]> rtime.felk.cvut.cz Git - sojka/libev.git/blob - ev.c
http://laurentdesegur.wordpress.com/2011/10/07/building-libev-and-libeio-with-android...
[sojka/libev.git] / ev.c
1 /*
2  * libev event processing core, watcher management
3  *
4  * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without modifica-
8  * tion, are permitted provided that the following conditions are met:
9  *
10  *   1.  Redistributions of source code must retain the above copyright notice,
11  *       this list of conditions and the following disclaimer.
12  *
13  *   2.  Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in the
15  *       documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19  * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO
20  * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21  * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25  * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26  * OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * Alternatively, the contents of this file may be used under the terms of
29  * the GNU General Public License ("GPL") version 2 or any later version,
30  * in which case the provisions of the GPL are applicable instead of
31  * the above. If you wish to allow the use of your version of this file
32  * only under the terms of the GPL and not to allow others to use your
33  * version of this file under the BSD license, indicate your decision
34  * by deleting the provisions above and replace them with the notice
35  * and other provisions required by the GPL. If you do not delete the
36  * provisions above, a recipient may use your version of this file under
37  * either the BSD or the GPL.
38  */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 #  include EV_CONFIG_H
44 # else
45 #  include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 #  define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 #  ifndef EV_USE_CLOCK_SYSCALL
56 #   define EV_USE_CLOCK_SYSCALL 1
57 #   ifndef EV_USE_REALTIME
58 #    define EV_USE_REALTIME  0
59 #   endif
60 #   ifndef EV_USE_MONOTONIC
61 #    define EV_USE_MONOTONIC 1
62 #   endif
63 #  endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 #  define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 #  ifndef EV_USE_MONOTONIC
70 #   define EV_USE_MONOTONIC 1
71 #  endif
72 #  ifndef EV_USE_REALTIME
73 #   define EV_USE_REALTIME  0
74 #  endif
75 # else
76 #  ifndef EV_USE_MONOTONIC
77 #   define EV_USE_MONOTONIC 0
78 #  endif
79 #  ifndef EV_USE_REALTIME
80 #   define EV_USE_REALTIME  0
81 #  endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 #  ifndef EV_USE_NANOSLEEP
86 #    define EV_USE_NANOSLEEP EV_FEATURE_OS
87 #  endif
88 # else
89 #   undef EV_USE_NANOSLEEP
90 #   define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 #  ifndef EV_USE_SELECT
95 #   define EV_USE_SELECT EV_FEATURE_BACKENDS
96 #  endif
97 # else
98 #  undef EV_USE_SELECT
99 #  define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 #  ifndef EV_USE_POLL
104 #   define EV_USE_POLL EV_FEATURE_BACKENDS
105 #  endif
106 # else
107 #  undef EV_USE_POLL
108 #  define EV_USE_POLL 0
109 # endif
110    
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 #  ifndef EV_USE_EPOLL
113 #   define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 #  endif
115 # else
116 #  undef EV_USE_EPOLL
117 #  define EV_USE_EPOLL 0
118 # endif
119    
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 #  ifndef EV_USE_KQUEUE
122 #   define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 #  endif
124 # else
125 #  undef EV_USE_KQUEUE
126 #  define EV_USE_KQUEUE 0
127 # endif
128    
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 #  ifndef EV_USE_PORT
131 #   define EV_USE_PORT EV_FEATURE_BACKENDS
132 #  endif
133 # else
134 #  undef EV_USE_PORT
135 #  define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 #  ifndef EV_USE_INOTIFY
140 #   define EV_USE_INOTIFY EV_FEATURE_OS
141 #  endif
142 # else
143 #  undef EV_USE_INOTIFY
144 #  define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 #  ifndef EV_USE_SIGNALFD
149 #   define EV_USE_SIGNALFD EV_FEATURE_OS
150 #  endif
151 # else
152 #  undef EV_USE_SIGNALFD
153 #  define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 #  ifndef EV_USE_EVENTFD
158 #   define EV_USE_EVENTFD EV_FEATURE_OS
159 #  endif
160 # else
161 #  undef EV_USE_EVENTFD
162 #  define EV_USE_EVENTFD 0
163 # endif
164  
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <winsock2.h>
207 # include <windows.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 #  define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213
214 /* OS X, in its infinite idiocy, actually HARDCODES
215  * a limit of 1024 into their select. Where people have brains,
216  * OS X engineers apparently have a vacuum. Or maybe they were
217  * ordered to have a vacuum, or they do anything for money.
218  * This might help. Or not.
219  */
220 #define _DARWIN_UNLIMITED_SELECT 1
221
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # error "unable to find value for NSIG, please report"
247 /* to make it compile regardless, just remove the above line, */
248 /* but consider reporting it, too! :) */
249 # define EV_NSIG 65
250 #endif
251
252 #ifndef EV_USE_FLOOR
253 # define EV_USE_FLOOR 0
254 #endif
255
256 #ifndef EV_USE_CLOCK_SYSCALL
257 # if __linux && __GLIBC__ >= 2
258 #  define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259 # else
260 #  define EV_USE_CLOCK_SYSCALL 0
261 # endif
262 #endif
263
264 #ifndef EV_USE_MONOTONIC
265 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266 #  define EV_USE_MONOTONIC EV_FEATURE_OS
267 # else
268 #  define EV_USE_MONOTONIC 0
269 # endif
270 #endif
271
272 #ifndef EV_USE_REALTIME
273 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274 #endif
275
276 #ifndef EV_USE_NANOSLEEP
277 # if _POSIX_C_SOURCE >= 199309L
278 #  define EV_USE_NANOSLEEP EV_FEATURE_OS
279 # else
280 #  define EV_USE_NANOSLEEP 0
281 # endif
282 #endif
283
284 #ifndef EV_USE_SELECT
285 # define EV_USE_SELECT EV_FEATURE_BACKENDS
286 #endif
287
288 #ifndef EV_USE_POLL
289 # ifdef _WIN32
290 #  define EV_USE_POLL 0
291 # else
292 #  define EV_USE_POLL EV_FEATURE_BACKENDS
293 # endif
294 #endif
295
296 #ifndef EV_USE_EPOLL
297 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298 #  define EV_USE_EPOLL EV_FEATURE_BACKENDS
299 # else
300 #  define EV_USE_EPOLL 0
301 # endif
302 #endif
303
304 #ifndef EV_USE_KQUEUE
305 # define EV_USE_KQUEUE 0
306 #endif
307
308 #ifndef EV_USE_PORT
309 # define EV_USE_PORT 0
310 #endif
311
312 #ifndef EV_USE_INOTIFY
313 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314 #  define EV_USE_INOTIFY EV_FEATURE_OS
315 # else
316 #  define EV_USE_INOTIFY 0
317 # endif
318 #endif
319
320 #ifndef EV_PID_HASHSIZE
321 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322 #endif
323
324 #ifndef EV_INOTIFY_HASHSIZE
325 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326 #endif
327
328 #ifndef EV_USE_EVENTFD
329 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330 #  define EV_USE_EVENTFD EV_FEATURE_OS
331 # else
332 #  define EV_USE_EVENTFD 0
333 # endif
334 #endif
335
336 #ifndef EV_USE_SIGNALFD
337 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338 #  define EV_USE_SIGNALFD EV_FEATURE_OS
339 # else
340 #  define EV_USE_SIGNALFD 0
341 # endif
342 #endif
343
344 #if 0 /* debugging */
345 # define EV_VERIFY 3
346 # define EV_USE_4HEAP 1
347 # define EV_HEAP_CACHE_AT 1
348 #endif
349
350 #ifndef EV_VERIFY
351 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352 #endif
353
354 #ifndef EV_USE_4HEAP
355 # define EV_USE_4HEAP EV_FEATURE_DATA
356 #endif
357
358 #ifndef EV_HEAP_CACHE_AT
359 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360 #endif
361
362 #ifdef ANDROID
363 /* supposedly, android doesn't typedef fd_mask */
364 # undef EV_USE_SELECT
365 # define EV_USE_SELECT 0
366 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367 # undef EV_USE_CLOCK_SYSCALL
368 # define EV_USE_CLOCK_SYSCALL 0
369 #endif
370
371 /* aix's poll.h seems to cause lots of trouble */
372 #ifdef _AIX
373 /* AIX has a completely broken poll.h header */
374 # undef EV_USE_POLL
375 # define EV_USE_POLL 0
376 #endif
377
378 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379 /* which makes programs even slower. might work on other unices, too. */
380 #if EV_USE_CLOCK_SYSCALL
381 # include <sys/syscall.h>
382 # ifdef SYS_clock_gettime
383 #  define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384 #  undef EV_USE_MONOTONIC
385 #  define EV_USE_MONOTONIC 1
386 # else
387 #  undef EV_USE_CLOCK_SYSCALL
388 #  define EV_USE_CLOCK_SYSCALL 0
389 # endif
390 #endif
391
392 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
393
394 #ifndef CLOCK_MONOTONIC
395 # undef EV_USE_MONOTONIC
396 # define EV_USE_MONOTONIC 0
397 #endif
398
399 #ifndef CLOCK_REALTIME
400 # undef EV_USE_REALTIME
401 # define EV_USE_REALTIME 0
402 #endif
403
404 #if !EV_STAT_ENABLE
405 # undef EV_USE_INOTIFY
406 # define EV_USE_INOTIFY 0
407 #endif
408
409 #if !EV_USE_NANOSLEEP
410 /* hp-ux has it in sys/time.h, which we unconditionally include above */
411 # if !defined _WIN32 && !defined __hpux
412 #  include <sys/select.h>
413 # endif
414 #endif
415
416 #if EV_USE_INOTIFY
417 # include <sys/statfs.h>
418 # include <sys/inotify.h>
419 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420 # ifndef IN_DONT_FOLLOW
421 #  undef EV_USE_INOTIFY
422 #  define EV_USE_INOTIFY 0
423 # endif
424 #endif
425
426 #if EV_USE_EVENTFD
427 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428 # include <stdint.h>
429 # ifndef EFD_NONBLOCK
430 #  define EFD_NONBLOCK O_NONBLOCK
431 # endif
432 # ifndef EFD_CLOEXEC
433 #  ifdef O_CLOEXEC
434 #   define EFD_CLOEXEC O_CLOEXEC
435 #  else
436 #   define EFD_CLOEXEC 02000000
437 #  endif
438 # endif
439 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440 #endif
441
442 #if EV_USE_SIGNALFD
443 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444 # include <stdint.h>
445 # ifndef SFD_NONBLOCK
446 #  define SFD_NONBLOCK O_NONBLOCK
447 # endif
448 # ifndef SFD_CLOEXEC
449 #  ifdef O_CLOEXEC
450 #   define SFD_CLOEXEC O_CLOEXEC
451 #  else
452 #   define SFD_CLOEXEC 02000000
453 #  endif
454 # endif
455 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456
457 struct signalfd_siginfo
458 {
459   uint32_t ssi_signo;
460   char pad[128 - sizeof (uint32_t)];
461 };
462 #endif
463
464 /**/
465
466 #if EV_VERIFY >= 3
467 # define EV_FREQUENT_CHECK ev_verify (EV_A)
468 #else
469 # define EV_FREQUENT_CHECK do { } while (0)
470 #endif
471
472 /*
473  * This is used to work around floating point rounding problems.
474  * This value is good at least till the year 4000.
475  */
476 #define MIN_INTERVAL  0.0001220703125 /* 1/2**13, good till 4000 */
477 /*#define MIN_INTERVAL  0.00000095367431640625 /* 1/2**20, good till 2200 */
478
479 #define MIN_TIMEJUMP  1. /* minimum timejump that gets detected (if monotonic clock available) */
480 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
481
482 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484
485 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486 /* ECB.H BEGIN */
487 /*
488  * libecb - http://software.schmorp.de/pkg/libecb
489  *
490  * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491  * Copyright (©) 2011 Emanuele Giaquinta
492  * All rights reserved.
493  *
494  * Redistribution and use in source and binary forms, with or without modifica-
495  * tion, are permitted provided that the following conditions are met:
496  *
497  *   1.  Redistributions of source code must retain the above copyright notice,
498  *       this list of conditions and the following disclaimer.
499  *
500  *   2.  Redistributions in binary form must reproduce the above copyright
501  *       notice, this list of conditions and the following disclaimer in the
502  *       documentation and/or other materials provided with the distribution.
503  *
504  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506  * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO
507  * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508  * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512  * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513  * OF THE POSSIBILITY OF SUCH DAMAGE.
514  */
515
516 #ifndef ECB_H
517 #define ECB_H
518
519 /* 16 bits major, 16 bits minor */
520 #define ECB_VERSION 0x00010002
521
522 #ifdef _WIN32
523   typedef   signed char   int8_t;
524   typedef unsigned char  uint8_t;
525   typedef   signed short  int16_t;
526   typedef unsigned short uint16_t;
527   typedef   signed int    int32_t;
528   typedef unsigned int   uint32_t;
529   #if __GNUC__
530     typedef   signed long long int64_t;
531     typedef unsigned long long uint64_t;
532   #else /* _MSC_VER || __BORLANDC__ */
533     typedef   signed __int64   int64_t;
534     typedef unsigned __int64   uint64_t;
535   #endif
536   #ifdef _WIN64
537     #define ECB_PTRSIZE 8
538     typedef uint64_t uintptr_t;
539     typedef  int64_t  intptr_t;
540   #else
541     #define ECB_PTRSIZE 4
542     typedef uint32_t uintptr_t;
543     typedef  int32_t  intptr_t;
544   #endif
545 #else
546   #include <inttypes.h>
547   #if UINTMAX_MAX > 0xffffffffU
548     #define ECB_PTRSIZE 8
549   #else
550     #define ECB_PTRSIZE 4
551   #endif
552 #endif
553
554 /* many compilers define _GNUC_ to some versions but then only implement
555  * what their idiot authors think are the "more important" extensions,
556  * causing enormous grief in return for some better fake benchmark numbers.
557  * or so.
558  * we try to detect these and simply assume they are not gcc - if they have
559  * an issue with that they should have done it right in the first place.
560  */
561 #ifndef ECB_GCC_VERSION
562   #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
563     #define ECB_GCC_VERSION(major,minor) 0
564   #else
565     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
566   #endif
567 #endif
568
569 #define ECB_C     (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
570 #define ECB_C99   (__STDC_VERSION__ >= 199901L)
571 #define ECB_C11   (__STDC_VERSION__ >= 201112L)
572 #define ECB_CPP   (__cplusplus+0)
573 #define ECB_CPP11 (__cplusplus >= 201103L)
574
575 #if ECB_CPP
576   #define ECB_EXTERN_C extern "C"
577   #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
578   #define ECB_EXTERN_C_END }
579 #else
580   #define ECB_EXTERN_C extern
581   #define ECB_EXTERN_C_BEG
582   #define ECB_EXTERN_C_END
583 #endif
584
585 /*****************************************************************************/
586
587 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
588 /* ECB_NO_SMP     - ecb might be used in multiple threads, but only on a single cpu */
589
590 #if ECB_NO_THREADS
591   #define ECB_NO_SMP 1
592 #endif
593
594 #if ECB_NO_SMP
595   #define ECB_MEMORY_FENCE do { } while (0)
596 #endif
597
598 #ifndef ECB_MEMORY_FENCE
599   #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
600     #if __i386 || __i386__
601       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
602       #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ (""                        : : : "memory")
603       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
604     #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
605       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mfence"   : : : "memory")
606       #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ (""         : : : "memory")
607       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
608     #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
609       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("sync"     : : : "memory")
610     #elif defined __ARM_ARCH_6__  || defined __ARM_ARCH_6J__  \
611        || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
612       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
613     #elif defined __ARM_ARCH_7__  || defined __ARM_ARCH_7A__  \
614        || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
615       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("dmb"      : : : "memory")
616     #elif __sparc || __sparc__
617       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
618       #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad"                            : : : "memory")
619       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore             | #StoreStore")
620     #elif defined __s390__ || defined __s390x__
621       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("bcr 15,0" : : : "memory")
622     #elif defined __mips__
623       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("sync"     : : : "memory")
624     #elif defined __alpha__
625       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mb"       : : : "memory")
626     #elif defined __hppa__
627       #define ECB_MEMORY_FENCE         __asm__ __volatile__ (""         : : : "memory")
628       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
629     #elif defined __ia64__
630       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mf"       : : : "memory")
631     #endif
632   #endif
633 #endif
634
635 #ifndef ECB_MEMORY_FENCE
636   #if ECB_GCC_VERSION(4,7)
637     /* see comment below (stdatomic.h) about the C11 memory model. */
638     #define ECB_MEMORY_FENCE         __atomic_thread_fence (__ATOMIC_SEQ_CST)
639
640   /* The __has_feature syntax from clang is so misdesigned that we cannot use it
641    * without risking compile time errors with other compilers. We *could*
642    * define our own ecb_clang_has_feature, but I just can't be bothered to work
643    * around this shit time and again.
644    * #elif defined __clang && __has_feature (cxx_atomic)
645    *   // see comment below (stdatomic.h) about the C11 memory model.
646    *   #define ECB_MEMORY_FENCE         __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
647    */
648
649   #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
650     #define ECB_MEMORY_FENCE         __sync_synchronize ()
651   #elif _MSC_VER >= 1400 /* VC++ 2005 */
652     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
653     #define ECB_MEMORY_FENCE         _ReadWriteBarrier ()
654     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
655     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
656   #elif defined _WIN32
657     #include <WinNT.h>
658     #define ECB_MEMORY_FENCE         MemoryBarrier () /* actually just xchg on x86... scary */
659   #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
660     #include <mbarrier.h>
661     #define ECB_MEMORY_FENCE         __machine_rw_barrier ()
662     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier  ()
663     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier  ()
664   #elif __xlC__
665     #define ECB_MEMORY_FENCE         __sync ()
666   #endif
667 #endif
668
669 #ifndef ECB_MEMORY_FENCE
670   #if ECB_C11 && !defined __STDC_NO_ATOMICS__
671     /* we assume that these memory fences work on all variables/all memory accesses, */
672     /* not just C11 atomics and atomic accesses */
673     #include <stdatomic.h>
674     /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
675     /* any fence other than seq_cst, which isn't very efficient for us. */
676     /* Why that is, we don't know - either the C11 memory model is quite useless */
677     /* for most usages, or gcc and clang have a bug */
678     /* I *currently* lean towards the latter, and inefficiently implement */
679     /* all three of ecb's fences as a seq_cst fence */
680     #define ECB_MEMORY_FENCE         atomic_thread_fence (memory_order_seq_cst)
681   #endif
682 #endif
683
684 #ifndef ECB_MEMORY_FENCE
685   #if !ECB_AVOID_PTHREADS
686     /*
687      * if you get undefined symbol references to pthread_mutex_lock,
688      * or failure to find pthread.h, then you should implement
689      * the ECB_MEMORY_FENCE operations for your cpu/compiler
690      * OR provide pthread.h and link against the posix thread library
691      * of your system.
692      */
693     #include <pthread.h>
694     #define ECB_NEEDS_PTHREADS 1
695     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
696
697     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
698     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
699   #endif
700 #endif
701
702 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
703   #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
704 #endif
705
706 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
707   #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
708 #endif
709
710 /*****************************************************************************/
711
712 #if __cplusplus
713   #define ecb_inline static inline
714 #elif ECB_GCC_VERSION(2,5)
715   #define ecb_inline static __inline__
716 #elif ECB_C99
717   #define ecb_inline static inline
718 #else
719   #define ecb_inline static
720 #endif
721
722 #if ECB_GCC_VERSION(3,3)
723   #define ecb_restrict __restrict__
724 #elif ECB_C99
725   #define ecb_restrict restrict
726 #else
727   #define ecb_restrict
728 #endif
729
730 typedef int ecb_bool;
731
732 #define ECB_CONCAT_(a, b) a ## b
733 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
734 #define ECB_STRINGIFY_(a) # a
735 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
736
737 #define ecb_function_ ecb_inline
738
739 #if ECB_GCC_VERSION(3,1)
740   #define ecb_attribute(attrlist)        __attribute__(attrlist)
741   #define ecb_is_constant(expr)          __builtin_constant_p (expr)
742   #define ecb_expect(expr,value)         __builtin_expect ((expr),(value))
743   #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
744 #else
745   #define ecb_attribute(attrlist)
746   #define ecb_is_constant(expr)          0
747   #define ecb_expect(expr,value)         (expr)
748   #define ecb_prefetch(addr,rw,locality)
749 #endif
750
751 /* no emulation for ecb_decltype */
752 #if ECB_GCC_VERSION(4,5)
753   #define ecb_decltype(x) __decltype(x)
754 #elif ECB_GCC_VERSION(3,0)
755   #define ecb_decltype(x) __typeof(x)
756 #endif
757
758 #define ecb_noinline   ecb_attribute ((__noinline__))
759 #define ecb_unused     ecb_attribute ((__unused__))
760 #define ecb_const      ecb_attribute ((__const__))
761 #define ecb_pure       ecb_attribute ((__pure__))
762
763 #if ECB_C11
764   #define ecb_noreturn   _Noreturn
765 #else
766   #define ecb_noreturn   ecb_attribute ((__noreturn__))
767 #endif
768
769 #if ECB_GCC_VERSION(4,3)
770   #define ecb_artificial ecb_attribute ((__artificial__))
771   #define ecb_hot        ecb_attribute ((__hot__))
772   #define ecb_cold       ecb_attribute ((__cold__))
773 #else
774   #define ecb_artificial
775   #define ecb_hot
776   #define ecb_cold
777 #endif
778
779 /* put around conditional expressions if you are very sure that the  */
780 /* expression is mostly true or mostly false. note that these return */
781 /* booleans, not the expression.                                     */
782 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
783 #define ecb_expect_true(expr)  ecb_expect (!!(expr), 1)
784 /* for compatibility to the rest of the world */
785 #define ecb_likely(expr)   ecb_expect_true  (expr)
786 #define ecb_unlikely(expr) ecb_expect_false (expr)
787
788 /* count trailing zero bits and count # of one bits */
789 #if ECB_GCC_VERSION(3,4)
790   /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
791   #define ecb_ld32(x)      (__builtin_clz      (x) ^ 31)
792   #define ecb_ld64(x)      (__builtin_clzll    (x) ^ 63)
793   #define ecb_ctz32(x)      __builtin_ctz      (x)
794   #define ecb_ctz64(x)      __builtin_ctzll    (x)
795   #define ecb_popcount32(x) __builtin_popcount (x)
796   /* no popcountll */
797 #else
798   ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
799   ecb_function_ int
800   ecb_ctz32 (uint32_t x)
801   {
802     int r = 0;
803
804     x &= ~x + 1; /* this isolates the lowest bit */
805
806 #if ECB_branchless_on_i386
807     r += !!(x & 0xaaaaaaaa) << 0;
808     r += !!(x & 0xcccccccc) << 1;
809     r += !!(x & 0xf0f0f0f0) << 2;
810     r += !!(x & 0xff00ff00) << 3;
811     r += !!(x & 0xffff0000) << 4;
812 #else
813     if (x & 0xaaaaaaaa) r +=  1;
814     if (x & 0xcccccccc) r +=  2;
815     if (x & 0xf0f0f0f0) r +=  4;
816     if (x & 0xff00ff00) r +=  8;
817     if (x & 0xffff0000) r += 16;
818 #endif
819
820     return r;
821   }
822
823   ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
824   ecb_function_ int
825   ecb_ctz64 (uint64_t x)
826   {
827     int shift = x & 0xffffffffU ? 0 : 32;
828     return ecb_ctz32 (x >> shift) + shift;
829   }
830
831   ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
832   ecb_function_ int
833   ecb_popcount32 (uint32_t x)
834   {
835     x -=  (x >> 1) & 0x55555555;
836     x  = ((x >> 2) & 0x33333333) + (x & 0x33333333);
837     x  = ((x >> 4) + x) & 0x0f0f0f0f;
838     x *= 0x01010101;
839
840     return x >> 24;
841   }
842
843   ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
844   ecb_function_ int ecb_ld32 (uint32_t x)
845   {
846     int r = 0;
847
848     if (x >> 16) { x >>= 16; r += 16; }
849     if (x >>  8) { x >>=  8; r +=  8; }
850     if (x >>  4) { x >>=  4; r +=  4; }
851     if (x >>  2) { x >>=  2; r +=  2; }
852     if (x >>  1) {           r +=  1; }
853
854     return r;
855   }
856
857   ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
858   ecb_function_ int ecb_ld64 (uint64_t x)
859   {
860     int r = 0;
861
862     if (x >> 32) { x >>= 32; r += 32; }
863
864     return r + ecb_ld32 (x);
865   }
866 #endif
867
868 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
869 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
870 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
871 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
872
873 ecb_function_ uint8_t  ecb_bitrev8  (uint8_t  x) ecb_const;
874 ecb_function_ uint8_t  ecb_bitrev8  (uint8_t  x)
875 {
876   return (  (x * 0x0802U & 0x22110U)
877           | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16; 
878 }
879
880 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
881 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
882 {
883   x = ((x >>  1) &     0x5555) | ((x &     0x5555) <<  1);
884   x = ((x >>  2) &     0x3333) | ((x &     0x3333) <<  2);
885   x = ((x >>  4) &     0x0f0f) | ((x &     0x0f0f) <<  4);
886   x = ( x >>  8              ) | ( x               <<  8);
887
888   return x;
889 }
890
891 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
892 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
893 {
894   x = ((x >>  1) & 0x55555555) | ((x & 0x55555555) <<  1);
895   x = ((x >>  2) & 0x33333333) | ((x & 0x33333333) <<  2);
896   x = ((x >>  4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) <<  4);
897   x = ((x >>  8) & 0x00ff00ff) | ((x & 0x00ff00ff) <<  8);
898   x = ( x >> 16              ) | ( x               << 16);
899
900   return x;
901 }
902
903 /* popcount64 is only available on 64 bit cpus as gcc builtin */
904 /* so for this version we are lazy */
905 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
906 ecb_function_ int
907 ecb_popcount64 (uint64_t x)
908 {
909   return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
910 }
911
912 ecb_inline uint8_t  ecb_rotl8  (uint8_t  x, unsigned int count) ecb_const;
913 ecb_inline uint8_t  ecb_rotr8  (uint8_t  x, unsigned int count) ecb_const;
914 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
915 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
916 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
917 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
918 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
919 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
920
921 ecb_inline uint8_t  ecb_rotl8  (uint8_t  x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
922 ecb_inline uint8_t  ecb_rotr8  (uint8_t  x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
923 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
924 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
925 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
926 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
927 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
928 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
929
930 #if ECB_GCC_VERSION(4,3)
931   #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
932   #define ecb_bswap32(x)  __builtin_bswap32 (x)
933   #define ecb_bswap64(x)  __builtin_bswap64 (x)
934 #else
935   ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
936   ecb_function_ uint16_t
937   ecb_bswap16 (uint16_t x)
938   {
939     return ecb_rotl16 (x, 8);
940   }
941
942   ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
943   ecb_function_ uint32_t
944   ecb_bswap32 (uint32_t x)
945   {
946     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
947   }
948
949   ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
950   ecb_function_ uint64_t
951   ecb_bswap64 (uint64_t x)
952   {
953     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
954   }
955 #endif
956
957 #if ECB_GCC_VERSION(4,5)
958   #define ecb_unreachable() __builtin_unreachable ()
959 #else
960   /* this seems to work fine, but gcc always emits a warning for it :/ */
961   ecb_inline void ecb_unreachable (void) ecb_noreturn;
962   ecb_inline void ecb_unreachable (void) { }
963 #endif
964
965 /* try to tell the compiler that some condition is definitely true */
966 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
967
968 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
969 ecb_inline unsigned char
970 ecb_byteorder_helper (void)
971 {
972   /* the union code still generates code under pressure in gcc, */
973   /* but less than using pointers, and always seems to */
974   /* successfully return a constant. */
975   /* the reason why we have this horrible preprocessor mess */
976   /* is to avoid it in all cases, at least on common architectures */
977   /* or when using a recent enough gcc version (>= 4.6) */
978 #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
979   return 0x44;
980 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
981   return 0x44;
982 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
983   return 0x11;
984 #else
985   union
986   {
987     uint32_t i;
988     uint8_t c;
989   } u = { 0x11223344 };
990   return u.c;
991 #endif
992 }
993
994 ecb_inline ecb_bool ecb_big_endian    (void) ecb_const;
995 ecb_inline ecb_bool ecb_big_endian    (void) { return ecb_byteorder_helper () == 0x11; }
996 ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
997 ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
998
999 #if ECB_GCC_VERSION(3,0) || ECB_C99
1000   #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1001 #else
1002   #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1003 #endif
1004
1005 #if __cplusplus
1006   template<typename T>
1007   static inline T ecb_div_rd (T val, T div)
1008   {
1009     return val < 0 ? - ((-val + div - 1) / div) : (val          ) / div;
1010   }
1011   template<typename T>
1012   static inline T ecb_div_ru (T val, T div)
1013   {
1014     return val < 0 ? - ((-val          ) / div) : (val + div - 1) / div;
1015   }
1016 #else
1017   #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val)            ) / (div))
1018   #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val)            ) / (div)) : ((val) + (div) - 1) / (div))
1019 #endif
1020
1021 #if ecb_cplusplus_does_not_suck
1022   /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1023   template<typename T, int N>
1024   static inline int ecb_array_length (const T (&arr)[N])
1025   {
1026     return N;
1027   }
1028 #else
1029   #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1030 #endif
1031
1032 /*******************************************************************************/
1033 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1034
1035 /* basically, everything uses "ieee pure-endian" floating point numbers */
1036 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1037 #if 0 \
1038     || __i386 || __i386__ \
1039     || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1040     || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1041     || defined __arm__ && defined __ARM_EABI__ \
1042     || defined __s390__ || defined __s390x__ \
1043     || defined __mips__ \
1044     || defined __alpha__ \
1045     || defined __hppa__ \
1046     || defined __ia64__ \
1047     || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1048   #define ECB_STDFP 1
1049   #include <string.h> /* for memcpy */
1050 #else
1051   #define ECB_STDFP 0
1052   #include <math.h> /* for frexp*, ldexp* */
1053 #endif
1054
1055 #ifndef ECB_NO_LIBM
1056
1057   /* convert a float to ieee single/binary32 */
1058   ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1059   ecb_function_ uint32_t
1060   ecb_float_to_binary32 (float x)
1061   {
1062     uint32_t r;
1063
1064     #if ECB_STDFP
1065       memcpy (&r, &x, 4);
1066     #else
1067       /* slow emulation, works for anything but -0 */
1068       uint32_t m;
1069       int e;
1070
1071       if (x == 0e0f                    ) return 0x00000000U;
1072       if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1073       if (x < -3.40282346638528860e+38f) return 0xff800000U;
1074       if (x != x                       ) return 0x7fbfffffU;
1075
1076       m = frexpf (x, &e) * 0x1000000U;
1077
1078       r = m & 0x80000000U;
1079
1080       if (r)
1081         m = -m;
1082
1083       if (e <= -126)
1084         {
1085           m &= 0xffffffU;
1086           m >>= (-125 - e);
1087           e = -126;
1088         }
1089
1090       r |= (e + 126) << 23;
1091       r |= m & 0x7fffffU;
1092     #endif
1093
1094     return r;
1095   }
1096
1097   /* converts an ieee single/binary32 to a float */
1098   ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1099   ecb_function_ float
1100   ecb_binary32_to_float (uint32_t x)
1101   {
1102     float r;
1103
1104     #if ECB_STDFP
1105       memcpy (&r, &x, 4);
1106     #else
1107       /* emulation, only works for normals and subnormals and +0 */
1108       int neg = x >> 31;
1109       int e = (x >> 23) & 0xffU;
1110
1111       x &= 0x7fffffU;
1112
1113       if (e)
1114         x |= 0x800000U;
1115       else
1116         e = 1;
1117
1118       /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1119       r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1120
1121       r = neg ? -r : r;
1122     #endif
1123
1124     return r;
1125   }
1126
1127   /* convert a double to ieee double/binary64 */
1128   ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1129   ecb_function_ uint64_t
1130   ecb_double_to_binary64 (double x)
1131   {
1132     uint64_t r;
1133
1134     #if ECB_STDFP
1135       memcpy (&r, &x, 8);
1136     #else
1137       /* slow emulation, works for anything but -0 */
1138       uint64_t m;
1139       int e;
1140
1141       if (x == 0e0                     ) return 0x0000000000000000U;
1142       if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1143       if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1144       if (x != x                       ) return 0X7ff7ffffffffffffU;
1145
1146       m = frexp (x, &e) * 0x20000000000000U;
1147
1148       r = m & 0x8000000000000000;;
1149
1150       if (r)
1151         m = -m;
1152
1153       if (e <= -1022)
1154         {
1155           m &= 0x1fffffffffffffU;
1156           m >>= (-1021 - e);
1157           e = -1022;
1158         }
1159
1160       r |= ((uint64_t)(e + 1022)) << 52;
1161       r |= m & 0xfffffffffffffU;
1162     #endif
1163
1164     return r;
1165   }
1166
1167   /* converts an ieee double/binary64 to a double */
1168   ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1169   ecb_function_ double
1170   ecb_binary64_to_double (uint64_t x)
1171   {
1172     double r;
1173
1174     #if ECB_STDFP
1175       memcpy (&r, &x, 8);
1176     #else
1177       /* emulation, only works for normals and subnormals and +0 */
1178       int neg = x >> 63;
1179       int e = (x >> 52) & 0x7ffU;
1180
1181       x &= 0xfffffffffffffU;
1182
1183       if (e)
1184         x |= 0x10000000000000U;
1185       else
1186         e = 1;
1187
1188       /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1189       r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1190
1191       r = neg ? -r : r;
1192     #endif
1193
1194     return r;
1195   }
1196
1197 #endif
1198
1199 #endif
1200
1201 /* ECB.H END */
1202
1203 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1204 /* if your architecture doesn't need memory fences, e.g. because it is
1205  * single-cpu/core, or if you use libev in a project that doesn't use libev
1206  * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1207  * libev, in which cases the memory fences become nops.
1208  * alternatively, you can remove this #error and link against libpthread,
1209  * which will then provide the memory fences.
1210  */
1211 # error "memory fences not defined for your architecture, please report"
1212 #endif
1213
1214 #ifndef ECB_MEMORY_FENCE
1215 # define ECB_MEMORY_FENCE do { } while (0)
1216 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1217 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1218 #endif
1219
1220 #define expect_false(cond) ecb_expect_false (cond)
1221 #define expect_true(cond)  ecb_expect_true  (cond)
1222 #define noinline           ecb_noinline
1223
1224 #define inline_size        ecb_inline
1225
1226 #if EV_FEATURE_CODE
1227 # define inline_speed      ecb_inline
1228 #else
1229 # define inline_speed      static noinline
1230 #endif
1231
1232 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1233
1234 #if EV_MINPRI == EV_MAXPRI
1235 # define ABSPRI(w) (((W)w), 0)
1236 #else
1237 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1238 #endif
1239
1240 #define EMPTY       /* required for microsofts broken pseudo-c compiler */
1241 #define EMPTY2(a,b) /* used to suppress some warnings */
1242
1243 typedef ev_watcher *W;
1244 typedef ev_watcher_list *WL;
1245 typedef ev_watcher_time *WT;
1246
1247 #define ev_active(w) ((W)(w))->active
1248 #define ev_at(w) ((WT)(w))->at
1249
1250 #if EV_USE_REALTIME
1251 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1252 /* giving it a reasonably high chance of working on typical architectures */
1253 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1254 #endif
1255
1256 #if EV_USE_MONOTONIC
1257 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1258 #endif
1259
1260 #ifndef EV_FD_TO_WIN32_HANDLE
1261 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1262 #endif
1263 #ifndef EV_WIN32_HANDLE_TO_FD
1264 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1265 #endif
1266 #ifndef EV_WIN32_CLOSE_FD
1267 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1268 #endif
1269
1270 #ifdef _WIN32
1271 # include "ev_win32.c"
1272 #endif
1273
1274 /*****************************************************************************/
1275
1276 /* define a suitable floor function (only used by periodics atm) */
1277
1278 #if EV_USE_FLOOR
1279 # include <math.h>
1280 # define ev_floor(v) floor (v)
1281 #else
1282
1283 #include <float.h>
1284
1285 /* a floor() replacement function, should be independent of ev_tstamp type */
1286 static ev_tstamp noinline
1287 ev_floor (ev_tstamp v)
1288 {
1289   /* the choice of shift factor is not terribly important */
1290 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1291   const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1292 #else
1293   const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1294 #endif
1295
1296   /* argument too large for an unsigned long? */
1297   if (expect_false (v >= shift))
1298     {
1299       ev_tstamp f;
1300
1301       if (v == v - 1.)
1302         return v; /* very large number */
1303
1304       f = shift * ev_floor (v * (1. / shift));
1305       return f + ev_floor (v - f);
1306     }
1307
1308   /* special treatment for negative args? */
1309   if (expect_false (v < 0.))
1310     {
1311       ev_tstamp f = -ev_floor (-v);
1312
1313       return f - (f == v ? 0 : 1);
1314     }
1315
1316   /* fits into an unsigned long */
1317   return (unsigned long)v;
1318 }
1319
1320 #endif
1321
1322 /*****************************************************************************/
1323
1324 #ifdef __linux
1325 # include <sys/utsname.h>
1326 #endif
1327
1328 static unsigned int noinline ecb_cold
1329 ev_linux_version (void)
1330 {
1331 #ifdef __linux
1332   unsigned int v = 0;
1333   struct utsname buf;
1334   int i;
1335   char *p = buf.release;
1336
1337   if (uname (&buf))
1338     return 0;
1339
1340   for (i = 3+1; --i; )
1341     {
1342       unsigned int c = 0;
1343
1344       for (;;)
1345         {
1346           if (*p >= '0' && *p <= '9')
1347             c = c * 10 + *p++ - '0';
1348           else
1349             {
1350               p += *p == '.';
1351               break;
1352             }
1353         }
1354
1355       v = (v << 8) | c;
1356     }
1357
1358   return v;
1359 #else
1360   return 0;
1361 #endif
1362 }
1363
1364 /*****************************************************************************/
1365
1366 #if EV_AVOID_STDIO
1367 static void noinline ecb_cold
1368 ev_printerr (const char *msg)
1369 {
1370   write (STDERR_FILENO, msg, strlen (msg));
1371 }
1372 #endif
1373
1374 static void (*syserr_cb)(const char *msg) EV_THROW;
1375
1376 void ecb_cold
1377 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1378 {
1379   syserr_cb = cb;
1380 }
1381
1382 static void noinline ecb_cold
1383 ev_syserr (const char *msg)
1384 {
1385   if (!msg)
1386     msg = "(libev) system error";
1387
1388   if (syserr_cb)
1389     syserr_cb (msg);
1390   else
1391     {
1392 #if EV_AVOID_STDIO
1393       ev_printerr (msg);
1394       ev_printerr (": ");
1395       ev_printerr (strerror (errno));
1396       ev_printerr ("\n");
1397 #else
1398       perror (msg);
1399 #endif
1400       abort ();
1401     }
1402 }
1403
1404 static void *
1405 ev_realloc_emul (void *ptr, long size) EV_THROW
1406 {
1407   /* some systems, notably openbsd and darwin, fail to properly
1408    * implement realloc (x, 0) (as required by both ansi c-89 and
1409    * the single unix specification, so work around them here.
1410    * recently, also (at least) fedora and debian started breaking it,
1411    * despite documenting it otherwise.
1412    */
1413
1414   if (size)
1415     return realloc (ptr, size);
1416
1417   free (ptr);
1418   return 0;
1419 }
1420
1421 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1422
1423 void ecb_cold
1424 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1425 {
1426   alloc = cb;
1427 }
1428
1429 inline_speed void *
1430 ev_realloc (void *ptr, long size)
1431 {
1432   ptr = alloc (ptr, size);
1433
1434   if (!ptr && size)
1435     {
1436 #if EV_AVOID_STDIO
1437       ev_printerr ("(libev) memory allocation failed, aborting.\n");
1438 #else
1439       fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1440 #endif
1441       abort ();
1442     }
1443
1444   return ptr;
1445 }
1446
1447 #define ev_malloc(size) ev_realloc (0, (size))
1448 #define ev_free(ptr)    ev_realloc ((ptr), 0)
1449
1450 /*****************************************************************************/
1451
1452 /* set in reify when reification needed */
1453 #define EV_ANFD_REIFY 1
1454
1455 /* file descriptor info structure */
1456 typedef struct
1457 {
1458   WL head;
1459   unsigned char events; /* the events watched for */
1460   unsigned char reify;  /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1461   unsigned char emask;  /* the epoll backend stores the actual kernel mask in here */
1462   unsigned char unused;
1463 #if EV_USE_EPOLL
1464   unsigned int egen;    /* generation counter to counter epoll bugs */
1465 #endif
1466 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1467   SOCKET handle;
1468 #endif
1469 #if EV_USE_IOCP
1470   OVERLAPPED or, ow;
1471 #endif
1472 } ANFD;
1473
1474 /* stores the pending event set for a given watcher */
1475 typedef struct
1476 {
1477   W w;
1478   int events; /* the pending event set for the given watcher */
1479 } ANPENDING;
1480
1481 #if EV_USE_INOTIFY
1482 /* hash table entry per inotify-id */
1483 typedef struct
1484 {
1485   WL head;
1486 } ANFS;
1487 #endif
1488
1489 /* Heap Entry */
1490 #if EV_HEAP_CACHE_AT
1491   /* a heap element */
1492   typedef struct {
1493     ev_tstamp at;
1494     WT w;
1495   } ANHE;
1496
1497   #define ANHE_w(he)        (he).w     /* access watcher, read-write */
1498   #define ANHE_at(he)       (he).at    /* access cached at, read-only */
1499   #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1500 #else
1501   /* a heap element */
1502   typedef WT ANHE;
1503
1504   #define ANHE_w(he)        (he)
1505   #define ANHE_at(he)       (he)->at
1506   #define ANHE_at_cache(he)
1507 #endif
1508
1509 #if EV_MULTIPLICITY
1510
1511   struct ev_loop
1512   {
1513     ev_tstamp ev_rt_now;
1514     #define ev_rt_now ((loop)->ev_rt_now)
1515     #define VAR(name,decl) decl;
1516       #include "ev_vars.h"
1517     #undef VAR
1518   };
1519   #include "ev_wrap.h"
1520
1521   static struct ev_loop default_loop_struct;
1522   EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1523
1524 #else
1525
1526   EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1527   #define VAR(name,decl) static decl;
1528     #include "ev_vars.h"
1529   #undef VAR
1530
1531   static int ev_default_loop_ptr;
1532
1533 #endif
1534
1535 #if EV_FEATURE_API
1536 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1537 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1538 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1539 #else
1540 # define EV_RELEASE_CB (void)0
1541 # define EV_ACQUIRE_CB (void)0
1542 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1543 #endif
1544
1545 #define EVBREAK_RECURSE 0x80
1546
1547 /*****************************************************************************/
1548
1549 #ifndef EV_HAVE_EV_TIME
1550 ev_tstamp
1551 ev_time (void) EV_THROW
1552 {
1553 #if EV_USE_REALTIME
1554   if (expect_true (have_realtime))
1555     {
1556       struct timespec ts;
1557       clock_gettime (CLOCK_REALTIME, &ts);
1558       return ts.tv_sec + ts.tv_nsec * 1e-9;
1559     }
1560 #endif
1561
1562   struct timeval tv;
1563   gettimeofday (&tv, 0);
1564   return tv.tv_sec + tv.tv_usec * 1e-6;
1565 }
1566 #endif
1567
1568 inline_size ev_tstamp
1569 get_clock (void)
1570 {
1571 #if EV_USE_MONOTONIC
1572   if (expect_true (have_monotonic))
1573     {
1574       struct timespec ts;
1575       clock_gettime (CLOCK_MONOTONIC, &ts);
1576       return ts.tv_sec + ts.tv_nsec * 1e-9;
1577     }
1578 #endif
1579
1580   return ev_time ();
1581 }
1582
1583 #if EV_MULTIPLICITY
1584 ev_tstamp
1585 ev_now (EV_P) EV_THROW
1586 {
1587   return ev_rt_now;
1588 }
1589 #endif
1590
1591 void
1592 ev_sleep (ev_tstamp delay) EV_THROW
1593 {
1594   if (delay > 0.)
1595     {
1596 #if EV_USE_NANOSLEEP
1597       struct timespec ts;
1598
1599       EV_TS_SET (ts, delay);
1600       nanosleep (&ts, 0);
1601 #elif defined _WIN32
1602       Sleep ((unsigned long)(delay * 1e3));
1603 #else
1604       struct timeval tv;
1605
1606       /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1607       /* something not guaranteed by newer posix versions, but guaranteed */
1608       /* by older ones */
1609       EV_TV_SET (tv, delay);
1610       select (0, 0, 0, 0, &tv);
1611 #endif
1612     }
1613 }
1614
1615 /*****************************************************************************/
1616
1617 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1618
1619 /* find a suitable new size for the given array, */
1620 /* hopefully by rounding to a nice-to-malloc size */
1621 inline_size int
1622 array_nextsize (int elem, int cur, int cnt)
1623 {
1624   int ncur = cur + 1;
1625
1626   do
1627     ncur <<= 1;
1628   while (cnt > ncur);
1629
1630   /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1631   if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1632     {
1633       ncur *= elem;
1634       ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1635       ncur = ncur - sizeof (void *) * 4;
1636       ncur /= elem;
1637     }
1638
1639   return ncur;
1640 }
1641
1642 static void * noinline ecb_cold
1643 array_realloc (int elem, void *base, int *cur, int cnt)
1644 {
1645   *cur = array_nextsize (elem, *cur, cnt);
1646   return ev_realloc (base, elem * *cur);
1647 }
1648
1649 #define array_init_zero(base,count)     \
1650   memset ((void *)(base), 0, sizeof (*(base)) * (count))
1651
1652 #define array_needsize(type,base,cur,cnt,init)                  \
1653   if (expect_false ((cnt) > (cur)))                             \
1654     {                                                           \
1655       int ecb_unused ocur_ = (cur);                                     \
1656       (base) = (type *)array_realloc                            \
1657          (sizeof (type), (base), &(cur), (cnt));                \
1658       init ((base) + (ocur_), (cur) - ocur_);                   \
1659     }
1660
1661 #if 0
1662 #define array_slim(type,stem)                                   \
1663   if (stem ## max < array_roundsize (stem ## cnt >> 2))         \
1664     {                                                           \
1665       stem ## max = array_roundsize (stem ## cnt >> 1);         \
1666       base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1667       fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1668     }
1669 #endif
1670
1671 #define array_free(stem, idx) \
1672   ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1673
1674 /*****************************************************************************/
1675
1676 /* dummy callback for pending events */
1677 static void noinline
1678 pendingcb (EV_P_ ev_prepare *w, int revents)
1679 {
1680 }
1681
1682 void noinline
1683 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1684 {
1685   W w_ = (W)w;
1686   int pri = ABSPRI (w_);
1687
1688   if (expect_false (w_->pending))
1689     pendings [pri][w_->pending - 1].events |= revents;
1690   else
1691     {
1692       w_->pending = ++pendingcnt [pri];
1693       array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1694       pendings [pri][w_->pending - 1].w      = w_;
1695       pendings [pri][w_->pending - 1].events = revents;
1696     }
1697
1698   pendingpri = NUMPRI - 1;
1699 }
1700
1701 inline_speed void
1702 feed_reverse (EV_P_ W w)
1703 {
1704   array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1705   rfeeds [rfeedcnt++] = w;
1706 }
1707
1708 inline_size void
1709 feed_reverse_done (EV_P_ int revents)
1710 {
1711   do
1712     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1713   while (rfeedcnt);
1714 }
1715
1716 inline_speed void
1717 queue_events (EV_P_ W *events, int eventcnt, int type)
1718 {
1719   int i;
1720
1721   for (i = 0; i < eventcnt; ++i)
1722     ev_feed_event (EV_A_ events [i], type);
1723 }
1724
1725 /*****************************************************************************/
1726
1727 inline_speed void
1728 fd_event_nocheck (EV_P_ int fd, int revents)
1729 {
1730   ANFD *anfd = anfds + fd;
1731   ev_io *w;
1732
1733   for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1734     {
1735       int ev = w->events & revents;
1736
1737       if (ev)
1738         ev_feed_event (EV_A_ (W)w, ev);
1739     }
1740 }
1741
1742 /* do not submit kernel events for fds that have reify set */
1743 /* because that means they changed while we were polling for new events */
1744 inline_speed void
1745 fd_event (EV_P_ int fd, int revents)
1746 {
1747   ANFD *anfd = anfds + fd;
1748
1749   if (expect_true (!anfd->reify))
1750     fd_event_nocheck (EV_A_ fd, revents);
1751 }
1752
1753 void
1754 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1755 {
1756   if (fd >= 0 && fd < anfdmax)
1757     fd_event_nocheck (EV_A_ fd, revents);
1758 }
1759
1760 /* make sure the external fd watch events are in-sync */
1761 /* with the kernel/libev internal state */
1762 inline_size void
1763 fd_reify (EV_P)
1764 {
1765   int i;
1766
1767 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1768   for (i = 0; i < fdchangecnt; ++i)
1769     {
1770       int fd = fdchanges [i];
1771       ANFD *anfd = anfds + fd;
1772
1773       if (anfd->reify & EV__IOFDSET && anfd->head)
1774         {
1775           SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1776
1777           if (handle != anfd->handle)
1778             {
1779               unsigned long arg;
1780
1781               assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1782
1783               /* handle changed, but fd didn't - we need to do it in two steps */
1784               backend_modify (EV_A_ fd, anfd->events, 0);
1785               anfd->events = 0;
1786               anfd->handle = handle;
1787             }
1788         }
1789     }
1790 #endif
1791
1792   for (i = 0; i < fdchangecnt; ++i)
1793     {
1794       int fd = fdchanges [i];
1795       ANFD *anfd = anfds + fd;
1796       ev_io *w;
1797
1798       unsigned char o_events = anfd->events;
1799       unsigned char o_reify  = anfd->reify;
1800
1801       anfd->reify  = 0;
1802
1803       /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1804         {
1805           anfd->events = 0;
1806
1807           for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1808             anfd->events |= (unsigned char)w->events;
1809
1810           if (o_events != anfd->events)
1811             o_reify = EV__IOFDSET; /* actually |= */
1812         }
1813
1814       if (o_reify & EV__IOFDSET)
1815         backend_modify (EV_A_ fd, o_events, anfd->events);
1816     }
1817
1818   fdchangecnt = 0;
1819 }
1820
1821 /* something about the given fd changed */
1822 inline_size void
1823 fd_change (EV_P_ int fd, int flags)
1824 {
1825   unsigned char reify = anfds [fd].reify;
1826   anfds [fd].reify |= flags;
1827
1828   if (expect_true (!reify))
1829     {
1830       ++fdchangecnt;
1831       array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1832       fdchanges [fdchangecnt - 1] = fd;
1833     }
1834 }
1835
1836 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1837 inline_speed void ecb_cold
1838 fd_kill (EV_P_ int fd)
1839 {
1840   ev_io *w;
1841
1842   while ((w = (ev_io *)anfds [fd].head))
1843     {
1844       ev_io_stop (EV_A_ w);
1845       ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1846     }
1847 }
1848
1849 /* check whether the given fd is actually valid, for error recovery */
1850 inline_size int ecb_cold
1851 fd_valid (int fd)
1852 {
1853 #ifdef _WIN32
1854   return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1855 #else
1856   return fcntl (fd, F_GETFD) != -1;
1857 #endif
1858 }
1859
1860 /* called on EBADF to verify fds */
1861 static void noinline ecb_cold
1862 fd_ebadf (EV_P)
1863 {
1864   int fd;
1865
1866   for (fd = 0; fd < anfdmax; ++fd)
1867     if (anfds [fd].events)
1868       if (!fd_valid (fd) && errno == EBADF)
1869         fd_kill (EV_A_ fd);
1870 }
1871
1872 /* called on ENOMEM in select/poll to kill some fds and retry */
1873 static void noinline ecb_cold
1874 fd_enomem (EV_P)
1875 {
1876   int fd;
1877
1878   for (fd = anfdmax; fd--; )
1879     if (anfds [fd].events)
1880       {
1881         fd_kill (EV_A_ fd);
1882         break;
1883       }
1884 }
1885
1886 /* usually called after fork if backend needs to re-arm all fds from scratch */
1887 static void noinline
1888 fd_rearm_all (EV_P)
1889 {
1890   int fd;
1891
1892   for (fd = 0; fd < anfdmax; ++fd)
1893     if (anfds [fd].events)
1894       {
1895         anfds [fd].events = 0;
1896         anfds [fd].emask  = 0;
1897         fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1898       }
1899 }
1900
1901 /* used to prepare libev internal fd's */
1902 /* this is not fork-safe */
1903 inline_speed void
1904 fd_intern (int fd)
1905 {
1906 #ifdef _WIN32
1907   unsigned long arg = 1;
1908   ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1909 #else
1910   fcntl (fd, F_SETFD, FD_CLOEXEC);
1911   fcntl (fd, F_SETFL, O_NONBLOCK);
1912 #endif
1913 }
1914
1915 /*****************************************************************************/
1916
1917 /*
1918  * the heap functions want a real array index. array index 0 is guaranteed to not
1919  * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1920  * the branching factor of the d-tree.
1921  */
1922
1923 /*
1924  * at the moment we allow libev the luxury of two heaps,
1925  * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1926  * which is more cache-efficient.
1927  * the difference is about 5% with 50000+ watchers.
1928  */
1929 #if EV_USE_4HEAP
1930
1931 #define DHEAP 4
1932 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1933 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1934 #define UPHEAP_DONE(p,k) ((p) == (k))
1935
1936 /* away from the root */
1937 inline_speed void
1938 downheap (ANHE *heap, int N, int k)
1939 {
1940   ANHE he = heap [k];
1941   ANHE *E = heap + N + HEAP0;
1942
1943   for (;;)
1944     {
1945       ev_tstamp minat;
1946       ANHE *minpos;
1947       ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1948
1949       /* find minimum child */
1950       if (expect_true (pos + DHEAP - 1 < E))
1951         {
1952           /* fast path */                               (minpos = pos + 0), (minat = ANHE_at (*minpos));
1953           if (               ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1954           if (               ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1955           if (               ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1956         }
1957       else if (pos < E)
1958         {
1959           /* slow path */                               (minpos = pos + 0), (minat = ANHE_at (*minpos));
1960           if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1961           if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1962           if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1963         }
1964       else
1965         break;
1966
1967       if (ANHE_at (he) <= minat)
1968         break;
1969
1970       heap [k] = *minpos;
1971       ev_active (ANHE_w (*minpos)) = k;
1972
1973       k = minpos - heap;
1974     }
1975
1976   heap [k] = he;
1977   ev_active (ANHE_w (he)) = k;
1978 }
1979
1980 #else /* 4HEAP */
1981
1982 #define HEAP0 1
1983 #define HPARENT(k) ((k) >> 1)
1984 #define UPHEAP_DONE(p,k) (!(p))
1985
1986 /* away from the root */
1987 inline_speed void
1988 downheap (ANHE *heap, int N, int k)
1989 {
1990   ANHE he = heap [k];
1991
1992   for (;;)
1993     {
1994       int c = k << 1;
1995
1996       if (c >= N + HEAP0)
1997         break;
1998
1999       c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2000            ? 1 : 0;
2001
2002       if (ANHE_at (he) <= ANHE_at (heap [c]))
2003         break;
2004
2005       heap [k] = heap [c];
2006       ev_active (ANHE_w (heap [k])) = k;
2007       
2008       k = c;
2009     }
2010
2011   heap [k] = he;
2012   ev_active (ANHE_w (he)) = k;
2013 }
2014 #endif
2015
2016 /* towards the root */
2017 inline_speed void
2018 upheap (ANHE *heap, int k)
2019 {
2020   ANHE he = heap [k];
2021
2022   for (;;)
2023     {
2024       int p = HPARENT (k);
2025
2026       if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2027         break;
2028
2029       heap [k] = heap [p];
2030       ev_active (ANHE_w (heap [k])) = k;
2031       k = p;
2032     }
2033
2034   heap [k] = he;
2035   ev_active (ANHE_w (he)) = k;
2036 }
2037
2038 /* move an element suitably so it is in a correct place */
2039 inline_size void
2040 adjustheap (ANHE *heap, int N, int k)
2041 {
2042   if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2043     upheap (heap, k);
2044   else
2045     downheap (heap, N, k);
2046 }
2047
2048 /* rebuild the heap: this function is used only once and executed rarely */
2049 inline_size void
2050 reheap (ANHE *heap, int N)
2051 {
2052   int i;
2053
2054   /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2055   /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2056   for (i = 0; i < N; ++i)
2057     upheap (heap, i + HEAP0);
2058 }
2059
2060 /*****************************************************************************/
2061
2062 /* associate signal watchers to a signal signal */
2063 typedef struct
2064 {
2065   EV_ATOMIC_T pending;
2066 #if EV_MULTIPLICITY
2067   EV_P;
2068 #endif
2069   WL head;
2070 } ANSIG;
2071
2072 static ANSIG signals [EV_NSIG - 1];
2073
2074 /*****************************************************************************/
2075
2076 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2077
2078 static void noinline ecb_cold
2079 evpipe_init (EV_P)
2080 {
2081   if (!ev_is_active (&pipe_w))
2082     {
2083       int fds [2];
2084
2085 # if EV_USE_EVENTFD
2086       fds [0] = -1;
2087       fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2088       if (fds [1] < 0 && errno == EINVAL)
2089         fds [1] = eventfd (0, 0);
2090
2091       if (fds [1] < 0)
2092 # endif
2093         {
2094           while (pipe (fds))
2095             ev_syserr ("(libev) error creating signal/async pipe");
2096
2097           fd_intern (fds [0]);
2098         }
2099
2100       fd_intern (fds [1]);
2101
2102       evpipe [0] = fds [0];
2103
2104       if (evpipe [1] < 0)
2105         evpipe [1] = fds [1]; /* first call, set write fd */
2106       else
2107         {
2108           /* on subsequent calls, do not change evpipe [1] */
2109           /* so that evpipe_write can always rely on its value. */
2110           /* this branch does not do anything sensible on windows, */
2111           /* so must not be executed on windows */
2112
2113           dup2 (fds [1], evpipe [1]);
2114           close (fds [1]);
2115         }
2116
2117       ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2118       ev_io_start (EV_A_ &pipe_w);
2119       ev_unref (EV_A); /* watcher should not keep loop alive */
2120     }
2121 }
2122
2123 inline_speed void
2124 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2125 {
2126   ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2127
2128   if (expect_true (*flag))
2129     return;
2130
2131   *flag = 1;
2132   ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2133
2134   pipe_write_skipped = 1;
2135
2136   ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2137
2138   if (pipe_write_wanted)
2139     {
2140       int old_errno;
2141
2142       pipe_write_skipped = 0;
2143       ECB_MEMORY_FENCE_RELEASE;
2144
2145       old_errno = errno; /* save errno because write will clobber it */
2146
2147 #if EV_USE_EVENTFD
2148       if (evpipe [0] < 0)
2149         {
2150           uint64_t counter = 1;
2151           write (evpipe [1], &counter, sizeof (uint64_t));
2152         }
2153       else
2154 #endif
2155         {
2156 #ifdef _WIN32
2157           WSABUF buf;
2158           DWORD sent;
2159           buf.buf = &buf;
2160           buf.len = 1;
2161           WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2162 #else
2163           write (evpipe [1], &(evpipe [1]), 1);
2164 #endif
2165         }
2166
2167       errno = old_errno;
2168     }
2169 }
2170
2171 /* called whenever the libev signal pipe */
2172 /* got some events (signal, async) */
2173 static void
2174 pipecb (EV_P_ ev_io *iow, int revents)
2175 {
2176   int i;
2177
2178   if (revents & EV_READ)
2179     {
2180 #if EV_USE_EVENTFD
2181       if (evpipe [0] < 0)
2182         {
2183           uint64_t counter;
2184           read (evpipe [1], &counter, sizeof (uint64_t));
2185         }
2186       else
2187 #endif
2188         {
2189           char dummy[4];
2190 #ifdef _WIN32
2191           WSABUF buf;
2192           DWORD recvd;
2193           DWORD flags = 0;
2194           buf.buf = dummy;
2195           buf.len = sizeof (dummy);
2196           WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2197 #else
2198           read (evpipe [0], &dummy, sizeof (dummy));
2199 #endif
2200         }
2201     }
2202
2203   pipe_write_skipped = 0;
2204
2205   ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2206
2207 #if EV_SIGNAL_ENABLE
2208   if (sig_pending)
2209     {
2210       sig_pending = 0;
2211
2212       ECB_MEMORY_FENCE;
2213
2214       for (i = EV_NSIG - 1; i--; )
2215         if (expect_false (signals [i].pending))
2216           ev_feed_signal_event (EV_A_ i + 1);
2217     }
2218 #endif
2219
2220 #if EV_ASYNC_ENABLE
2221   if (async_pending)
2222     {
2223       async_pending = 0;
2224
2225       ECB_MEMORY_FENCE;
2226
2227       for (i = asynccnt; i--; )
2228         if (asyncs [i]->sent)
2229           {
2230             asyncs [i]->sent = 0;
2231             ECB_MEMORY_FENCE_RELEASE;
2232             ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2233           }
2234     }
2235 #endif
2236 }
2237
2238 /*****************************************************************************/
2239
2240 void
2241 ev_feed_signal (int signum) EV_THROW
2242 {
2243 #if EV_MULTIPLICITY
2244   ECB_MEMORY_FENCE_ACQUIRE;
2245   EV_P = signals [signum - 1].loop;
2246
2247   if (!EV_A)
2248     return;
2249 #endif
2250
2251   signals [signum - 1].pending = 1;
2252   evpipe_write (EV_A_ &sig_pending);
2253 }
2254
2255 static void
2256 ev_sighandler (int signum)
2257 {
2258 #ifdef _WIN32
2259   signal (signum, ev_sighandler);
2260 #endif
2261
2262   ev_feed_signal (signum);
2263 }
2264
2265 void noinline
2266 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2267 {
2268   WL w;
2269
2270   if (expect_false (signum <= 0 || signum >= EV_NSIG))
2271     return;
2272
2273   --signum;
2274
2275 #if EV_MULTIPLICITY
2276   /* it is permissible to try to feed a signal to the wrong loop */
2277   /* or, likely more useful, feeding a signal nobody is waiting for */
2278
2279   if (expect_false (signals [signum].loop != EV_A))
2280     return;
2281 #endif
2282
2283   signals [signum].pending = 0;
2284   ECB_MEMORY_FENCE_RELEASE;
2285
2286   for (w = signals [signum].head; w; w = w->next)
2287     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2288 }
2289
2290 #if EV_USE_SIGNALFD
2291 static void
2292 sigfdcb (EV_P_ ev_io *iow, int revents)
2293 {
2294   struct signalfd_siginfo si[2], *sip; /* these structs are big */
2295
2296   for (;;)
2297     {
2298       ssize_t res = read (sigfd, si, sizeof (si));
2299
2300       /* not ISO-C, as res might be -1, but works with SuS */
2301       for (sip = si; (char *)sip < (char *)si + res; ++sip)
2302         ev_feed_signal_event (EV_A_ sip->ssi_signo);
2303
2304       if (res < (ssize_t)sizeof (si))
2305         break;
2306     }
2307 }
2308 #endif
2309
2310 #endif
2311
2312 /*****************************************************************************/
2313
2314 #if EV_CHILD_ENABLE
2315 static WL childs [EV_PID_HASHSIZE];
2316
2317 static ev_signal childev;
2318
2319 #ifndef WIFCONTINUED
2320 # define WIFCONTINUED(status) 0
2321 #endif
2322
2323 /* handle a single child status event */
2324 inline_speed void
2325 child_reap (EV_P_ int chain, int pid, int status)
2326 {
2327   ev_child *w;
2328   int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2329
2330   for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2331     {
2332       if ((w->pid == pid || !w->pid)
2333           && (!traced || (w->flags & 1)))
2334         {
2335           ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2336           w->rpid    = pid;
2337           w->rstatus = status;
2338           ev_feed_event (EV_A_ (W)w, EV_CHILD);
2339         }
2340     }
2341 }
2342
2343 #ifndef WCONTINUED
2344 # define WCONTINUED 0
2345 #endif
2346
2347 /* called on sigchld etc., calls waitpid */
2348 static void
2349 childcb (EV_P_ ev_signal *sw, int revents)
2350 {
2351   int pid, status;
2352
2353   /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2354   if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2355     if (!WCONTINUED
2356         || errno != EINVAL
2357         || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2358       return;
2359
2360   /* make sure we are called again until all children have been reaped */
2361   /* we need to do it this way so that the callback gets called before we continue */
2362   ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2363
2364   child_reap (EV_A_ pid, pid, status);
2365   if ((EV_PID_HASHSIZE) > 1)
2366     child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2367 }
2368
2369 #endif
2370
2371 /*****************************************************************************/
2372
2373 #if EV_USE_IOCP
2374 # include "ev_iocp.c"
2375 #endif
2376 #if EV_USE_PORT
2377 # include "ev_port.c"
2378 #endif
2379 #if EV_USE_KQUEUE
2380 # include "ev_kqueue.c"
2381 #endif
2382 #if EV_USE_EPOLL
2383 # include "ev_epoll.c"
2384 #endif
2385 #if EV_USE_POLL
2386 # include "ev_poll.c"
2387 #endif
2388 #if EV_USE_SELECT
2389 # include "ev_select.c"
2390 #endif
2391
2392 int ecb_cold
2393 ev_version_major (void) EV_THROW
2394 {
2395   return EV_VERSION_MAJOR;
2396 }
2397
2398 int ecb_cold
2399 ev_version_minor (void) EV_THROW
2400 {
2401   return EV_VERSION_MINOR;
2402 }
2403
2404 /* return true if we are running with elevated privileges and should ignore env variables */
2405 int inline_size ecb_cold
2406 enable_secure (void)
2407 {
2408 #ifdef _WIN32
2409   return 0;
2410 #else
2411   return getuid () != geteuid ()
2412       || getgid () != getegid ();
2413 #endif
2414 }
2415
2416 unsigned int ecb_cold
2417 ev_supported_backends (void) EV_THROW
2418 {
2419   unsigned int flags = 0;
2420
2421   if (EV_USE_PORT  ) flags |= EVBACKEND_PORT;
2422   if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2423   if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2424   if (EV_USE_POLL  ) flags |= EVBACKEND_POLL;
2425   if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2426   
2427   return flags;
2428 }
2429
2430 unsigned int ecb_cold
2431 ev_recommended_backends (void) EV_THROW
2432 {
2433   unsigned int flags = ev_supported_backends ();
2434
2435 #ifndef __NetBSD__
2436   /* kqueue is borked on everything but netbsd apparently */
2437   /* it usually doesn't work correctly on anything but sockets and pipes */
2438   flags &= ~EVBACKEND_KQUEUE;
2439 #endif
2440 #ifdef __APPLE__
2441   /* only select works correctly on that "unix-certified" platform */
2442   flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2443   flags &= ~EVBACKEND_POLL;   /* poll is based on kqueue from 10.5 onwards */
2444 #endif
2445 #ifdef __FreeBSD__
2446   flags &= ~EVBACKEND_POLL;   /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2447 #endif
2448
2449   return flags;
2450 }
2451
2452 unsigned int ecb_cold
2453 ev_embeddable_backends (void) EV_THROW
2454 {
2455   int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2456
2457   /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2458   if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2459     flags &= ~EVBACKEND_EPOLL;
2460
2461   return flags;
2462 }
2463
2464 unsigned int
2465 ev_backend (EV_P) EV_THROW
2466 {
2467   return backend;
2468 }
2469
2470 #if EV_FEATURE_API
2471 unsigned int
2472 ev_iteration (EV_P) EV_THROW
2473 {
2474   return loop_count;
2475 }
2476
2477 unsigned int
2478 ev_depth (EV_P) EV_THROW
2479 {
2480   return loop_depth;
2481 }
2482
2483 void
2484 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2485 {
2486   io_blocktime = interval;
2487 }
2488
2489 void
2490 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2491 {
2492   timeout_blocktime = interval;
2493 }
2494
2495 void
2496 ev_set_userdata (EV_P_ void *data) EV_THROW
2497 {
2498   userdata = data;
2499 }
2500
2501 void *
2502 ev_userdata (EV_P) EV_THROW
2503 {
2504   return userdata;
2505 }
2506
2507 void
2508 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2509 {
2510   invoke_cb = invoke_pending_cb;
2511 }
2512
2513 void
2514 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2515 {
2516   release_cb = release;
2517   acquire_cb = acquire;
2518 }
2519 #endif
2520
2521 /* initialise a loop structure, must be zero-initialised */
2522 static void noinline ecb_cold
2523 loop_init (EV_P_ unsigned int flags) EV_THROW
2524 {
2525   if (!backend)
2526     {
2527       origflags = flags;
2528
2529 #if EV_USE_REALTIME
2530       if (!have_realtime)
2531         {
2532           struct timespec ts;
2533
2534           if (!clock_gettime (CLOCK_REALTIME, &ts))
2535             have_realtime = 1;
2536         }
2537 #endif
2538
2539 #if EV_USE_MONOTONIC
2540       if (!have_monotonic)
2541         {
2542           struct timespec ts;
2543
2544           if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2545             have_monotonic = 1;
2546         }
2547 #endif
2548
2549       /* pid check not overridable via env */
2550 #ifndef _WIN32
2551       if (flags & EVFLAG_FORKCHECK)
2552         curpid = getpid ();
2553 #endif
2554
2555       if (!(flags & EVFLAG_NOENV)
2556           && !enable_secure ()
2557           && getenv ("LIBEV_FLAGS"))
2558         flags = atoi (getenv ("LIBEV_FLAGS"));
2559
2560       ev_rt_now          = ev_time ();
2561       mn_now             = get_clock ();
2562       now_floor          = mn_now;
2563       rtmn_diff          = ev_rt_now - mn_now;
2564 #if EV_FEATURE_API
2565       invoke_cb          = ev_invoke_pending;
2566 #endif
2567
2568       io_blocktime       = 0.;
2569       timeout_blocktime  = 0.;
2570       backend            = 0;
2571       backend_fd         = -1;
2572       sig_pending        = 0;
2573 #if EV_ASYNC_ENABLE
2574       async_pending      = 0;
2575 #endif
2576       pipe_write_skipped = 0;
2577       pipe_write_wanted  = 0;
2578       evpipe [0]         = -1;
2579       evpipe [1]         = -1;
2580 #if EV_USE_INOTIFY
2581       fs_fd              = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2582 #endif
2583 #if EV_USE_SIGNALFD
2584       sigfd              = flags & EVFLAG_SIGNALFD  ? -2 : -1;
2585 #endif
2586
2587       if (!(flags & EVBACKEND_MASK))
2588         flags |= ev_recommended_backends ();
2589
2590 #if EV_USE_IOCP
2591       if (!backend && (flags & EVBACKEND_IOCP  )) backend = iocp_init   (EV_A_ flags);
2592 #endif
2593 #if EV_USE_PORT
2594       if (!backend && (flags & EVBACKEND_PORT  )) backend = port_init   (EV_A_ flags);
2595 #endif
2596 #if EV_USE_KQUEUE
2597       if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2598 #endif
2599 #if EV_USE_EPOLL
2600       if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init  (EV_A_ flags);
2601 #endif
2602 #if EV_USE_POLL
2603       if (!backend && (flags & EVBACKEND_POLL  )) backend = poll_init   (EV_A_ flags);
2604 #endif
2605 #if EV_USE_SELECT
2606       if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2607 #endif
2608
2609       ev_prepare_init (&pending_w, pendingcb);
2610
2611 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2612       ev_init (&pipe_w, pipecb);
2613       ev_set_priority (&pipe_w, EV_MAXPRI);
2614 #endif
2615     }
2616 }
2617
2618 /* free up a loop structure */
2619 void ecb_cold
2620 ev_loop_destroy (EV_P)
2621 {
2622   int i;
2623
2624 #if EV_MULTIPLICITY
2625   /* mimic free (0) */
2626   if (!EV_A)
2627     return;
2628 #endif
2629
2630 #if EV_CLEANUP_ENABLE
2631   /* queue cleanup watchers (and execute them) */
2632   if (expect_false (cleanupcnt))
2633     {
2634       queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2635       EV_INVOKE_PENDING;
2636     }
2637 #endif
2638
2639 #if EV_CHILD_ENABLE
2640   if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2641     {
2642       ev_ref (EV_A); /* child watcher */
2643       ev_signal_stop (EV_A_ &childev);
2644     }
2645 #endif
2646
2647   if (ev_is_active (&pipe_w))
2648     {
2649       /*ev_ref (EV_A);*/
2650       /*ev_io_stop (EV_A_ &pipe_w);*/
2651
2652       if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2653       if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2654     }
2655
2656 #if EV_USE_SIGNALFD
2657   if (ev_is_active (&sigfd_w))
2658     close (sigfd);
2659 #endif
2660
2661 #if EV_USE_INOTIFY
2662   if (fs_fd >= 0)
2663     close (fs_fd);
2664 #endif
2665
2666   if (backend_fd >= 0)
2667     close (backend_fd);
2668
2669 #if EV_USE_IOCP
2670   if (backend == EVBACKEND_IOCP  ) iocp_destroy   (EV_A);
2671 #endif
2672 #if EV_USE_PORT
2673   if (backend == EVBACKEND_PORT  ) port_destroy   (EV_A);
2674 #endif
2675 #if EV_USE_KQUEUE
2676   if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2677 #endif
2678 #if EV_USE_EPOLL
2679   if (backend == EVBACKEND_EPOLL ) epoll_destroy  (EV_A);
2680 #endif
2681 #if EV_USE_POLL
2682   if (backend == EVBACKEND_POLL  ) poll_destroy   (EV_A);
2683 #endif
2684 #if EV_USE_SELECT
2685   if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2686 #endif
2687
2688   for (i = NUMPRI; i--; )
2689     {
2690       array_free (pending, [i]);
2691 #if EV_IDLE_ENABLE
2692       array_free (idle, [i]);
2693 #endif
2694     }
2695
2696   ev_free (anfds); anfds = 0; anfdmax = 0;
2697
2698   /* have to use the microsoft-never-gets-it-right macro */
2699   array_free (rfeed, EMPTY);
2700   array_free (fdchange, EMPTY);
2701   array_free (timer, EMPTY);
2702 #if EV_PERIODIC_ENABLE
2703   array_free (periodic, EMPTY);
2704 #endif
2705 #if EV_FORK_ENABLE
2706   array_free (fork, EMPTY);
2707 #endif
2708 #if EV_CLEANUP_ENABLE
2709   array_free (cleanup, EMPTY);
2710 #endif
2711   array_free (prepare, EMPTY);
2712   array_free (check, EMPTY);
2713 #if EV_ASYNC_ENABLE
2714   array_free (async, EMPTY);
2715 #endif
2716
2717   backend = 0;
2718
2719 #if EV_MULTIPLICITY
2720   if (ev_is_default_loop (EV_A))
2721 #endif
2722     ev_default_loop_ptr = 0;
2723 #if EV_MULTIPLICITY
2724   else
2725     ev_free (EV_A);
2726 #endif
2727 }
2728
2729 #if EV_USE_INOTIFY
2730 inline_size void infy_fork (EV_P);
2731 #endif
2732
2733 inline_size void
2734 loop_fork (EV_P)
2735 {
2736 #if EV_USE_PORT
2737   if (backend == EVBACKEND_PORT  ) port_fork   (EV_A);
2738 #endif
2739 #if EV_USE_KQUEUE
2740   if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2741 #endif
2742 #if EV_USE_EPOLL
2743   if (backend == EVBACKEND_EPOLL ) epoll_fork  (EV_A);
2744 #endif
2745 #if EV_USE_INOTIFY
2746   infy_fork (EV_A);
2747 #endif
2748
2749 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2750   if (ev_is_active (&pipe_w))
2751     {
2752       /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2753
2754       ev_ref (EV_A);
2755       ev_io_stop (EV_A_ &pipe_w);
2756
2757       if (evpipe [0] >= 0)
2758         EV_WIN32_CLOSE_FD (evpipe [0]);
2759
2760       evpipe_init (EV_A);
2761       /* iterate over everything, in case we missed something before */
2762       ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2763     }
2764 #endif
2765
2766   postfork = 0;
2767 }
2768
2769 #if EV_MULTIPLICITY
2770
2771 struct ev_loop * ecb_cold
2772 ev_loop_new (unsigned int flags) EV_THROW
2773 {
2774   EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2775
2776   memset (EV_A, 0, sizeof (struct ev_loop));
2777   loop_init (EV_A_ flags);
2778
2779   if (ev_backend (EV_A))
2780     return EV_A;
2781
2782   ev_free (EV_A);
2783   return 0;
2784 }
2785
2786 #endif /* multiplicity */
2787
2788 #if EV_VERIFY
2789 static void noinline ecb_cold
2790 verify_watcher (EV_P_ W w)
2791 {
2792   assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2793
2794   if (w->pending)
2795     assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2796 }
2797
2798 static void noinline ecb_cold
2799 verify_heap (EV_P_ ANHE *heap, int N)
2800 {
2801   int i;
2802
2803   for (i = HEAP0; i < N + HEAP0; ++i)
2804     {
2805       assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2806       assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2807       assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2808
2809       verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2810     }
2811 }
2812
2813 static void noinline ecb_cold
2814 array_verify (EV_P_ W *ws, int cnt)
2815 {
2816   while (cnt--)
2817     {
2818       assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2819       verify_watcher (EV_A_ ws [cnt]);
2820     }
2821 }
2822 #endif
2823
2824 #if EV_FEATURE_API
2825 void ecb_cold
2826 ev_verify (EV_P) EV_THROW
2827 {
2828 #if EV_VERIFY
2829   int i;
2830   WL w, w2;
2831
2832   assert (activecnt >= -1);
2833
2834   assert (fdchangemax >= fdchangecnt);
2835   for (i = 0; i < fdchangecnt; ++i)
2836     assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2837
2838   assert (anfdmax >= 0);
2839   for (i = 0; i < anfdmax; ++i)
2840     {
2841       int j = 0;
2842
2843       for (w = w2 = anfds [i].head; w; w = w->next)
2844         {
2845           verify_watcher (EV_A_ (W)w);
2846
2847           if (j++ & 1)
2848             {
2849               assert (("libev: io watcher list contains a loop", w != w2));
2850               w2 = w2->next;
2851             }
2852
2853           assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2854           assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2855         }
2856     }
2857
2858   assert (timermax >= timercnt);
2859   verify_heap (EV_A_ timers, timercnt);
2860
2861 #if EV_PERIODIC_ENABLE
2862   assert (periodicmax >= periodiccnt);
2863   verify_heap (EV_A_ periodics, periodiccnt);
2864 #endif
2865
2866   for (i = NUMPRI; i--; )
2867     {
2868       assert (pendingmax [i] >= pendingcnt [i]);
2869 #if EV_IDLE_ENABLE
2870       assert (idleall >= 0);
2871       assert (idlemax [i] >= idlecnt [i]);
2872       array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2873 #endif
2874     }
2875
2876 #if EV_FORK_ENABLE
2877   assert (forkmax >= forkcnt);
2878   array_verify (EV_A_ (W *)forks, forkcnt);
2879 #endif
2880
2881 #if EV_CLEANUP_ENABLE
2882   assert (cleanupmax >= cleanupcnt);
2883   array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2884 #endif
2885
2886 #if EV_ASYNC_ENABLE
2887   assert (asyncmax >= asynccnt);
2888   array_verify (EV_A_ (W *)asyncs, asynccnt);
2889 #endif
2890
2891 #if EV_PREPARE_ENABLE
2892   assert (preparemax >= preparecnt);
2893   array_verify (EV_A_ (W *)prepares, preparecnt);
2894 #endif
2895
2896 #if EV_CHECK_ENABLE
2897   assert (checkmax >= checkcnt);
2898   array_verify (EV_A_ (W *)checks, checkcnt);
2899 #endif
2900
2901 # if 0
2902 #if EV_CHILD_ENABLE
2903   for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2904   for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2905 #endif
2906 # endif
2907 #endif
2908 }
2909 #endif
2910
2911 #if EV_MULTIPLICITY
2912 struct ev_loop * ecb_cold
2913 #else
2914 int
2915 #endif
2916 ev_default_loop (unsigned int flags) EV_THROW
2917 {
2918   if (!ev_default_loop_ptr)
2919     {
2920 #if EV_MULTIPLICITY
2921       EV_P = ev_default_loop_ptr = &default_loop_struct;
2922 #else
2923       ev_default_loop_ptr = 1;
2924 #endif
2925
2926       loop_init (EV_A_ flags);
2927
2928       if (ev_backend (EV_A))
2929         {
2930 #if EV_CHILD_ENABLE
2931           ev_signal_init (&childev, childcb, SIGCHLD);
2932           ev_set_priority (&childev, EV_MAXPRI);
2933           ev_signal_start (EV_A_ &childev);
2934           ev_unref (EV_A); /* child watcher should not keep loop alive */
2935 #endif
2936         }
2937       else
2938         ev_default_loop_ptr = 0;
2939     }
2940
2941   return ev_default_loop_ptr;
2942 }
2943
2944 void
2945 ev_loop_fork (EV_P) EV_THROW
2946 {
2947   postfork = 1;
2948 }
2949
2950 /*****************************************************************************/
2951
2952 void
2953 ev_invoke (EV_P_ void *w, int revents)
2954 {
2955   EV_CB_INVOKE ((W)w, revents);
2956 }
2957
2958 unsigned int
2959 ev_pending_count (EV_P) EV_THROW
2960 {
2961   int pri;
2962   unsigned int count = 0;
2963
2964   for (pri = NUMPRI; pri--; )
2965     count += pendingcnt [pri];
2966
2967   return count;
2968 }
2969
2970 void noinline
2971 ev_invoke_pending (EV_P)
2972 {
2973   pendingpri = NUMPRI;
2974
2975   while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2976     {
2977       --pendingpri;
2978
2979       while (pendingcnt [pendingpri])
2980         {
2981           ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2982
2983           p->w->pending = 0;
2984           EV_CB_INVOKE (p->w, p->events);
2985           EV_FREQUENT_CHECK;
2986         }
2987     }
2988 }
2989
2990 #if EV_IDLE_ENABLE
2991 /* make idle watchers pending. this handles the "call-idle */
2992 /* only when higher priorities are idle" logic */
2993 inline_size void
2994 idle_reify (EV_P)
2995 {
2996   if (expect_false (idleall))
2997     {
2998       int pri;
2999
3000       for (pri = NUMPRI; pri--; )
3001         {
3002           if (pendingcnt [pri])
3003             break;
3004
3005           if (idlecnt [pri])
3006             {
3007               queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3008               break;
3009             }
3010         }
3011     }
3012 }
3013 #endif
3014
3015 /* make timers pending */
3016 inline_size void
3017 timers_reify (EV_P)
3018 {
3019   EV_FREQUENT_CHECK;
3020
3021   if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3022     {
3023       do
3024         {
3025           ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3026
3027           /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3028
3029           /* first reschedule or stop timer */
3030           if (w->repeat)
3031             {
3032               ev_at (w) += w->repeat;
3033               if (ev_at (w) < mn_now)
3034                 ev_at (w) = mn_now;
3035
3036               assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3037
3038               ANHE_at_cache (timers [HEAP0]);
3039               downheap (timers, timercnt, HEAP0);
3040             }
3041           else
3042             ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3043
3044           EV_FREQUENT_CHECK;
3045           feed_reverse (EV_A_ (W)w);
3046         }
3047       while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3048
3049       feed_reverse_done (EV_A_ EV_TIMER);
3050     }
3051 }
3052
3053 #if EV_PERIODIC_ENABLE
3054
3055 static void noinline
3056 periodic_recalc (EV_P_ ev_periodic *w)
3057 {
3058   ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3059   ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3060
3061   /* the above almost always errs on the low side */
3062   while (at <= ev_rt_now)
3063     {
3064       ev_tstamp nat = at + w->interval;
3065
3066       /* when resolution fails us, we use ev_rt_now */
3067       if (expect_false (nat == at))
3068         {
3069           at = ev_rt_now;
3070           break;
3071         }
3072
3073       at = nat;
3074     }
3075
3076   ev_at (w) = at;
3077 }
3078
3079 /* make periodics pending */
3080 inline_size void
3081 periodics_reify (EV_P)
3082 {
3083   EV_FREQUENT_CHECK;
3084
3085   while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3086     {
3087       do
3088         {
3089           ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3090
3091           /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3092
3093           /* first reschedule or stop timer */
3094           if (w->reschedule_cb)
3095             {
3096               ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3097
3098               assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3099
3100               ANHE_at_cache (periodics [HEAP0]);
3101               downheap (periodics, periodiccnt, HEAP0);
3102             }
3103           else if (w->interval)
3104             {
3105               periodic_recalc (EV_A_ w);
3106               ANHE_at_cache (periodics [HEAP0]);
3107               downheap (periodics, periodiccnt, HEAP0);
3108             }
3109           else
3110             ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3111
3112           EV_FREQUENT_CHECK;
3113           feed_reverse (EV_A_ (W)w);
3114         }
3115       while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3116
3117       feed_reverse_done (EV_A_ EV_PERIODIC);
3118     }
3119 }
3120
3121 /* simply recalculate all periodics */
3122 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3123 static void noinline ecb_cold
3124 periodics_reschedule (EV_P)
3125 {
3126   int i;
3127
3128   /* adjust periodics after time jump */
3129   for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3130     {
3131       ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3132
3133       if (w->reschedule_cb)
3134         ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3135       else if (w->interval)
3136         periodic_recalc (EV_A_ w);
3137
3138       ANHE_at_cache (periodics [i]);
3139     }
3140
3141   reheap (periodics, periodiccnt);
3142 }
3143 #endif
3144
3145 /* adjust all timers by a given offset */
3146 static void noinline ecb_cold
3147 timers_reschedule (EV_P_ ev_tstamp adjust)
3148 {
3149   int i;
3150
3151   for (i = 0; i < timercnt; ++i)
3152     {
3153       ANHE *he = timers + i + HEAP0;
3154       ANHE_w (*he)->at += adjust;
3155       ANHE_at_cache (*he);
3156     }
3157 }
3158
3159 /* fetch new monotonic and realtime times from the kernel */
3160 /* also detect if there was a timejump, and act accordingly */
3161 inline_speed void
3162 time_update (EV_P_ ev_tstamp max_block)
3163 {
3164 #if EV_USE_MONOTONIC
3165   if (expect_true (have_monotonic))
3166     {
3167       int i;
3168       ev_tstamp odiff = rtmn_diff;
3169
3170       mn_now = get_clock ();
3171
3172       /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3173       /* interpolate in the meantime */
3174       if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3175         {
3176           ev_rt_now = rtmn_diff + mn_now;
3177           return;
3178         }
3179
3180       now_floor = mn_now;
3181       ev_rt_now = ev_time ();
3182
3183       /* loop a few times, before making important decisions.
3184        * on the choice of "4": one iteration isn't enough,
3185        * in case we get preempted during the calls to
3186        * ev_time and get_clock. a second call is almost guaranteed
3187        * to succeed in that case, though. and looping a few more times
3188        * doesn't hurt either as we only do this on time-jumps or
3189        * in the unlikely event of having been preempted here.
3190        */
3191       for (i = 4; --i; )
3192         {
3193           ev_tstamp diff;
3194           rtmn_diff = ev_rt_now - mn_now;
3195
3196           diff = odiff - rtmn_diff;
3197
3198           if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3199             return; /* all is well */
3200
3201           ev_rt_now = ev_time ();
3202           mn_now    = get_clock ();
3203           now_floor = mn_now;
3204         }
3205
3206       /* no timer adjustment, as the monotonic clock doesn't jump */
3207       /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3208 # if EV_PERIODIC_ENABLE
3209       periodics_reschedule (EV_A);
3210 # endif
3211     }
3212   else
3213 #endif
3214     {
3215       ev_rt_now = ev_time ();
3216
3217       if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3218         {
3219           /* adjust timers. this is easy, as the offset is the same for all of them */
3220           timers_reschedule (EV_A_ ev_rt_now - mn_now);
3221 #if EV_PERIODIC_ENABLE
3222           periodics_reschedule (EV_A);
3223 #endif
3224         }
3225
3226       mn_now = ev_rt_now;
3227     }
3228 }
3229
3230 int
3231 ev_run (EV_P_ int flags)
3232 {
3233 #if EV_FEATURE_API
3234   ++loop_depth;
3235 #endif
3236
3237   assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3238
3239   loop_done = EVBREAK_CANCEL;
3240
3241   EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3242
3243   do
3244     {
3245 #if EV_VERIFY >= 2
3246       ev_verify (EV_A);
3247 #endif
3248
3249 #ifndef _WIN32
3250       if (expect_false (curpid)) /* penalise the forking check even more */
3251         if (expect_false (getpid () != curpid))
3252           {
3253             curpid = getpid ();
3254             postfork = 1;
3255           }
3256 #endif
3257
3258 #if EV_FORK_ENABLE
3259       /* we might have forked, so queue fork handlers */
3260       if (expect_false (postfork))
3261         if (forkcnt)
3262           {
3263             queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3264             EV_INVOKE_PENDING;
3265           }
3266 #endif
3267
3268 #if EV_PREPARE_ENABLE
3269       /* queue prepare watchers (and execute them) */
3270       if (expect_false (preparecnt))
3271         {
3272           queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3273           EV_INVOKE_PENDING;
3274         }
3275 #endif
3276
3277       if (expect_false (loop_done))
3278         break;
3279
3280       /* we might have forked, so reify kernel state if necessary */
3281       if (expect_false (postfork))
3282         loop_fork (EV_A);
3283
3284       /* update fd-related kernel structures */
3285       fd_reify (EV_A);
3286
3287       /* calculate blocking time */
3288       {
3289         ev_tstamp waittime  = 0.;
3290         ev_tstamp sleeptime = 0.;
3291
3292         /* remember old timestamp for io_blocktime calculation */
3293         ev_tstamp prev_mn_now = mn_now;
3294
3295         /* update time to cancel out callback processing overhead */
3296         time_update (EV_A_ 1e100);
3297
3298         /* from now on, we want a pipe-wake-up */
3299         pipe_write_wanted = 1;
3300
3301         ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3302
3303         if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3304           {
3305             waittime = MAX_BLOCKTIME;
3306
3307             if (timercnt)
3308               {
3309                 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3310                 if (waittime > to) waittime = to;
3311               }
3312
3313 #if EV_PERIODIC_ENABLE
3314             if (periodiccnt)
3315               {
3316                 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3317                 if (waittime > to) waittime = to;
3318               }
3319 #endif
3320
3321             /* don't let timeouts decrease the waittime below timeout_blocktime */
3322             if (expect_false (waittime < timeout_blocktime))
3323               waittime = timeout_blocktime;
3324
3325             /* at this point, we NEED to wait, so we have to ensure */
3326             /* to pass a minimum nonzero value to the backend */
3327             if (expect_false (waittime < backend_mintime))
3328               waittime = backend_mintime;
3329
3330             /* extra check because io_blocktime is commonly 0 */
3331             if (expect_false (io_blocktime))
3332               {
3333                 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3334
3335                 if (sleeptime > waittime - backend_mintime)
3336                   sleeptime = waittime - backend_mintime;
3337
3338                 if (expect_true (sleeptime > 0.))
3339                   {
3340                     ev_sleep (sleeptime);
3341                     waittime -= sleeptime;
3342                   }
3343               }
3344           }
3345
3346 #if EV_FEATURE_API
3347         ++loop_count;
3348 #endif
3349         assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3350         backend_poll (EV_A_ waittime);
3351         assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3352
3353         pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3354
3355         ECB_MEMORY_FENCE_ACQUIRE;
3356         if (pipe_write_skipped)
3357           {
3358             assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3359             ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3360           }
3361
3362
3363         /* update ev_rt_now, do magic */
3364         time_update (EV_A_ waittime + sleeptime);
3365       }
3366
3367       /* queue pending timers and reschedule them */
3368       timers_reify (EV_A); /* relative timers called last */
3369 #if EV_PERIODIC_ENABLE
3370       periodics_reify (EV_A); /* absolute timers called first */
3371 #endif
3372
3373 #if EV_IDLE_ENABLE
3374       /* queue idle watchers unless other events are pending */
3375       idle_reify (EV_A);
3376 #endif
3377
3378 #if EV_CHECK_ENABLE
3379       /* queue check watchers, to be executed first */
3380       if (expect_false (checkcnt))
3381         queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3382 #endif
3383
3384       EV_INVOKE_PENDING;
3385     }
3386   while (expect_true (
3387     activecnt
3388     && !loop_done
3389     && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3390   ));
3391
3392   if (loop_done == EVBREAK_ONE)
3393     loop_done = EVBREAK_CANCEL;
3394
3395 #if EV_FEATURE_API
3396   --loop_depth;
3397 #endif
3398
3399   return activecnt;
3400 }
3401
3402 void
3403 ev_break (EV_P_ int how) EV_THROW
3404 {
3405   loop_done = how;
3406 }
3407
3408 void
3409 ev_ref (EV_P) EV_THROW
3410 {
3411   ++activecnt;
3412 }
3413
3414 void
3415 ev_unref (EV_P) EV_THROW
3416 {
3417   --activecnt;
3418 }
3419
3420 void
3421 ev_now_update (EV_P) EV_THROW
3422 {
3423   time_update (EV_A_ 1e100);
3424 }
3425
3426 void
3427 ev_suspend (EV_P) EV_THROW
3428 {
3429   ev_now_update (EV_A);
3430 }
3431
3432 void
3433 ev_resume (EV_P) EV_THROW
3434 {
3435   ev_tstamp mn_prev = mn_now;
3436
3437   ev_now_update (EV_A);
3438   timers_reschedule (EV_A_ mn_now - mn_prev);
3439 #if EV_PERIODIC_ENABLE
3440   /* TODO: really do this? */
3441   periodics_reschedule (EV_A);
3442 #endif
3443 }
3444
3445 /*****************************************************************************/
3446 /* singly-linked list management, used when the expected list length is short */
3447
3448 inline_size void
3449 wlist_add (WL *head, WL elem)
3450 {
3451   elem->next = *head;
3452   *head = elem;
3453 }
3454
3455 inline_size void
3456 wlist_del (WL *head, WL elem)
3457 {
3458   while (*head)
3459     {
3460       if (expect_true (*head == elem))
3461         {
3462           *head = elem->next;
3463           break;
3464         }
3465
3466       head = &(*head)->next;
3467     }
3468 }
3469
3470 /* internal, faster, version of ev_clear_pending */
3471 inline_speed void
3472 clear_pending (EV_P_ W w)
3473 {
3474   if (w->pending)
3475     {
3476       pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3477       w->pending = 0;
3478     }
3479 }
3480
3481 int
3482 ev_clear_pending (EV_P_ void *w) EV_THROW
3483 {
3484   W w_ = (W)w;
3485   int pending = w_->pending;
3486
3487   if (expect_true (pending))
3488     {
3489       ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3490       p->w = (W)&pending_w;
3491       w_->pending = 0;
3492       return p->events;
3493     }
3494   else
3495     return 0;
3496 }
3497
3498 inline_size void
3499 pri_adjust (EV_P_ W w)
3500 {
3501   int pri = ev_priority (w);
3502   pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3503   pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3504   ev_set_priority (w, pri);
3505 }
3506
3507 inline_speed void
3508 ev_start (EV_P_ W w, int active)
3509 {
3510   pri_adjust (EV_A_ w);
3511   w->active = active;
3512   ev_ref (EV_A);
3513 }
3514
3515 inline_size void
3516 ev_stop (EV_P_ W w)
3517 {
3518   ev_unref (EV_A);
3519   w->active = 0;
3520 }
3521
3522 /*****************************************************************************/
3523
3524 void noinline
3525 ev_io_start (EV_P_ ev_io *w) EV_THROW
3526 {
3527   int fd = w->fd;
3528
3529   if (expect_false (ev_is_active (w)))
3530     return;
3531
3532   assert (("libev: ev_io_start called with negative fd", fd >= 0));
3533   assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3534
3535   EV_FREQUENT_CHECK;
3536
3537   ev_start (EV_A_ (W)w, 1);
3538   array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3539   wlist_add (&anfds[fd].head, (WL)w);
3540
3541   /* common bug, apparently */
3542   assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3543
3544   fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3545   w->events &= ~EV__IOFDSET;
3546
3547   EV_FREQUENT_CHECK;
3548 }
3549
3550 void noinline
3551 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3552 {
3553   clear_pending (EV_A_ (W)w);
3554   if (expect_false (!ev_is_active (w)))
3555     return;
3556
3557   assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3558
3559   EV_FREQUENT_CHECK;
3560
3561   wlist_del (&anfds[w->fd].head, (WL)w);
3562   ev_stop (EV_A_ (W)w);
3563
3564   fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3565
3566   EV_FREQUENT_CHECK;
3567 }
3568
3569 void noinline
3570 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3571 {
3572   if (expect_false (ev_is_active (w)))
3573     return;
3574
3575   ev_at (w) += mn_now;
3576
3577   assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3578
3579   EV_FREQUENT_CHECK;
3580
3581   ++timercnt;
3582   ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3583   array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3584   ANHE_w (timers [ev_active (w)]) = (WT)w;
3585   ANHE_at_cache (timers [ev_active (w)]);
3586   upheap (timers, ev_active (w));
3587
3588   EV_FREQUENT_CHECK;
3589
3590   /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3591 }
3592
3593 void noinline
3594 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3595 {
3596   clear_pending (EV_A_ (W)w);
3597   if (expect_false (!ev_is_active (w)))
3598     return;
3599
3600   EV_FREQUENT_CHECK;
3601
3602   {
3603     int active = ev_active (w);
3604
3605     assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3606
3607     --timercnt;
3608
3609     if (expect_true (active < timercnt + HEAP0))
3610       {
3611         timers [active] = timers [timercnt + HEAP0];
3612         adjustheap (timers, timercnt, active);
3613       }
3614   }
3615
3616   ev_at (w) -= mn_now;
3617
3618   ev_stop (EV_A_ (W)w);
3619
3620   EV_FREQUENT_CHECK;
3621 }
3622
3623 void noinline
3624 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3625 {
3626   EV_FREQUENT_CHECK;
3627
3628   clear_pending (EV_A_ (W)w);
3629
3630   if (ev_is_active (w))
3631     {
3632       if (w->repeat)
3633         {
3634           ev_at (w) = mn_now + w->repeat;
3635           ANHE_at_cache (timers [ev_active (w)]);
3636           adjustheap (timers, timercnt, ev_active (w));
3637         }
3638       else
3639         ev_timer_stop (EV_A_ w);
3640     }
3641   else if (w->repeat)
3642     {
3643       ev_at (w) = w->repeat;
3644       ev_timer_start (EV_A_ w);
3645     }
3646
3647   EV_FREQUENT_CHECK;
3648 }
3649
3650 ev_tstamp
3651 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3652 {
3653   return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3654 }
3655
3656 #if EV_PERIODIC_ENABLE
3657 void noinline
3658 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3659 {
3660   if (expect_false (ev_is_active (w)))
3661     return;
3662
3663   if (w->reschedule_cb)
3664     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3665   else if (w->interval)
3666     {
3667       assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3668       periodic_recalc (EV_A_ w);
3669     }
3670   else
3671     ev_at (w) = w->offset;
3672
3673   EV_FREQUENT_CHECK;
3674
3675   ++periodiccnt;
3676   ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3677   array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3678   ANHE_w (periodics [ev_active (w)]) = (WT)w;
3679   ANHE_at_cache (periodics [ev_active (w)]);
3680   upheap (periodics, ev_active (w));
3681
3682   EV_FREQUENT_CHECK;
3683
3684   /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3685 }
3686
3687 void noinline
3688 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3689 {
3690   clear_pending (EV_A_ (W)w);
3691   if (expect_false (!ev_is_active (w)))
3692     return;
3693
3694   EV_FREQUENT_CHECK;
3695
3696   {
3697     int active = ev_active (w);
3698
3699     assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3700
3701     --periodiccnt;
3702
3703     if (expect_true (active < periodiccnt + HEAP0))
3704       {
3705         periodics [active] = periodics [periodiccnt + HEAP0];
3706         adjustheap (periodics, periodiccnt, active);
3707       }
3708   }
3709
3710   ev_stop (EV_A_ (W)w);
3711
3712   EV_FREQUENT_CHECK;
3713 }
3714
3715 void noinline
3716 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3717 {
3718   /* TODO: use adjustheap and recalculation */
3719   ev_periodic_stop (EV_A_ w);
3720   ev_periodic_start (EV_A_ w);
3721 }
3722 #endif
3723
3724 #ifndef SA_RESTART
3725 # define SA_RESTART 0
3726 #endif
3727
3728 #if EV_SIGNAL_ENABLE
3729
3730 void noinline
3731 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3732 {
3733   if (expect_false (ev_is_active (w)))
3734     return;
3735
3736   assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3737
3738 #if EV_MULTIPLICITY
3739   assert (("libev: a signal must not be attached to two different loops",
3740            !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3741
3742   signals [w->signum - 1].loop = EV_A;
3743   ECB_MEMORY_FENCE_RELEASE;
3744 #endif
3745
3746   EV_FREQUENT_CHECK;
3747
3748 #if EV_USE_SIGNALFD
3749   if (sigfd == -2)
3750     {
3751       sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3752       if (sigfd < 0 && errno == EINVAL)
3753         sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3754
3755       if (sigfd >= 0)
3756         {
3757           fd_intern (sigfd); /* doing it twice will not hurt */
3758
3759           sigemptyset (&sigfd_set);
3760
3761           ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3762           ev_set_priority (&sigfd_w, EV_MAXPRI);
3763           ev_io_start (EV_A_ &sigfd_w);
3764           ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3765         }
3766     }
3767
3768   if (sigfd >= 0)
3769     {
3770       /* TODO: check .head */
3771       sigaddset (&sigfd_set, w->signum);
3772       sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3773
3774       signalfd (sigfd, &sigfd_set, 0);
3775     }
3776 #endif
3777
3778   ev_start (EV_A_ (W)w, 1);
3779   wlist_add (&signals [w->signum - 1].head, (WL)w);
3780
3781   if (!((WL)w)->next)
3782 # if EV_USE_SIGNALFD
3783     if (sigfd < 0) /*TODO*/
3784 # endif
3785       {
3786 # ifdef _WIN32
3787         evpipe_init (EV_A);
3788
3789         signal (w->signum, ev_sighandler);
3790 # else
3791         struct sigaction sa;
3792
3793         evpipe_init (EV_A);
3794
3795         sa.sa_handler = ev_sighandler;
3796         sigfillset (&sa.sa_mask);
3797         sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3798         sigaction (w->signum, &sa, 0);
3799
3800         if (origflags & EVFLAG_NOSIGMASK)
3801           {
3802             sigemptyset (&sa.sa_mask);
3803             sigaddset (&sa.sa_mask, w->signum);
3804             sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3805           }
3806 #endif
3807       }
3808
3809   EV_FREQUENT_CHECK;
3810 }
3811
3812 void noinline
3813 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3814 {
3815   clear_pending (EV_A_ (W)w);
3816   if (expect_false (!ev_is_active (w)))
3817     return;
3818
3819   EV_FREQUENT_CHECK;
3820
3821   wlist_del (&signals [w->signum - 1].head, (WL)w);
3822   ev_stop (EV_A_ (W)w);
3823
3824   if (!signals [w->signum - 1].head)
3825     {
3826 #if EV_MULTIPLICITY
3827       signals [w->signum - 1].loop = 0; /* unattach from signal */
3828 #endif
3829 #if EV_USE_SIGNALFD
3830       if (sigfd >= 0)
3831         {
3832           sigset_t ss;
3833
3834           sigemptyset (&ss);
3835           sigaddset (&ss, w->signum);
3836           sigdelset (&sigfd_set, w->signum);
3837
3838           signalfd (sigfd, &sigfd_set, 0);
3839           sigprocmask (SIG_UNBLOCK, &ss, 0);
3840         }
3841       else
3842 #endif
3843         signal (w->signum, SIG_DFL);
3844     }
3845
3846   EV_FREQUENT_CHECK;
3847 }
3848
3849 #endif
3850
3851 #if EV_CHILD_ENABLE
3852
3853 void
3854 ev_child_start (EV_P_ ev_child *w) EV_THROW
3855 {
3856 #if EV_MULTIPLICITY
3857   assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3858 #endif
3859   if (expect_false (ev_is_active (w)))
3860     return;
3861
3862   EV_FREQUENT_CHECK;
3863
3864   ev_start (EV_A_ (W)w, 1);
3865   wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3866
3867   EV_FREQUENT_CHECK;
3868 }
3869
3870 void
3871 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3872 {
3873   clear_pending (EV_A_ (W)w);
3874   if (expect_false (!ev_is_active (w)))
3875     return;
3876
3877   EV_FREQUENT_CHECK;
3878
3879   wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3880   ev_stop (EV_A_ (W)w);
3881
3882   EV_FREQUENT_CHECK;
3883 }
3884
3885 #endif
3886
3887 #if EV_STAT_ENABLE
3888
3889 # ifdef _WIN32
3890 #  undef lstat
3891 #  define lstat(a,b) _stati64 (a,b)
3892 # endif
3893
3894 #define DEF_STAT_INTERVAL  5.0074891
3895 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3896 #define MIN_STAT_INTERVAL  0.1074891
3897
3898 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3899
3900 #if EV_USE_INOTIFY
3901
3902 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3903 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3904
3905 static void noinline
3906 infy_add (EV_P_ ev_stat *w)
3907 {
3908   w->wd = inotify_add_watch (fs_fd, w->path,
3909                              IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3910                              | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3911                              | IN_DONT_FOLLOW | IN_MASK_ADD);
3912
3913   if (w->wd >= 0)
3914     {
3915       struct statfs sfs;
3916
3917       /* now local changes will be tracked by inotify, but remote changes won't */
3918       /* unless the filesystem is known to be local, we therefore still poll */
3919       /* also do poll on <2.6.25, but with normal frequency */
3920
3921       if (!fs_2625)
3922         w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3923       else if (!statfs (w->path, &sfs)
3924                && (sfs.f_type == 0x1373 /* devfs */
3925                    || sfs.f_type == 0x4006 /* fat */
3926                    || sfs.f_type == 0x4d44 /* msdos */
3927                    || sfs.f_type == 0xEF53 /* ext2/3 */
3928                    || sfs.f_type == 0x72b6 /* jffs2 */
3929                    || sfs.f_type == 0x858458f6 /* ramfs */
3930                    || sfs.f_type == 0x5346544e /* ntfs */
3931                    || sfs.f_type == 0x3153464a /* jfs */
3932                    || sfs.f_type == 0x9123683e /* btrfs */
3933                    || sfs.f_type == 0x52654973 /* reiser3 */
3934                    || sfs.f_type == 0x01021994 /* tmpfs */
3935                    || sfs.f_type == 0x58465342 /* xfs */))
3936         w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3937       else
3938         w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3939     }
3940   else
3941     {
3942       /* can't use inotify, continue to stat */
3943       w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3944
3945       /* if path is not there, monitor some parent directory for speedup hints */
3946       /* note that exceeding the hardcoded path limit is not a correctness issue, */
3947       /* but an efficiency issue only */
3948       if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3949         {
3950           char path [4096];
3951           strcpy (path, w->path);
3952
3953           do
3954             {
3955               int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3956                        | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3957
3958               char *pend = strrchr (path, '/');
3959
3960               if (!pend || pend == path)
3961                 break;
3962
3963               *pend = 0;
3964               w->wd = inotify_add_watch (fs_fd, path, mask);
3965             }
3966           while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3967         }
3968     }
3969
3970   if (w->wd >= 0)
3971     wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3972
3973   /* now re-arm timer, if required */
3974   if (ev_is_active (&w->timer)) ev_ref (EV_A);
3975   ev_timer_again (EV_A_ &w->timer);
3976   if (ev_is_active (&w->timer)) ev_unref (EV_A);
3977 }
3978
3979 static void noinline
3980 infy_del (EV_P_ ev_stat *w)
3981 {
3982   int slot;
3983   int wd = w->wd;
3984
3985   if (wd < 0)
3986     return;
3987
3988   w->wd = -2;
3989   slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3990   wlist_del (&fs_hash [slot].head, (WL)w);
3991
3992   /* remove this watcher, if others are watching it, they will rearm */
3993   inotify_rm_watch (fs_fd, wd);
3994 }
3995
3996 static void noinline
3997 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3998 {
3999   if (slot < 0)
4000     /* overflow, need to check for all hash slots */
4001     for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4002       infy_wd (EV_A_ slot, wd, ev);
4003   else
4004     {
4005       WL w_;
4006
4007       for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4008         {
4009           ev_stat *w = (ev_stat *)w_;
4010           w_ = w_->next; /* lets us remove this watcher and all before it */
4011
4012           if (w->wd == wd || wd == -1)
4013             {
4014               if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4015                 {
4016                   wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4017                   w->wd = -1;
4018                   infy_add (EV_A_ w); /* re-add, no matter what */
4019                 }
4020
4021               stat_timer_cb (EV_A_ &w->timer, 0);
4022             }
4023         }
4024     }
4025 }
4026
4027 static void
4028 infy_cb (EV_P_ ev_io *w, int revents)
4029 {
4030   char buf [EV_INOTIFY_BUFSIZE];
4031   int ofs;
4032   int len = read (fs_fd, buf, sizeof (buf));
4033
4034   for (ofs = 0; ofs < len; )
4035     {
4036       struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4037       infy_wd (EV_A_ ev->wd, ev->wd, ev);
4038       ofs += sizeof (struct inotify_event) + ev->len;
4039     }
4040 }
4041
4042 inline_size void ecb_cold
4043 ev_check_2625 (EV_P)
4044 {
4045   /* kernels < 2.6.25 are borked
4046    * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4047    */
4048   if (ev_linux_version () < 0x020619)
4049     return;
4050
4051   fs_2625 = 1;
4052 }
4053
4054 inline_size int
4055 infy_newfd (void)
4056 {
4057 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4058   int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4059   if (fd >= 0)
4060     return fd;
4061 #endif
4062   return inotify_init ();
4063 }
4064
4065 inline_size void
4066 infy_init (EV_P)
4067 {
4068   if (fs_fd != -2)
4069     return;
4070
4071   fs_fd = -1;
4072
4073   ev_check_2625 (EV_A);
4074
4075   fs_fd = infy_newfd ();
4076
4077   if (fs_fd >= 0)
4078     {
4079       fd_intern (fs_fd);
4080       ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4081       ev_set_priority (&fs_w, EV_MAXPRI);
4082       ev_io_start (EV_A_ &fs_w);
4083       ev_unref (EV_A);
4084     }
4085 }
4086
4087 inline_size void
4088 infy_fork (EV_P)
4089 {
4090   int slot;
4091
4092   if (fs_fd < 0)
4093     return;
4094
4095   ev_ref (EV_A);
4096   ev_io_stop (EV_A_ &fs_w);
4097   close (fs_fd);
4098   fs_fd = infy_newfd ();
4099
4100   if (fs_fd >= 0)
4101     {
4102       fd_intern (fs_fd);
4103       ev_io_set (&fs_w, fs_fd, EV_READ);
4104       ev_io_start (EV_A_ &fs_w);
4105       ev_unref (EV_A);
4106     }
4107
4108   for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4109     {
4110       WL w_ = fs_hash [slot].head;
4111       fs_hash [slot].head = 0;
4112
4113       while (w_)
4114         {
4115           ev_stat *w = (ev_stat *)w_;
4116           w_ = w_->next; /* lets us add this watcher */
4117
4118           w->wd = -1;
4119
4120           if (fs_fd >= 0)
4121             infy_add (EV_A_ w); /* re-add, no matter what */
4122           else
4123             {
4124               w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4125               if (ev_is_active (&w->timer)) ev_ref (EV_A);
4126               ev_timer_again (EV_A_ &w->timer);
4127               if (ev_is_active (&w->timer)) ev_unref (EV_A);
4128             }
4129         }
4130     }
4131 }
4132
4133 #endif
4134
4135 #ifdef _WIN32
4136 # define EV_LSTAT(p,b) _stati64 (p, b)
4137 #else
4138 # define EV_LSTAT(p,b) lstat (p, b)
4139 #endif
4140
4141 void
4142 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4143 {
4144   if (lstat (w->path, &w->attr) < 0)
4145     w->attr.st_nlink = 0;
4146   else if (!w->attr.st_nlink)
4147     w->attr.st_nlink = 1;
4148 }
4149
4150 static void noinline
4151 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4152 {
4153   ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4154
4155   ev_statdata prev = w->attr;
4156   ev_stat_stat (EV_A_ w);
4157
4158   /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4159   if (
4160     prev.st_dev      != w->attr.st_dev
4161     || prev.st_ino   != w->attr.st_ino
4162     || prev.st_mode  != w->attr.st_mode
4163     || prev.st_nlink != w->attr.st_nlink
4164     || prev.st_uid   != w->attr.st_uid
4165     || prev.st_gid   != w->attr.st_gid
4166     || prev.st_rdev  != w->attr.st_rdev
4167     || prev.st_size  != w->attr.st_size
4168     || prev.st_atime != w->attr.st_atime
4169     || prev.st_mtime != w->attr.st_mtime
4170     || prev.st_ctime != w->attr.st_ctime
4171   ) {
4172       /* we only update w->prev on actual differences */
4173       /* in case we test more often than invoke the callback, */
4174       /* to ensure that prev is always different to attr */
4175       w->prev = prev;
4176
4177       #if EV_USE_INOTIFY
4178         if (fs_fd >= 0)
4179           {
4180             infy_del (EV_A_ w);
4181             infy_add (EV_A_ w);
4182             ev_stat_stat (EV_A_ w); /* avoid race... */
4183           }
4184       #endif
4185
4186       ev_feed_event (EV_A_ w, EV_STAT);
4187     }
4188 }
4189
4190 void
4191 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4192 {
4193   if (expect_false (ev_is_active (w)))
4194     return;
4195
4196   ev_stat_stat (EV_A_ w);
4197
4198   if (w->interval < MIN_STAT_INTERVAL && w->interval)
4199     w->interval = MIN_STAT_INTERVAL;
4200
4201   ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4202   ev_set_priority (&w->timer, ev_priority (w));
4203
4204 #if EV_USE_INOTIFY
4205   infy_init (EV_A);
4206
4207   if (fs_fd >= 0)
4208     infy_add (EV_A_ w);
4209   else
4210 #endif
4211     {
4212       ev_timer_again (EV_A_ &w->timer);
4213       ev_unref (EV_A);
4214     }
4215
4216   ev_start (EV_A_ (W)w, 1);
4217
4218   EV_FREQUENT_CHECK;
4219 }
4220
4221 void
4222 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4223 {
4224   clear_pending (EV_A_ (W)w);
4225   if (expect_false (!ev_is_active (w)))
4226     return;
4227
4228   EV_FREQUENT_CHECK;
4229
4230 #if EV_USE_INOTIFY
4231   infy_del (EV_A_ w);
4232 #endif
4233
4234   if (ev_is_active (&w->timer))
4235     {
4236       ev_ref (EV_A);
4237       ev_timer_stop (EV_A_ &w->timer);
4238     }
4239
4240   ev_stop (EV_A_ (W)w);
4241
4242   EV_FREQUENT_CHECK;
4243 }
4244 #endif
4245
4246 #if EV_IDLE_ENABLE
4247 void
4248 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4249 {
4250   if (expect_false (ev_is_active (w)))
4251     return;
4252
4253   pri_adjust (EV_A_ (W)w);
4254
4255   EV_FREQUENT_CHECK;
4256
4257   {
4258     int active = ++idlecnt [ABSPRI (w)];
4259
4260     ++idleall;
4261     ev_start (EV_A_ (W)w, active);
4262
4263     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4264     idles [ABSPRI (w)][active - 1] = w;
4265   }
4266
4267   EV_FREQUENT_CHECK;
4268 }
4269
4270 void
4271 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4272 {
4273   clear_pending (EV_A_ (W)w);
4274   if (expect_false (!ev_is_active (w)))
4275     return;
4276
4277   EV_FREQUENT_CHECK;
4278
4279   {
4280     int active = ev_active (w);
4281
4282     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4283     ev_active (idles [ABSPRI (w)][active - 1]) = active;
4284
4285     ev_stop (EV_A_ (W)w);
4286     --idleall;
4287   }
4288
4289   EV_FREQUENT_CHECK;
4290 }
4291 #endif
4292
4293 #if EV_PREPARE_ENABLE
4294 void
4295 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4296 {
4297   if (expect_false (ev_is_active (w)))
4298     return;
4299
4300   EV_FREQUENT_CHECK;
4301
4302   ev_start (EV_A_ (W)w, ++preparecnt);
4303   array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4304   prepares [preparecnt - 1] = w;
4305
4306   EV_FREQUENT_CHECK;
4307 }
4308
4309 void
4310 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4311 {
4312   clear_pending (EV_A_ (W)w);
4313   if (expect_false (!ev_is_active (w)))
4314     return;
4315
4316   EV_FREQUENT_CHECK;
4317
4318   {
4319     int active = ev_active (w);
4320
4321     prepares [active - 1] = prepares [--preparecnt];
4322     ev_active (prepares [active - 1]) = active;
4323   }
4324
4325   ev_stop (EV_A_ (W)w);
4326
4327   EV_FREQUENT_CHECK;
4328 }
4329 #endif
4330
4331 #if EV_CHECK_ENABLE
4332 void
4333 ev_check_start (EV_P_ ev_check *w) EV_THROW
4334 {
4335   if (expect_false (ev_is_active (w)))
4336     return;
4337
4338   EV_FREQUENT_CHECK;
4339
4340   ev_start (EV_A_ (W)w, ++checkcnt);
4341   array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4342   checks [checkcnt - 1] = w;
4343
4344   EV_FREQUENT_CHECK;
4345 }
4346
4347 void
4348 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4349 {
4350   clear_pending (EV_A_ (W)w);
4351   if (expect_false (!ev_is_active (w)))
4352     return;
4353
4354   EV_FREQUENT_CHECK;
4355
4356   {
4357     int active = ev_active (w);
4358
4359     checks [active - 1] = checks [--checkcnt];
4360     ev_active (checks [active - 1]) = active;
4361   }
4362
4363   ev_stop (EV_A_ (W)w);
4364
4365   EV_FREQUENT_CHECK;
4366 }
4367 #endif
4368
4369 #if EV_EMBED_ENABLE
4370 void noinline
4371 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4372 {
4373   ev_run (w->other, EVRUN_NOWAIT);
4374 }
4375
4376 static void
4377 embed_io_cb (EV_P_ ev_io *io, int revents)
4378 {
4379   ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4380
4381   if (ev_cb (w))
4382     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4383   else
4384     ev_run (w->other, EVRUN_NOWAIT);
4385 }
4386
4387 static void
4388 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4389 {
4390   ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4391
4392   {
4393     EV_P = w->other;
4394
4395     while (fdchangecnt)
4396       {
4397         fd_reify (EV_A);
4398         ev_run (EV_A_ EVRUN_NOWAIT);
4399       }
4400   }
4401 }
4402
4403 static void
4404 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4405 {
4406   ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4407
4408   ev_embed_stop (EV_A_ w);
4409
4410   {
4411     EV_P = w->other;
4412
4413     ev_loop_fork (EV_A);
4414     ev_run (EV_A_ EVRUN_NOWAIT);
4415   }
4416
4417   ev_embed_start (EV_A_ w);
4418 }
4419
4420 #if 0
4421 static void
4422 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4423 {
4424   ev_idle_stop (EV_A_ idle);
4425 }
4426 #endif
4427
4428 void
4429 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4430 {
4431   if (expect_false (ev_is_active (w)))
4432     return;
4433
4434   {
4435     EV_P = w->other;
4436     assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4437     ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4438   }
4439
4440   EV_FREQUENT_CHECK;
4441
4442   ev_set_priority (&w->io, ev_priority (w));
4443   ev_io_start (EV_A_ &w->io);
4444
4445   ev_prepare_init (&w->prepare, embed_prepare_cb);
4446   ev_set_priority (&w->prepare, EV_MINPRI);
4447   ev_prepare_start (EV_A_ &w->prepare);
4448
4449   ev_fork_init (&w->fork, embed_fork_cb);
4450   ev_fork_start (EV_A_ &w->fork);
4451
4452   /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4453
4454   ev_start (EV_A_ (W)w, 1);
4455
4456   EV_FREQUENT_CHECK;
4457 }
4458
4459 void
4460 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4461 {
4462   clear_pending (EV_A_ (W)w);
4463   if (expect_false (!ev_is_active (w)))
4464     return;
4465
4466   EV_FREQUENT_CHECK;
4467
4468   ev_io_stop      (EV_A_ &w->io);
4469   ev_prepare_stop (EV_A_ &w->prepare);
4470   ev_fork_stop    (EV_A_ &w->fork);
4471
4472   ev_stop (EV_A_ (W)w);
4473
4474   EV_FREQUENT_CHECK;
4475 }
4476 #endif
4477
4478 #if EV_FORK_ENABLE
4479 void
4480 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4481 {
4482   if (expect_false (ev_is_active (w)))
4483     return;
4484
4485   EV_FREQUENT_CHECK;
4486
4487   ev_start (EV_A_ (W)w, ++forkcnt);
4488   array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4489   forks [forkcnt - 1] = w;
4490
4491   EV_FREQUENT_CHECK;
4492 }
4493
4494 void
4495 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4496 {
4497   clear_pending (EV_A_ (W)w);
4498   if (expect_false (!ev_is_active (w)))
4499     return;
4500
4501   EV_FREQUENT_CHECK;
4502
4503   {
4504     int active = ev_active (w);
4505
4506     forks [active - 1] = forks [--forkcnt];
4507     ev_active (forks [active - 1]) = active;
4508   }
4509
4510   ev_stop (EV_A_ (W)w);
4511
4512   EV_FREQUENT_CHECK;
4513 }
4514 #endif
4515
4516 #if EV_CLEANUP_ENABLE
4517 void
4518 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4519 {
4520   if (expect_false (ev_is_active (w)))
4521     return;
4522
4523   EV_FREQUENT_CHECK;
4524
4525   ev_start (EV_A_ (W)w, ++cleanupcnt);
4526   array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4527   cleanups [cleanupcnt - 1] = w;
4528
4529   /* cleanup watchers should never keep a refcount on the loop */
4530   ev_unref (EV_A);
4531   EV_FREQUENT_CHECK;
4532 }
4533
4534 void
4535 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4536 {
4537   clear_pending (EV_A_ (W)w);
4538   if (expect_false (!ev_is_active (w)))
4539     return;
4540
4541   EV_FREQUENT_CHECK;
4542   ev_ref (EV_A);
4543
4544   {
4545     int active = ev_active (w);
4546
4547     cleanups [active - 1] = cleanups [--cleanupcnt];
4548     ev_active (cleanups [active - 1]) = active;
4549   }
4550
4551   ev_stop (EV_A_ (W)w);
4552
4553   EV_FREQUENT_CHECK;
4554 }
4555 #endif
4556
4557 #if EV_ASYNC_ENABLE
4558 void
4559 ev_async_start (EV_P_ ev_async *w) EV_THROW
4560 {
4561   if (expect_false (ev_is_active (w)))
4562     return;
4563
4564   w->sent = 0;
4565
4566   evpipe_init (EV_A);
4567
4568   EV_FREQUENT_CHECK;
4569
4570   ev_start (EV_A_ (W)w, ++asynccnt);
4571   array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4572   asyncs [asynccnt - 1] = w;
4573
4574   EV_FREQUENT_CHECK;
4575 }
4576
4577 void
4578 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4579 {
4580   clear_pending (EV_A_ (W)w);
4581   if (expect_false (!ev_is_active (w)))
4582     return;
4583
4584   EV_FREQUENT_CHECK;
4585
4586   {
4587     int active = ev_active (w);
4588
4589     asyncs [active - 1] = asyncs [--asynccnt];
4590     ev_active (asyncs [active - 1]) = active;
4591   }
4592
4593   ev_stop (EV_A_ (W)w);
4594
4595   EV_FREQUENT_CHECK;
4596 }
4597
4598 void
4599 ev_async_send (EV_P_ ev_async *w) EV_THROW
4600 {
4601   w->sent = 1;
4602   evpipe_write (EV_A_ &async_pending);
4603 }
4604 #endif
4605
4606 /*****************************************************************************/
4607
4608 struct ev_once
4609 {
4610   ev_io io;
4611   ev_timer to;
4612   void (*cb)(int revents, void *arg);
4613   void *arg;
4614 };
4615
4616 static void
4617 once_cb (EV_P_ struct ev_once *once, int revents)
4618 {
4619   void (*cb)(int revents, void *arg) = once->cb;
4620   void *arg = once->arg;
4621
4622   ev_io_stop    (EV_A_ &once->io);
4623   ev_timer_stop (EV_A_ &once->to);
4624   ev_free (once);
4625
4626   cb (revents, arg);
4627 }
4628
4629 static void
4630 once_cb_io (EV_P_ ev_io *w, int revents)
4631 {
4632   struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4633
4634   once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4635 }
4636
4637 static void
4638 once_cb_to (EV_P_ ev_timer *w, int revents)
4639 {
4640   struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4641
4642   once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4643 }
4644
4645 void
4646 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4647 {
4648   struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4649
4650   if (expect_false (!once))
4651     {
4652       cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4653       return;
4654     }
4655
4656   once->cb  = cb;
4657   once->arg = arg;
4658
4659   ev_init (&once->io, once_cb_io);
4660   if (fd >= 0)
4661     {
4662       ev_io_set (&once->io, fd, events);
4663       ev_io_start (EV_A_ &once->io);
4664     }
4665
4666   ev_init (&once->to, once_cb_to);
4667   if (timeout >= 0.)
4668     {
4669       ev_timer_set (&once->to, timeout, 0.);
4670       ev_timer_start (EV_A_ &once->to);
4671     }
4672 }
4673
4674 /*****************************************************************************/
4675
4676 #if EV_WALK_ENABLE
4677 void ecb_cold
4678 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4679 {
4680   int i, j;
4681   ev_watcher_list *wl, *wn;
4682
4683   if (types & (EV_IO | EV_EMBED))
4684     for (i = 0; i < anfdmax; ++i)
4685       for (wl = anfds [i].head; wl; )
4686         {
4687           wn = wl->next;
4688
4689 #if EV_EMBED_ENABLE
4690           if (ev_cb ((ev_io *)wl) == embed_io_cb)
4691             {
4692               if (types & EV_EMBED)
4693                 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4694             }
4695           else
4696 #endif
4697 #if EV_USE_INOTIFY
4698           if (ev_cb ((ev_io *)wl) == infy_cb)
4699             ;
4700           else
4701 #endif
4702           if ((ev_io *)wl != &pipe_w)
4703             if (types & EV_IO)
4704               cb (EV_A_ EV_IO, wl);
4705
4706           wl = wn;
4707         }
4708
4709   if (types & (EV_TIMER | EV_STAT))
4710     for (i = timercnt + HEAP0; i-- > HEAP0; )
4711 #if EV_STAT_ENABLE
4712       /*TODO: timer is not always active*/
4713       if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4714         {
4715           if (types & EV_STAT)
4716             cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4717         }
4718       else
4719 #endif
4720       if (types & EV_TIMER)
4721         cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4722
4723 #if EV_PERIODIC_ENABLE
4724   if (types & EV_PERIODIC)
4725     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4726       cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4727 #endif
4728
4729 #if EV_IDLE_ENABLE
4730   if (types & EV_IDLE)
4731     for (j = NUMPRI; j--; )
4732       for (i = idlecnt [j]; i--; )
4733         cb (EV_A_ EV_IDLE, idles [j][i]);
4734 #endif
4735
4736 #if EV_FORK_ENABLE
4737   if (types & EV_FORK)
4738     for (i = forkcnt; i--; )
4739       if (ev_cb (forks [i]) != embed_fork_cb)
4740         cb (EV_A_ EV_FORK, forks [i]);
4741 #endif
4742
4743 #if EV_ASYNC_ENABLE
4744   if (types & EV_ASYNC)
4745     for (i = asynccnt; i--; )
4746       cb (EV_A_ EV_ASYNC, asyncs [i]);
4747 #endif
4748
4749 #if EV_PREPARE_ENABLE
4750   if (types & EV_PREPARE)
4751     for (i = preparecnt; i--; )
4752 # if EV_EMBED_ENABLE
4753       if (ev_cb (prepares [i]) != embed_prepare_cb)
4754 # endif
4755         cb (EV_A_ EV_PREPARE, prepares [i]);
4756 #endif
4757
4758 #if EV_CHECK_ENABLE
4759   if (types & EV_CHECK)
4760     for (i = checkcnt; i--; )
4761       cb (EV_A_ EV_CHECK, checks [i]);
4762 #endif
4763
4764 #if EV_SIGNAL_ENABLE
4765   if (types & EV_SIGNAL)
4766     for (i = 0; i < EV_NSIG - 1; ++i)
4767       for (wl = signals [i].head; wl; )
4768         {
4769           wn = wl->next;
4770           cb (EV_A_ EV_SIGNAL, wl);
4771           wl = wn;
4772         }
4773 #endif
4774
4775 #if EV_CHILD_ENABLE
4776   if (types & EV_CHILD)
4777     for (i = (EV_PID_HASHSIZE); i--; )
4778       for (wl = childs [i]; wl; )
4779         {
4780           wn = wl->next;
4781           cb (EV_A_ EV_CHILD, wl);
4782           wl = wn;
4783         }
4784 #endif
4785 /* EV_STAT     0x00001000 /* stat data changed */
4786 /* EV_EMBED    0x00010000 /* embedded event loop needs sweep */
4787 }
4788 #endif
4789
4790 #if EV_MULTIPLICITY
4791   #include "ev_wrap.h"
4792 #endif
4793