]> rtime.felk.cvut.cz Git - can-eth-gw-linux.git/blob - drivers/net/wireless/rt2x00/rt2800pci.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[can-eth-gw-linux.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
1 /*
2         Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3         Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4         Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5         Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6         Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7         Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8         Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9         Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10         <http://rt2x00.serialmonkey.com>
11
12         This program is free software; you can redistribute it and/or modify
13         it under the terms of the GNU General Public License as published by
14         the Free Software Foundation; either version 2 of the License, or
15         (at your option) any later version.
16
17         This program is distributed in the hope that it will be useful,
18         but WITHOUT ANY WARRANTY; without even the implied warranty of
19         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20         GNU General Public License for more details.
21
22         You should have received a copy of the GNU General Public License
23         along with this program; if not, write to the
24         Free Software Foundation, Inc.,
25         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  */
27
28 /*
29         Module: rt2800pci
30         Abstract: rt2800pci device specific routines.
31         Supported chipsets: RT2800E & RT2800ED.
32  */
33
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
42
43 #include "rt2x00.h"
44 #include "rt2x00pci.h"
45 #include "rt2x00soc.h"
46 #include "rt2800lib.h"
47 #include "rt2800.h"
48 #include "rt2800pci.h"
49
50 /*
51  * Allow hardware encryption to be disabled.
52  */
53 static bool modparam_nohwcrypt = false;
54 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
55 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
56
57 static bool rt2800pci_hwcrypt_disabled(struct rt2x00_dev *rt2x00dev)
58 {
59         return modparam_nohwcrypt;
60 }
61
62 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
63 {
64         unsigned int i;
65         u32 reg;
66
67         /*
68          * SOC devices don't support MCU requests.
69          */
70         if (rt2x00_is_soc(rt2x00dev))
71                 return;
72
73         for (i = 0; i < 200; i++) {
74                 rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
75
76                 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
77                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
78                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
79                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
80                         break;
81
82                 udelay(REGISTER_BUSY_DELAY);
83         }
84
85         if (i == 200)
86                 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
87
88         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
89         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
90 }
91
92 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
93 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
94 {
95         void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
96
97         memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
98
99         iounmap(base_addr);
100 }
101 #else
102 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
103 {
104 }
105 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
106
107 #ifdef CONFIG_PCI
108 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
109 {
110         struct rt2x00_dev *rt2x00dev = eeprom->data;
111         u32 reg;
112
113         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
114
115         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
116         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
117         eeprom->reg_data_clock =
118             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
119         eeprom->reg_chip_select =
120             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
121 }
122
123 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
124 {
125         struct rt2x00_dev *rt2x00dev = eeprom->data;
126         u32 reg = 0;
127
128         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
129         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
130         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
131                            !!eeprom->reg_data_clock);
132         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
133                            !!eeprom->reg_chip_select);
134
135         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
136 }
137
138 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
139 {
140         struct eeprom_93cx6 eeprom;
141         u32 reg;
142
143         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
144
145         eeprom.data = rt2x00dev;
146         eeprom.register_read = rt2800pci_eepromregister_read;
147         eeprom.register_write = rt2800pci_eepromregister_write;
148         switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
149         {
150         case 0:
151                 eeprom.width = PCI_EEPROM_WIDTH_93C46;
152                 break;
153         case 1:
154                 eeprom.width = PCI_EEPROM_WIDTH_93C66;
155                 break;
156         default:
157                 eeprom.width = PCI_EEPROM_WIDTH_93C86;
158                 break;
159         }
160         eeprom.reg_data_in = 0;
161         eeprom.reg_data_out = 0;
162         eeprom.reg_data_clock = 0;
163         eeprom.reg_chip_select = 0;
164
165         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
166                                EEPROM_SIZE / sizeof(u16));
167 }
168
169 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
170 {
171         return rt2800_efuse_detect(rt2x00dev);
172 }
173
174 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
175 {
176         rt2800_read_eeprom_efuse(rt2x00dev);
177 }
178 #else
179 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
180 {
181 }
182
183 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
184 {
185         return 0;
186 }
187
188 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
189 {
190 }
191 #endif /* CONFIG_PCI */
192
193 /*
194  * Queue handlers.
195  */
196 static void rt2800pci_start_queue(struct data_queue *queue)
197 {
198         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
199         u32 reg;
200
201         switch (queue->qid) {
202         case QID_RX:
203                 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
204                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
205                 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
206                 break;
207         case QID_BEACON:
208                 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
209                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
210                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
211                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
212                 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
213
214                 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
215                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
216                 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
217                 break;
218         default:
219                 break;
220         }
221 }
222
223 static void rt2800pci_kick_queue(struct data_queue *queue)
224 {
225         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
226         struct queue_entry *entry;
227
228         switch (queue->qid) {
229         case QID_AC_VO:
230         case QID_AC_VI:
231         case QID_AC_BE:
232         case QID_AC_BK:
233                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
234                 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
235                                          entry->entry_idx);
236                 break;
237         case QID_MGMT:
238                 entry = rt2x00queue_get_entry(queue, Q_INDEX);
239                 rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5),
240                                          entry->entry_idx);
241                 break;
242         default:
243                 break;
244         }
245 }
246
247 static void rt2800pci_stop_queue(struct data_queue *queue)
248 {
249         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
250         u32 reg;
251
252         switch (queue->qid) {
253         case QID_RX:
254                 rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
255                 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
256                 rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
257                 break;
258         case QID_BEACON:
259                 rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
260                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
261                 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
262                 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
263                 rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
264
265                 rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
266                 rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
267                 rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
268
269                 /*
270                  * Wait for current invocation to finish. The tasklet
271                  * won't be scheduled anymore afterwards since we disabled
272                  * the TBTT and PRE TBTT timer.
273                  */
274                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
275                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
276
277                 break;
278         default:
279                 break;
280         }
281 }
282
283 /*
284  * Firmware functions
285  */
286 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
287 {
288         /*
289          * Chip rt3290 use specific 4KB firmware named rt3290.bin.
290          */
291         if (rt2x00_rt(rt2x00dev, RT3290))
292                 return FIRMWARE_RT3290;
293         else
294                 return FIRMWARE_RT2860;
295 }
296
297 static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
298                                     const u8 *data, const size_t len)
299 {
300         u32 reg;
301
302         /*
303          * enable Host program ram write selection
304          */
305         reg = 0;
306         rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
307         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
308
309         /*
310          * Write firmware to device.
311          */
312         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
313                                       data, len);
314
315         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
316         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
317
318         rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
319         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
320
321         return 0;
322 }
323
324 /*
325  * Initialization functions.
326  */
327 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
328 {
329         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
330         u32 word;
331
332         if (entry->queue->qid == QID_RX) {
333                 rt2x00_desc_read(entry_priv->desc, 1, &word);
334
335                 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
336         } else {
337                 rt2x00_desc_read(entry_priv->desc, 1, &word);
338
339                 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
340         }
341 }
342
343 static void rt2800pci_clear_entry(struct queue_entry *entry)
344 {
345         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
346         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
347         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
348         u32 word;
349
350         if (entry->queue->qid == QID_RX) {
351                 rt2x00_desc_read(entry_priv->desc, 0, &word);
352                 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
353                 rt2x00_desc_write(entry_priv->desc, 0, word);
354
355                 rt2x00_desc_read(entry_priv->desc, 1, &word);
356                 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
357                 rt2x00_desc_write(entry_priv->desc, 1, word);
358
359                 /*
360                  * Set RX IDX in register to inform hardware that we have
361                  * handled this entry and it is available for reuse again.
362                  */
363                 rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
364                                       entry->entry_idx);
365         } else {
366                 rt2x00_desc_read(entry_priv->desc, 1, &word);
367                 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
368                 rt2x00_desc_write(entry_priv->desc, 1, word);
369         }
370 }
371
372 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
373 {
374         struct queue_entry_priv_pci *entry_priv;
375
376         /*
377          * Initialize registers.
378          */
379         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
380         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
381         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0,
382                                  rt2x00dev->tx[0].limit);
383         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
384         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
385
386         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
387         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
388         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1,
389                                  rt2x00dev->tx[1].limit);
390         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
391         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
392
393         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
394         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
395         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2,
396                                  rt2x00dev->tx[2].limit);
397         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
398         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
399
400         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
401         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
402         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3,
403                                  rt2x00dev->tx[3].limit);
404         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
405         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
406
407         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR4, 0);
408         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT4, 0);
409         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX4, 0);
410         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX4, 0);
411
412         rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR5, 0);
413         rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT5, 0);
414         rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX5, 0);
415         rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX5, 0);
416
417         entry_priv = rt2x00dev->rx->entries[0].priv_data;
418         rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
419         rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT,
420                                  rt2x00dev->rx[0].limit);
421         rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
422                                  rt2x00dev->rx[0].limit - 1);
423         rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
424
425         rt2800_disable_wpdma(rt2x00dev);
426
427         rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
428
429         return 0;
430 }
431
432 /*
433  * Device state switch handlers.
434  */
435 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
436                                  enum dev_state state)
437 {
438         u32 reg;
439         unsigned long flags;
440
441         /*
442          * When interrupts are being enabled, the interrupt registers
443          * should clear the register to assure a clean state.
444          */
445         if (state == STATE_RADIO_IRQ_ON) {
446                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
447                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
448         }
449
450         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
451         reg = 0;
452         if (state == STATE_RADIO_IRQ_ON) {
453                 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
454                 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
455                 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
456                 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
457                 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
458         }
459         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
460         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
461
462         if (state == STATE_RADIO_IRQ_OFF) {
463                 /*
464                  * Wait for possibly running tasklets to finish.
465                  */
466                 tasklet_kill(&rt2x00dev->txstatus_tasklet);
467                 tasklet_kill(&rt2x00dev->rxdone_tasklet);
468                 tasklet_kill(&rt2x00dev->autowake_tasklet);
469                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
470                 tasklet_kill(&rt2x00dev->pretbtt_tasklet);
471         }
472 }
473
474 static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
475 {
476         u32 reg;
477
478         /*
479          * Reset DMA indexes
480          */
481         rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
482         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
483         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
484         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
485         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
486         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
487         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
488         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
489         rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
490
491         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
492         rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
493
494         if (rt2x00_is_pcie(rt2x00dev) &&
495             (rt2x00_rt(rt2x00dev, RT3572) ||
496              rt2x00_rt(rt2x00dev, RT5390) ||
497              rt2x00_rt(rt2x00dev, RT5392))) {
498                 rt2x00pci_register_read(rt2x00dev, AUX_CTRL, &reg);
499                 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
500                 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
501                 rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg);
502         }
503
504         rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
505
506         reg = 0;
507         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
508         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
509         rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
510
511         rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
512
513         return 0;
514 }
515
516 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
517 {
518         int retval;
519
520         /* Wait for DMA, ignore error until we initialize queues. */
521         rt2800_wait_wpdma_ready(rt2x00dev);
522
523         if (unlikely(rt2800pci_init_queues(rt2x00dev)))
524                 return -EIO;
525
526         retval = rt2800_enable_radio(rt2x00dev);
527         if (retval)
528                 return retval;
529
530         /* After resume MCU_BOOT_SIGNAL will trash these. */
531         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
532         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
533
534         rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02);
535         rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF);
536
537         rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0);
538         rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
539
540         return retval;
541 }
542
543 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
544 {
545         if (rt2x00_is_soc(rt2x00dev)) {
546                 rt2800_disable_radio(rt2x00dev);
547                 rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
548                 rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
549         }
550 }
551
552 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
553                                enum dev_state state)
554 {
555         if (state == STATE_AWAKE) {
556                 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
557                                    0, 0x02);
558                 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
559         } else if (state == STATE_SLEEP) {
560                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
561                                          0xffffffff);
562                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID,
563                                          0xffffffff);
564                 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
565                                    0xff, 0x01);
566         }
567
568         return 0;
569 }
570
571 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
572                                       enum dev_state state)
573 {
574         int retval = 0;
575
576         switch (state) {
577         case STATE_RADIO_ON:
578                 retval = rt2800pci_enable_radio(rt2x00dev);
579                 break;
580         case STATE_RADIO_OFF:
581                 /*
582                  * After the radio has been disabled, the device should
583                  * be put to sleep for powersaving.
584                  */
585                 rt2800pci_disable_radio(rt2x00dev);
586                 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
587                 break;
588         case STATE_RADIO_IRQ_ON:
589         case STATE_RADIO_IRQ_OFF:
590                 rt2800pci_toggle_irq(rt2x00dev, state);
591                 break;
592         case STATE_DEEP_SLEEP:
593         case STATE_SLEEP:
594         case STATE_STANDBY:
595         case STATE_AWAKE:
596                 retval = rt2800pci_set_state(rt2x00dev, state);
597                 break;
598         default:
599                 retval = -ENOTSUPP;
600                 break;
601         }
602
603         if (unlikely(retval))
604                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
605                       state, retval);
606
607         return retval;
608 }
609
610 /*
611  * TX descriptor initialization
612  */
613 static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
614 {
615         return (__le32 *) entry->skb->data;
616 }
617
618 static void rt2800pci_write_tx_desc(struct queue_entry *entry,
619                                     struct txentry_desc *txdesc)
620 {
621         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
622         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
623         __le32 *txd = entry_priv->desc;
624         u32 word;
625
626         /*
627          * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
628          * must contains a TXWI structure + 802.11 header + padding + 802.11
629          * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
630          * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
631          * data. It means that LAST_SEC0 is always 0.
632          */
633
634         /*
635          * Initialize TX descriptor
636          */
637         word = 0;
638         rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
639         rt2x00_desc_write(txd, 0, word);
640
641         word = 0;
642         rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
643         rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
644                            !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
645         rt2x00_set_field32(&word, TXD_W1_BURST,
646                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
647         rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
648         rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
649         rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
650         rt2x00_desc_write(txd, 1, word);
651
652         word = 0;
653         rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
654                            skbdesc->skb_dma + TXWI_DESC_SIZE);
655         rt2x00_desc_write(txd, 2, word);
656
657         word = 0;
658         rt2x00_set_field32(&word, TXD_W3_WIV,
659                            !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
660         rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
661         rt2x00_desc_write(txd, 3, word);
662
663         /*
664          * Register descriptor details in skb frame descriptor.
665          */
666         skbdesc->desc = txd;
667         skbdesc->desc_len = TXD_DESC_SIZE;
668 }
669
670 /*
671  * RX control handlers
672  */
673 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
674                                   struct rxdone_entry_desc *rxdesc)
675 {
676         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
677         __le32 *rxd = entry_priv->desc;
678         u32 word;
679
680         rt2x00_desc_read(rxd, 3, &word);
681
682         if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
683                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
684
685         /*
686          * Unfortunately we don't know the cipher type used during
687          * decryption. This prevents us from correct providing
688          * correct statistics through debugfs.
689          */
690         rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
691
692         if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
693                 /*
694                  * Hardware has stripped IV/EIV data from 802.11 frame during
695                  * decryption. Unfortunately the descriptor doesn't contain
696                  * any fields with the EIV/IV data either, so they can't
697                  * be restored by rt2x00lib.
698                  */
699                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
700
701                 /*
702                  * The hardware has already checked the Michael Mic and has
703                  * stripped it from the frame. Signal this to mac80211.
704                  */
705                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
706
707                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
708                         rxdesc->flags |= RX_FLAG_DECRYPTED;
709                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
710                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
711         }
712
713         if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
714                 rxdesc->dev_flags |= RXDONE_MY_BSS;
715
716         if (rt2x00_get_field32(word, RXD_W3_L2PAD))
717                 rxdesc->dev_flags |= RXDONE_L2PAD;
718
719         /*
720          * Process the RXWI structure that is at the start of the buffer.
721          */
722         rt2800_process_rxwi(entry, rxdesc);
723 }
724
725 /*
726  * Interrupt functions.
727  */
728 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
729 {
730         struct ieee80211_conf conf = { .flags = 0 };
731         struct rt2x00lib_conf libconf = { .conf = &conf };
732
733         rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
734 }
735
736 static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
737 {
738         struct data_queue *queue;
739         struct queue_entry *entry;
740         u32 status;
741         u8 qid;
742         int max_tx_done = 16;
743
744         while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
745                 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
746                 if (unlikely(qid >= QID_RX)) {
747                         /*
748                          * Unknown queue, this shouldn't happen. Just drop
749                          * this tx status.
750                          */
751                         WARNING(rt2x00dev, "Got TX status report with "
752                                            "unexpected pid %u, dropping\n", qid);
753                         break;
754                 }
755
756                 queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
757                 if (unlikely(queue == NULL)) {
758                         /*
759                          * The queue is NULL, this shouldn't happen. Stop
760                          * processing here and drop the tx status
761                          */
762                         WARNING(rt2x00dev, "Got TX status for an unavailable "
763                                            "queue %u, dropping\n", qid);
764                         break;
765                 }
766
767                 if (unlikely(rt2x00queue_empty(queue))) {
768                         /*
769                          * The queue is empty. Stop processing here
770                          * and drop the tx status.
771                          */
772                         WARNING(rt2x00dev, "Got TX status for an empty "
773                                            "queue %u, dropping\n", qid);
774                         break;
775                 }
776
777                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
778                 rt2800_txdone_entry(entry, status, rt2800pci_get_txwi(entry));
779
780                 if (--max_tx_done == 0)
781                         break;
782         }
783
784         return !max_tx_done;
785 }
786
787 static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
788                                               struct rt2x00_field32 irq_field)
789 {
790         u32 reg;
791
792         /*
793          * Enable a single interrupt. The interrupt mask register
794          * access needs locking.
795          */
796         spin_lock_irq(&rt2x00dev->irqmask_lock);
797         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
798         rt2x00_set_field32(&reg, irq_field, 1);
799         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
800         spin_unlock_irq(&rt2x00dev->irqmask_lock);
801 }
802
803 static void rt2800pci_txstatus_tasklet(unsigned long data)
804 {
805         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
806         if (rt2800pci_txdone(rt2x00dev))
807                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
808
809         /*
810          * No need to enable the tx status interrupt here as we always
811          * leave it enabled to minimize the possibility of a tx status
812          * register overflow. See comment in interrupt handler.
813          */
814 }
815
816 static void rt2800pci_pretbtt_tasklet(unsigned long data)
817 {
818         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
819         rt2x00lib_pretbtt(rt2x00dev);
820         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
821                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
822 }
823
824 static void rt2800pci_tbtt_tasklet(unsigned long data)
825 {
826         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
827         struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
828         u32 reg;
829
830         rt2x00lib_beacondone(rt2x00dev);
831
832         if (rt2x00dev->intf_ap_count) {
833                 /*
834                  * The rt2800pci hardware tbtt timer is off by 1us per tbtt
835                  * causing beacon skew and as a result causing problems with
836                  * some powersaving clients over time. Shorten the beacon
837                  * interval every 64 beacons by 64us to mitigate this effect.
838                  */
839                 if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
840                         rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
841                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
842                                            (rt2x00dev->beacon_int * 16) - 1);
843                         rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
844                 } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
845                         rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
846                         rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
847                                            (rt2x00dev->beacon_int * 16));
848                         rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
849                 }
850                 drv_data->tbtt_tick++;
851                 drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
852         }
853
854         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
855                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
856 }
857
858 static void rt2800pci_rxdone_tasklet(unsigned long data)
859 {
860         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
861         if (rt2x00pci_rxdone(rt2x00dev))
862                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
863         else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
864                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
865 }
866
867 static void rt2800pci_autowake_tasklet(unsigned long data)
868 {
869         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
870         rt2800pci_wakeup(rt2x00dev);
871         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
872                 rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
873 }
874
875 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
876 {
877         u32 status;
878         int i;
879
880         /*
881          * The TX_FIFO_STATUS interrupt needs special care. We should
882          * read TX_STA_FIFO but we should do it immediately as otherwise
883          * the register can overflow and we would lose status reports.
884          *
885          * Hence, read the TX_STA_FIFO register and copy all tx status
886          * reports into a kernel FIFO which is handled in the txstatus
887          * tasklet. We use a tasklet to process the tx status reports
888          * because we can schedule the tasklet multiple times (when the
889          * interrupt fires again during tx status processing).
890          *
891          * Furthermore we don't disable the TX_FIFO_STATUS
892          * interrupt here but leave it enabled so that the TX_STA_FIFO
893          * can also be read while the tx status tasklet gets executed.
894          *
895          * Since we have only one producer and one consumer we don't
896          * need to lock the kfifo.
897          */
898         for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
899                 rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status);
900
901                 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
902                         break;
903
904                 if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
905                         WARNING(rt2x00dev, "TX status FIFO overrun,"
906                                 "drop tx status report.\n");
907                         break;
908                 }
909         }
910
911         /* Schedule the tasklet for processing the tx status. */
912         tasklet_schedule(&rt2x00dev->txstatus_tasklet);
913 }
914
915 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
916 {
917         struct rt2x00_dev *rt2x00dev = dev_instance;
918         u32 reg, mask;
919
920         /* Read status and ACK all interrupts */
921         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
922         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
923
924         if (!reg)
925                 return IRQ_NONE;
926
927         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
928                 return IRQ_HANDLED;
929
930         /*
931          * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
932          * for interrupts and interrupt masks we can just use the value of
933          * INT_SOURCE_CSR to create the interrupt mask.
934          */
935         mask = ~reg;
936
937         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
938                 rt2800pci_txstatus_interrupt(rt2x00dev);
939                 /*
940                  * Never disable the TX_FIFO_STATUS interrupt.
941                  */
942                 rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
943         }
944
945         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
946                 tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
947
948         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
949                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
950
951         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
952                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
953
954         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
955                 tasklet_schedule(&rt2x00dev->autowake_tasklet);
956
957         /*
958          * Disable all interrupts for which a tasklet was scheduled right now,
959          * the tasklet will reenable the appropriate interrupts.
960          */
961         spin_lock(&rt2x00dev->irqmask_lock);
962         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
963         reg &= mask;
964         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
965         spin_unlock(&rt2x00dev->irqmask_lock);
966
967         return IRQ_HANDLED;
968 }
969
970 /*
971  * Device probe functions.
972  */
973 static void rt2800pci_read_eeprom(struct rt2x00_dev *rt2x00dev)
974 {
975         if (rt2x00_is_soc(rt2x00dev))
976                 rt2800pci_read_eeprom_soc(rt2x00dev);
977         else if (rt2800pci_efuse_detect(rt2x00dev))
978                 rt2800pci_read_eeprom_efuse(rt2x00dev);
979         else
980                 rt2800pci_read_eeprom_pci(rt2x00dev);
981 }
982
983 static const struct ieee80211_ops rt2800pci_mac80211_ops = {
984         .tx                     = rt2x00mac_tx,
985         .start                  = rt2x00mac_start,
986         .stop                   = rt2x00mac_stop,
987         .add_interface          = rt2x00mac_add_interface,
988         .remove_interface       = rt2x00mac_remove_interface,
989         .config                 = rt2x00mac_config,
990         .configure_filter       = rt2x00mac_configure_filter,
991         .set_key                = rt2x00mac_set_key,
992         .sw_scan_start          = rt2x00mac_sw_scan_start,
993         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
994         .get_stats              = rt2x00mac_get_stats,
995         .get_tkip_seq           = rt2800_get_tkip_seq,
996         .set_rts_threshold      = rt2800_set_rts_threshold,
997         .sta_add                = rt2x00mac_sta_add,
998         .sta_remove             = rt2x00mac_sta_remove,
999         .bss_info_changed       = rt2x00mac_bss_info_changed,
1000         .conf_tx                = rt2800_conf_tx,
1001         .get_tsf                = rt2800_get_tsf,
1002         .rfkill_poll            = rt2x00mac_rfkill_poll,
1003         .ampdu_action           = rt2800_ampdu_action,
1004         .flush                  = rt2x00mac_flush,
1005         .get_survey             = rt2800_get_survey,
1006         .get_ringparam          = rt2x00mac_get_ringparam,
1007         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1008 };
1009
1010 static const struct rt2800_ops rt2800pci_rt2800_ops = {
1011         .register_read          = rt2x00pci_register_read,
1012         .register_read_lock     = rt2x00pci_register_read, /* same for PCI */
1013         .register_write         = rt2x00pci_register_write,
1014         .register_write_lock    = rt2x00pci_register_write, /* same for PCI */
1015         .register_multiread     = rt2x00pci_register_multiread,
1016         .register_multiwrite    = rt2x00pci_register_multiwrite,
1017         .regbusy_read           = rt2x00pci_regbusy_read,
1018         .read_eeprom            = rt2800pci_read_eeprom,
1019         .hwcrypt_disabled       = rt2800pci_hwcrypt_disabled,
1020         .drv_write_firmware     = rt2800pci_write_firmware,
1021         .drv_init_registers     = rt2800pci_init_registers,
1022         .drv_get_txwi           = rt2800pci_get_txwi,
1023 };
1024
1025 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
1026         .irq_handler            = rt2800pci_interrupt,
1027         .txstatus_tasklet       = rt2800pci_txstatus_tasklet,
1028         .pretbtt_tasklet        = rt2800pci_pretbtt_tasklet,
1029         .tbtt_tasklet           = rt2800pci_tbtt_tasklet,
1030         .rxdone_tasklet         = rt2800pci_rxdone_tasklet,
1031         .autowake_tasklet       = rt2800pci_autowake_tasklet,
1032         .probe_hw               = rt2800_probe_hw,
1033         .get_firmware_name      = rt2800pci_get_firmware_name,
1034         .check_firmware         = rt2800_check_firmware,
1035         .load_firmware          = rt2800_load_firmware,
1036         .initialize             = rt2x00pci_initialize,
1037         .uninitialize           = rt2x00pci_uninitialize,
1038         .get_entry_state        = rt2800pci_get_entry_state,
1039         .clear_entry            = rt2800pci_clear_entry,
1040         .set_device_state       = rt2800pci_set_device_state,
1041         .rfkill_poll            = rt2800_rfkill_poll,
1042         .link_stats             = rt2800_link_stats,
1043         .reset_tuner            = rt2800_reset_tuner,
1044         .link_tuner             = rt2800_link_tuner,
1045         .gain_calibration       = rt2800_gain_calibration,
1046         .vco_calibration        = rt2800_vco_calibration,
1047         .start_queue            = rt2800pci_start_queue,
1048         .kick_queue             = rt2800pci_kick_queue,
1049         .stop_queue             = rt2800pci_stop_queue,
1050         .flush_queue            = rt2x00pci_flush_queue,
1051         .write_tx_desc          = rt2800pci_write_tx_desc,
1052         .write_tx_data          = rt2800_write_tx_data,
1053         .write_beacon           = rt2800_write_beacon,
1054         .clear_beacon           = rt2800_clear_beacon,
1055         .fill_rxdone            = rt2800pci_fill_rxdone,
1056         .config_shared_key      = rt2800_config_shared_key,
1057         .config_pairwise_key    = rt2800_config_pairwise_key,
1058         .config_filter          = rt2800_config_filter,
1059         .config_intf            = rt2800_config_intf,
1060         .config_erp             = rt2800_config_erp,
1061         .config_ant             = rt2800_config_ant,
1062         .config                 = rt2800_config,
1063         .sta_add                = rt2800_sta_add,
1064         .sta_remove             = rt2800_sta_remove,
1065 };
1066
1067 static const struct data_queue_desc rt2800pci_queue_rx = {
1068         .entry_num              = 128,
1069         .data_size              = AGGREGATION_SIZE,
1070         .desc_size              = RXD_DESC_SIZE,
1071         .priv_size              = sizeof(struct queue_entry_priv_pci),
1072 };
1073
1074 static const struct data_queue_desc rt2800pci_queue_tx = {
1075         .entry_num              = 64,
1076         .data_size              = AGGREGATION_SIZE,
1077         .desc_size              = TXD_DESC_SIZE,
1078         .priv_size              = sizeof(struct queue_entry_priv_pci),
1079 };
1080
1081 static const struct data_queue_desc rt2800pci_queue_bcn = {
1082         .entry_num              = 8,
1083         .data_size              = 0, /* No DMA required for beacons */
1084         .desc_size              = TXWI_DESC_SIZE,
1085         .priv_size              = sizeof(struct queue_entry_priv_pci),
1086 };
1087
1088 static const struct rt2x00_ops rt2800pci_ops = {
1089         .name                   = KBUILD_MODNAME,
1090         .drv_data_size          = sizeof(struct rt2800_drv_data),
1091         .max_ap_intf            = 8,
1092         .eeprom_size            = EEPROM_SIZE,
1093         .rf_size                = RF_SIZE,
1094         .tx_queues              = NUM_TX_QUEUES,
1095         .extra_tx_headroom      = TXWI_DESC_SIZE,
1096         .rx                     = &rt2800pci_queue_rx,
1097         .tx                     = &rt2800pci_queue_tx,
1098         .bcn                    = &rt2800pci_queue_bcn,
1099         .lib                    = &rt2800pci_rt2x00_ops,
1100         .drv                    = &rt2800pci_rt2800_ops,
1101         .hw                     = &rt2800pci_mac80211_ops,
1102 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1103         .debugfs                = &rt2800_rt2x00debug,
1104 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1105 };
1106
1107 /*
1108  * RT2800pci module information.
1109  */
1110 #ifdef CONFIG_PCI
1111 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1112         { PCI_DEVICE(0x1814, 0x0601) },
1113         { PCI_DEVICE(0x1814, 0x0681) },
1114         { PCI_DEVICE(0x1814, 0x0701) },
1115         { PCI_DEVICE(0x1814, 0x0781) },
1116         { PCI_DEVICE(0x1814, 0x3090) },
1117         { PCI_DEVICE(0x1814, 0x3091) },
1118         { PCI_DEVICE(0x1814, 0x3092) },
1119         { PCI_DEVICE(0x1432, 0x7708) },
1120         { PCI_DEVICE(0x1432, 0x7727) },
1121         { PCI_DEVICE(0x1432, 0x7728) },
1122         { PCI_DEVICE(0x1432, 0x7738) },
1123         { PCI_DEVICE(0x1432, 0x7748) },
1124         { PCI_DEVICE(0x1432, 0x7758) },
1125         { PCI_DEVICE(0x1432, 0x7768) },
1126         { PCI_DEVICE(0x1462, 0x891a) },
1127         { PCI_DEVICE(0x1a3b, 0x1059) },
1128 #ifdef CONFIG_RT2800PCI_RT3290
1129         { PCI_DEVICE(0x1814, 0x3290) },
1130 #endif
1131 #ifdef CONFIG_RT2800PCI_RT33XX
1132         { PCI_DEVICE(0x1814, 0x3390) },
1133 #endif
1134 #ifdef CONFIG_RT2800PCI_RT35XX
1135         { PCI_DEVICE(0x1432, 0x7711) },
1136         { PCI_DEVICE(0x1432, 0x7722) },
1137         { PCI_DEVICE(0x1814, 0x3060) },
1138         { PCI_DEVICE(0x1814, 0x3062) },
1139         { PCI_DEVICE(0x1814, 0x3562) },
1140         { PCI_DEVICE(0x1814, 0x3592) },
1141         { PCI_DEVICE(0x1814, 0x3593) },
1142 #endif
1143 #ifdef CONFIG_RT2800PCI_RT53XX
1144         { PCI_DEVICE(0x1814, 0x5360) },
1145         { PCI_DEVICE(0x1814, 0x5362) },
1146         { PCI_DEVICE(0x1814, 0x5390) },
1147         { PCI_DEVICE(0x1814, 0x5392) },
1148         { PCI_DEVICE(0x1814, 0x539a) },
1149         { PCI_DEVICE(0x1814, 0x539b) },
1150         { PCI_DEVICE(0x1814, 0x539f) },
1151 #endif
1152         { 0, }
1153 };
1154 #endif /* CONFIG_PCI */
1155
1156 MODULE_AUTHOR(DRV_PROJECT);
1157 MODULE_VERSION(DRV_VERSION);
1158 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1159 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1160 #ifdef CONFIG_PCI
1161 MODULE_FIRMWARE(FIRMWARE_RT2860);
1162 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1163 #endif /* CONFIG_PCI */
1164 MODULE_LICENSE("GPL");
1165
1166 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1167 static int rt2800soc_probe(struct platform_device *pdev)
1168 {
1169         return rt2x00soc_probe(pdev, &rt2800pci_ops);
1170 }
1171
1172 static struct platform_driver rt2800soc_driver = {
1173         .driver         = {
1174                 .name           = "rt2800_wmac",
1175                 .owner          = THIS_MODULE,
1176                 .mod_name       = KBUILD_MODNAME,
1177         },
1178         .probe          = rt2800soc_probe,
1179         .remove         = rt2x00soc_remove,
1180         .suspend        = rt2x00soc_suspend,
1181         .resume         = rt2x00soc_resume,
1182 };
1183 #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1184
1185 #ifdef CONFIG_PCI
1186 static int rt2800pci_probe(struct pci_dev *pci_dev,
1187                            const struct pci_device_id *id)
1188 {
1189         return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
1190 }
1191
1192 static struct pci_driver rt2800pci_driver = {
1193         .name           = KBUILD_MODNAME,
1194         .id_table       = rt2800pci_device_table,
1195         .probe          = rt2800pci_probe,
1196         .remove         = rt2x00pci_remove,
1197         .suspend        = rt2x00pci_suspend,
1198         .resume         = rt2x00pci_resume,
1199 };
1200 #endif /* CONFIG_PCI */
1201
1202 static int __init rt2800pci_init(void)
1203 {
1204         int ret = 0;
1205
1206 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1207         ret = platform_driver_register(&rt2800soc_driver);
1208         if (ret)
1209                 return ret;
1210 #endif
1211 #ifdef CONFIG_PCI
1212         ret = pci_register_driver(&rt2800pci_driver);
1213         if (ret) {
1214 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1215                 platform_driver_unregister(&rt2800soc_driver);
1216 #endif
1217                 return ret;
1218         }
1219 #endif
1220
1221         return ret;
1222 }
1223
1224 static void __exit rt2800pci_exit(void)
1225 {
1226 #ifdef CONFIG_PCI
1227         pci_unregister_driver(&rt2800pci_driver);
1228 #endif
1229 #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1230         platform_driver_unregister(&rt2800soc_driver);
1231 #endif
1232 }
1233
1234 module_init(rt2800pci_init);
1235 module_exit(rt2800pci_exit);