = E1000_TDH(0);
1264         tx_ring->tail = E1000_TDT(0);
1265
1266         /* Turn off Relaxed Ordering on head write-backs.  The writebacks
1267          * MUST be delivered in order or it will completely screw up
1268          * our bookeeping.
1269          */
1270         dca_txctrl = er32(DCA_TXCTRL(0));
1271         dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1272         ew32(DCA_TXCTRL(0), dca_txctrl);
1273
1274         /* enable transmits */
1275         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1276         ew32(TXDCTL(0), txdctl);
1277
1278         /* Setup Transmit Descriptor Settings for eop descriptor */
1279         adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1280
1281         /* enable Report Status bit */
1282         adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1283 }
1284
1285 /**
1286  * igbvf_setup_srrctl - configure the receive control registers
1287  * @adapter: Board private structure
1288  **/
1289 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1290 {
1291         struct e1000_hw *hw = &adapter->hw;
1292         u32 srrctl = 0;
1293
1294         srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1295                     E1000_SRRCTL_BSIZEHDR_MASK |
1296                     E1000_SRRCTL_BSIZEPKT_MASK);
1297
1298         /* Enable queue drop to avoid head of line blocking */
1299         srrctl |= E1000_SRRCTL_DROP_EN;
1300
1301         /* Setup buffer sizes */
1302         srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1303                   E1000_SRRCTL_BSIZEPKT_SHIFT;
1304
1305         if (adapter->rx_buffer_len < 2048) {
1306                 adapter->rx_ps_hdr_size = 0;
1307                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1308         } else {
1309                 adapter->rx_ps_hdr_size = 128;
1310                 srrctl |= adapter->rx_ps_hdr_size <<
1311                           E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1312                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1313         }
1314
1315         ew32(SRRCTL(0), srrctl);
1316 }
1317
1318 /**
1319  * igbvf_configure_rx - Configure Receive Unit after Reset
1320  * @adapter: board private structure
1321  *
1322  * Configure the Rx unit of the MAC after a reset.
1323  **/
1324 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1325 {
1326         struct e1000_hw *hw = &adapter->hw;
1327         struct igbvf_ring *rx_ring = adapter->rx_ring;
1328         u64 rdba;
1329         u32 rdlen, rxdctl;
1330
1331         /* disable receives */
1332         rxdctl = er32(RXDCTL(0));
1333         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1334         e1e_flush();
1335         msleep(10);
1336
1337         rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1338
1339         /*
1340          * Setup the HW Rx Head and Tail Descriptor Pointers and
1341          * the Base and Length of the Rx Descriptor Ring
1342          */
1343         rdba = rx_ring->dma;
1344         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1345         ew32(RDBAH(0), (rdba >> 32));
1346         ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1347         rx_ring->head = E1000_RDH(0);
1348         rx_ring->tail = E1000_RDT(0);
1349         ew32(RDH(0), 0);
1350         ew32(RDT(0), 0);
1351
1352         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1353         rxdctl &= 0xFFF00000;
1354         rxdctl |= IGBVF_RX_PTHRESH;
1355         rxdctl |= IGBVF_RX_HTHRESH << 8;
1356         rxdctl |= IGBVF_RX_WTHRESH << 16;
1357
1358         igbvf_set_rlpml(adapter);
1359
1360         /* enable receives */
1361         ew32(RXDCTL(0), rxdctl);
1362 }
1363
1364 /**
1365  * igbvf_set_multi - Multicast and Promiscuous mode set
1366  * @netdev: network interface device structure
1367  *
1368  * The set_multi entry point is called whenever the multicast address
1369  * list or the network interface flags are updated.  This routine is
1370  * responsible for configuring the hardware for proper multicast,
1371  * promiscuous mode, and all-multi behavior.
1372  **/
1373 static void igbvf_set_multi(struct net_device *netdev)
1374 {
1375         struct igbvf_adapter *adapter = netdev_priv(netdev);
1376         struct e1000_hw *hw = &adapter->hw;
1377         struct netdev_hw_addr *ha;
1378         u8  *mta_list = NULL;
1379         int i;
1380
1381         if (!netdev_mc_empty(netdev)) {
1382                 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
1383                 if (!mta_list) {
1384                         dev_err(&adapter->pdev->dev,
1385                                 "failed to allocate multicast filter list\n");
1386                         return;
1387                 }
1388         }
1389
1390         /* prepare a packed array of only addresses. */
1391         i = 0;
1392         netdev_for_each_mc_addr(ha, netdev)
1393                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1394
1395         hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1396         kfree(mta_list);
1397 }
1398
1399 /**
1400  * igbvf_configure - configure the hardware for Rx and Tx
1401  * @adapter: private board structure
1402  **/
1403 static void igbvf_configure(struct igbvf_adapter *adapter)
1404 {
1405         igbvf_set_multi(adapter->netdev);
1406
1407         igbvf_restore_vlan(adapter);
1408
1409         igbvf_configure_tx(adapter);
1410         igbvf_setup_srrctl(adapter);
1411         igbvf_configure_rx(adapter);
1412         igbvf_alloc_rx_buffers(adapter->rx_ring,
1413                                igbvf_desc_unused(adapter->rx_ring));
1414 }
1415
1416 /* igbvf_reset - bring the hardware into a known good state
1417  *
1418  * This function boots the hardware and enables some settings that
1419  * require a configuration cycle of the hardware - those cannot be
1420  * set/changed during runtime. After reset the device needs to be
1421  * properly configured for Rx, Tx etc.
1422  */
1423 static void igbvf_reset(struct igbvf_adapter *adapter)
1424 {
1425         struct e1000_mac_info *mac = &adapter->hw.mac;
1426         struct net_device *netdev = adapter->netdev;
1427         struct e1000_hw *hw = &adapter->hw;
1428
1429         /* Allow time for pending master requests to run */
1430         if (mac->ops.reset_hw(hw))
1431                 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1432
1433         mac->ops.init_hw(hw);
1434
1435         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1436                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1437                        netdev->addr_len);
1438                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1439                        netdev->addr_len);
1440         }
1441
1442         adapter->last_reset = jiffies;
1443 }
1444
1445 int igbvf_up(struct igbvf_adapter *adapter)
1446 {
1447         struct e1000_hw *hw = &adapter->hw;
1448
1449         /* hardware has been reset, we need to reload some things */
1450         igbvf_configure(adapter);
1451
1452         clear_bit(__IGBVF_DOWN, &adapter->state);
1453
1454         napi_enable(&adapter->rx_ring->napi);
1455         if (adapter->msix_entries)
1456                 igbvf_configure_msix(adapter);
1457
1458         /* Clear any pending interrupts. */
1459         er32(EICR);
1460         igbvf_irq_enable(adapter);
1461
1462         /* start the watchdog */
1463         hw->mac.get_link_status = 1;
1464         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1465
1466
1467         return 0;
1468 }
1469
1470 void igbvf_down(struct igbvf_adapter *adapter)
1471 {
1472         struct net_device *netdev = adapter->netdev;
1473         struct e1000_hw *hw = &adapter->hw;
1474         u32 rxdctl, txdctl;
1475
1476         /*
1477          * signal that we're down so the interrupt handler does not
1478          * reschedule our watchdog timer
1479          */
1480         set_bit(__IGBVF_DOWN, &adapter->state);
1481
1482         /* disable receives in the hardware */
1483         rxdctl = er32(RXDCTL(0));
1484         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1485
1486         netif_stop_queue(netdev);
1487
1488         /* disable transmits in the hardware */
1489         txdctl = er32(TXDCTL(0));
1490         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1491
1492         /* flush both disables and wait for them to finish */
1493         e1e_flush();
1494         msleep(10);
1495
1496         napi_disable(&adapter->rx_ring->napi);
1497
1498         igbvf_irq_disable(adapter);
1499
1500         del_timer_sync(&adapter->watchdog_timer);
1501
1502         netif_carrier_off(netdev);
1503
1504         /* record the stats before reset*/
1505         igbvf_update_stats(adapter);
1506
1507         adapter->link_speed = 0;
1508         adapter->link_duplex = 0;
1509
1510         igbvf_reset(adapter);
1511         igbvf_clean_tx_ring(adapter->tx_ring);
1512         igbvf_clean_rx_ring(adapter->rx_ring);
1513 }
1514
1515 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1516 {
1517         might_sleep();
1518         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1519                 msleep(1);
1520         igbvf_down(adapter);
1521         igbvf_up(adapter);
1522         clear_bit(__IGBVF_RESETTING, &adapter->state);
1523 }
1524
1525 /**
1526  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1527  * @adapter: board private structure to initialize
1528  *
1529  * igbvf_sw_init initializes the Adapter private data structure.
1530  * Fields are initialized based on PCI device information and
1531  * OS network device settings (MTU size).
1532  **/
1533 static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1534 {
1535         struct net_device *netdev = adapter->netdev;
1536         s32 rc;
1537
1538         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1539         adapter->rx_ps_hdr_size = 0;
1540         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1541         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1542
1543         adapter->tx_int_delay = 8;
1544         adapter->tx_abs_int_delay = 32;
1545         adapter->rx_int_delay = 0;
1546         adapter->rx_abs_int_delay = 8;
1547         adapter->requested_itr = 3;
1548         adapter->current_itr = IGBVF_START_ITR;
1549
1550         /* Set various function pointers */
1551         adapter->ei->init_ops(&adapter->hw);
1552
1553         rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1554         if (rc)
1555                 return rc;
1556
1557         rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1558         if (rc)
1559                 return rc;
1560
1561         igbvf_set_interrupt_capability(adapter);
1562
1563         if (igbvf_alloc_queues(adapter))
1564                 return -ENOMEM;
1565
1566         spin_lock_init(&adapter->tx_queue_lock);
1567
1568         /* Explicitly disable IRQ since the NIC can be in any state. */
1569         igbvf_irq_disable(adapter);
1570
1571         spin_lock_init(&adapter->stats_lock);
1572
1573         set_bit(__IGBVF_DOWN, &adapter->state);
1574         return 0;
1575 }
1576
1577 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1578 {
1579         struct e1000_hw *hw = &adapter->hw;
1580
1581         adapter->stats.last_gprc = er32(VFGPRC);
1582         adapter->stats.last_gorc = er32(VFGORC);
1583         adapter->stats.last_gptc = er32(VFGPTC);
1584         adapter->stats.last_gotc = er32(VFGOTC);
1585         adapter->stats.last_mprc = er32(VFMPRC);
1586         adapter->stats.last_gotlbc = er32(VFGOTLBC);
1587         adapter->stats.last_gptlbc = er32(VFGPTLBC);
1588         adapter->stats.last_gorlbc = er32(VFGORLBC);
1589         adapter->stats.last_gprlbc = er32(VFGPRLBC);
1590
1591         adapter->stats.base_gprc = er32(VFGPRC);
1592         adapter->stats.base_gorc = er32(VFGORC);
1593         adapter->stats.base_gptc = er32(VFGPTC);
1594         adapter->stats.base_gotc = er32(VFGOTC);
1595         adapter->stats.base_mprc = er32(VFMPRC);
1596         adapter->stats.base_gotlbc = er32(VFGOTLBC);
1597         adapter->stats.base_gptlbc = er32(VFGPTLBC);
1598         adapter->stats.base_gorlbc = er32(VFGORLBC);
1599         adapter->stats.base_gprlbc = er32(VFGPRLBC);
1600 }
1601
1602 /**
1603  * igbvf_open - Called when a network interface is made active
1604  * @netdev: network interface device structure
1605  *
1606  * Returns 0 on success, negative value on failure
1607  *
1608  * The open entry point is called when a network interface is made
1609  * active by the system (IFF_UP).  At this point all resources needed
1610  * for transmit and receive operations are allocated, the interrupt
1611  * handler is registered with the OS, the watchdog timer is started,
1612  * and the stack is notified that the interface is ready.
1613  **/
1614 static int igbvf_open(struct net_device *netdev)
1615 {
1616         struct igbvf_adapter *adapter = netdev_priv(netdev);
1617         struct e1000_hw *hw = &adapter->hw;
1618         int err;
1619
1620         /* disallow open during test */
1621         if (test_bit(__IGBVF_TESTING, &adapter->state))
1622                 return -EBUSY;
1623
1624         /* allocate transmit descriptors */
1625         err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1626         if (err)
1627                 goto err_setup_tx;
1628
1629         /* allocate receive descriptors */
1630         err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1631         if (err)
1632                 goto err_setup_rx;
1633
1634         /*
1635          * before we allocate an interrupt, we must be ready to handle it.
1636          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1637          * as soon as we call pci_request_irq, so we have to setup our
1638          * clean_rx handler before we do so.
1639          */
1640         igbvf_configure(adapter);
1641
1642         err = igbvf_request_irq(adapter);
1643         if (err)
1644                 goto err_req_irq;
1645
1646         /* From here on the code is the same as igbvf_up() */
1647         clear_bit(__IGBVF_DOWN, &adapter->state);
1648
1649         napi_enable(&adapter->rx_ring->napi);
1650
1651         /* clear any pending interrupts */
1652         er32(EICR);
1653
1654         igbvf_irq_enable(adapter);
1655
1656         /* start the watchdog */
1657         hw->mac.get_link_status = 1;
1658         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1659
1660         return 0;
1661
1662 err_req_irq:
1663         igbvf_free_rx_resources(adapter->rx_ring);
1664 err_setup_rx:
1665         igbvf_free_tx_resources(adapter->tx_ring);
1666 err_setup_tx:
1667         igbvf_reset(adapter);
1668
1669         return err;
1670 }
1671
1672 /**
1673  * igbvf_close - Disables a network interface
1674  * @netdev: network interface device structure
1675  *
1676  * Returns 0, this is not allowed to fail
1677  *
1678  * The close entry point is called when an interface is de-activated
1679  * by the OS.  The hardware is still under the drivers control, but
1680  * needs to be disabled.  A global MAC reset is issued to stop the
1681  * hardware, and all transmit and receive resources are freed.
1682  **/
1683 static int igbvf_close(struct net_device *netdev)
1684 {
1685         struct igbvf_adapter *adapter = netdev_priv(netdev);
1686
1687         WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1688         igbvf_down(adapter);
1689
1690         igbvf_free_irq(adapter);
1691
1692         igbvf_free_tx_resources(adapter->tx_ring);
1693         igbvf_free_rx_resources(adapter->rx_ring);
1694
1695         return 0;
1696 }
1697 /**
1698  * igbvf_set_mac - Change the Ethernet Address of the NIC
1699  * @netdev: network interface device structure
1700  * @p: pointer to an address structure
1701  *
1702  * Returns 0 on success, negative on failure
1703  **/
1704 static int igbvf_set_mac(struct net_device *netdev, void *p)
1705 {
1706         struct igbvf_adapter *adapter = netdev_priv(netdev);
1707         struct e1000_hw *hw = &adapter->hw;
1708         struct sockaddr *addr = p;
1709
1710         if (!is_valid_ether_addr(addr->sa_data))
1711                 return -EADDRNOTAVAIL;
1712
1713         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1714
1715         hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1716
1717         if (memcmp(addr->sa_data, hw->mac.addr, 6))
1718                 return -EADDRNOTAVAIL;
1719
1720         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1721         netdev->addr_assign_type &= ~NET_ADDR_RANDOM;
1722
1723         return 0;
1724 }
1725
1726 #define UPDATE_VF_COUNTER(reg, name)                                    \
1727         {                                                               \
1728                 u32 current_counter = er32(reg);                        \
1729                 if (current_counter < adapter->stats.last_##name)       \
1730                         adapter->stats.name += 0x100000000LL;           \
1731                 adapter->stats.last_##name = current_counter;           \
1732                 adapter->stats.name &= 0xFFFFFFFF00000000LL;            \
1733                 adapter->stats.name |= current_counter;                 \
1734         }
1735
1736 /**
1737  * igbvf_update_stats - Update the board statistics counters
1738  * @adapter: board private structure
1739 **/
1740 void igbvf_update_stats(struct igbvf_adapter *adapter)
1741 {
1742         struct e1000_hw *hw = &adapter->hw;
1743         struct pci_dev *pdev = adapter->pdev;
1744
1745         /*
1746          * Prevent stats update while adapter is being reset, link is down
1747          * or if the pci connection is down.
1748          */
1749         if (adapter->link_speed == 0)
1750                 return;
1751
1752         if (test_bit(__IGBVF_RESETTING, &adapter->state))
1753                 return;
1754
1755         if (pci_channel_offline(pdev))
1756                 return;
1757
1758         UPDATE_VF_COUNTER(VFGPRC, gprc);
1759         UPDATE_VF_COUNTER(VFGORC, gorc);
1760         UPDATE_VF_COUNTER(VFGPTC, gptc);
1761         UPDATE_VF_COUNTER(VFGOTC, gotc);
1762         UPDATE_VF_COUNTER(VFMPRC, mprc);
1763         UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1764         UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1765         UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1766         UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1767
1768         /* Fill out the OS statistics structure */
1769         adapter->net_stats.multicast = adapter->stats.mprc;
1770 }
1771
1772 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1773 {
1774         dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1775                  adapter->link_speed,
1776                  adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1777 }
1778
1779 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1780 {
1781         struct e1000_hw *hw = &adapter->hw;
1782         s32 ret_val = E1000_SUCCESS;
1783         bool link_active;
1784
1785         /* If interface is down, stay link down */
1786         if (test_bit(__IGBVF_DOWN, &adapter->state))
1787                 return false;
1788
1789         ret_val = hw->mac.ops.check_for_link(hw);
1790         link_active = !hw->mac.get_link_status;
1791
1792         /* if check for link returns error we will need to reset */
1793         if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1794                 schedule_work(&adapter->reset_task);
1795
1796         return link_active;
1797 }
1798
1799 /**
1800  * igbvf_watchdog - Timer Call-back
1801  * @data: pointer to adapter cast into an unsigned long
1802  **/
1803 static void igbvf_watchdog(unsigned long data)
1804 {
1805         struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1806
1807         /* Do the rest outside of interrupt context */
1808         schedule_work(&adapter->watchdog_task);
1809 }
1810
1811 static void igbvf_watchdog_task(struct work_struct *work)
1812 {
1813         struct igbvf_adapter *adapter = container_of(work,
1814                                                      struct igbvf_adapter,
1815                                                      watchdog_task);
1816         struct net_device *netdev = adapter->netdev;
1817         struct e1000_mac_info *mac = &adapter->hw.mac;
1818         struct igbvf_ring *tx_ring = adapter->tx_ring;
1819         struct e1000_hw *hw = &adapter->hw;
1820         u32 link;
1821         int tx_pending = 0;
1822
1823         link = igbvf_has_link(adapter);
1824
1825         if (link) {
1826                 if (!netif_carrier_ok(netdev)) {
1827                         mac->ops.get_link_up_info(&adapter->hw,
1828                                                   &adapter->link_speed,
1829                                                   &adapter->link_duplex);
1830                         igbvf_print_link_info(adapter);
1831
1832                         netif_carrier_on(netdev);
1833                         netif_wake_queue(netdev);
1834                 }
1835         } else {
1836                 if (netif_carrier_ok(netdev)) {
1837                         adapter->link_speed = 0;
1838                         adapter->link_duplex = 0;
1839                         dev_info(&adapter->pdev->dev, "Link is Down\n");
1840                         netif_carrier_off(netdev);
1841                         netif_stop_queue(netdev);
1842                 }
1843         }
1844
1845         if (netif_carrier_ok(netdev)) {
1846                 igbvf_update_stats(adapter);
1847         } else {
1848                 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1849                               tx_ring->count);
1850                 if (tx_pending) {
1851                         /*
1852                          * We've lost link, so the controller stops DMA,
1853                          * but we've got queued Tx work that's never going
1854                          * to get done, so reset controller to flush Tx.
1855                          * (Do the reset outside of interrupt context).
1856                          */
1857                         adapter->tx_timeout_count++;
1858                         schedule_work(&adapter->reset_task);
1859                 }
1860         }
1861
1862         /* Cause software interrupt to ensure Rx ring is cleaned */
1863         ew32(EICS, adapter->rx_ring->eims_value);
1864
1865         /* Reset the timer */
1866         if (!test_bit(__IGBVF_DOWN, &adapter->state))
1867                 mod_timer(&adapter->watchdog_timer,
1868                           round_jiffies(jiffies + (2 * HZ)));
1869 }
1870
1871 #define IGBVF_TX_FLAGS_CSUM             0x00000001
1872 #define IGBVF_TX_FLAGS_VLAN             0x00000002
1873 #define IGBVF_TX_FLAGS_TSO              0x00000004
1874 #define IGBVF_TX_FLAGS_IPV4             0x00000008
1875 #define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1876 #define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1877
1878 static int igbvf_tso(struct igbvf_adapter *adapter,
1879                      struct igbvf_ring *tx_ring,
1880                      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1881 {
1882         struct e1000_adv_tx_context_desc *context_desc;
1883         unsigned int i;
1884         int err;
1885         struct igbvf_buffer *buffer_info;
1886         u32 info = 0, tu_cmd = 0;
1887         u32 mss_l4len_idx, l4len;
1888         *hdr_len = 0;
1889
1890         if (skb_header_cloned(skb)) {
1891                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1892                 if (err) {
1893                         dev_err(&adapter->pdev->dev,
1894                                 "igbvf_tso returning an error\n");
1895                         return err;
1896                 }
1897         }
1898
1899         l4len = tcp_hdrlen(skb);
1900         *hdr_len += l4len;
1901
1902         if (skb->protocol == htons(ETH_P_IP)) {
1903                 struct iphdr *iph = ip_hdr(skb);
1904                 iph->tot_len = 0;
1905                 iph->check = 0;
1906                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1907                                                          iph->daddr, 0,
1908                                                          IPPROTO_TCP,
1909                                                          0);
1910         } else if (skb_is_gso_v6(skb)) {
1911                 ipv6_hdr(skb)->payload_len = 0;
1912                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1913                                                        &ipv6_hdr(skb)->daddr,
1914                                                        0, IPPROTO_TCP, 0);
1915         }
1916
1917         i = tx_ring->next_to_use;
1918
1919         buffer_info = &tx_ring->buffer_info[i];
1920         context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1921         /* VLAN MACLEN IPLEN */
1922         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1923                 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1924         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1925         *hdr_len += skb_network_offset(skb);
1926         info |= (skb_transport_header(skb) - skb_network_header(skb));
1927         *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1928         context_desc->vlan_macip_lens = cpu_to_le32(info);
1929
1930         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1931         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1932
1933         if (skb->protocol == htons(ETH_P_IP))
1934                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1935         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1936
1937         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1938
1939         /* MSS L4LEN IDX */
1940         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1941         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1942
1943         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1944         context_desc->seqnum_seed = 0;
1945
1946         buffer_info->time_stamp = jiffies;
1947         buffer_info->next_to_watch = i;
1948         buffer_info->dma = 0;
1949         i++;
1950         if (i == tx_ring->count)
1951                 i = 0;
1952
1953         tx_ring->next_to_use = i;
1954
1955         return true;
1956 }
1957
1958 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1959                                  struct igbvf_ring *tx_ring,
1960                                  struct sk_buff *skb, u32 tx_flags)
1961 {
1962         struct e1000_adv_tx_context_desc *context_desc;
1963         unsigned int i;
1964         struct igbvf_buffer *buffer_info;
1965         u32 info = 0, tu_cmd = 0;
1966
1967         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1968             (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1969                 i = tx_ring->next_to_use;
1970                 buffer_info = &tx_ring->buffer_info[i];
1971                 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1972
1973                 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1974                         info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1975
1976                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1977                 if (skb->ip_summed == CHECKSUM_PARTIAL)
1978                         info |= (skb_transport_header(skb) -
1979                                  skb_network_header(skb));
1980
1981
1982                 context_desc->vlan_macip_lens = cpu_to_le32(info);
1983
1984                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1985
1986                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1987                         switch (skb->protocol) {
1988                         case __constant_htons(ETH_P_IP):
1989                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1990                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
1991                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1992                                 break;
1993                         case __constant_htons(ETH_P_IPV6):
1994                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
1995                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1996                                 break;
1997                         default:
1998                                 break;
1999                         }
2000                 }
2001
2002                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2003                 context_desc->seqnum_seed = 0;
2004                 context_desc->mss_l4len_idx = 0;
2005
2006                 buffer_info->time_stamp = jiffies;
2007                 buffer_info->next_to_watch = i;
2008                 buffer_info->dma = 0;
2009                 i++;
2010                 if (i == tx_ring->count)
2011                         i = 0;
2012                 tx_ring->next_to_use = i;
2013
2014                 return true;
2015         }
2016
2017         return false;
2018 }
2019
2020 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2021 {
2022         struct igbvf_adapter *adapter = netdev_priv(netdev);
2023
2024         /* there is enough descriptors then we don't need to worry  */
2025         if (igbvf_desc_unused(adapter->tx_ring) >= size)
2026                 return 0;
2027
2028         netif_stop_queue(netdev);
2029
2030         smp_mb();
2031
2032         /* We need to check again just in case room has been made available */
2033         if (igbvf_desc_unused(adapter->tx_ring) < size)
2034                 return -EBUSY;
2035
2036         netif_wake_queue(netdev);
2037
2038         ++adapter->restart_queue;
2039         return 0;
2040 }
2041
2042 #define IGBVF_MAX_TXD_PWR       16
2043 #define IGBVF_MAX_DATA_PER_TXD  (1 << IGBVF_MAX_TXD_PWR)
2044
2045 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2046                                    struct igbvf_ring *tx_ring,
2047                                    struct sk_buff *skb,
2048                                    unsigned int first)
2049 {
2050         struct igbvf_buffer *buffer_info;
2051         struct pci_dev *pdev = adapter->pdev;
2052         unsigned int len = skb_headlen(skb);
2053         unsigned int count = 0, i;
2054         unsigned int f;
2055
2056         i = tx_ring->next_to_use;
2057
2058         buffer_info = &tx_ring->buffer_info[i];
2059         BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2060         buffer_info->length = len;
2061         /* set time_stamp *before* dma to help avoid a possible race */
2062         buffer_info->time_stamp = jiffies;
2063         buffer_info->next_to_watch = i;
2064         buffer_info->mapped_as_page = false;
2065         buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2066                                           DMA_TO_DEVICE);
2067         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2068                 goto dma_error;
2069
2070
2071         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2072                 const struct skb_frag_struct *frag;
2073
2074                 count++;
2075                 i++;
2076                 if (i == tx_ring->count)
2077                         i = 0;
2078
2079                 frag = &skb_shinfo(skb)->frags[f];
2080                 len = skb_frag_size(frag);
2081
2082                 buffer_info = &tx_ring->buffer_info[i];
2083                 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2084                 buffer_info->length = len;
2085                 buffer_info->time_stamp = jiffies;
2086                 buffer_info->next_to_watch = i;
2087                 buffer_info->mapped_as_page = true;
2088                 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2089                                                 DMA_TO_DEVICE);
2090                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2091                         goto dma_error;
2092         }
2093
2094         tx_ring->buffer_info[i].skb = skb;
2095         tx_ring->buffer_info[first].next_to_watch = i;
2096
2097         return ++count;
2098
2099 dma_error:
2100         dev_err(&pdev->dev, "TX DMA map failed\n");
2101
2102         /* clear timestamp and dma mappings for failed buffer_info mapping */
2103         buffer_info->dma = 0;
2104         buffer_info->time_stamp = 0;
2105         buffer_info->length = 0;
2106         buffer_info->next_to_watch = 0;
2107         buffer_info->mapped_as_page = false;
2108         if (count)
2109                 count--;
2110
2111         /* clear timestamp and dma mappings for remaining portion of packet */
2112         while (count--) {
2113                 if (i==0)
2114                         i += tx_ring->count;
2115                 i--;
2116                 buffer_info = &tx_ring->buffer_info[i];
2117                 igbvf_put_txbuf(adapter, buffer_info);
2118         }
2119
2120         return 0;
2121 }
2122
2123 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2124                                       struct igbvf_ring *tx_ring,
2125                                       int tx_flags, int count, u32 paylen,
2126                                       u8 hdr_len)
2127 {
2128         union e1000_adv_tx_desc *tx_desc = NULL;
2129         struct igbvf_buffer *buffer_info;
2130         u32 olinfo_status = 0, cmd_type_len;
2131         unsigned int i;
2132
2133         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2134                         E1000_ADVTXD_DCMD_DEXT);
2135
2136         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2137                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2138
2139         if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2140                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2141
2142                 /* insert tcp checksum */
2143                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2144
2145                 /* insert ip checksum */
2146                 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2147                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2148
2149         } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2150                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2151         }
2152
2153         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2154
2155         i = tx_ring->next_to_use;
2156         while (count--) {
2157                 buffer_info = &tx_ring->buffer_info[i];
2158                 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2159                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2160                 tx_desc->read.cmd_type_len =
2161                          cpu_to_le32(cmd_type_len | buffer_info->length);
2162                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2163                 i++;
2164                 if (i == tx_ring->count)
2165                         i = 0;
2166         }
2167
2168         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2169         /* Force memory writes to complete before letting h/w
2170          * know there are new descriptors to fetch.  (Only
2171          * applicable for weak-ordered memory model archs,
2172          * such as IA-64). */
2173         wmb();
2174
2175         tx_ring->next_to_use = i;
2176         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2177         /* we need this if more than one processor can write to our tail
2178          * at a time, it syncronizes IO on IA64/Altix systems */
2179         mmiowb();
2180 }
2181
2182 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2183                                              struct net_device *netdev,
2184                                              struct igbvf_ring *tx_ring)
2185 {
2186         struct igbvf_adapter *adapter = netdev_priv(netdev);
2187         unsigned int first, tx_flags = 0;
2188         u8 hdr_len = 0;
2189         int count = 0;
2190         int tso = 0;
2191
2192         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2193                 dev_kfree_skb_any(skb);
2194                 return NETDEV_TX_OK;
2195         }
2196
2197         if (skb->len <= 0) {
2198                 dev_kfree_skb_any(skb);
2199                 return NETDEV_TX_OK;
2200         }
2201
2202         /*
2203          * need: count + 4 desc gap to keep tail from touching
2204          *       + 2 desc gap to keep tail from touching head,
2205          *       + 1 desc for skb->data,
2206          *       + 1 desc for context descriptor,
2207          * head, otherwise try next time
2208          */
2209         if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2210                 /* this is a hard error */
2211                 return NETDEV_TX_BUSY;
2212         }
2213
2214         if (vlan_tx_tag_present(skb)) {
2215                 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2216                 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2217         }
2218
2219         if (skb->protocol == htons(ETH_P_IP))
2220                 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2221
2222         first = tx_ring->next_to_use;
2223
2224         tso = skb_is_gso(skb) ?
2225                 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2226         if (unlikely(tso < 0)) {
2227                 dev_kfree_skb_any(skb);
2228                 return NETDEV_TX_OK;
2229         }
2230
2231         if (tso)
2232                 tx_flags |= IGBVF_TX_FLAGS_TSO;
2233         else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2234                  (skb->ip_summed == CHECKSUM_PARTIAL))
2235                 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2236
2237         /*
2238          * count reflects descriptors mapped, if 0 then mapping error
2239          * has occurred and we need to rewind the descriptor queue
2240          */
2241         count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2242
2243         if (count) {
2244                 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2245                                    skb->len, hdr_len);
2246                 /* Make sure there is space in the ring for the next send. */
2247                 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2248         } else {
2249                 dev_kfree_skb_any(skb);
2250                 tx_ring->buffer_info[first].time_stamp = 0;
2251                 tx_ring->next_to_use = first;
2252         }
2253
2254         return NETDEV_TX_OK;
2255 }
2256
2257 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2258                                     struct net_device *netdev)
2259 {
2260         struct igbvf_adapter *adapter = netdev_priv(netdev);
2261         struct igbvf_ring *tx_ring;
2262
2263         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2264                 dev_kfree_skb_any(skb);
2265                 return NETDEV_TX_OK;
2266         }
2267
2268         tx_ring = &adapter->tx_ring[0];
2269
2270         return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2271 }
2272
2273 /**
2274  * igbvf_tx_timeout - Respond to a Tx Hang
2275  * @netdev: network interface device structure
2276  **/
2277 static void igbvf_tx_timeout(struct net_device *netdev)
2278 {
2279         struct igbvf_adapter *adapter = netdev_priv(netdev);
2280
2281         /* Do the reset outside of interrupt context */
2282         adapter->tx_timeout_count++;
2283         schedule_work(&adapter->reset_task);
2284 }
2285
2286 static void igbvf_reset_task(struct work_struct *work)
2287 {
2288         struct igbvf_adapter *adapter;
2289         adapter = container_of(work, struct igbvf_adapter, reset_task);
2290
2291         igbvf_reinit_locked(adapter);
2292 }
2293
2294 /**
2295  * igbvf_get_stats - Get System Network Statistics
2296  * @netdev: network interface device structure
2297  *
2298  * Returns the address of the device statistics structure.
2299  * The statistics are actually updated from the timer callback.
2300  **/
2301 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2302 {
2303         struct igbvf_adapter *adapter = netdev_priv(netdev);
2304
2305         /* only return the current stats */
2306         return &adapter->net_stats;
2307 }
2308
2309 /**
2310  * igbvf_change_mtu - Change the Maximum Transfer Unit
2311  * @netdev: network interface device structure
2312  * @new_mtu: new value for maximum frame size
2313  *
2314  * Returns 0 on success, negative on failure
2315  **/
2316 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2317 {
2318         struct igbvf_adapter *adapter = netdev_priv(netdev);
2319         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2320
2321         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2322                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2323                 return -EINVAL;
2324         }
2325
2326 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2327         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2328                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2329                 return -EINVAL;
2330         }
2331
2332         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2333                 msleep(1);
2334         /* igbvf_down has a dependency on max_frame_size */
2335         adapter->max_frame_size = max_frame;
2336         if (netif_running(netdev))
2337                 igbvf_down(adapter);
2338
2339         /*
2340          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2341          * means we reserve 2 more, this pushes us to allocate from the next
2342          * larger slab size.
2343          * i.e. RXBUFFER_2048 --> size-4096 slab
2344          * However with the new *_jumbo_rx* routines, jumbo receives will use
2345          * fragmented skbs
2346          */
2347
2348         if (max_frame <= 1024)
2349                 adapter->rx_buffer_len = 1024;
2350         else if (max_frame <= 2048)
2351                 adapter->rx_buffer_len = 2048;
2352         else
2353 #if (PAGE_SIZE / 2) > 16384
2354                 adapter->rx_buffer_len = 16384;
2355 #else
2356                 adapter->rx_buffer_len = PAGE_SIZE / 2;
2357 #endif
2358
2359
2360         /* adjust allocation if LPE protects us, and we aren't using SBP */
2361         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2362              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2363                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2364                                          ETH_FCS_LEN;
2365
2366         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2367                  netdev->mtu, new_mtu);
2368         netdev->mtu = new_mtu;
2369
2370         if (netif_running(netdev))
2371                 igbvf_up(adapter);
2372         else
2373                 igbvf_reset(adapter);
2374
2375         clear_bit(__IGBVF_RESETTING, &adapter->state);
2376
2377         return 0;
2378 }
2379
2380 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2381 {
2382         switch (cmd) {
2383         default:
2384                 return -EOPNOTSUPP;
2385         }
2386 }
2387
2388 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2389 {
2390         struct net_device *netdev = pci_get_drvdata(pdev);
2391         struct igbvf_adapter *adapter = netdev_priv(netdev);
2392 #ifdef CONFIG_PM
2393         int retval = 0;
2394 #endif
2395
2396         netif_device_detach(netdev);
2397
2398         if (netif_running(netdev)) {
2399                 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2400                 igbvf_down(adapter);
2401                 igbvf_free_irq(adapter);
2402         }
2403
2404 #ifdef CONFIG_PM
2405         retval = pci_save_state(pdev);
2406         if (retval)
2407                 return retval;
2408 #endif
2409
2410         pci_disable_device(pdev);
2411
2412         return 0;
2413 }
2414
2415 #ifdef CONFIG_PM
2416 static int igbvf_resume(struct pci_dev *pdev)
2417 {
2418         struct net_device *netdev = pci_get_drvdata(pdev);
2419         struct igbvf_adapter *adapter = netdev_priv(netdev);
2420         u32 err;
2421
2422         pci_restore_state(pdev);
2423         err = pci_enable_device_mem(pdev);
2424         if (err) {
2425                 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2426                 return err;
2427         }
2428
2429         pci_set_master(pdev);
2430
2431         if (netif_running(netdev)) {
2432                 err = igbvf_request_irq(adapter);
2433                 if (err)
2434                         return err;
2435         }
2436
2437         igbvf_reset(adapter);
2438
2439         if (netif_running(netdev))
2440                 igbvf_up(adapter);
2441
2442         netif_device_attach(netdev);
2443
2444         return 0;
2445 }
2446 #endif
2447
2448 static void igbvf_shutdown(struct pci_dev *pdev)
2449 {
2450         igbvf_suspend(pdev, PMSG_SUSPEND);
2451 }
2452
2453 #ifdef CONFIG_NET_POLL_CONTROLLER
2454 /*
2455  * Polling 'interrupt' - used by things like netconsole to send skbs
2456  * without having to re-enable interrupts. It's not called while
2457  * the interrupt routine is executing.
2458  */
2459 static void igbvf_netpoll(struct net_device *netdev)
2460 {
2461         struct igbvf_adapter *adapter = netdev_priv(netdev);
2462
2463         disable_irq(adapter->pdev->irq);
2464
2465         igbvf_clean_tx_irq(adapter->tx_ring);
2466
2467         enable_irq(adapter->pdev->irq);
2468 }
2469 #endif
2470
2471 /**
2472  * igbvf_io_error_detected - called when PCI error is detected
2473  * @pdev: Pointer to PCI device
2474  * @state: The current pci connection state
2475  *
2476  * This function is called after a PCI bus error affecting
2477  * this device has been detected.
2478  */
2479 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2480                                                 pci_channel_state_t state)
2481 {
2482         struct net_device *netdev = pci_get_drvdata(pdev);
2483         struct igbvf_adapter *adapter = netdev_priv(netdev);
2484
2485         netif_device_detach(netdev);
2486
2487         if (state == pci_channel_io_perm_failure)
2488                 return PCI_ERS_RESULT_DISCONNECT;
2489
2490         if (netif_running(netdev))
2491                 igbvf_down(adapter);
2492         pci_disable_device(pdev);
2493
2494         /* Request a slot slot reset. */
2495         return PCI_ERS_RESULT_NEED_RESET;
2496 }
2497
2498 /**
2499  * igbvf_io_slot_reset - called after the pci bus has been reset.
2500  * @pdev: Pointer to PCI device
2501  *
2502  * Restart the card from scratch, as if from a cold-boot. Implementation
2503  * resembles the first-half of the igbvf_resume routine.
2504  */
2505 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2506 {
2507         struct net_device *netdev = pci_get_drvdata(pdev);
2508         struct igbvf_adapter *adapter = netdev_priv(netdev);
2509
2510         if (pci_enable_device_mem(pdev)) {
2511                 dev_err(&pdev->dev,
2512                         "Cannot re-enable PCI device after reset.\n");
2513                 return PCI_ERS_RESULT_DISCONNECT;
2514         }
2515         pci_set_master(pdev);
2516
2517         igbvf_reset(adapter);
2518
2519         return PCI_ERS_RESULT_RECOVERED;
2520 }
2521
2522 /**
2523  * igbvf_io_resume - called when traffic can start flowing again.
2524  * @pdev: Pointer to PCI device
2525  *
2526  * This callback is called when the error recovery driver tells us that
2527  * its OK to resume normal operation. Implementation resembles the
2528  * second-half of the igbvf_resume routine.
2529  */
2530 static void igbvf_io_resume(struct pci_dev *pdev)
2531 {
2532         struct net_device *netdev = pci_get_drvdata(pdev);
2533         struct igbvf_adapter *adapter = netdev_priv(netdev);
2534
2535         if (netif_running(netdev)) {
2536                 if (igbvf_up(adapter)) {
2537                         dev_err(&pdev->dev,
2538                                 "can't bring device back up after reset\n");
2539                         return;
2540                 }
2541         }
2542
2543         netif_device_attach(netdev);
2544 }
2545
2546 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2547 {
2548         struct e1000_hw *hw = &adapter->hw;
2549         struct net_device *netdev = adapter->netdev;
2550         struct pci_dev *pdev = adapter->pdev;
2551
2552         if (hw->mac.type == e1000_vfadapt_i350)
2553                 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2554         else
2555                 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2556         dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2557 }
2558
2559 static int igbvf_set_features(struct net_device *netdev,
2560         netdev_features_t features)
2561 {
2562         struct igbvf_adapter *adapter = netdev_priv(netdev);
2563
2564         if (features & NETIF_F_RXCSUM)
2565                 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2566         else
2567                 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2568
2569         return 0;
2570 }
2571
2572 static const struct net_device_ops igbvf_netdev_ops = {
2573         .ndo_open                       = igbvf_open,
2574         .ndo_stop                       = igbvf_close,
2575         .ndo_start_xmit                 = igbvf_xmit_frame,
2576         .ndo_get_stats                  = igbvf_get_stats,
2577         .ndo_set_rx_mode                = igbvf_set_multi,
2578         .ndo_set_mac_address            = igbvf_set_mac,
2579         .ndo_change_mtu                 = igbvf_change_mtu,
2580         .ndo_do_ioctl                   = igbvf_ioctl,
2581         .ndo_tx_timeout                 = igbvf_tx_timeout,
2582         .ndo_vlan_rx_add_vid            = igbvf_vlan_rx_add_vid,
2583         .ndo_vlan_rx_kill_vid           = igbvf_vlan_rx_kill_vid,
2584 #ifdef CONFIG_NET_POLL_CONTROLLER
2585         .ndo_poll_controller            = igbvf_netpoll,
2586 #endif
2587         .ndo_set_features               = igbvf_set_features,
2588 };
2589
2590 /**
2591  * igbvf_probe - Device Initialization Routine
2592  * @pdev: PCI device information struct
2593  * @ent: entry in igbvf_pci_tbl
2594  *
2595  * Returns 0 on success, negative on failure
2596  *
2597  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2598  * The OS initialization, configuring of the adapter private structure,
2599  * and a hardware reset occur.
2600  **/
2601 static int __devinit igbvf_probe(struct pci_dev *pdev,
2602                                  const struct pci_device_id *ent)
2603 {
2604         struct net_device *netdev;
2605         struct igbvf_adapter *adapter;
2606         struct e1000_hw *hw;
2607         const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2608
2609         static int cards_found;
2610         int err, pci_using_dac;
2611
2612         err = pci_enable_device_mem(pdev);
2613         if (err)
2614                 return err;
2615
2616         pci_using_dac = 0;
2617         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2618         if (!err) {
2619                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2620                 if (!err)
2621                         pci_using_dac = 1;
2622         } else {
2623                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2624                 if (err) {
2625                         err = dma_set_coherent_mask(&pdev->dev,
2626                                                     DMA_BIT_MASK(32));
2627                         if (err) {
2628                                 dev_err(&pdev->dev, "No usable DMA "
2629                                         "configuration, aborting\n");
2630                                 goto err_dma;
2631                         }
2632                 }
2633         }
2634
2635         err = pci_request_regions(pdev, igbvf_driver_name);
2636         if (err)
2637                 goto err_pci_reg;
2638
2639         pci_set_master(pdev);
2640
2641         err = -ENOMEM;
2642         netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2643         if (!netdev)
2644                 goto err_alloc_etherdev;
2645
2646         SET_NETDEV_DEV(netdev, &pdev->dev);
2647
2648         pci_set_drvdata(pdev, netdev);
2649         adapter = netdev_priv(netdev);
2650         hw = &adapter->hw;
2651         adapter->netdev = netdev;
2652         adapter->pdev = pdev;
2653         adapter->ei = ei;
2654         adapter->pba = ei->pba;
2655         adapter->flags = ei->flags;
2656         adapter->hw.back = adapter;
2657         adapter->hw.mac.type = ei->mac;
2658         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2659
2660         /* PCI config space info */
2661
2662         hw->vendor_id = pdev->vendor;
2663         hw->device_id = pdev->device;
2664         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2665         hw->subsystem_device_id = pdev->subsystem_device;
2666         hw->revision_id = pdev->revision;
2667
2668         err = -EIO;
2669         adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2670                                       pci_resource_len(pdev, 0));
2671
2672         if (!adapter->hw.hw_addr)
2673                 goto err_ioremap;
2674
2675         if (ei->get_variants) {
2676                 err = ei->get_variants(adapter);
2677                 if (err)
2678                         goto err_ioremap;
2679         }
2680
2681         /* setup adapter struct */
2682         err = igbvf_sw_init(adapter);
2683         if (err)
2684                 goto err_sw_init;
2685
2686         /* construct the net_device struct */
2687         netdev->netdev_ops = &igbvf_netdev_ops;
2688
2689         igbvf_set_ethtool_ops(netdev);
2690         netdev->watchdog_timeo = 5 * HZ;
2691         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2692
2693         adapter->bd_number = cards_found++;
2694
2695         netdev->hw_features = NETIF_F_SG |
2696                            NETIF_F_IP_CSUM |
2697                            NETIF_F_IPV6_CSUM |
2698                            NETIF_F_TSO |
2699                            NETIF_F_TSO6 |
2700                            NETIF_F_RXCSUM;
2701
2702         netdev->features = netdev->hw_features |
2703                            NETIF_F_HW_VLAN_TX |
2704                            NETIF_F_HW_VLAN_RX |
2705                            NETIF_F_HW_VLAN_FILTER;
2706
2707         if (pci_using_dac)
2708                 netdev->features |= NETIF_F_HIGHDMA;
2709
2710         netdev->vlan_features |= NETIF_F_TSO;
2711         netdev->vlan_features |= NETIF_F_TSO6;
2712         netdev->vlan_features |= NETIF_F_IP_CSUM;
2713         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2714         netdev->vlan_features |= NETIF_F_SG;
2715
2716         /*reset the controller to put the device in a known good state */
2717         err = hw->mac.ops.reset_hw(hw);
2718         if (err) {
2719                 dev_info(&pdev->dev,
2720                          "PF still in reset state, assigning new address."
2721                          " Is the PF interface up?\n");
2722                 eth_hw_addr_random(netdev);
2723                 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2724                         netdev->addr_len);
2725         } else {
2726                 err = hw->mac.ops.read_mac_addr(hw);
2727                 if (err) {
2728                         dev_err(&pdev->dev, "Error reading MAC address\n");
2729                         goto err_hw_init;
2730                 }
2731                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2732                         netdev->addr_len);
2733         }
2734
2735         if (!is_valid_ether_addr(netdev->dev_addr)) {
2736                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
2737                         netdev->dev_addr);
2738                 err = -EIO;
2739                 goto err_hw_init;
2740         }
2741
2742         memcpy(netdev->perm_addr, netdev->dev_addr, netdev->addr_len);
2743
2744         setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2745                     (unsigned long) adapter);
2746
2747         INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2748         INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2749
2750         /* ring size defaults */
2751         adapter->rx_ring->count = 1024;
2752         adapter->tx_ring->count = 1024;
2753
2754         /* reset the hardware with the new settings */
2755         igbvf_reset(adapter);
2756
2757         strcpy(netdev->name, "eth%d");
2758         err = register_netdev(netdev);
2759         if (err)
2760                 goto err_hw_init;
2761
2762         /* tell the stack to leave us alone until igbvf_open() is called */
2763         netif_carrier_off(netdev);
2764         netif_stop_queue(netdev);
2765
2766         igbvf_print_device_info(adapter);
2767
2768         igbvf_initialize_last_counter_stats(adapter);
2769
2770         return 0;
2771
2772 err_hw_init:
2773         kfree(adapter->tx_ring);
2774         kfree(adapter->rx_ring);
2775 err_sw_init:
2776         igbvf_reset_interrupt_capability(adapter);
2777         iounmap(adapter->hw.hw_addr);
2778 err_ioremap:
2779         free_netdev(netdev);
2780 err_alloc_etherdev:
2781         pci_release_regions(pdev);
2782 err_pci_reg:
2783 err_dma:
2784         pci_disable_device(pdev);
2785         return err;
2786 }
2787
2788 /**
2789  * igbvf_remove - Device Removal Routine
2790  * @pdev: PCI device information struct
2791  *
2792  * igbvf_remove is called by the PCI subsystem to alert the driver
2793  * that it should release a PCI device.  The could be caused by a
2794  * Hot-Plug event, or because the driver is going to be removed from
2795  * memory.
2796  **/
2797 static void __devexit igbvf_remove(struct pci_dev *pdev)
2798 {
2799         struct net_device *netdev = pci_get_drvdata(pdev);
2800         struct igbvf_adapter *adapter = netdev_priv(netdev);
2801         struct e1000_hw *hw = &adapter->hw;
2802
2803         /*
2804          * The watchdog timer may be rescheduled, so explicitly
2805          * disable it from being rescheduled.
2806          */
2807         set_bit(__IGBVF_DOWN, &adapter->state);
2808         del_timer_sync(&adapter->watchdog_timer);
2809
2810         cancel_work_sync(&adapter->reset_task);
2811         cancel_work_sync(&adapter->watchdog_task);
2812
2813         unregister_netdev(netdev);
2814
2815         igbvf_reset_interrupt_capability(adapter);
2816
2817         /*
2818          * it is important to delete the napi struct prior to freeing the
2819          * rx ring so that you do not end up with null pointer refs
2820          */
2821         netif_napi_del(&adapter->rx_ring->napi);
2822         kfree(adapter->tx_ring);
2823         kfree(adapter->rx_ring);
2824
2825         iounmap(hw->hw_addr);
2826         if (hw->flash_address)
2827                 iounmap(hw->flash_address);
2828         pci_release_regions(pdev);
2829
2830         free_netdev(netdev);
2831
2832         pci_disable_device(pdev);
2833 }
2834
2835 /* PCI Error Recovery (ERS) */
2836 static const struct pci_error_handlers igbvf_err_handler = {
2837         .error_detected = igbvf_io_error_detected,
2838         .slot_reset = igbvf_io_slot_reset,
2839         .resume = igbvf_io_resume,
2840 };
2841
2842 static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2843         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2844         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2845         { } /* terminate list */
2846 };
2847 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2848
2849 /* PCI Device API Driver */
2850 static struct pci_driver igbvf_driver = {
2851         .name     = igbvf_driver_name,
2852         .id_table = igbvf_pci_tbl,
2853         .probe    = igbvf_probe,
2854         .remove   = __devexit_p(igbvf_remove),
2855 #ifdef CONFIG_PM
2856         /* Power Management Hooks */
2857         .suspend  = igbvf_suspend,
2858         .resume   = igbvf_resume,
2859 #endif
2860         .shutdown = igbvf_shutdown,
2861         .err_handler = &igbvf_err_handler
2862 };
2863
2864 /**
2865  * igbvf_init_module - Driver Registration Routine
2866  *
2867  * igbvf_init_module is the first routine called when the driver is
2868  * loaded. All it does is register with the PCI subsystem.
2869  **/
2870 static int __init igbvf_init_module(void)
2871 {
2872         int ret;
2873         pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2874         pr_info("%s\n", igbvf_copyright);
2875
2876         ret = pci_register_driver(&igbvf_driver);
2877
2878         return ret;
2879 }
2880 module_init(igbvf_init_module);
2881
2882 /**
2883  * igbvf_exit_module - Driver Exit Cleanup Routine
2884  *
2885  * igbvf_exit_module is called just before the driver is removed
2886  * from memory.
2887  **/
2888 static void __exit igbvf_exit_module(void)
2889 {
2890         pci_unregister_driver(&igbvf_driver);
2891 }
2892 module_exit(igbvf_exit_module);
2893
2894
2895 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2896 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2897 MODULE_LICENSE("GPL");
2898 MODULE_VERSION(DRV_VERSION);
2899
2900 /* netdev.c */