]> rtime.felk.cvut.cz Git - can-eth-gw-linux.git/blob - drivers/net/ethernet/intel/e1000e/ethtool.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[can-eth-gw-linux.git] / drivers / net / ethernet / intel / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
37 #include <linux/vmalloc.h>
38
39 #include "e1000.h"
40
41 enum {NETDEV_STATS, E1000_STATS};
42
43 struct e1000_stats {
44         char stat_string[ETH_GSTRING_LEN];
45         int type;
46         int sizeof_stat;
47         int stat_offset;
48 };
49
50 #define E1000_STAT(str, m) { \
51                 .stat_string = str, \
52                 .type = E1000_STATS, \
53                 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
54                 .stat_offset = offsetof(struct e1000_adapter, m) }
55 #define E1000_NETDEV_STAT(str, m) { \
56                 .stat_string = str, \
57                 .type = NETDEV_STATS, \
58                 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
59                 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
60
61 static const struct e1000_stats e1000_gstrings_stats[] = {
62         E1000_STAT("rx_packets", stats.gprc),
63         E1000_STAT("tx_packets", stats.gptc),
64         E1000_STAT("rx_bytes", stats.gorc),
65         E1000_STAT("tx_bytes", stats.gotc),
66         E1000_STAT("rx_broadcast", stats.bprc),
67         E1000_STAT("tx_broadcast", stats.bptc),
68         E1000_STAT("rx_multicast", stats.mprc),
69         E1000_STAT("tx_multicast", stats.mptc),
70         E1000_NETDEV_STAT("rx_errors", rx_errors),
71         E1000_NETDEV_STAT("tx_errors", tx_errors),
72         E1000_NETDEV_STAT("tx_dropped", tx_dropped),
73         E1000_STAT("multicast", stats.mprc),
74         E1000_STAT("collisions", stats.colc),
75         E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
76         E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
77         E1000_STAT("rx_crc_errors", stats.crcerrs),
78         E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
79         E1000_STAT("rx_no_buffer_count", stats.rnbc),
80         E1000_STAT("rx_missed_errors", stats.mpc),
81         E1000_STAT("tx_aborted_errors", stats.ecol),
82         E1000_STAT("tx_carrier_errors", stats.tncrs),
83         E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
84         E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
85         E1000_STAT("tx_window_errors", stats.latecol),
86         E1000_STAT("tx_abort_late_coll", stats.latecol),
87         E1000_STAT("tx_deferred_ok", stats.dc),
88         E1000_STAT("tx_single_coll_ok", stats.scc),
89         E1000_STAT("tx_multi_coll_ok", stats.mcc),
90         E1000_STAT("tx_timeout_count", tx_timeout_count),
91         E1000_STAT("tx_restart_queue", restart_queue),
92         E1000_STAT("rx_long_length_errors", stats.roc),
93         E1000_STAT("rx_short_length_errors", stats.ruc),
94         E1000_STAT("rx_align_errors", stats.algnerrc),
95         E1000_STAT("tx_tcp_seg_good", stats.tsctc),
96         E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
97         E1000_STAT("rx_flow_control_xon", stats.xonrxc),
98         E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
99         E1000_STAT("tx_flow_control_xon", stats.xontxc),
100         E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
101         E1000_STAT("rx_long_byte_count", stats.gorc),
102         E1000_STAT("rx_csum_offload_good", hw_csum_good),
103         E1000_STAT("rx_csum_offload_errors", hw_csum_err),
104         E1000_STAT("rx_header_split", rx_hdr_split),
105         E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
106         E1000_STAT("tx_smbus", stats.mgptc),
107         E1000_STAT("rx_smbus", stats.mgprc),
108         E1000_STAT("dropped_smbus", stats.mgpdc),
109         E1000_STAT("rx_dma_failed", rx_dma_failed),
110         E1000_STAT("tx_dma_failed", tx_dma_failed),
111 };
112
113 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
114 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
115 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
116         "Register test  (offline)", "Eeprom test    (offline)",
117         "Interrupt test (offline)", "Loopback test  (offline)",
118         "Link test   (on/offline)"
119 };
120 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
121
122 static int e1000_get_settings(struct net_device *netdev,
123                               struct ethtool_cmd *ecmd)
124 {
125         struct e1000_adapter *adapter = netdev_priv(netdev);
126         struct e1000_hw *hw = &adapter->hw;
127         u32 speed;
128
129         if (hw->phy.media_type == e1000_media_type_copper) {
130
131                 ecmd->supported = (SUPPORTED_10baseT_Half |
132                                    SUPPORTED_10baseT_Full |
133                                    SUPPORTED_100baseT_Half |
134                                    SUPPORTED_100baseT_Full |
135                                    SUPPORTED_1000baseT_Full |
136                                    SUPPORTED_Autoneg |
137                                    SUPPORTED_TP);
138                 if (hw->phy.type == e1000_phy_ife)
139                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
140                 ecmd->advertising = ADVERTISED_TP;
141
142                 if (hw->mac.autoneg == 1) {
143                         ecmd->advertising |= ADVERTISED_Autoneg;
144                         /* the e1000 autoneg seems to match ethtool nicely */
145                         ecmd->advertising |= hw->phy.autoneg_advertised;
146                 }
147
148                 ecmd->port = PORT_TP;
149                 ecmd->phy_address = hw->phy.addr;
150                 ecmd->transceiver = XCVR_INTERNAL;
151
152         } else {
153                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
154                                      SUPPORTED_FIBRE |
155                                      SUPPORTED_Autoneg);
156
157                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
158                                      ADVERTISED_FIBRE |
159                                      ADVERTISED_Autoneg);
160
161                 ecmd->port = PORT_FIBRE;
162                 ecmd->transceiver = XCVR_EXTERNAL;
163         }
164
165         speed = -1;
166         ecmd->duplex = -1;
167
168         if (netif_running(netdev)) {
169                 if (netif_carrier_ok(netdev)) {
170                         speed = adapter->link_speed;
171                         ecmd->duplex = adapter->link_duplex - 1;
172                 }
173         } else {
174                 u32 status = er32(STATUS);
175                 if (status & E1000_STATUS_LU) {
176                         if (status & E1000_STATUS_SPEED_1000)
177                                 speed = SPEED_1000;
178                         else if (status & E1000_STATUS_SPEED_100)
179                                 speed = SPEED_100;
180                         else
181                                 speed = SPEED_10;
182
183                         if (status & E1000_STATUS_FD)
184                                 ecmd->duplex = DUPLEX_FULL;
185                         else
186                                 ecmd->duplex = DUPLEX_HALF;
187                 }
188         }
189
190         ethtool_cmd_speed_set(ecmd, speed);
191         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
192                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
193
194         /* MDI-X => 2; MDI =>1; Invalid =>0 */
195         if ((hw->phy.media_type == e1000_media_type_copper) &&
196             netif_carrier_ok(netdev))
197                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
198                                                       ETH_TP_MDI;
199         else
200                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
201
202         if (hw->phy.mdix == AUTO_ALL_MODES)
203                 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
204         else
205                 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
206
207         return 0;
208 }
209
210 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
211 {
212         struct e1000_mac_info *mac = &adapter->hw.mac;
213
214         mac->autoneg = 0;
215
216         /* Make sure dplx is at most 1 bit and lsb of speed is not set
217          * for the switch() below to work
218          */
219         if ((spd & 1) || (dplx & ~1))
220                 goto err_inval;
221
222         /* Fiber NICs only allow 1000 gbps Full duplex */
223         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
224             spd != SPEED_1000 &&
225             dplx != DUPLEX_FULL) {
226                 goto err_inval;
227         }
228
229         switch (spd + dplx) {
230         case SPEED_10 + DUPLEX_HALF:
231                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
232                 break;
233         case SPEED_10 + DUPLEX_FULL:
234                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
235                 break;
236         case SPEED_100 + DUPLEX_HALF:
237                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
238                 break;
239         case SPEED_100 + DUPLEX_FULL:
240                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
241                 break;
242         case SPEED_1000 + DUPLEX_FULL:
243                 mac->autoneg = 1;
244                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
245                 break;
246         case SPEED_1000 + DUPLEX_HALF: /* not supported */
247         default:
248                 goto err_inval;
249         }
250
251         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
252         adapter->hw.phy.mdix = AUTO_ALL_MODES;
253
254         return 0;
255
256 err_inval:
257         e_err("Unsupported Speed/Duplex configuration\n");
258         return -EINVAL;
259 }
260
261 static int e1000_set_settings(struct net_device *netdev,
262                               struct ethtool_cmd *ecmd)
263 {
264         struct e1000_adapter *adapter = netdev_priv(netdev);
265         struct e1000_hw *hw = &adapter->hw;
266
267         /* When SoL/IDER sessions are active, autoneg/speed/duplex
268          * cannot be changed
269          */
270         if (hw->phy.ops.check_reset_block &&
271             hw->phy.ops.check_reset_block(hw)) {
272                 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
273                 return -EINVAL;
274         }
275
276         /* MDI setting is only allowed when autoneg enabled because
277          * some hardware doesn't allow MDI setting when speed or
278          * duplex is forced.
279          */
280         if (ecmd->eth_tp_mdix_ctrl) {
281                 if (hw->phy.media_type != e1000_media_type_copper)
282                         return -EOPNOTSUPP;
283
284                 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
285                     (ecmd->autoneg != AUTONEG_ENABLE)) {
286                         e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
287                         return -EINVAL;
288                 }
289         }
290
291         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
292                 usleep_range(1000, 2000);
293
294         if (ecmd->autoneg == AUTONEG_ENABLE) {
295                 hw->mac.autoneg = 1;
296                 if (hw->phy.media_type == e1000_media_type_fiber)
297                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
298                                                      ADVERTISED_FIBRE |
299                                                      ADVERTISED_Autoneg;
300                 else
301                         hw->phy.autoneg_advertised = ecmd->advertising |
302                                                      ADVERTISED_TP |
303                                                      ADVERTISED_Autoneg;
304                 ecmd->advertising = hw->phy.autoneg_advertised;
305                 if (adapter->fc_autoneg)
306                         hw->fc.requested_mode = e1000_fc_default;
307         } else {
308                 u32 speed = ethtool_cmd_speed(ecmd);
309                 /* calling this overrides forced MDI setting */
310                 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
311                         clear_bit(__E1000_RESETTING, &adapter->state);
312                         return -EINVAL;
313                 }
314         }
315
316         /* MDI-X => 2; MDI => 1; Auto => 3 */
317         if (ecmd->eth_tp_mdix_ctrl) {
318                 /* fix up the value for auto (3 => 0) as zero is mapped
319                  * internally to auto
320                  */
321                 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
322                         hw->phy.mdix = AUTO_ALL_MODES;
323                 else
324                         hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
325         }
326
327         /* reset the link */
328
329         if (netif_running(adapter->netdev)) {
330                 e1000e_down(adapter);
331                 e1000e_up(adapter);
332         } else
333                 e1000e_reset(adapter);
334
335         clear_bit(__E1000_RESETTING, &adapter->state);
336         return 0;
337 }
338
339 static void e1000_get_pauseparam(struct net_device *netdev,
340                                  struct ethtool_pauseparam *pause)
341 {
342         struct e1000_adapter *adapter = netdev_priv(netdev);
343         struct e1000_hw *hw = &adapter->hw;
344
345         pause->autoneg =
346                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
347
348         if (hw->fc.current_mode == e1000_fc_rx_pause) {
349                 pause->rx_pause = 1;
350         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
351                 pause->tx_pause = 1;
352         } else if (hw->fc.current_mode == e1000_fc_full) {
353                 pause->rx_pause = 1;
354                 pause->tx_pause = 1;
355         }
356 }
357
358 static int e1000_set_pauseparam(struct net_device *netdev,
359                                 struct ethtool_pauseparam *pause)
360 {
361         struct e1000_adapter *adapter = netdev_priv(netdev);
362         struct e1000_hw *hw = &adapter->hw;
363         int retval = 0;
364
365         adapter->fc_autoneg = pause->autoneg;
366
367         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
368                 usleep_range(1000, 2000);
369
370         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
371                 hw->fc.requested_mode = e1000_fc_default;
372                 if (netif_running(adapter->netdev)) {
373                         e1000e_down(adapter);
374                         e1000e_up(adapter);
375                 } else {
376                         e1000e_reset(adapter);
377                 }
378         } else {
379                 if (pause->rx_pause && pause->tx_pause)
380                         hw->fc.requested_mode = e1000_fc_full;
381                 else if (pause->rx_pause && !pause->tx_pause)
382                         hw->fc.requested_mode = e1000_fc_rx_pause;
383                 else if (!pause->rx_pause && pause->tx_pause)
384                         hw->fc.requested_mode = e1000_fc_tx_pause;
385                 else if (!pause->rx_pause && !pause->tx_pause)
386                         hw->fc.requested_mode = e1000_fc_none;
387
388                 hw->fc.current_mode = hw->fc.requested_mode;
389
390                 if (hw->phy.media_type == e1000_media_type_fiber) {
391                         retval = hw->mac.ops.setup_link(hw);
392                         /* implicit goto out */
393                 } else {
394                         retval = e1000e_force_mac_fc(hw);
395                         if (retval)
396                                 goto out;
397                         e1000e_set_fc_watermarks(hw);
398                 }
399         }
400
401 out:
402         clear_bit(__E1000_RESETTING, &adapter->state);
403         return retval;
404 }
405
406 static u32 e1000_get_msglevel(struct net_device *netdev)
407 {
408         struct e1000_adapter *adapter = netdev_priv(netdev);
409         return adapter->msg_enable;
410 }
411
412 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
413 {
414         struct e1000_adapter *adapter = netdev_priv(netdev);
415         adapter->msg_enable = data;
416 }
417
418 static int e1000_get_regs_len(struct net_device *netdev)
419 {
420 #define E1000_REGS_LEN 32 /* overestimate */
421         return E1000_REGS_LEN * sizeof(u32);
422 }
423
424 static void e1000_get_regs(struct net_device *netdev,
425                            struct ethtool_regs *regs, void *p)
426 {
427         struct e1000_adapter *adapter = netdev_priv(netdev);
428         struct e1000_hw *hw = &adapter->hw;
429         u32 *regs_buff = p;
430         u16 phy_data;
431
432         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
433
434         regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
435                         adapter->pdev->device;
436
437         regs_buff[0]  = er32(CTRL);
438         regs_buff[1]  = er32(STATUS);
439
440         regs_buff[2]  = er32(RCTL);
441         regs_buff[3]  = er32(RDLEN(0));
442         regs_buff[4]  = er32(RDH(0));
443         regs_buff[5]  = er32(RDT(0));
444         regs_buff[6]  = er32(RDTR);
445
446         regs_buff[7]  = er32(TCTL);
447         regs_buff[8]  = er32(TDLEN(0));
448         regs_buff[9]  = er32(TDH(0));
449         regs_buff[10] = er32(TDT(0));
450         regs_buff[11] = er32(TIDV);
451
452         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
453
454         /* ethtool doesn't use anything past this point, so all this
455          * code is likely legacy junk for apps that may or may not exist
456          */
457         if (hw->phy.type == e1000_phy_m88) {
458                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
459                 regs_buff[13] = (u32)phy_data; /* cable length */
460                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
461                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
462                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
463                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
464                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
465                 regs_buff[18] = regs_buff[13]; /* cable polarity */
466                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
467                 regs_buff[20] = regs_buff[17]; /* polarity correction */
468                 /* phy receive errors */
469                 regs_buff[22] = adapter->phy_stats.receive_errors;
470                 regs_buff[23] = regs_buff[13]; /* mdix mode */
471         }
472         regs_buff[21] = 0; /* was idle_errors */
473         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
474         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
475         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
476 }
477
478 static int e1000_get_eeprom_len(struct net_device *netdev)
479 {
480         struct e1000_adapter *adapter = netdev_priv(netdev);
481         return adapter->hw.nvm.word_size * 2;
482 }
483
484 static int e1000_get_eeprom(struct net_device *netdev,
485                             struct ethtool_eeprom *eeprom, u8 *bytes)
486 {
487         struct e1000_adapter *adapter = netdev_priv(netdev);
488         struct e1000_hw *hw = &adapter->hw;
489         u16 *eeprom_buff;
490         int first_word;
491         int last_word;
492         int ret_val = 0;
493         u16 i;
494
495         if (eeprom->len == 0)
496                 return -EINVAL;
497
498         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
499
500         first_word = eeprom->offset >> 1;
501         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
502
503         eeprom_buff = kmalloc(sizeof(u16) *
504                         (last_word - first_word + 1), GFP_KERNEL);
505         if (!eeprom_buff)
506                 return -ENOMEM;
507
508         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
509                 ret_val = e1000_read_nvm(hw, first_word,
510                                          last_word - first_word + 1,
511                                          eeprom_buff);
512         } else {
513                 for (i = 0; i < last_word - first_word + 1; i++) {
514                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
515                                                       &eeprom_buff[i]);
516                         if (ret_val)
517                                 break;
518                 }
519         }
520
521         if (ret_val) {
522                 /* a read error occurred, throw away the result */
523                 memset(eeprom_buff, 0xff, sizeof(u16) *
524                        (last_word - first_word + 1));
525         } else {
526                 /* Device's eeprom is always little-endian, word addressable */
527                 for (i = 0; i < last_word - first_word + 1; i++)
528                         le16_to_cpus(&eeprom_buff[i]);
529         }
530
531         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
532         kfree(eeprom_buff);
533
534         return ret_val;
535 }
536
537 static int e1000_set_eeprom(struct net_device *netdev,
538                             struct ethtool_eeprom *eeprom, u8 *bytes)
539 {
540         struct e1000_adapter *adapter = netdev_priv(netdev);
541         struct e1000_hw *hw = &adapter->hw;
542         u16 *eeprom_buff;
543         void *ptr;
544         int max_len;
545         int first_word;
546         int last_word;
547         int ret_val = 0;
548         u16 i;
549
550         if (eeprom->len == 0)
551                 return -EOPNOTSUPP;
552
553         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
554                 return -EFAULT;
555
556         if (adapter->flags & FLAG_READ_ONLY_NVM)
557                 return -EINVAL;
558
559         max_len = hw->nvm.word_size * 2;
560
561         first_word = eeprom->offset >> 1;
562         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
563         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
564         if (!eeprom_buff)
565                 return -ENOMEM;
566
567         ptr = (void *)eeprom_buff;
568
569         if (eeprom->offset & 1) {
570                 /* need read/modify/write of first changed EEPROM word */
571                 /* only the second byte of the word is being modified */
572                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
573                 ptr++;
574         }
575         if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
576                 /* need read/modify/write of last changed EEPROM word */
577                 /* only the first byte of the word is being modified */
578                 ret_val = e1000_read_nvm(hw, last_word, 1,
579                                   &eeprom_buff[last_word - first_word]);
580
581         if (ret_val)
582                 goto out;
583
584         /* Device's eeprom is always little-endian, word addressable */
585         for (i = 0; i < last_word - first_word + 1; i++)
586                 le16_to_cpus(&eeprom_buff[i]);
587
588         memcpy(ptr, bytes, eeprom->len);
589
590         for (i = 0; i < last_word - first_word + 1; i++)
591                 cpu_to_le16s(&eeprom_buff[i]);
592
593         ret_val = e1000_write_nvm(hw, first_word,
594                                   last_word - first_word + 1, eeprom_buff);
595
596         if (ret_val)
597                 goto out;
598
599         /* Update the checksum over the first part of the EEPROM if needed
600          * and flush shadow RAM for applicable controllers
601          */
602         if ((first_word <= NVM_CHECKSUM_REG) ||
603             (hw->mac.type == e1000_82583) ||
604             (hw->mac.type == e1000_82574) ||
605             (hw->mac.type == e1000_82573))
606                 ret_val = e1000e_update_nvm_checksum(hw);
607
608 out:
609         kfree(eeprom_buff);
610         return ret_val;
611 }
612
613 static void e1000_get_drvinfo(struct net_device *netdev,
614                               struct ethtool_drvinfo *drvinfo)
615 {
616         struct e1000_adapter *adapter = netdev_priv(netdev);
617
618         strlcpy(drvinfo->driver,  e1000e_driver_name,
619                 sizeof(drvinfo->driver));
620         strlcpy(drvinfo->version, e1000e_driver_version,
621                 sizeof(drvinfo->version));
622
623         /* EEPROM image version # is reported as firmware version # for
624          * PCI-E controllers
625          */
626         snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
627                 "%d.%d-%d",
628                 (adapter->eeprom_vers & 0xF000) >> 12,
629                 (adapter->eeprom_vers & 0x0FF0) >> 4,
630                 (adapter->eeprom_vers & 0x000F));
631
632         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
633                 sizeof(drvinfo->bus_info));
634         drvinfo->regdump_len = e1000_get_regs_len(netdev);
635         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
636 }
637
638 static void e1000_get_ringparam(struct net_device *netdev,
639                                 struct ethtool_ringparam *ring)
640 {
641         struct e1000_adapter *adapter = netdev_priv(netdev);
642
643         ring->rx_max_pending = E1000_MAX_RXD;
644         ring->tx_max_pending = E1000_MAX_TXD;
645         ring->rx_pending = adapter->rx_ring_count;
646         ring->tx_pending = adapter->tx_ring_count;
647 }
648
649 static int e1000_set_ringparam(struct net_device *netdev,
650                                struct ethtool_ringparam *ring)
651 {
652         struct e1000_adapter *adapter = netdev_priv(netdev);
653         struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
654         int err = 0, size = sizeof(struct e1000_ring);
655         bool set_tx = false, set_rx = false;
656         u16 new_rx_count, new_tx_count;
657
658         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
659                 return -EINVAL;
660
661         new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
662                                E1000_MAX_RXD);
663         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
664
665         new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
666                                E1000_MAX_TXD);
667         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
668
669         if ((new_tx_count == adapter->tx_ring_count) &&
670             (new_rx_count == adapter->rx_ring_count))
671                 /* nothing to do */
672                 return 0;
673
674         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
675                 usleep_range(1000, 2000);
676
677         if (!netif_running(adapter->netdev)) {
678                 /* Set counts now and allocate resources during open() */
679                 adapter->tx_ring->count = new_tx_count;
680                 adapter->rx_ring->count = new_rx_count;
681                 adapter->tx_ring_count = new_tx_count;
682                 adapter->rx_ring_count = new_rx_count;
683                 goto clear_reset;
684         }
685
686         set_tx = (new_tx_count != adapter->tx_ring_count);
687         set_rx = (new_rx_count != adapter->rx_ring_count);
688
689         /* Allocate temporary storage for ring updates */
690         if (set_tx) {
691                 temp_tx = vmalloc(size);
692                 if (!temp_tx) {
693                         err = -ENOMEM;
694                         goto free_temp;
695                 }
696         }
697         if (set_rx) {
698                 temp_rx = vmalloc(size);
699                 if (!temp_rx) {
700                         err = -ENOMEM;
701                         goto free_temp;
702                 }
703         }
704
705         e1000e_down(adapter);
706
707         /* We can't just free everything and then setup again, because the
708          * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
709          * structs.  First, attempt to allocate new resources...
710          */
711         if (set_tx) {
712                 memcpy(temp_tx, adapter->tx_ring, size);
713                 temp_tx->count = new_tx_count;
714                 err = e1000e_setup_tx_resources(temp_tx);
715                 if (err)
716                         goto err_setup;
717         }
718         if (set_rx) {
719                 memcpy(temp_rx, adapter->rx_ring, size);
720                 temp_rx->count = new_rx_count;
721                 err = e1000e_setup_rx_resources(temp_rx);
722                 if (err)
723                         goto err_setup_rx;
724         }
725
726         /* ...then free the old resources and copy back any new ring data */
727         if (set_tx) {
728                 e1000e_free_tx_resources(adapter->tx_ring);
729                 memcpy(adapter->tx_ring, temp_tx, size);
730                 adapter->tx_ring_count = new_tx_count;
731         }
732         if (set_rx) {
733                 e1000e_free_rx_resources(adapter->rx_ring);
734                 memcpy(adapter->rx_ring, temp_rx, size);
735                 adapter->rx_ring_count = new_rx_count;
736         }
737
738 err_setup_rx:
739         if (err && set_tx)
740                 e1000e_free_tx_resources(temp_tx);
741 err_setup:
742         e1000e_up(adapter);
743 free_temp:
744         vfree(temp_tx);
745         vfree(temp_rx);
746 clear_reset:
747         clear_bit(__E1000_RESETTING, &adapter->state);
748         return err;
749 }
750
751 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
752                              int reg, int offset, u32 mask, u32 write)
753 {
754         u32 pat, val;
755         static const u32 test[] = {
756                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
757         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
758                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
759                                       (test[pat] & write));
760                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
761                 if (val != (test[pat] & write & mask)) {
762                         e_err("pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
763                               reg + offset, val, (test[pat] & write & mask));
764                         *data = reg;
765                         return 1;
766                 }
767         }
768         return 0;
769 }
770
771 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
772                               int reg, u32 mask, u32 write)
773 {
774         u32 val;
775         __ew32(&adapter->hw, reg, write & mask);
776         val = __er32(&adapter->hw, reg);
777         if ((write & mask) != (val & mask)) {
778                 e_err("set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
779                       reg, (val & mask), (write & mask));
780                 *data = reg;
781                 return 1;
782         }
783         return 0;
784 }
785 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
786         do {                                                                   \
787                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
788                         return 1;                                              \
789         } while (0)
790 #define REG_PATTERN_TEST(reg, mask, write)                                     \
791         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
792
793 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
794         do {                                                                   \
795                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
796                         return 1;                                              \
797         } while (0)
798
799 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
800 {
801         struct e1000_hw *hw = &adapter->hw;
802         struct e1000_mac_info *mac = &adapter->hw.mac;
803         u32 value;
804         u32 before;
805         u32 after;
806         u32 i;
807         u32 toggle;
808         u32 mask;
809         u32 wlock_mac = 0;
810
811         /* The status register is Read Only, so a write should fail.
812          * Some bits that get toggled are ignored.
813          */
814         switch (mac->type) {
815         /* there are several bits on newer hardware that are r/w */
816         case e1000_82571:
817         case e1000_82572:
818         case e1000_80003es2lan:
819                 toggle = 0x7FFFF3FF;
820                 break;
821         default:
822                 toggle = 0x7FFFF033;
823                 break;
824         }
825
826         before = er32(STATUS);
827         value = (er32(STATUS) & toggle);
828         ew32(STATUS, toggle);
829         after = er32(STATUS) & toggle;
830         if (value != after) {
831                 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
832                       after, value);
833                 *data = 1;
834                 return 1;
835         }
836         /* restore previous status */
837         ew32(STATUS, before);
838
839         if (!(adapter->flags & FLAG_IS_ICH)) {
840                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
841                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
842                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
843                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
844         }
845
846         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
847         REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
848         REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
849         REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
850         REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
851         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
852         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
853         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
854         REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
855         REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
856
857         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
858
859         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
860         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
861         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
862
863         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
864         REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
865         if (!(adapter->flags & FLAG_IS_ICH))
866                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
867         REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
868         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
869         mask = 0x8003FFFF;
870         switch (mac->type) {
871         case e1000_ich10lan:
872         case e1000_pchlan:
873         case e1000_pch2lan:
874         case e1000_pch_lpt:
875                 mask |= (1 << 18);
876                 break;
877         default:
878                 break;
879         }
880
881         if (mac->type == e1000_pch_lpt)
882                 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
883                     E1000_FWSM_WLOCK_MAC_SHIFT;
884
885         for (i = 0; i < mac->rar_entry_count; i++) {
886                 /* Cannot test write-protected SHRAL[n] registers */
887                 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
888                         continue;
889
890                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
891                                        mask, 0xFFFFFFFF);
892         }
893
894         for (i = 0; i < mac->mta_reg_count; i++)
895                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
896
897         *data = 0;
898
899         return 0;
900 }
901
902 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
903 {
904         u16 temp;
905         u16 checksum = 0;
906         u16 i;
907
908         *data = 0;
909         /* Read and add up the contents of the EEPROM */
910         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
911                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
912                         *data = 1;
913                         return *data;
914                 }
915                 checksum += temp;
916         }
917
918         /* If Checksum is not Correct return error else test passed */
919         if ((checksum != (u16) NVM_SUM) && !(*data))
920                 *data = 2;
921
922         return *data;
923 }
924
925 static irqreturn_t e1000_test_intr(int irq, void *data)
926 {
927         struct net_device *netdev = (struct net_device *) data;
928         struct e1000_adapter *adapter = netdev_priv(netdev);
929         struct e1000_hw *hw = &adapter->hw;
930
931         adapter->test_icr |= er32(ICR);
932
933         return IRQ_HANDLED;
934 }
935
936 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
937 {
938         struct net_device *netdev = adapter->netdev;
939         struct e1000_hw *hw = &adapter->hw;
940         u32 mask;
941         u32 shared_int = 1;
942         u32 irq = adapter->pdev->irq;
943         int i;
944         int ret_val = 0;
945         int int_mode = E1000E_INT_MODE_LEGACY;
946
947         *data = 0;
948
949         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
950         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
951                 int_mode = adapter->int_mode;
952                 e1000e_reset_interrupt_capability(adapter);
953                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
954                 e1000e_set_interrupt_capability(adapter);
955         }
956         /* Hook up test interrupt handler just for this test */
957         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
958                          netdev)) {
959                 shared_int = 0;
960         } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
961                  netdev->name, netdev)) {
962                 *data = 1;
963                 ret_val = -1;
964                 goto out;
965         }
966         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
967
968         /* Disable all the interrupts */
969         ew32(IMC, 0xFFFFFFFF);
970         e1e_flush();
971         usleep_range(10000, 20000);
972
973         /* Test each interrupt */
974         for (i = 0; i < 10; i++) {
975                 /* Interrupt to test */
976                 mask = 1 << i;
977
978                 if (adapter->flags & FLAG_IS_ICH) {
979                         switch (mask) {
980                         case E1000_ICR_RXSEQ:
981                                 continue;
982                         case 0x00000100:
983                                 if (adapter->hw.mac.type == e1000_ich8lan ||
984                                     adapter->hw.mac.type == e1000_ich9lan)
985                                         continue;
986                                 break;
987                         default:
988                                 break;
989                         }
990                 }
991
992                 if (!shared_int) {
993                         /* Disable the interrupt to be reported in
994                          * the cause register and then force the same
995                          * interrupt and see if one gets posted.  If
996                          * an interrupt was posted to the bus, the
997                          * test failed.
998                          */
999                         adapter->test_icr = 0;
1000                         ew32(IMC, mask);
1001                         ew32(ICS, mask);
1002                         e1e_flush();
1003                         usleep_range(10000, 20000);
1004
1005                         if (adapter->test_icr & mask) {
1006                                 *data = 3;
1007                                 break;
1008                         }
1009                 }
1010
1011                 /* Enable the interrupt to be reported in
1012                  * the cause register and then force the same
1013                  * interrupt and see if one gets posted.  If
1014                  * an interrupt was not posted to the bus, the
1015                  * test failed.
1016                  */
1017                 adapter->test_icr = 0;
1018                 ew32(IMS, mask);
1019                 ew32(ICS, mask);
1020                 e1e_flush();
1021                 usleep_range(10000, 20000);
1022
1023                 if (!(adapter->test_icr & mask)) {
1024                         *data = 4;
1025                         break;
1026                 }
1027
1028                 if (!shared_int) {
1029                         /* Disable the other interrupts to be reported in
1030                          * the cause register and then force the other
1031                          * interrupts and see if any get posted.  If
1032                          * an interrupt was posted to the bus, the
1033                          * test failed.
1034                          */
1035                         adapter->test_icr = 0;
1036                         ew32(IMC, ~mask & 0x00007FFF);
1037                         ew32(ICS, ~mask & 0x00007FFF);
1038                         e1e_flush();
1039                         usleep_range(10000, 20000);
1040
1041                         if (adapter->test_icr) {
1042                                 *data = 5;
1043                                 break;
1044                         }
1045                 }
1046         }
1047
1048         /* Disable all the interrupts */
1049         ew32(IMC, 0xFFFFFFFF);
1050         e1e_flush();
1051         usleep_range(10000, 20000);
1052
1053         /* Unhook test interrupt handler */
1054         free_irq(irq, netdev);
1055
1056 out:
1057         if (int_mode == E1000E_INT_MODE_MSIX) {
1058                 e1000e_reset_interrupt_capability(adapter);
1059                 adapter->int_mode = int_mode;
1060                 e1000e_set_interrupt_capability(adapter);
1061         }
1062
1063         return ret_val;
1064 }
1065
1066 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1067 {
1068         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1069         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1070         struct pci_dev *pdev = adapter->pdev;
1071         int i;
1072
1073         if (tx_ring->desc && tx_ring->buffer_info) {
1074                 for (i = 0; i < tx_ring->count; i++) {
1075                         if (tx_ring->buffer_info[i].dma)
1076                                 dma_unmap_single(&pdev->dev,
1077                                         tx_ring->buffer_info[i].dma,
1078                                         tx_ring->buffer_info[i].length,
1079                                         DMA_TO_DEVICE);
1080                         if (tx_ring->buffer_info[i].skb)
1081                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1082                 }
1083         }
1084
1085         if (rx_ring->desc && rx_ring->buffer_info) {
1086                 for (i = 0; i < rx_ring->count; i++) {
1087                         if (rx_ring->buffer_info[i].dma)
1088                                 dma_unmap_single(&pdev->dev,
1089                                         rx_ring->buffer_info[i].dma,
1090                                         2048, DMA_FROM_DEVICE);
1091                         if (rx_ring->buffer_info[i].skb)
1092                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1093                 }
1094         }
1095
1096         if (tx_ring->desc) {
1097                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1098                                   tx_ring->dma);
1099                 tx_ring->desc = NULL;
1100         }
1101         if (rx_ring->desc) {
1102                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1103                                   rx_ring->dma);
1104                 rx_ring->desc = NULL;
1105         }
1106
1107         kfree(tx_ring->buffer_info);
1108         tx_ring->buffer_info = NULL;
1109         kfree(rx_ring->buffer_info);
1110         rx_ring->buffer_info = NULL;
1111 }
1112
1113 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1114 {
1115         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1116         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1117         struct pci_dev *pdev = adapter->pdev;
1118         struct e1000_hw *hw = &adapter->hw;
1119         u32 rctl;
1120         int i;
1121         int ret_val;
1122
1123         /* Setup Tx descriptor ring and Tx buffers */
1124
1125         if (!tx_ring->count)
1126                 tx_ring->count = E1000_DEFAULT_TXD;
1127
1128         tx_ring->buffer_info = kcalloc(tx_ring->count,
1129                                        sizeof(struct e1000_buffer),
1130                                        GFP_KERNEL);
1131         if (!tx_ring->buffer_info) {
1132                 ret_val = 1;
1133                 goto err_nomem;
1134         }
1135
1136         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1137         tx_ring->size = ALIGN(tx_ring->size, 4096);
1138         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1139                                            &tx_ring->dma, GFP_KERNEL);
1140         if (!tx_ring->desc) {
1141                 ret_val = 2;
1142                 goto err_nomem;
1143         }
1144         tx_ring->next_to_use = 0;
1145         tx_ring->next_to_clean = 0;
1146
1147         ew32(TDBAL(0), ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1148         ew32(TDBAH(0), ((u64) tx_ring->dma >> 32));
1149         ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1150         ew32(TDH(0), 0);
1151         ew32(TDT(0), 0);
1152         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1153              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1154              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1155
1156         for (i = 0; i < tx_ring->count; i++) {
1157                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1158                 struct sk_buff *skb;
1159                 unsigned int skb_size = 1024;
1160
1161                 skb = alloc_skb(skb_size, GFP_KERNEL);
1162                 if (!skb) {
1163                         ret_val = 3;
1164                         goto err_nomem;
1165                 }
1166                 skb_put(skb, skb_size);
1167                 tx_ring->buffer_info[i].skb = skb;
1168                 tx_ring->buffer_info[i].length = skb->len;
1169                 tx_ring->buffer_info[i].dma =
1170                         dma_map_single(&pdev->dev, skb->data, skb->len,
1171                                        DMA_TO_DEVICE);
1172                 if (dma_mapping_error(&pdev->dev,
1173                                       tx_ring->buffer_info[i].dma)) {
1174                         ret_val = 4;
1175                         goto err_nomem;
1176                 }
1177                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1178                 tx_desc->lower.data = cpu_to_le32(skb->len);
1179                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1180                                                    E1000_TXD_CMD_IFCS |
1181                                                    E1000_TXD_CMD_RS);
1182                 tx_desc->upper.data = 0;
1183         }
1184
1185         /* Setup Rx descriptor ring and Rx buffers */
1186
1187         if (!rx_ring->count)
1188                 rx_ring->count = E1000_DEFAULT_RXD;
1189
1190         rx_ring->buffer_info = kcalloc(rx_ring->count,
1191                                        sizeof(struct e1000_buffer),
1192                                        GFP_KERNEL);
1193         if (!rx_ring->buffer_info) {
1194                 ret_val = 5;
1195                 goto err_nomem;
1196         }
1197
1198         rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1199         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1200                                            &rx_ring->dma, GFP_KERNEL);
1201         if (!rx_ring->desc) {
1202                 ret_val = 6;
1203                 goto err_nomem;
1204         }
1205         rx_ring->next_to_use = 0;
1206         rx_ring->next_to_clean = 0;
1207
1208         rctl = er32(RCTL);
1209         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1210                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1211         ew32(RDBAL(0), ((u64) rx_ring->dma & 0xFFFFFFFF));
1212         ew32(RDBAH(0), ((u64) rx_ring->dma >> 32));
1213         ew32(RDLEN(0), rx_ring->size);
1214         ew32(RDH(0), 0);
1215         ew32(RDT(0), 0);
1216         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1217                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1218                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1219                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1220                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1221         ew32(RCTL, rctl);
1222
1223         for (i = 0; i < rx_ring->count; i++) {
1224                 union e1000_rx_desc_extended *rx_desc;
1225                 struct sk_buff *skb;
1226
1227                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1228                 if (!skb) {
1229                         ret_val = 7;
1230                         goto err_nomem;
1231                 }
1232                 skb_reserve(skb, NET_IP_ALIGN);
1233                 rx_ring->buffer_info[i].skb = skb;
1234                 rx_ring->buffer_info[i].dma =
1235                         dma_map_single(&pdev->dev, skb->data, 2048,
1236                                        DMA_FROM_DEVICE);
1237                 if (dma_mapping_error(&pdev->dev,
1238                                       rx_ring->buffer_info[i].dma)) {
1239                         ret_val = 8;
1240                         goto err_nomem;
1241                 }
1242                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1243                 rx_desc->read.buffer_addr =
1244                     cpu_to_le64(rx_ring->buffer_info[i].dma);
1245                 memset(skb->data, 0x00, skb->len);
1246         }
1247
1248         return 0;
1249
1250 err_nomem:
1251         e1000_free_desc_rings(adapter);
1252         return ret_val;
1253 }
1254
1255 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1256 {
1257         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1258         e1e_wphy(&adapter->hw, 29, 0x001F);
1259         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1260         e1e_wphy(&adapter->hw, 29, 0x001A);
1261         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1262 }
1263
1264 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1265 {
1266         struct e1000_hw *hw = &adapter->hw;
1267         u32 ctrl_reg = 0;
1268         u16 phy_reg = 0;
1269         s32 ret_val = 0;
1270
1271         hw->mac.autoneg = 0;
1272
1273         if (hw->phy.type == e1000_phy_ife) {
1274                 /* force 100, set loopback */
1275                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1276
1277                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1278                 ctrl_reg = er32(CTRL);
1279                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1280                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1281                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1282                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1283                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1284
1285                 ew32(CTRL, ctrl_reg);
1286                 e1e_flush();
1287                 udelay(500);
1288
1289                 return 0;
1290         }
1291
1292         /* Specific PHY configuration for loopback */
1293         switch (hw->phy.type) {
1294         case e1000_phy_m88:
1295                 /* Auto-MDI/MDIX Off */
1296                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1297                 /* reset to update Auto-MDI/MDIX */
1298                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1299                 /* autoneg off */
1300                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1301                 break;
1302         case e1000_phy_gg82563:
1303                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1304                 break;
1305         case e1000_phy_bm:
1306                 /* Set Default MAC Interface speed to 1GB */
1307                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1308                 phy_reg &= ~0x0007;
1309                 phy_reg |= 0x006;
1310                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1311                 /* Assert SW reset for above settings to take effect */
1312                 e1000e_commit_phy(hw);
1313                 mdelay(1);
1314                 /* Force Full Duplex */
1315                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1316                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1317                 /* Set Link Up (in force link) */
1318                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1319                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1320                 /* Force Link */
1321                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1322                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1323                 /* Set Early Link Enable */
1324                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1325                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1326                 break;
1327         case e1000_phy_82577:
1328         case e1000_phy_82578:
1329                 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1330                 ret_val = hw->phy.ops.acquire(hw);
1331                 if (ret_val) {
1332                         e_err("Cannot setup 1Gbps loopback.\n");
1333                         return ret_val;
1334                 }
1335                 e1000_configure_k1_ich8lan(hw, false);
1336                 hw->phy.ops.release(hw);
1337                 break;
1338         case e1000_phy_82579:
1339                 /* Disable PHY energy detect power down */
1340                 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1341                 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1342                 /* Disable full chip energy detect */
1343                 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1344                 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1345                 /* Enable loopback on the PHY */
1346 #define I82577_PHY_LBK_CTRL          19
1347                 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1348                 break;
1349         default:
1350                 break;
1351         }
1352
1353         /* force 1000, set loopback */
1354         e1e_wphy(hw, PHY_CONTROL, 0x4140);
1355         mdelay(250);
1356
1357         /* Now set up the MAC to the same speed/duplex as the PHY. */
1358         ctrl_reg = er32(CTRL);
1359         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1360         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1361                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1362                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1363                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1364
1365         if (adapter->flags & FLAG_IS_ICH)
1366                 ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1367
1368         if (hw->phy.media_type == e1000_media_type_copper &&
1369             hw->phy.type == e1000_phy_m88) {
1370                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1371         } else {
1372                 /* Set the ILOS bit on the fiber Nic if half duplex link is
1373                  * detected.
1374                  */
1375                 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1376                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1377         }
1378
1379         ew32(CTRL, ctrl_reg);
1380
1381         /* Disable the receiver on the PHY so when a cable is plugged in, the
1382          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1383          */
1384         if (hw->phy.type == e1000_phy_m88)
1385                 e1000_phy_disable_receiver(adapter);
1386
1387         udelay(500);
1388
1389         return 0;
1390 }
1391
1392 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1393 {
1394         struct e1000_hw *hw = &adapter->hw;
1395         u32 ctrl = er32(CTRL);
1396         int link = 0;
1397
1398         /* special requirements for 82571/82572 fiber adapters */
1399
1400         /* jump through hoops to make sure link is up because serdes
1401          * link is hardwired up
1402          */
1403         ctrl |= E1000_CTRL_SLU;
1404         ew32(CTRL, ctrl);
1405
1406         /* disable autoneg */
1407         ctrl = er32(TXCW);
1408         ctrl &= ~(1 << 31);
1409         ew32(TXCW, ctrl);
1410
1411         link = (er32(STATUS) & E1000_STATUS_LU);
1412
1413         if (!link) {
1414                 /* set invert loss of signal */
1415                 ctrl = er32(CTRL);
1416                 ctrl |= E1000_CTRL_ILOS;
1417                 ew32(CTRL, ctrl);
1418         }
1419
1420         /* special write to serdes control register to enable SerDes analog
1421          * loopback
1422          */
1423 #define E1000_SERDES_LB_ON 0x410
1424         ew32(SCTL, E1000_SERDES_LB_ON);
1425         e1e_flush();
1426         usleep_range(10000, 20000);
1427
1428         return 0;
1429 }
1430
1431 /* only call this for fiber/serdes connections to es2lan */
1432 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1433 {
1434         struct e1000_hw *hw = &adapter->hw;
1435         u32 ctrlext = er32(CTRL_EXT);
1436         u32 ctrl = er32(CTRL);
1437
1438         /* save CTRL_EXT to restore later, reuse an empty variable (unused
1439          * on mac_type 80003es2lan)
1440          */
1441         adapter->tx_fifo_head = ctrlext;
1442
1443         /* clear the serdes mode bits, putting the device into mac loopback */
1444         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1445         ew32(CTRL_EXT, ctrlext);
1446
1447         /* force speed to 1000/FD, link up */
1448         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1449         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1450                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1451         ew32(CTRL, ctrl);
1452
1453         /* set mac loopback */
1454         ctrl = er32(RCTL);
1455         ctrl |= E1000_RCTL_LBM_MAC;
1456         ew32(RCTL, ctrl);
1457
1458         /* set testing mode parameters (no need to reset later) */
1459 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1460 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1461         ew32(KMRNCTRLSTA,
1462              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1463
1464         return 0;
1465 }
1466
1467 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1468 {
1469         struct e1000_hw *hw = &adapter->hw;
1470         u32 rctl;
1471
1472         if (hw->phy.media_type == e1000_media_type_fiber ||
1473             hw->phy.media_type == e1000_media_type_internal_serdes) {
1474                 switch (hw->mac.type) {
1475                 case e1000_80003es2lan:
1476                         return e1000_set_es2lan_mac_loopback(adapter);
1477                         break;
1478                 case e1000_82571:
1479                 case e1000_82572:
1480                         return e1000_set_82571_fiber_loopback(adapter);
1481                         break;
1482                 default:
1483                         rctl = er32(RCTL);
1484                         rctl |= E1000_RCTL_LBM_TCVR;
1485                         ew32(RCTL, rctl);
1486                         return 0;
1487                 }
1488         } else if (hw->phy.media_type == e1000_media_type_copper) {
1489                 return e1000_integrated_phy_loopback(adapter);
1490         }
1491
1492         return 7;
1493 }
1494
1495 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1496 {
1497         struct e1000_hw *hw = &adapter->hw;
1498         u32 rctl;
1499         u16 phy_reg;
1500
1501         rctl = er32(RCTL);
1502         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1503         ew32(RCTL, rctl);
1504
1505         switch (hw->mac.type) {
1506         case e1000_80003es2lan:
1507                 if (hw->phy.media_type == e1000_media_type_fiber ||
1508                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1509                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1510                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1511                         adapter->tx_fifo_head = 0;
1512                 }
1513                 /* fall through */
1514         case e1000_82571:
1515         case e1000_82572:
1516                 if (hw->phy.media_type == e1000_media_type_fiber ||
1517                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1518 #define E1000_SERDES_LB_OFF 0x400
1519                         ew32(SCTL, E1000_SERDES_LB_OFF);
1520                         e1e_flush();
1521                         usleep_range(10000, 20000);
1522                         break;
1523                 }
1524                 /* Fall Through */
1525         default:
1526                 hw->mac.autoneg = 1;
1527                 if (hw->phy.type == e1000_phy_gg82563)
1528                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1529                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1530                 if (phy_reg & MII_CR_LOOPBACK) {
1531                         phy_reg &= ~MII_CR_LOOPBACK;
1532                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1533                         e1000e_commit_phy(hw);
1534                 }
1535                 break;
1536         }
1537 }
1538
1539 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1540                                       unsigned int frame_size)
1541 {
1542         memset(skb->data, 0xFF, frame_size);
1543         frame_size &= ~1;
1544         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1545         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1546         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1547 }
1548
1549 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1550                                     unsigned int frame_size)
1551 {
1552         frame_size &= ~1;
1553         if (*(skb->data + 3) == 0xFF)
1554                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1555                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1556                         return 0;
1557         return 13;
1558 }
1559
1560 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1561 {
1562         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1563         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1564         struct pci_dev *pdev = adapter->pdev;
1565         struct e1000_hw *hw = &adapter->hw;
1566         int i, j, k, l;
1567         int lc;
1568         int good_cnt;
1569         int ret_val = 0;
1570         unsigned long time;
1571
1572         ew32(RDT(0), rx_ring->count - 1);
1573
1574         /* Calculate the loop count based on the largest descriptor ring
1575          * The idea is to wrap the largest ring a number of times using 64
1576          * send/receive pairs during each loop
1577          */
1578
1579         if (rx_ring->count <= tx_ring->count)
1580                 lc = ((tx_ring->count / 64) * 2) + 1;
1581         else
1582                 lc = ((rx_ring->count / 64) * 2) + 1;
1583
1584         k = 0;
1585         l = 0;
1586         for (j = 0; j <= lc; j++) { /* loop count loop */
1587                 for (i = 0; i < 64; i++) { /* send the packets */
1588                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1589                                                   1024);
1590                         dma_sync_single_for_device(&pdev->dev,
1591                                         tx_ring->buffer_info[k].dma,
1592                                         tx_ring->buffer_info[k].length,
1593                                         DMA_TO_DEVICE);
1594                         k++;
1595                         if (k == tx_ring->count)
1596                                 k = 0;
1597                 }
1598                 ew32(TDT(0), k);
1599                 e1e_flush();
1600                 msleep(200);
1601                 time = jiffies; /* set the start time for the receive */
1602                 good_cnt = 0;
1603                 do { /* receive the sent packets */
1604                         dma_sync_single_for_cpu(&pdev->dev,
1605                                         rx_ring->buffer_info[l].dma, 2048,
1606                                         DMA_FROM_DEVICE);
1607
1608                         ret_val = e1000_check_lbtest_frame(
1609                                         rx_ring->buffer_info[l].skb, 1024);
1610                         if (!ret_val)
1611                                 good_cnt++;
1612                         l++;
1613                         if (l == rx_ring->count)
1614                                 l = 0;
1615                         /* time + 20 msecs (200 msecs on 2.4) is more than
1616                          * enough time to complete the receives, if it's
1617                          * exceeded, break and error off
1618                          */
1619                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1620                 if (good_cnt != 64) {
1621                         ret_val = 13; /* ret_val is the same as mis-compare */
1622                         break;
1623                 }
1624                 if (jiffies >= (time + 20)) {
1625                         ret_val = 14; /* error code for time out error */
1626                         break;
1627                 }
1628         } /* end loop count loop */
1629         return ret_val;
1630 }
1631
1632 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1633 {
1634         struct e1000_hw *hw = &adapter->hw;
1635
1636         /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1637         if (hw->phy.ops.check_reset_block &&
1638             hw->phy.ops.check_reset_block(hw)) {
1639                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1640                 *data = 0;
1641                 goto out;
1642         }
1643
1644         *data = e1000_setup_desc_rings(adapter);
1645         if (*data)
1646                 goto out;
1647
1648         *data = e1000_setup_loopback_test(adapter);
1649         if (*data)
1650                 goto err_loopback;
1651
1652         *data = e1000_run_loopback_test(adapter);
1653         e1000_loopback_cleanup(adapter);
1654
1655 err_loopback:
1656         e1000_free_desc_rings(adapter);
1657 out:
1658         return *data;
1659 }
1660
1661 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1662 {
1663         struct e1000_hw *hw = &adapter->hw;
1664
1665         *data = 0;
1666         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1667                 int i = 0;
1668                 hw->mac.serdes_has_link = false;
1669
1670                 /* On some blade server designs, link establishment
1671                  * could take as long as 2-3 minutes
1672                  */
1673                 do {
1674                         hw->mac.ops.check_for_link(hw);
1675                         if (hw->mac.serdes_has_link)
1676                                 return *data;
1677                         msleep(20);
1678                 } while (i++ < 3750);
1679
1680                 *data = 1;
1681         } else {
1682                 hw->mac.ops.check_for_link(hw);
1683                 if (hw->mac.autoneg)
1684                         /* On some Phy/switch combinations, link establishment
1685                          * can take a few seconds more than expected.
1686                          */
1687                         msleep(5000);
1688
1689                 if (!(er32(STATUS) & E1000_STATUS_LU))
1690                         *data = 1;
1691         }
1692         return *data;
1693 }
1694
1695 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1696 {
1697         switch (sset) {
1698         case ETH_SS_TEST:
1699                 return E1000_TEST_LEN;
1700         case ETH_SS_STATS:
1701                 return E1000_STATS_LEN;
1702         default:
1703                 return -EOPNOTSUPP;
1704         }
1705 }
1706
1707 static void e1000_diag_test(struct net_device *netdev,
1708                             struct ethtool_test *eth_test, u64 *data)
1709 {
1710         struct e1000_adapter *adapter = netdev_priv(netdev);
1711         u16 autoneg_advertised;
1712         u8 forced_speed_duplex;
1713         u8 autoneg;
1714         bool if_running = netif_running(netdev);
1715
1716         set_bit(__E1000_TESTING, &adapter->state);
1717
1718         if (!if_running) {
1719                 /* Get control of and reset hardware */
1720                 if (adapter->flags & FLAG_HAS_AMT)
1721                         e1000e_get_hw_control(adapter);
1722
1723                 e1000e_power_up_phy(adapter);
1724
1725                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1726                 e1000e_reset(adapter);
1727                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1728         }
1729
1730         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1731                 /* Offline tests */
1732
1733                 /* save speed, duplex, autoneg settings */
1734                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1735                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1736                 autoneg = adapter->hw.mac.autoneg;
1737
1738                 e_info("offline testing starting\n");
1739
1740                 if (if_running)
1741                         /* indicate we're in test mode */
1742                         dev_close(netdev);
1743
1744                 if (e1000_reg_test(adapter, &data[0]))
1745                         eth_test->flags |= ETH_TEST_FL_FAILED;
1746
1747                 e1000e_reset(adapter);
1748                 if (e1000_eeprom_test(adapter, &data[1]))
1749                         eth_test->flags |= ETH_TEST_FL_FAILED;
1750
1751                 e1000e_reset(adapter);
1752                 if (e1000_intr_test(adapter, &data[2]))
1753                         eth_test->flags |= ETH_TEST_FL_FAILED;
1754
1755                 e1000e_reset(adapter);
1756                 if (e1000_loopback_test(adapter, &data[3]))
1757                         eth_test->flags |= ETH_TEST_FL_FAILED;
1758
1759                 /* force this routine to wait until autoneg complete/timeout */
1760                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1761                 e1000e_reset(adapter);
1762                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1763
1764                 if (e1000_link_test(adapter, &data[4]))
1765                         eth_test->flags |= ETH_TEST_FL_FAILED;
1766
1767                 /* restore speed, duplex, autoneg settings */
1768                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1769                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1770                 adapter->hw.mac.autoneg = autoneg;
1771                 e1000e_reset(adapter);
1772
1773                 clear_bit(__E1000_TESTING, &adapter->state);
1774                 if (if_running)
1775                         dev_open(netdev);
1776         } else {
1777                 /* Online tests */
1778
1779                 e_info("online testing starting\n");
1780
1781                 /* register, eeprom, intr and loopback tests not run online */
1782                 data[0] = 0;
1783                 data[1] = 0;
1784                 data[2] = 0;
1785                 data[3] = 0;
1786
1787                 if (e1000_link_test(adapter, &data[4]))
1788                         eth_test->flags |= ETH_TEST_FL_FAILED;
1789
1790                 clear_bit(__E1000_TESTING, &adapter->state);
1791         }
1792
1793         if (!if_running) {
1794                 e1000e_reset(adapter);
1795
1796                 if (adapter->flags & FLAG_HAS_AMT)
1797                         e1000e_release_hw_control(adapter);
1798         }
1799
1800         msleep_interruptible(4 * 1000);
1801 }
1802
1803 static void e1000_get_wol(struct net_device *netdev,
1804                           struct ethtool_wolinfo *wol)
1805 {
1806         struct e1000_adapter *adapter = netdev_priv(netdev);
1807
1808         wol->supported = 0;
1809         wol->wolopts = 0;
1810
1811         if (!(adapter->flags & FLAG_HAS_WOL) ||
1812             !device_can_wakeup(&adapter->pdev->dev))
1813                 return;
1814
1815         wol->supported = WAKE_UCAST | WAKE_MCAST |
1816             WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1817
1818         /* apply any specific unsupported masks here */
1819         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1820                 wol->supported &= ~WAKE_UCAST;
1821
1822                 if (adapter->wol & E1000_WUFC_EX)
1823                         e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1824         }
1825
1826         if (adapter->wol & E1000_WUFC_EX)
1827                 wol->wolopts |= WAKE_UCAST;
1828         if (adapter->wol & E1000_WUFC_MC)
1829                 wol->wolopts |= WAKE_MCAST;
1830         if (adapter->wol & E1000_WUFC_BC)
1831                 wol->wolopts |= WAKE_BCAST;
1832         if (adapter->wol & E1000_WUFC_MAG)
1833                 wol->wolopts |= WAKE_MAGIC;
1834         if (adapter->wol & E1000_WUFC_LNKC)
1835                 wol->wolopts |= WAKE_PHY;
1836 }
1837
1838 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1839 {
1840         struct e1000_adapter *adapter = netdev_priv(netdev);
1841
1842         if (!(adapter->flags & FLAG_HAS_WOL) ||
1843             !device_can_wakeup(&adapter->pdev->dev) ||
1844             (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1845                               WAKE_MAGIC | WAKE_PHY)))
1846                 return -EOPNOTSUPP;
1847
1848         /* these settings will always override what we currently have */
1849         adapter->wol = 0;
1850
1851         if (wol->wolopts & WAKE_UCAST)
1852                 adapter->wol |= E1000_WUFC_EX;
1853         if (wol->wolopts & WAKE_MCAST)
1854                 adapter->wol |= E1000_WUFC_MC;
1855         if (wol->wolopts & WAKE_BCAST)
1856                 adapter->wol |= E1000_WUFC_BC;
1857         if (wol->wolopts & WAKE_MAGIC)
1858                 adapter->wol |= E1000_WUFC_MAG;
1859         if (wol->wolopts & WAKE_PHY)
1860                 adapter->wol |= E1000_WUFC_LNKC;
1861
1862         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1863
1864         return 0;
1865 }
1866
1867 static int e1000_set_phys_id(struct net_device *netdev,
1868                              enum ethtool_phys_id_state state)
1869 {
1870         struct e1000_adapter *adapter = netdev_priv(netdev);
1871         struct e1000_hw *hw = &adapter->hw;
1872
1873         switch (state) {
1874         case ETHTOOL_ID_ACTIVE:
1875                 if (!hw->mac.ops.blink_led)
1876                         return 2;       /* cycle on/off twice per second */
1877
1878                 hw->mac.ops.blink_led(hw);
1879                 break;
1880
1881         case ETHTOOL_ID_INACTIVE:
1882                 if (hw->phy.type == e1000_phy_ife)
1883                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1884                 hw->mac.ops.led_off(hw);
1885                 hw->mac.ops.cleanup_led(hw);
1886                 break;
1887
1888         case ETHTOOL_ID_ON:
1889                 hw->mac.ops.led_on(hw);
1890                 break;
1891
1892         case ETHTOOL_ID_OFF:
1893                 hw->mac.ops.led_off(hw);
1894                 break;
1895         }
1896         return 0;
1897 }
1898
1899 static int e1000_get_coalesce(struct net_device *netdev,
1900                               struct ethtool_coalesce *ec)
1901 {
1902         struct e1000_adapter *adapter = netdev_priv(netdev);
1903
1904         if (adapter->itr_setting <= 4)
1905                 ec->rx_coalesce_usecs = adapter->itr_setting;
1906         else
1907                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1908
1909         return 0;
1910 }
1911
1912 static int e1000_set_coalesce(struct net_device *netdev,
1913                               struct ethtool_coalesce *ec)
1914 {
1915         struct e1000_adapter *adapter = netdev_priv(netdev);
1916
1917         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1918             ((ec->rx_coalesce_usecs > 4) &&
1919              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1920             (ec->rx_coalesce_usecs == 2))
1921                 return -EINVAL;
1922
1923         if (ec->rx_coalesce_usecs == 4) {
1924                 adapter->itr_setting = 4;
1925                 adapter->itr = adapter->itr_setting;
1926         } else if (ec->rx_coalesce_usecs <= 3) {
1927                 adapter->itr = 20000;
1928                 adapter->itr_setting = ec->rx_coalesce_usecs;
1929         } else {
1930                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1931                 adapter->itr_setting = adapter->itr & ~3;
1932         }
1933
1934         if (adapter->itr_setting != 0)
1935                 e1000e_write_itr(adapter, adapter->itr);
1936         else
1937                 e1000e_write_itr(adapter, 0);
1938
1939         return 0;
1940 }
1941
1942 static int e1000_nway_reset(struct net_device *netdev)
1943 {
1944         struct e1000_adapter *adapter = netdev_priv(netdev);
1945
1946         if (!netif_running(netdev))
1947                 return -EAGAIN;
1948
1949         if (!adapter->hw.mac.autoneg)
1950                 return -EINVAL;
1951
1952         e1000e_reinit_locked(adapter);
1953
1954         return 0;
1955 }
1956
1957 static void e1000_get_ethtool_stats(struct net_device *netdev,
1958                                     struct ethtool_stats *stats,
1959                                     u64 *data)
1960 {
1961         struct e1000_adapter *adapter = netdev_priv(netdev);
1962         struct rtnl_link_stats64 net_stats;
1963         int i;
1964         char *p = NULL;
1965
1966         e1000e_get_stats64(netdev, &net_stats);
1967         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1968                 switch (e1000_gstrings_stats[i].type) {
1969                 case NETDEV_STATS:
1970                         p = (char *) &net_stats +
1971                                         e1000_gstrings_stats[i].stat_offset;
1972                         break;
1973                 case E1000_STATS:
1974                         p = (char *) adapter +
1975                                         e1000_gstrings_stats[i].stat_offset;
1976                         break;
1977                 default:
1978                         data[i] = 0;
1979                         continue;
1980                 }
1981
1982                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1983                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1984         }
1985 }
1986
1987 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1988                               u8 *data)
1989 {
1990         u8 *p = data;
1991         int i;
1992
1993         switch (stringset) {
1994         case ETH_SS_TEST:
1995                 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1996                 break;
1997         case ETH_SS_STATS:
1998                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1999                         memcpy(p, e1000_gstrings_stats[i].stat_string,
2000                                ETH_GSTRING_LEN);
2001                         p += ETH_GSTRING_LEN;
2002                 }
2003                 break;
2004         }
2005 }
2006
2007 static int e1000_get_rxnfc(struct net_device *netdev,
2008                            struct ethtool_rxnfc *info, u32 *rule_locs)
2009 {
2010         info->data = 0;
2011
2012         switch (info->cmd) {
2013         case ETHTOOL_GRXFH: {
2014                 struct e1000_adapter *adapter = netdev_priv(netdev);
2015                 struct e1000_hw *hw = &adapter->hw;
2016                 u32 mrqc = er32(MRQC);
2017
2018                 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2019                         return 0;
2020
2021                 switch (info->flow_type) {
2022                 case TCP_V4_FLOW:
2023                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2024                                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2025                         /* fall through */
2026                 case UDP_V4_FLOW:
2027                 case SCTP_V4_FLOW:
2028                 case AH_ESP_V4_FLOW:
2029                 case IPV4_FLOW:
2030                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2031                                 info->data |= RXH_IP_SRC | RXH_IP_DST;
2032                         break;
2033                 case TCP_V6_FLOW:
2034                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2035                                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2036                         /* fall through */
2037                 case UDP_V6_FLOW:
2038                 case SCTP_V6_FLOW:
2039                 case AH_ESP_V6_FLOW:
2040                 case IPV6_FLOW:
2041                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2042                                 info->data |= RXH_IP_SRC | RXH_IP_DST;
2043                         break;
2044                 default:
2045                         break;
2046                 }
2047                 return 0;
2048         }
2049         default:
2050                 return -EOPNOTSUPP;
2051         }
2052 }
2053
2054 static const struct ethtool_ops e1000_ethtool_ops = {
2055         .get_settings           = e1000_get_settings,
2056         .set_settings           = e1000_set_settings,
2057         .get_drvinfo            = e1000_get_drvinfo,
2058         .get_regs_len           = e1000_get_regs_len,
2059         .get_regs               = e1000_get_regs,
2060         .get_wol                = e1000_get_wol,
2061         .set_wol                = e1000_set_wol,
2062         .get_msglevel           = e1000_get_msglevel,
2063         .set_msglevel           = e1000_set_msglevel,
2064         .nway_reset             = e1000_nway_reset,
2065         .get_link               = ethtool_op_get_link,
2066         .get_eeprom_len         = e1000_get_eeprom_len,
2067         .get_eeprom             = e1000_get_eeprom,
2068         .set_eeprom             = e1000_set_eeprom,
2069         .get_ringparam          = e1000_get_ringparam,
2070         .set_ringparam          = e1000_set_ringparam,
2071         .get_pauseparam         = e1000_get_pauseparam,
2072         .set_pauseparam         = e1000_set_pauseparam,
2073         .self_test              = e1000_diag_test,
2074         .get_strings            = e1000_get_strings,
2075         .set_phys_id            = e1000_set_phys_id,
2076         .get_ethtool_stats      = e1000_get_ethtool_stats,
2077         .get_sset_count         = e1000e_get_sset_count,
2078         .get_coalesce           = e1000_get_coalesce,
2079         .set_coalesce           = e1000_set_coalesce,
2080         .get_rxnfc              = e1000_get_rxnfc,
2081         .get_ts_info            = ethtool_op_get_ts_info,
2082 };
2083
2084 void e1000e_set_ethtool_ops(struct net_device *netdev)
2085 {
2086         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2087 }