]> rtime.felk.cvut.cz Git - sojka/libev.git/blob - ev.c
c189347b6cb065f39d1e1b409cc05196e06bb732
[sojka/libev.git] / ev.c
1 /*
2  * libev event processing core, watcher management
3  *
4  * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without modifica-
8  * tion, are permitted provided that the following conditions are met:
9  *
10  *   1.  Redistributions of source code must retain the above copyright notice,
11  *       this list of conditions and the following disclaimer.
12  *
13  *   2.  Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in the
15  *       documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19  * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO
20  * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21  * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25  * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26  * OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * Alternatively, the contents of this file may be used under the terms of
29  * the GNU General Public License ("GPL") version 2 or any later version,
30  * in which case the provisions of the GPL are applicable instead of
31  * the above. If you wish to allow the use of your version of this file
32  * only under the terms of the GPL and not to allow others to use your
33  * version of this file under the BSD license, indicate your decision
34  * by deleting the provisions above and replace them with the notice
35  * and other provisions required by the GPL. If you do not delete the
36  * provisions above, a recipient may use your version of this file under
37  * either the BSD or the GPL.
38  */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 #  include EV_CONFIG_H
44 # else
45 #  include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 #  define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 #  ifndef EV_USE_CLOCK_SYSCALL
56 #   define EV_USE_CLOCK_SYSCALL 1
57 #   ifndef EV_USE_REALTIME
58 #    define EV_USE_REALTIME  0
59 #   endif
60 #   ifndef EV_USE_MONOTONIC
61 #    define EV_USE_MONOTONIC 1
62 #   endif
63 #  endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 #  define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 #  ifndef EV_USE_MONOTONIC
70 #   define EV_USE_MONOTONIC 1
71 #  endif
72 #  ifndef EV_USE_REALTIME
73 #   define EV_USE_REALTIME  0
74 #  endif
75 # else
76 #  ifndef EV_USE_MONOTONIC
77 #   define EV_USE_MONOTONIC 0
78 #  endif
79 #  ifndef EV_USE_REALTIME
80 #   define EV_USE_REALTIME  0
81 #  endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 #  ifndef EV_USE_NANOSLEEP
86 #    define EV_USE_NANOSLEEP EV_FEATURE_OS
87 #  endif
88 # else
89 #   undef EV_USE_NANOSLEEP
90 #   define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 #  ifndef EV_USE_SELECT
95 #   define EV_USE_SELECT EV_FEATURE_BACKENDS
96 #  endif
97 # else
98 #  undef EV_USE_SELECT
99 #  define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 #  ifndef EV_USE_POLL
104 #   define EV_USE_POLL EV_FEATURE_BACKENDS
105 #  endif
106 # else
107 #  undef EV_USE_POLL
108 #  define EV_USE_POLL 0
109 # endif
110    
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 #  ifndef EV_USE_EPOLL
113 #   define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 #  endif
115 # else
116 #  undef EV_USE_EPOLL
117 #  define EV_USE_EPOLL 0
118 # endif
119    
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 #  ifndef EV_USE_KQUEUE
122 #   define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 #  endif
124 # else
125 #  undef EV_USE_KQUEUE
126 #  define EV_USE_KQUEUE 0
127 # endif
128    
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 #  ifndef EV_USE_PORT
131 #   define EV_USE_PORT EV_FEATURE_BACKENDS
132 #  endif
133 # else
134 #  undef EV_USE_PORT
135 #  define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 #  ifndef EV_USE_INOTIFY
140 #   define EV_USE_INOTIFY EV_FEATURE_OS
141 #  endif
142 # else
143 #  undef EV_USE_INOTIFY
144 #  define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 #  ifndef EV_USE_SIGNALFD
149 #   define EV_USE_SIGNALFD EV_FEATURE_OS
150 #  endif
151 # else
152 #  undef EV_USE_SIGNALFD
153 #  define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 #  ifndef EV_USE_EVENTFD
158 #   define EV_USE_EVENTFD EV_FEATURE_OS
159 #  endif
160 # else
161 #  undef EV_USE_EVENTFD
162 #  define EV_USE_EVENTFD 0
163 # endif
164  
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <winsock2.h>
207 # include <windows.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 #  define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213
214 /* OS X, in its infinite idiocy, actually HARDCODES
215  * a limit of 1024 into their select. Where people have brains,
216  * OS X engineers apparently have a vacuum. Or maybe they were
217  * ordered to have a vacuum, or they do anything for money.
218  * This might help. Or not.
219  */
220 #define _DARWIN_UNLIMITED_SELECT 1
221
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
247 #endif
248
249 #ifndef EV_USE_FLOOR
250 # define EV_USE_FLOOR 0
251 #endif
252
253 #ifndef EV_USE_CLOCK_SYSCALL
254 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255 #  define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256 # else
257 #  define EV_USE_CLOCK_SYSCALL 0
258 # endif
259 #endif
260
261 #ifndef EV_USE_MONOTONIC
262 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
263 #  define EV_USE_MONOTONIC EV_FEATURE_OS
264 # else
265 #  define EV_USE_MONOTONIC 0
266 # endif
267 #endif
268
269 #ifndef EV_USE_REALTIME
270 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
271 #endif
272
273 #ifndef EV_USE_NANOSLEEP
274 # if _POSIX_C_SOURCE >= 199309L
275 #  define EV_USE_NANOSLEEP EV_FEATURE_OS
276 # else
277 #  define EV_USE_NANOSLEEP 0
278 # endif
279 #endif
280
281 #ifndef EV_USE_SELECT
282 # define EV_USE_SELECT EV_FEATURE_BACKENDS
283 #endif
284
285 #ifndef EV_USE_POLL
286 # ifdef _WIN32
287 #  define EV_USE_POLL 0
288 # else
289 #  define EV_USE_POLL EV_FEATURE_BACKENDS
290 # endif
291 #endif
292
293 #ifndef EV_USE_EPOLL
294 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295 #  define EV_USE_EPOLL EV_FEATURE_BACKENDS
296 # else
297 #  define EV_USE_EPOLL 0
298 # endif
299 #endif
300
301 #ifndef EV_USE_KQUEUE
302 # define EV_USE_KQUEUE 0
303 #endif
304
305 #ifndef EV_USE_PORT
306 # define EV_USE_PORT 0
307 #endif
308
309 #ifndef EV_USE_INOTIFY
310 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
311 #  define EV_USE_INOTIFY EV_FEATURE_OS
312 # else
313 #  define EV_USE_INOTIFY 0
314 # endif
315 #endif
316
317 #ifndef EV_PID_HASHSIZE
318 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
319 #endif
320
321 #ifndef EV_INOTIFY_HASHSIZE
322 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
323 #endif
324
325 #ifndef EV_USE_EVENTFD
326 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
327 #  define EV_USE_EVENTFD EV_FEATURE_OS
328 # else
329 #  define EV_USE_EVENTFD 0
330 # endif
331 #endif
332
333 #ifndef EV_USE_SIGNALFD
334 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
335 #  define EV_USE_SIGNALFD EV_FEATURE_OS
336 # else
337 #  define EV_USE_SIGNALFD 0
338 # endif
339 #endif
340
341 #if 0 /* debugging */
342 # define EV_VERIFY 3
343 # define EV_USE_4HEAP 1
344 # define EV_HEAP_CACHE_AT 1
345 #endif
346
347 #ifndef EV_VERIFY
348 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
349 #endif
350
351 #ifndef EV_USE_4HEAP
352 # define EV_USE_4HEAP EV_FEATURE_DATA
353 #endif
354
355 #ifndef EV_HEAP_CACHE_AT
356 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357 #endif
358
359 #ifdef ANDROID
360 /* supposedly, android doesn't typedef fd_mask */
361 # undef EV_USE_SELECT
362 # define EV_USE_SELECT 0
363 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364 # undef EV_USE_CLOCK_SYSCALL
365 # define EV_USE_CLOCK_SYSCALL 0
366 #endif
367
368 /* aix's poll.h seems to cause lots of trouble */
369 #ifdef _AIX
370 /* AIX has a completely broken poll.h header */
371 # undef EV_USE_POLL
372 # define EV_USE_POLL 0
373 #endif
374
375 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376 /* which makes programs even slower. might work on other unices, too. */
377 #if EV_USE_CLOCK_SYSCALL
378 # include <sys/syscall.h>
379 # ifdef SYS_clock_gettime
380 #  define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381 #  undef EV_USE_MONOTONIC
382 #  define EV_USE_MONOTONIC 1
383 # else
384 #  undef EV_USE_CLOCK_SYSCALL
385 #  define EV_USE_CLOCK_SYSCALL 0
386 # endif
387 #endif
388
389 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
390
391 #ifndef CLOCK_MONOTONIC
392 # undef EV_USE_MONOTONIC
393 # define EV_USE_MONOTONIC 0
394 #endif
395
396 #ifndef CLOCK_REALTIME
397 # undef EV_USE_REALTIME
398 # define EV_USE_REALTIME 0
399 #endif
400
401 #if !EV_STAT_ENABLE
402 # undef EV_USE_INOTIFY
403 # define EV_USE_INOTIFY 0
404 #endif
405
406 #if !EV_USE_NANOSLEEP
407 /* hp-ux has it in sys/time.h, which we unconditionally include above */
408 # if !defined _WIN32 && !defined __hpux
409 #  include <sys/select.h>
410 # endif
411 #endif
412
413 #if EV_USE_INOTIFY
414 # include <sys/statfs.h>
415 # include <sys/inotify.h>
416 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
417 # ifndef IN_DONT_FOLLOW
418 #  undef EV_USE_INOTIFY
419 #  define EV_USE_INOTIFY 0
420 # endif
421 #endif
422
423 #if EV_USE_EVENTFD
424 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
425 # include <stdint.h>
426 # ifndef EFD_NONBLOCK
427 #  define EFD_NONBLOCK O_NONBLOCK
428 # endif
429 # ifndef EFD_CLOEXEC
430 #  ifdef O_CLOEXEC
431 #   define EFD_CLOEXEC O_CLOEXEC
432 #  else
433 #   define EFD_CLOEXEC 02000000
434 #  endif
435 # endif
436 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437 #endif
438
439 #if EV_USE_SIGNALFD
440 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441 # include <stdint.h>
442 # ifndef SFD_NONBLOCK
443 #  define SFD_NONBLOCK O_NONBLOCK
444 # endif
445 # ifndef SFD_CLOEXEC
446 #  ifdef O_CLOEXEC
447 #   define SFD_CLOEXEC O_CLOEXEC
448 #  else
449 #   define SFD_CLOEXEC 02000000
450 #  endif
451 # endif
452 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454 struct signalfd_siginfo
455 {
456   uint32_t ssi_signo;
457   char pad[128 - sizeof (uint32_t)];
458 };
459 #endif
460
461 /**/
462
463 #if EV_VERIFY >= 3
464 # define EV_FREQUENT_CHECK ev_verify (EV_A)
465 #else
466 # define EV_FREQUENT_CHECK do { } while (0)
467 #endif
468
469 /*
470  * This is used to work around floating point rounding problems.
471  * This value is good at least till the year 4000.
472  */
473 #define MIN_INTERVAL  0.0001220703125 /* 1/2**13, good till 4000 */
474 /*#define MIN_INTERVAL  0.00000095367431640625 /* 1/2**20, good till 2200 */
475
476 #define MIN_TIMEJUMP  1. /* minimum timejump that gets detected (if monotonic clock available) */
477 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
478
479 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481
482 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483 /* ECB.H BEGIN */
484 /*
485  * libecb - http://software.schmorp.de/pkg/libecb
486  *
487  * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de>
488  * Copyright (©) 2011 Emanuele Giaquinta
489  * All rights reserved.
490  *
491  * Redistribution and use in source and binary forms, with or without modifica-
492  * tion, are permitted provided that the following conditions are met:
493  *
494  *   1.  Redistributions of source code must retain the above copyright notice,
495  *       this list of conditions and the following disclaimer.
496  *
497  *   2.  Redistributions in binary form must reproduce the above copyright
498  *       notice, this list of conditions and the following disclaimer in the
499  *       documentation and/or other materials provided with the distribution.
500  *
501  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503  * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO
504  * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505  * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509  * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510  * OF THE POSSIBILITY OF SUCH DAMAGE.
511  */
512
513 #ifndef ECB_H
514 #define ECB_H
515
516 /* 16 bits major, 16 bits minor */
517 #define ECB_VERSION 0x00010003
518
519 #ifdef _WIN32
520   typedef   signed char   int8_t;
521   typedef unsigned char  uint8_t;
522   typedef   signed short  int16_t;
523   typedef unsigned short uint16_t;
524   typedef   signed int    int32_t;
525   typedef unsigned int   uint32_t;
526   #if __GNUC__
527     typedef   signed long long int64_t;
528     typedef unsigned long long uint64_t;
529   #else /* _MSC_VER || __BORLANDC__ */
530     typedef   signed __int64   int64_t;
531     typedef unsigned __int64   uint64_t;
532   #endif
533   #ifdef _WIN64
534     #define ECB_PTRSIZE 8
535     typedef uint64_t uintptr_t;
536     typedef  int64_t  intptr_t;
537   #else
538     #define ECB_PTRSIZE 4
539     typedef uint32_t uintptr_t;
540     typedef  int32_t  intptr_t;
541   #endif
542 #else
543   #include <inttypes.h>
544   #if UINTMAX_MAX > 0xffffffffU
545     #define ECB_PTRSIZE 8
546   #else
547     #define ECB_PTRSIZE 4
548   #endif
549 #endif
550
551 /* work around x32 idiocy by defining proper macros */
552 #if __amd64 || __x86_64 || _M_AMD64 || _M_X64
553   #if _ILP32
554     #define ECB_AMD64_X32 1
555   #else
556     #define ECB_AMD64 1
557   #endif
558 #endif
559
560 /* many compilers define _GNUC_ to some versions but then only implement
561  * what their idiot authors think are the "more important" extensions,
562  * causing enormous grief in return for some better fake benchmark numbers.
563  * or so.
564  * we try to detect these and simply assume they are not gcc - if they have
565  * an issue with that they should have done it right in the first place.
566  */
567 #ifndef ECB_GCC_VERSION
568   #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
569     #define ECB_GCC_VERSION(major,minor) 0
570   #else
571     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
572   #endif
573 #endif
574
575 #define ECB_CPP   (__cplusplus+0)
576 #define ECB_CPP11 (__cplusplus >= 201103L)
577
578 #if ECB_CPP
579   #define ECB_C            0
580   #define ECB_STDC_VERSION 0
581 #else
582   #define ECB_C            1
583   #define ECB_STDC_VERSION __STDC_VERSION__
584 #endif
585
586 #define ECB_C99   (ECB_STDC_VERSION >= 199901L)
587 #define ECB_C11   (ECB_STDC_VERSION >= 201112L)
588
589 #if ECB_CPP
590   #define ECB_EXTERN_C extern "C"
591   #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
592   #define ECB_EXTERN_C_END }
593 #else
594   #define ECB_EXTERN_C extern
595   #define ECB_EXTERN_C_BEG
596   #define ECB_EXTERN_C_END
597 #endif
598
599 /*****************************************************************************/
600
601 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
602 /* ECB_NO_SMP     - ecb might be used in multiple threads, but only on a single cpu */
603
604 #if ECB_NO_THREADS
605   #define ECB_NO_SMP 1
606 #endif
607
608 #if ECB_NO_SMP
609   #define ECB_MEMORY_FENCE do { } while (0)
610 #endif
611
612 #ifndef ECB_MEMORY_FENCE
613   #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
614     #if __i386 || __i386__
615       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
616       #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ (""                        : : : "memory")
617       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
618     #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
619       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mfence"   : : : "memory")
620       #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ (""         : : : "memory")
621       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
622     #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
623       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("sync"     : : : "memory")
624     #elif defined __ARM_ARCH_6__  || defined __ARM_ARCH_6J__  \
625        || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
626       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
627     #elif defined __ARM_ARCH_7__  || defined __ARM_ARCH_7A__  \
628        || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
629       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("dmb"      : : : "memory")
630     #elif __aarch64__
631       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("dmb ish"  : : : "memory")
632     #elif (__sparc || __sparc__) && !__sparcv8
633       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
634       #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad"                            : : : "memory")
635       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore             | #StoreStore")
636     #elif defined __s390__ || defined __s390x__
637       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("bcr 15,0" : : : "memory")
638     #elif defined __mips__
639       /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
640       /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
641       #define ECB_MEMORY_FENCE         __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
642     #elif defined __alpha__
643       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mb"       : : : "memory")
644     #elif defined __hppa__
645       #define ECB_MEMORY_FENCE         __asm__ __volatile__ (""         : : : "memory")
646       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
647     #elif defined __ia64__
648       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mf"       : : : "memory")
649     #elif defined __m68k__
650       #define ECB_MEMORY_FENCE         __asm__ __volatile__ (""         : : : "memory")
651     #elif defined __m88k__
652       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
653     #elif defined __sh__
654       #define ECB_MEMORY_FENCE         __asm__ __volatile__ (""         : : : "memory")
655     #endif
656   #endif
657 #endif
658
659 #ifndef ECB_MEMORY_FENCE
660   #if ECB_GCC_VERSION(4,7)
661     /* see comment below (stdatomic.h) about the C11 memory model. */
662     #define ECB_MEMORY_FENCE         __atomic_thread_fence (__ATOMIC_SEQ_CST)
663     #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
664     #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
665
666   /* The __has_feature syntax from clang is so misdesigned that we cannot use it
667    * without risking compile time errors with other compilers. We *could*
668    * define our own ecb_clang_has_feature, but I just can't be bothered to work
669    * around this shit time and again.
670    * #elif defined __clang && __has_feature (cxx_atomic)
671    *   // see comment below (stdatomic.h) about the C11 memory model.
672    *   #define ECB_MEMORY_FENCE         __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
673    *   #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
674    *   #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
675    */
676
677   #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
678     #define ECB_MEMORY_FENCE         __sync_synchronize ()
679   #elif _MSC_VER >= 1500 /* VC++ 2008 */
680     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
681     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
682     #define ECB_MEMORY_FENCE         _ReadWriteBarrier (); MemoryBarrier()
683     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
684     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
685   #elif _MSC_VER >= 1400 /* VC++ 2005 */
686     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
687     #define ECB_MEMORY_FENCE         _ReadWriteBarrier ()
688     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
689     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
690   #elif defined _WIN32
691     #include <WinNT.h>
692     #define ECB_MEMORY_FENCE         MemoryBarrier () /* actually just xchg on x86... scary */
693   #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
694     #include <mbarrier.h>
695     #define ECB_MEMORY_FENCE         __machine_rw_barrier ()
696     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier  ()
697     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier  ()
698   #elif __xlC__
699     #define ECB_MEMORY_FENCE         __sync ()
700   #endif
701 #endif
702
703 #ifndef ECB_MEMORY_FENCE
704   #if ECB_C11 && !defined __STDC_NO_ATOMICS__
705     /* we assume that these memory fences work on all variables/all memory accesses, */
706     /* not just C11 atomics and atomic accesses */
707     #include <stdatomic.h>
708     /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
709     /* any fence other than seq_cst, which isn't very efficient for us. */
710     /* Why that is, we don't know - either the C11 memory model is quite useless */
711     /* for most usages, or gcc and clang have a bug */
712     /* I *currently* lean towards the latter, and inefficiently implement */
713     /* all three of ecb's fences as a seq_cst fence */
714     /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
715     /* for all __atomic_thread_fence's except seq_cst */
716     #define ECB_MEMORY_FENCE         atomic_thread_fence (memory_order_seq_cst)
717   #endif
718 #endif
719
720 #ifndef ECB_MEMORY_FENCE
721   #if !ECB_AVOID_PTHREADS
722     /*
723      * if you get undefined symbol references to pthread_mutex_lock,
724      * or failure to find pthread.h, then you should implement
725      * the ECB_MEMORY_FENCE operations for your cpu/compiler
726      * OR provide pthread.h and link against the posix thread library
727      * of your system.
728      */
729     #include <pthread.h>
730     #define ECB_NEEDS_PTHREADS 1
731     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
732
733     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
734     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
735   #endif
736 #endif
737
738 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
739   #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
740 #endif
741
742 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
743   #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
744 #endif
745
746 /*****************************************************************************/
747
748 #if __cplusplus
749   #define ecb_inline static inline
750 #elif ECB_GCC_VERSION(2,5)
751   #define ecb_inline static __inline__
752 #elif ECB_C99
753   #define ecb_inline static inline
754 #else
755   #define ecb_inline static
756 #endif
757
758 #if ECB_GCC_VERSION(3,3)
759   #define ecb_restrict __restrict__
760 #elif ECB_C99
761   #define ecb_restrict restrict
762 #else
763   #define ecb_restrict
764 #endif
765
766 typedef int ecb_bool;
767
768 #define ECB_CONCAT_(a, b) a ## b
769 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
770 #define ECB_STRINGIFY_(a) # a
771 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
772
773 #define ecb_function_ ecb_inline
774
775 #if ECB_GCC_VERSION(3,1)
776   #define ecb_attribute(attrlist)        __attribute__(attrlist)
777   #define ecb_is_constant(expr)          __builtin_constant_p (expr)
778   #define ecb_expect(expr,value)         __builtin_expect ((expr),(value))
779   #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
780 #else
781   #define ecb_attribute(attrlist)
782
783   /* possible C11 impl for integral types
784   typedef struct ecb_is_constant_struct ecb_is_constant_struct;
785   #define ecb_is_constant(expr)          _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
786
787   #define ecb_is_constant(expr)          0
788   #define ecb_expect(expr,value)         (expr)
789   #define ecb_prefetch(addr,rw,locality)
790 #endif
791
792 /* no emulation for ecb_decltype */
793 #if ECB_GCC_VERSION(4,5)
794   #define ecb_decltype(x) __decltype(x)
795 #elif ECB_GCC_VERSION(3,0)
796   #define ecb_decltype(x) __typeof(x)
797 #endif
798
799 #define ecb_noinline   ecb_attribute ((__noinline__))
800 #define ecb_unused     ecb_attribute ((__unused__))
801 #define ecb_const      ecb_attribute ((__const__))
802 #define ecb_pure       ecb_attribute ((__pure__))
803
804 #if ECB_C11
805   #define ecb_noreturn   _Noreturn
806 #else
807   #define ecb_noreturn   ecb_attribute ((__noreturn__))
808 #endif
809
810 #if ECB_GCC_VERSION(4,3)
811   #define ecb_artificial ecb_attribute ((__artificial__))
812   #define ecb_hot        ecb_attribute ((__hot__))
813   #define ecb_cold       ecb_attribute ((__cold__))
814 #else
815   #define ecb_artificial
816   #define ecb_hot
817   #define ecb_cold
818 #endif
819
820 /* put around conditional expressions if you are very sure that the  */
821 /* expression is mostly true or mostly false. note that these return */
822 /* booleans, not the expression.                                     */
823 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
824 #define ecb_expect_true(expr)  ecb_expect (!!(expr), 1)
825 /* for compatibility to the rest of the world */
826 #define ecb_likely(expr)   ecb_expect_true  (expr)
827 #define ecb_unlikely(expr) ecb_expect_false (expr)
828
829 /* count trailing zero bits and count # of one bits */
830 #if ECB_GCC_VERSION(3,4)
831   /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
832   #define ecb_ld32(x)      (__builtin_clz      (x) ^ 31)
833   #define ecb_ld64(x)      (__builtin_clzll    (x) ^ 63)
834   #define ecb_ctz32(x)      __builtin_ctz      (x)
835   #define ecb_ctz64(x)      __builtin_ctzll    (x)
836   #define ecb_popcount32(x) __builtin_popcount (x)
837   /* no popcountll */
838 #else
839   ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
840   ecb_function_ int
841   ecb_ctz32 (uint32_t x)
842   {
843     int r = 0;
844
845     x &= ~x + 1; /* this isolates the lowest bit */
846
847 #if ECB_branchless_on_i386
848     r += !!(x & 0xaaaaaaaa) << 0;
849     r += !!(x & 0xcccccccc) << 1;
850     r += !!(x & 0xf0f0f0f0) << 2;
851     r += !!(x & 0xff00ff00) << 3;
852     r += !!(x & 0xffff0000) << 4;
853 #else
854     if (x & 0xaaaaaaaa) r +=  1;
855     if (x & 0xcccccccc) r +=  2;
856     if (x & 0xf0f0f0f0) r +=  4;
857     if (x & 0xff00ff00) r +=  8;
858     if (x & 0xffff0000) r += 16;
859 #endif
860
861     return r;
862   }
863
864   ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
865   ecb_function_ int
866   ecb_ctz64 (uint64_t x)
867   {
868     int shift = x & 0xffffffffU ? 0 : 32;
869     return ecb_ctz32 (x >> shift) + shift;
870   }
871
872   ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
873   ecb_function_ int
874   ecb_popcount32 (uint32_t x)
875   {
876     x -=  (x >> 1) & 0x55555555;
877     x  = ((x >> 2) & 0x33333333) + (x & 0x33333333);
878     x  = ((x >> 4) + x) & 0x0f0f0f0f;
879     x *= 0x01010101;
880
881     return x >> 24;
882   }
883
884   ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
885   ecb_function_ int ecb_ld32 (uint32_t x)
886   {
887     int r = 0;
888
889     if (x >> 16) { x >>= 16; r += 16; }
890     if (x >>  8) { x >>=  8; r +=  8; }
891     if (x >>  4) { x >>=  4; r +=  4; }
892     if (x >>  2) { x >>=  2; r +=  2; }
893     if (x >>  1) {           r +=  1; }
894
895     return r;
896   }
897
898   ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
899   ecb_function_ int ecb_ld64 (uint64_t x)
900   {
901     int r = 0;
902
903     if (x >> 32) { x >>= 32; r += 32; }
904
905     return r + ecb_ld32 (x);
906   }
907 #endif
908
909 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
910 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
911 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
912 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
913
914 ecb_function_ uint8_t  ecb_bitrev8  (uint8_t  x) ecb_const;
915 ecb_function_ uint8_t  ecb_bitrev8  (uint8_t  x)
916 {
917   return (  (x * 0x0802U & 0x22110U)
918           | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16; 
919 }
920
921 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
922 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
923 {
924   x = ((x >>  1) &     0x5555) | ((x &     0x5555) <<  1);
925   x = ((x >>  2) &     0x3333) | ((x &     0x3333) <<  2);
926   x = ((x >>  4) &     0x0f0f) | ((x &     0x0f0f) <<  4);
927   x = ( x >>  8              ) | ( x               <<  8);
928
929   return x;
930 }
931
932 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
933 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
934 {
935   x = ((x >>  1) & 0x55555555) | ((x & 0x55555555) <<  1);
936   x = ((x >>  2) & 0x33333333) | ((x & 0x33333333) <<  2);
937   x = ((x >>  4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) <<  4);
938   x = ((x >>  8) & 0x00ff00ff) | ((x & 0x00ff00ff) <<  8);
939   x = ( x >> 16              ) | ( x               << 16);
940
941   return x;
942 }
943
944 /* popcount64 is only available on 64 bit cpus as gcc builtin */
945 /* so for this version we are lazy */
946 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
947 ecb_function_ int
948 ecb_popcount64 (uint64_t x)
949 {
950   return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
951 }
952
953 ecb_inline uint8_t  ecb_rotl8  (uint8_t  x, unsigned int count) ecb_const;
954 ecb_inline uint8_t  ecb_rotr8  (uint8_t  x, unsigned int count) ecb_const;
955 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
956 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
957 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
958 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
959 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
960 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
961
962 ecb_inline uint8_t  ecb_rotl8  (uint8_t  x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
963 ecb_inline uint8_t  ecb_rotr8  (uint8_t  x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
964 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
965 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
966 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
967 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
968 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
969 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
970
971 #if ECB_GCC_VERSION(4,3)
972   #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
973   #define ecb_bswap32(x)  __builtin_bswap32 (x)
974   #define ecb_bswap64(x)  __builtin_bswap64 (x)
975 #else
976   ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
977   ecb_function_ uint16_t
978   ecb_bswap16 (uint16_t x)
979   {
980     return ecb_rotl16 (x, 8);
981   }
982
983   ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
984   ecb_function_ uint32_t
985   ecb_bswap32 (uint32_t x)
986   {
987     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
988   }
989
990   ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
991   ecb_function_ uint64_t
992   ecb_bswap64 (uint64_t x)
993   {
994     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
995   }
996 #endif
997
998 #if ECB_GCC_VERSION(4,5)
999   #define ecb_unreachable() __builtin_unreachable ()
1000 #else
1001   /* this seems to work fine, but gcc always emits a warning for it :/ */
1002   ecb_inline void ecb_unreachable (void) ecb_noreturn;
1003   ecb_inline void ecb_unreachable (void) { }
1004 #endif
1005
1006 /* try to tell the compiler that some condition is definitely true */
1007 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1008
1009 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
1010 ecb_inline unsigned char
1011 ecb_byteorder_helper (void)
1012 {
1013   /* the union code still generates code under pressure in gcc, */
1014   /* but less than using pointers, and always seems to */
1015   /* successfully return a constant. */
1016   /* the reason why we have this horrible preprocessor mess */
1017   /* is to avoid it in all cases, at least on common architectures */
1018   /* or when using a recent enough gcc version (>= 4.6) */
1019 #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1020   return 0x44;
1021 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1022   return 0x44;
1023 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1024   return 0x11;
1025 #else
1026   union
1027   {
1028     uint32_t i;
1029     uint8_t c;
1030   } u = { 0x11223344 };
1031   return u.c;
1032 #endif
1033 }
1034
1035 ecb_inline ecb_bool ecb_big_endian    (void) ecb_const;
1036 ecb_inline ecb_bool ecb_big_endian    (void) { return ecb_byteorder_helper () == 0x11; }
1037 ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1038 ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1039
1040 #if ECB_GCC_VERSION(3,0) || ECB_C99
1041   #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1042 #else
1043   #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1044 #endif
1045
1046 #if __cplusplus
1047   template<typename T>
1048   static inline T ecb_div_rd (T val, T div)
1049   {
1050     return val < 0 ? - ((-val + div - 1) / div) : (val          ) / div;
1051   }
1052   template<typename T>
1053   static inline T ecb_div_ru (T val, T div)
1054   {
1055     return val < 0 ? - ((-val          ) / div) : (val + div - 1) / div;
1056   }
1057 #else
1058   #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val)            ) / (div))
1059   #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val)            ) / (div)) : ((val) + (div) - 1) / (div))
1060 #endif
1061
1062 #if ecb_cplusplus_does_not_suck
1063   /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1064   template<typename T, int N>
1065   static inline int ecb_array_length (const T (&arr)[N])
1066   {
1067     return N;
1068   }
1069 #else
1070   #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1071 #endif
1072
1073 /*******************************************************************************/
1074 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1075
1076 /* basically, everything uses "ieee pure-endian" floating point numbers */
1077 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1078 #if 0 \
1079     || __i386 || __i386__ \
1080     || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1081     || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1082     || defined __s390__ || defined __s390x__ \
1083     || defined __mips__ \
1084     || defined __alpha__ \
1085     || defined __hppa__ \
1086     || defined __ia64__ \
1087     || defined __m68k__ \
1088     || defined __m88k__ \
1089     || defined __sh__ \
1090     || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1091     || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1092     | defined __aarch64__
1093   #define ECB_STDFP 1
1094   #include <string.h> /* for memcpy */
1095 #else
1096   #define ECB_STDFP 0
1097 #endif
1098
1099 #ifndef ECB_NO_LIBM
1100
1101   #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1102
1103   /* only the oldest of old doesn't have this one. solaris. */
1104   #ifdef INFINITY
1105     #define ECB_INFINITY INFINITY
1106   #else
1107     #define ECB_INFINITY HUGE_VAL
1108   #endif
1109
1110   #ifdef NAN
1111     #define ECB_NAN NAN
1112   #else
1113     #define ECB_NAN ECB_INFINITY
1114   #endif
1115
1116   /* converts an ieee half/binary16 to a float */
1117   ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1118   ecb_function_ float
1119   ecb_binary16_to_float (uint16_t x)
1120   {
1121     int e = (x >> 10) & 0x1f;
1122     int m = x & 0x3ff;
1123     float r;
1124
1125     if      (!e     ) r = ldexpf (m        ,    -24);
1126     else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1127     else if (m      ) r = ECB_NAN;
1128     else              r = ECB_INFINITY;
1129
1130     return x & 0x8000 ? -r : r;
1131   }
1132
1133   /* convert a float to ieee single/binary32 */
1134   ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1135   ecb_function_ uint32_t
1136   ecb_float_to_binary32 (float x)
1137   {
1138     uint32_t r;
1139
1140     #if ECB_STDFP
1141       memcpy (&r, &x, 4);
1142     #else
1143       /* slow emulation, works for anything but -0 */
1144       uint32_t m;
1145       int e;
1146
1147       if (x == 0e0f                    ) return 0x00000000U;
1148       if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1149       if (x < -3.40282346638528860e+38f) return 0xff800000U;
1150       if (x != x                       ) return 0x7fbfffffU;
1151
1152       m = frexpf (x, &e) * 0x1000000U;
1153
1154       r = m & 0x80000000U;
1155
1156       if (r)
1157         m = -m;
1158
1159       if (e <= -126)
1160         {
1161           m &= 0xffffffU;
1162           m >>= (-125 - e);
1163           e = -126;
1164         }
1165
1166       r |= (e + 126) << 23;
1167       r |= m & 0x7fffffU;
1168     #endif
1169
1170     return r;
1171   }
1172
1173   /* converts an ieee single/binary32 to a float */
1174   ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1175   ecb_function_ float
1176   ecb_binary32_to_float (uint32_t x)
1177   {
1178     float r;
1179
1180     #if ECB_STDFP
1181       memcpy (&r, &x, 4);
1182     #else
1183       /* emulation, only works for normals and subnormals and +0 */
1184       int neg = x >> 31;
1185       int e = (x >> 23) & 0xffU;
1186
1187       x &= 0x7fffffU;
1188
1189       if (e)
1190         x |= 0x800000U;
1191       else
1192         e = 1;
1193
1194       /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1195       r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1196
1197       r = neg ? -r : r;
1198     #endif
1199
1200     return r;
1201   }
1202
1203   /* convert a double to ieee double/binary64 */
1204   ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1205   ecb_function_ uint64_t
1206   ecb_double_to_binary64 (double x)
1207   {
1208     uint64_t r;
1209
1210     #if ECB_STDFP
1211       memcpy (&r, &x, 8);
1212     #else
1213       /* slow emulation, works for anything but -0 */
1214       uint64_t m;
1215       int e;
1216
1217       if (x == 0e0                     ) return 0x0000000000000000U;
1218       if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1219       if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1220       if (x != x                       ) return 0X7ff7ffffffffffffU;
1221
1222       m = frexp (x, &e) * 0x20000000000000U;
1223
1224       r = m & 0x8000000000000000;;
1225
1226       if (r)
1227         m = -m;
1228
1229       if (e <= -1022)
1230         {
1231           m &= 0x1fffffffffffffU;
1232           m >>= (-1021 - e);
1233           e = -1022;
1234         }
1235
1236       r |= ((uint64_t)(e + 1022)) << 52;
1237       r |= m & 0xfffffffffffffU;
1238     #endif
1239
1240     return r;
1241   }
1242
1243   /* converts an ieee double/binary64 to a double */
1244   ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1245   ecb_function_ double
1246   ecb_binary64_to_double (uint64_t x)
1247   {
1248     double r;
1249
1250     #if ECB_STDFP
1251       memcpy (&r, &x, 8);
1252     #else
1253       /* emulation, only works for normals and subnormals and +0 */
1254       int neg = x >> 63;
1255       int e = (x >> 52) & 0x7ffU;
1256
1257       x &= 0xfffffffffffffU;
1258
1259       if (e)
1260         x |= 0x10000000000000U;
1261       else
1262         e = 1;
1263
1264       /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1265       r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1266
1267       r = neg ? -r : r;
1268     #endif
1269
1270     return r;
1271   }
1272
1273 #endif
1274
1275 #endif
1276
1277 /* ECB.H END */
1278
1279 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1280 /* if your architecture doesn't need memory fences, e.g. because it is
1281  * single-cpu/core, or if you use libev in a project that doesn't use libev
1282  * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1283  * libev, in which cases the memory fences become nops.
1284  * alternatively, you can remove this #error and link against libpthread,
1285  * which will then provide the memory fences.
1286  */
1287 # error "memory fences not defined for your architecture, please report"
1288 #endif
1289
1290 #ifndef ECB_MEMORY_FENCE
1291 # define ECB_MEMORY_FENCE do { } while (0)
1292 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1293 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1294 #endif
1295
1296 #define expect_false(cond) ecb_expect_false (cond)
1297 #define expect_true(cond)  ecb_expect_true  (cond)
1298 #define noinline           ecb_noinline
1299
1300 #define inline_size        ecb_inline
1301
1302 #if EV_FEATURE_CODE
1303 # define inline_speed      ecb_inline
1304 #else
1305 # define inline_speed      static noinline
1306 #endif
1307
1308 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1309
1310 #if EV_MINPRI == EV_MAXPRI
1311 # define ABSPRI(w) (((W)w), 0)
1312 #else
1313 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1314 #endif
1315
1316 #define EMPTY       /* required for microsofts broken pseudo-c compiler */
1317 #define EMPTY2(a,b) /* used to suppress some warnings */
1318
1319 typedef ev_watcher *W;
1320 typedef ev_watcher_list *WL;
1321 typedef ev_watcher_time *WT;
1322
1323 #define ev_active(w) ((W)(w))->active
1324 #define ev_at(w) ((WT)(w))->at
1325
1326 #if EV_USE_REALTIME
1327 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1328 /* giving it a reasonably high chance of working on typical architectures */
1329 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1330 #endif
1331
1332 #if EV_USE_MONOTONIC
1333 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1334 #endif
1335
1336 #ifndef EV_FD_TO_WIN32_HANDLE
1337 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1338 #endif
1339 #ifndef EV_WIN32_HANDLE_TO_FD
1340 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1341 #endif
1342 #ifndef EV_WIN32_CLOSE_FD
1343 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1344 #endif
1345
1346 #ifdef _WIN32
1347 # include "ev_win32.c"
1348 #endif
1349
1350 /*****************************************************************************/
1351
1352 /* define a suitable floor function (only used by periodics atm) */
1353
1354 #if EV_USE_FLOOR
1355 # include <math.h>
1356 # define ev_floor(v) floor (v)
1357 #else
1358
1359 #include <float.h>
1360
1361 /* a floor() replacement function, should be independent of ev_tstamp type */
1362 static ev_tstamp noinline
1363 ev_floor (ev_tstamp v)
1364 {
1365   /* the choice of shift factor is not terribly important */
1366 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1367   const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1368 #else
1369   const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1370 #endif
1371
1372   /* argument too large for an unsigned long? */
1373   if (expect_false (v >= shift))
1374     {
1375       ev_tstamp f;
1376
1377       if (v == v - 1.)
1378         return v; /* very large number */
1379
1380       f = shift * ev_floor (v * (1. / shift));
1381       return f + ev_floor (v - f);
1382     }
1383
1384   /* special treatment for negative args? */
1385   if (expect_false (v < 0.))
1386     {
1387       ev_tstamp f = -ev_floor (-v);
1388
1389       return f - (f == v ? 0 : 1);
1390     }
1391
1392   /* fits into an unsigned long */
1393   return (unsigned long)v;
1394 }
1395
1396 #endif
1397
1398 /*****************************************************************************/
1399
1400 #ifdef __linux
1401 # include <sys/utsname.h>
1402 #endif
1403
1404 static unsigned int noinline ecb_cold
1405 ev_linux_version (void)
1406 {
1407 #ifdef __linux
1408   unsigned int v = 0;
1409   struct utsname buf;
1410   int i;
1411   char *p = buf.release;
1412
1413   if (uname (&buf))
1414     return 0;
1415
1416   for (i = 3+1; --i; )
1417     {
1418       unsigned int c = 0;
1419
1420       for (;;)
1421         {
1422           if (*p >= '0' && *p <= '9')
1423             c = c * 10 + *p++ - '0';
1424           else
1425             {
1426               p += *p == '.';
1427               break;
1428             }
1429         }
1430
1431       v = (v << 8) | c;
1432     }
1433
1434   return v;
1435 #else
1436   return 0;
1437 #endif
1438 }
1439
1440 /*****************************************************************************/
1441
1442 #if EV_AVOID_STDIO
1443 static void noinline ecb_cold
1444 ev_printerr (const char *msg)
1445 {
1446   write (STDERR_FILENO, msg, strlen (msg));
1447 }
1448 #endif
1449
1450 static void (*syserr_cb)(const char *msg) EV_THROW;
1451
1452 void ecb_cold
1453 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1454 {
1455   syserr_cb = cb;
1456 }
1457
1458 static void noinline ecb_cold
1459 ev_syserr (const char *msg)
1460 {
1461   if (!msg)
1462     msg = "(libev) system error";
1463
1464   if (syserr_cb)
1465     syserr_cb (msg);
1466   else
1467     {
1468 #if EV_AVOID_STDIO
1469       ev_printerr (msg);
1470       ev_printerr (": ");
1471       ev_printerr (strerror (errno));
1472       ev_printerr ("\n");
1473 #else
1474       perror (msg);
1475 #endif
1476       abort ();
1477     }
1478 }
1479
1480 static void *
1481 ev_realloc_emul (void *ptr, long size) EV_THROW
1482 {
1483   /* some systems, notably openbsd and darwin, fail to properly
1484    * implement realloc (x, 0) (as required by both ansi c-89 and
1485    * the single unix specification, so work around them here.
1486    * recently, also (at least) fedora and debian started breaking it,
1487    * despite documenting it otherwise.
1488    */
1489
1490   if (size)
1491     return realloc (ptr, size);
1492
1493   free (ptr);
1494   return 0;
1495 }
1496
1497 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1498
1499 void ecb_cold
1500 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1501 {
1502   alloc = cb;
1503 }
1504
1505 inline_speed void *
1506 ev_realloc (void *ptr, long size)
1507 {
1508   ptr = alloc (ptr, size);
1509
1510   if (!ptr && size)
1511     {
1512 #if EV_AVOID_STDIO
1513       ev_printerr ("(libev) memory allocation failed, aborting.\n");
1514 #else
1515       fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1516 #endif
1517       abort ();
1518     }
1519
1520   return ptr;
1521 }
1522
1523 #define ev_malloc(size) ev_realloc (0, (size))
1524 #define ev_free(ptr)    ev_realloc ((ptr), 0)
1525
1526 /*****************************************************************************/
1527
1528 /* set in reify when reification needed */
1529 #define EV_ANFD_REIFY 1
1530
1531 /* file descriptor info structure */
1532 typedef struct
1533 {
1534   WL head;
1535   unsigned char events; /* the events watched for */
1536   unsigned char reify;  /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1537   unsigned char emask;  /* the epoll backend stores the actual kernel mask in here */
1538   unsigned char unused;
1539 #if EV_USE_EPOLL
1540   unsigned int egen;    /* generation counter to counter epoll bugs */
1541 #endif
1542 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1543   SOCKET handle;
1544 #endif
1545 #if EV_USE_IOCP
1546   OVERLAPPED or, ow;
1547 #endif
1548 } ANFD;
1549
1550 /* stores the pending event set for a given watcher */
1551 typedef struct
1552 {
1553   W w;
1554   int events; /* the pending event set for the given watcher */
1555 } ANPENDING;
1556
1557 #if EV_USE_INOTIFY
1558 /* hash table entry per inotify-id */
1559 typedef struct
1560 {
1561   WL head;
1562 } ANFS;
1563 #endif
1564
1565 /* Heap Entry */
1566 #if EV_HEAP_CACHE_AT
1567   /* a heap element */
1568   typedef struct {
1569     ev_tstamp at;
1570     WT w;
1571   } ANHE;
1572
1573   #define ANHE_w(he)        (he).w     /* access watcher, read-write */
1574   #define ANHE_at(he)       (he).at    /* access cached at, read-only */
1575   #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1576 #else
1577   /* a heap element */
1578   typedef WT ANHE;
1579
1580   #define ANHE_w(he)        (he)
1581   #define ANHE_at(he)       (he)->at
1582   #define ANHE_at_cache(he)
1583 #endif
1584
1585 #if EV_MULTIPLICITY
1586
1587   struct ev_loop
1588   {
1589     ev_tstamp ev_rt_now;
1590     #define ev_rt_now ((loop)->ev_rt_now)
1591     #define VAR(name,decl) decl;
1592       #include "ev_vars.h"
1593     #undef VAR
1594   };
1595   #include "ev_wrap.h"
1596
1597   static struct ev_loop default_loop_struct;
1598   EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1599
1600 #else
1601
1602   EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1603   #define VAR(name,decl) static decl;
1604     #include "ev_vars.h"
1605   #undef VAR
1606
1607   static int ev_default_loop_ptr;
1608
1609 #endif
1610
1611 #if EV_FEATURE_API
1612 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1613 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1614 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1615 #else
1616 # define EV_RELEASE_CB (void)0
1617 # define EV_ACQUIRE_CB (void)0
1618 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1619 #endif
1620
1621 #define EVBREAK_RECURSE 0x80
1622
1623 /*****************************************************************************/
1624
1625 #ifndef EV_HAVE_EV_TIME
1626 ev_tstamp
1627 ev_time (void) EV_THROW
1628 {
1629 #if EV_USE_REALTIME
1630   if (expect_true (have_realtime))
1631     {
1632       struct timespec ts;
1633       clock_gettime (CLOCK_REALTIME, &ts);
1634       return ts.tv_sec + ts.tv_nsec * 1e-9;
1635     }
1636 #endif
1637
1638   struct timeval tv;
1639   gettimeofday (&tv, 0);
1640   return tv.tv_sec + tv.tv_usec * 1e-6;
1641 }
1642 #endif
1643
1644 inline_size ev_tstamp
1645 get_clock (void)
1646 {
1647 #if EV_USE_MONOTONIC
1648   if (expect_true (have_monotonic))
1649     {
1650       struct timespec ts;
1651       clock_gettime (CLOCK_MONOTONIC, &ts);
1652       return ts.tv_sec + ts.tv_nsec * 1e-9;
1653     }
1654 #endif
1655
1656   return ev_time ();
1657 }
1658
1659 #if EV_MULTIPLICITY
1660 ev_tstamp
1661 ev_now (EV_P) EV_THROW
1662 {
1663   return ev_rt_now;
1664 }
1665 #endif
1666
1667 void
1668 ev_sleep (ev_tstamp delay) EV_THROW
1669 {
1670   if (delay > 0.)
1671     {
1672 #if EV_USE_NANOSLEEP
1673       struct timespec ts;
1674
1675       EV_TS_SET (ts, delay);
1676       nanosleep (&ts, 0);
1677 #elif defined _WIN32
1678       Sleep ((unsigned long)(delay * 1e3));
1679 #else
1680       struct timeval tv;
1681
1682       /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1683       /* something not guaranteed by newer posix versions, but guaranteed */
1684       /* by older ones */
1685       EV_TV_SET (tv, delay);
1686       select (0, 0, 0, 0, &tv);
1687 #endif
1688     }
1689 }
1690
1691 /*****************************************************************************/
1692
1693 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1694
1695 /* find a suitable new size for the given array, */
1696 /* hopefully by rounding to a nice-to-malloc size */
1697 inline_size int
1698 array_nextsize (int elem, int cur, int cnt)
1699 {
1700   int ncur = cur + 1;
1701
1702   do
1703     ncur <<= 1;
1704   while (cnt > ncur);
1705
1706   /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1707   if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1708     {
1709       ncur *= elem;
1710       ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1711       ncur = ncur - sizeof (void *) * 4;
1712       ncur /= elem;
1713     }
1714
1715   return ncur;
1716 }
1717
1718 static void * noinline ecb_cold
1719 array_realloc (int elem, void *base, int *cur, int cnt)
1720 {
1721   *cur = array_nextsize (elem, *cur, cnt);
1722   return ev_realloc (base, elem * *cur);
1723 }
1724
1725 #define array_init_zero(base,count)     \
1726   memset ((void *)(base), 0, sizeof (*(base)) * (count))
1727
1728 #define array_needsize(type,base,cur,cnt,init)                  \
1729   if (expect_false ((cnt) > (cur)))                             \
1730     {                                                           \
1731       int ecb_unused ocur_ = (cur);                                     \
1732       (base) = (type *)array_realloc                            \
1733          (sizeof (type), (base), &(cur), (cnt));                \
1734       init ((base) + (ocur_), (cur) - ocur_);                   \
1735     }
1736
1737 #if 0
1738 #define array_slim(type,stem)                                   \
1739   if (stem ## max < array_roundsize (stem ## cnt >> 2))         \
1740     {                                                           \
1741       stem ## max = array_roundsize (stem ## cnt >> 1);         \
1742       base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1743       fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1744     }
1745 #endif
1746
1747 #define array_free(stem, idx) \
1748   ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1749
1750 /*****************************************************************************/
1751
1752 /* dummy callback for pending events */
1753 static void noinline
1754 pendingcb (EV_P_ ev_prepare *w, int revents)
1755 {
1756 }
1757
1758 void noinline
1759 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1760 {
1761   W w_ = (W)w;
1762   int pri = ABSPRI (w_);
1763
1764   if (expect_false (w_->pending))
1765     pendings [pri][w_->pending - 1].events |= revents;
1766   else
1767     {
1768       w_->pending = ++pendingcnt [pri];
1769       array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1770       pendings [pri][w_->pending - 1].w      = w_;
1771       pendings [pri][w_->pending - 1].events = revents;
1772     }
1773
1774   pendingpri = NUMPRI - 1;
1775 }
1776
1777 inline_speed void
1778 feed_reverse (EV_P_ W w)
1779 {
1780   array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1781   rfeeds [rfeedcnt++] = w;
1782 }
1783
1784 inline_size void
1785 feed_reverse_done (EV_P_ int revents)
1786 {
1787   do
1788     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1789   while (rfeedcnt);
1790 }
1791
1792 inline_speed void
1793 queue_events (EV_P_ W *events, int eventcnt, int type)
1794 {
1795   int i;
1796
1797   for (i = 0; i < eventcnt; ++i)
1798     ev_feed_event (EV_A_ events [i], type);
1799 }
1800
1801 /*****************************************************************************/
1802
1803 inline_speed void
1804 fd_event_nocheck (EV_P_ int fd, int revents)
1805 {
1806   ANFD *anfd = anfds + fd;
1807   ev_io *w;
1808
1809   for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1810     {
1811       int ev = w->events & revents;
1812
1813       if (ev)
1814         ev_feed_event (EV_A_ (W)w, ev);
1815     }
1816 }
1817
1818 /* do not submit kernel events for fds that have reify set */
1819 /* because that means they changed while we were polling for new events */
1820 inline_speed void
1821 fd_event (EV_P_ int fd, int revents)
1822 {
1823   ANFD *anfd = anfds + fd;
1824
1825   if (expect_true (!anfd->reify))
1826     fd_event_nocheck (EV_A_ fd, revents);
1827 }
1828
1829 void
1830 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1831 {
1832   if (fd >= 0 && fd < anfdmax)
1833     fd_event_nocheck (EV_A_ fd, revents);
1834 }
1835
1836 /* make sure the external fd watch events are in-sync */
1837 /* with the kernel/libev internal state */
1838 inline_size void
1839 fd_reify (EV_P)
1840 {
1841   int i;
1842
1843 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1844   for (i = 0; i < fdchangecnt; ++i)
1845     {
1846       int fd = fdchanges [i];
1847       ANFD *anfd = anfds + fd;
1848
1849       if (anfd->reify & EV__IOFDSET && anfd->head)
1850         {
1851           SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1852
1853           if (handle != anfd->handle)
1854             {
1855               unsigned long arg;
1856
1857               assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1858
1859               /* handle changed, but fd didn't - we need to do it in two steps */
1860               backend_modify (EV_A_ fd, anfd->events, 0);
1861               anfd->events = 0;
1862               anfd->handle = handle;
1863             }
1864         }
1865     }
1866 #endif
1867
1868   for (i = 0; i < fdchangecnt; ++i)
1869     {
1870       int fd = fdchanges [i];
1871       ANFD *anfd = anfds + fd;
1872       ev_io *w;
1873
1874       unsigned char o_events = anfd->events;
1875       unsigned char o_reify  = anfd->reify;
1876
1877       anfd->reify  = 0;
1878
1879       /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1880         {
1881           anfd->events = 0;
1882
1883           for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1884             anfd->events |= (unsigned char)w->events;
1885
1886           if (o_events != anfd->events)
1887             o_reify = EV__IOFDSET; /* actually |= */
1888         }
1889
1890       if (o_reify & EV__IOFDSET)
1891         backend_modify (EV_A_ fd, o_events, anfd->events);
1892     }
1893
1894   fdchangecnt = 0;
1895 }
1896
1897 /* something about the given fd changed */
1898 inline_size void
1899 fd_change (EV_P_ int fd, int flags)
1900 {
1901   unsigned char reify = anfds [fd].reify;
1902   anfds [fd].reify |= flags;
1903
1904   if (expect_true (!reify))
1905     {
1906       ++fdchangecnt;
1907       array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1908       fdchanges [fdchangecnt - 1] = fd;
1909     }
1910 }
1911
1912 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1913 inline_speed void ecb_cold
1914 fd_kill (EV_P_ int fd)
1915 {
1916   ev_io *w;
1917
1918   while ((w = (ev_io *)anfds [fd].head))
1919     {
1920       ev_io_stop (EV_A_ w);
1921       ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1922     }
1923 }
1924
1925 /* check whether the given fd is actually valid, for error recovery */
1926 inline_size int ecb_cold
1927 fd_valid (int fd)
1928 {
1929 #ifdef _WIN32
1930   return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1931 #else
1932   return fcntl (fd, F_GETFD) != -1;
1933 #endif
1934 }
1935
1936 /* called on EBADF to verify fds */
1937 static void noinline ecb_cold
1938 fd_ebadf (EV_P)
1939 {
1940   int fd;
1941
1942   for (fd = 0; fd < anfdmax; ++fd)
1943     if (anfds [fd].events)
1944       if (!fd_valid (fd) && errno == EBADF)
1945         fd_kill (EV_A_ fd);
1946 }
1947
1948 /* called on ENOMEM in select/poll to kill some fds and retry */
1949 static void noinline ecb_cold
1950 fd_enomem (EV_P)
1951 {
1952   int fd;
1953
1954   for (fd = anfdmax; fd--; )
1955     if (anfds [fd].events)
1956       {
1957         fd_kill (EV_A_ fd);
1958         break;
1959       }
1960 }
1961
1962 /* usually called after fork if backend needs to re-arm all fds from scratch */
1963 static void noinline
1964 fd_rearm_all (EV_P)
1965 {
1966   int fd;
1967
1968   for (fd = 0; fd < anfdmax; ++fd)
1969     if (anfds [fd].events)
1970       {
1971         anfds [fd].events = 0;
1972         anfds [fd].emask  = 0;
1973         fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1974       }
1975 }
1976
1977 /* used to prepare libev internal fd's */
1978 /* this is not fork-safe */
1979 inline_speed void
1980 fd_intern (int fd)
1981 {
1982 #ifdef _WIN32
1983   unsigned long arg = 1;
1984   ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1985 #else
1986   fcntl (fd, F_SETFD, FD_CLOEXEC);
1987   fcntl (fd, F_SETFL, O_NONBLOCK);
1988 #endif
1989 }
1990
1991 /*****************************************************************************/
1992
1993 /*
1994  * the heap functions want a real array index. array index 0 is guaranteed to not
1995  * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1996  * the branching factor of the d-tree.
1997  */
1998
1999 /*
2000  * at the moment we allow libev the luxury of two heaps,
2001  * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2002  * which is more cache-efficient.
2003  * the difference is about 5% with 50000+ watchers.
2004  */
2005 #if EV_USE_4HEAP
2006
2007 #define DHEAP 4
2008 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2009 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2010 #define UPHEAP_DONE(p,k) ((p) == (k))
2011
2012 /* away from the root */
2013 inline_speed void
2014 downheap (ANHE *heap, int N, int k)
2015 {
2016   ANHE he = heap [k];
2017   ANHE *E = heap + N + HEAP0;
2018
2019   for (;;)
2020     {
2021       ev_tstamp minat;
2022       ANHE *minpos;
2023       ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2024
2025       /* find minimum child */
2026       if (expect_true (pos + DHEAP - 1 < E))
2027         {
2028           /* fast path */                               (minpos = pos + 0), (minat = ANHE_at (*minpos));
2029           if (               ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2030           if (               ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2031           if (               ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2032         }
2033       else if (pos < E)
2034         {
2035           /* slow path */                               (minpos = pos + 0), (minat = ANHE_at (*minpos));
2036           if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2037           if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2038           if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2039         }
2040       else
2041         break;
2042
2043       if (ANHE_at (he) <= minat)
2044         break;
2045
2046       heap [k] = *minpos;
2047       ev_active (ANHE_w (*minpos)) = k;
2048
2049       k = minpos - heap;
2050     }
2051
2052   heap [k] = he;
2053   ev_active (ANHE_w (he)) = k;
2054 }
2055
2056 #else /* 4HEAP */
2057
2058 #define HEAP0 1
2059 #define HPARENT(k) ((k) >> 1)
2060 #define UPHEAP_DONE(p,k) (!(p))
2061
2062 /* away from the root */
2063 inline_speed void
2064 downheap (ANHE *heap, int N, int k)
2065 {
2066   ANHE he = heap [k];
2067
2068   for (;;)
2069     {
2070       int c = k << 1;
2071
2072       if (c >= N + HEAP0)
2073         break;
2074
2075       c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2076            ? 1 : 0;
2077
2078       if (ANHE_at (he) <= ANHE_at (heap [c]))
2079         break;
2080
2081       heap [k] = heap [c];
2082       ev_active (ANHE_w (heap [k])) = k;
2083       
2084       k = c;
2085     }
2086
2087   heap [k] = he;
2088   ev_active (ANHE_w (he)) = k;
2089 }
2090 #endif
2091
2092 /* towards the root */
2093 inline_speed void
2094 upheap (ANHE *heap, int k)
2095 {
2096   ANHE he = heap [k];
2097
2098   for (;;)
2099     {
2100       int p = HPARENT (k);
2101
2102       if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2103         break;
2104
2105       heap [k] = heap [p];
2106       ev_active (ANHE_w (heap [k])) = k;
2107       k = p;
2108     }
2109
2110   heap [k] = he;
2111   ev_active (ANHE_w (he)) = k;
2112 }
2113
2114 /* move an element suitably so it is in a correct place */
2115 inline_size void
2116 adjustheap (ANHE *heap, int N, int k)
2117 {
2118   if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2119     upheap (heap, k);
2120   else
2121     downheap (heap, N, k);
2122 }
2123
2124 /* rebuild the heap: this function is used only once and executed rarely */
2125 inline_size void
2126 reheap (ANHE *heap, int N)
2127 {
2128   int i;
2129
2130   /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2131   /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2132   for (i = 0; i < N; ++i)
2133     upheap (heap, i + HEAP0);
2134 }
2135
2136 /*****************************************************************************/
2137
2138 /* associate signal watchers to a signal signal */
2139 typedef struct
2140 {
2141   EV_ATOMIC_T pending;
2142 #if EV_MULTIPLICITY
2143   EV_P;
2144 #endif
2145   WL head;
2146 } ANSIG;
2147
2148 static ANSIG signals [EV_NSIG - 1];
2149
2150 /*****************************************************************************/
2151
2152 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2153
2154 static void noinline ecb_cold
2155 evpipe_init (EV_P)
2156 {
2157   if (!ev_is_active (&pipe_w))
2158     {
2159       int fds [2];
2160
2161 # if EV_USE_EVENTFD
2162       fds [0] = -1;
2163       fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2164       if (fds [1] < 0 && errno == EINVAL)
2165         fds [1] = eventfd (0, 0);
2166
2167       if (fds [1] < 0)
2168 # endif
2169         {
2170           while (pipe (fds))
2171             ev_syserr ("(libev) error creating signal/async pipe");
2172
2173           fd_intern (fds [0]);
2174         }
2175
2176       evpipe [0] = fds [0];
2177
2178       if (evpipe [1] < 0)
2179         evpipe [1] = fds [1]; /* first call, set write fd */
2180       else
2181         {
2182           /* on subsequent calls, do not change evpipe [1] */
2183           /* so that evpipe_write can always rely on its value. */
2184           /* this branch does not do anything sensible on windows, */
2185           /* so must not be executed on windows */
2186
2187           dup2 (fds [1], evpipe [1]);
2188           close (fds [1]);
2189         }
2190
2191       fd_intern (evpipe [1]);
2192
2193       ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2194       ev_io_start (EV_A_ &pipe_w);
2195       ev_unref (EV_A); /* watcher should not keep loop alive */
2196     }
2197 }
2198
2199 inline_speed void
2200 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2201 {
2202   ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2203
2204   if (expect_true (*flag))
2205     return;
2206
2207   *flag = 1;
2208   ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2209
2210   pipe_write_skipped = 1;
2211
2212   ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2213
2214   if (pipe_write_wanted)
2215     {
2216       int old_errno;
2217
2218       pipe_write_skipped = 0;
2219       ECB_MEMORY_FENCE_RELEASE;
2220
2221       old_errno = errno; /* save errno because write will clobber it */
2222
2223 #if EV_USE_EVENTFD
2224       if (evpipe [0] < 0)
2225         {
2226           uint64_t counter = 1;
2227           write (evpipe [1], &counter, sizeof (uint64_t));
2228         }
2229       else
2230 #endif
2231         {
2232 #ifdef _WIN32
2233           WSABUF buf;
2234           DWORD sent;
2235           buf.buf = &buf;
2236           buf.len = 1;
2237           WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2238 #else
2239           write (evpipe [1], &(evpipe [1]), 1);
2240 #endif
2241         }
2242
2243       errno = old_errno;
2244     }
2245 }
2246
2247 /* called whenever the libev signal pipe */
2248 /* got some events (signal, async) */
2249 static void
2250 pipecb (EV_P_ ev_io *iow, int revents)
2251 {
2252   int i;
2253
2254   if (revents & EV_READ)
2255     {
2256 #if EV_USE_EVENTFD
2257       if (evpipe [0] < 0)
2258         {
2259           uint64_t counter;
2260           read (evpipe [1], &counter, sizeof (uint64_t));
2261         }
2262       else
2263 #endif
2264         {
2265           char dummy[4];
2266 #ifdef _WIN32
2267           WSABUF buf;
2268           DWORD recvd;
2269           DWORD flags = 0;
2270           buf.buf = dummy;
2271           buf.len = sizeof (dummy);
2272           WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2273 #else
2274           read (evpipe [0], &dummy, sizeof (dummy));
2275 #endif
2276         }
2277     }
2278
2279   pipe_write_skipped = 0;
2280
2281   ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2282
2283 #if EV_SIGNAL_ENABLE
2284   if (sig_pending)
2285     {
2286       sig_pending = 0;
2287
2288       ECB_MEMORY_FENCE;
2289
2290       for (i = EV_NSIG - 1; i--; )
2291         if (expect_false (signals [i].pending))
2292           ev_feed_signal_event (EV_A_ i + 1);
2293     }
2294 #endif
2295
2296 #if EV_ASYNC_ENABLE
2297   if (async_pending)
2298     {
2299       async_pending = 0;
2300
2301       ECB_MEMORY_FENCE;
2302
2303       for (i = asynccnt; i--; )
2304         if (asyncs [i]->sent)
2305           {
2306             asyncs [i]->sent = 0;
2307             ECB_MEMORY_FENCE_RELEASE;
2308             ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2309           }
2310     }
2311 #endif
2312 }
2313
2314 /*****************************************************************************/
2315
2316 void
2317 ev_feed_signal (int signum) EV_THROW
2318 {
2319 #if EV_MULTIPLICITY
2320   EV_P;
2321   ECB_MEMORY_FENCE_ACQUIRE;
2322   EV_A = signals [signum - 1].loop;
2323
2324   if (!EV_A)
2325     return;
2326 #endif
2327
2328   signals [signum - 1].pending = 1;
2329   evpipe_write (EV_A_ &sig_pending);
2330 }
2331
2332 static void
2333 ev_sighandler (int signum)
2334 {
2335 #ifdef _WIN32
2336   signal (signum, ev_sighandler);
2337 #endif
2338
2339   ev_feed_signal (signum);
2340 }
2341
2342 void noinline
2343 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2344 {
2345   WL w;
2346
2347   if (expect_false (signum <= 0 || signum >= EV_NSIG))
2348     return;
2349
2350   --signum;
2351
2352 #if EV_MULTIPLICITY
2353   /* it is permissible to try to feed a signal to the wrong loop */
2354   /* or, likely more useful, feeding a signal nobody is waiting for */
2355
2356   if (expect_false (signals [signum].loop != EV_A))
2357     return;
2358 #endif
2359
2360   signals [signum].pending = 0;
2361   ECB_MEMORY_FENCE_RELEASE;
2362
2363   for (w = signals [signum].head; w; w = w->next)
2364     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2365 }
2366
2367 #if EV_USE_SIGNALFD
2368 static void
2369 sigfdcb (EV_P_ ev_io *iow, int revents)
2370 {
2371   struct signalfd_siginfo si[2], *sip; /* these structs are big */
2372
2373   for (;;)
2374     {
2375       ssize_t res = read (sigfd, si, sizeof (si));
2376
2377       /* not ISO-C, as res might be -1, but works with SuS */
2378       for (sip = si; (char *)sip < (char *)si + res; ++sip)
2379         ev_feed_signal_event (EV_A_ sip->ssi_signo);
2380
2381       if (res < (ssize_t)sizeof (si))
2382         break;
2383     }
2384 }
2385 #endif
2386
2387 #endif
2388
2389 /*****************************************************************************/
2390
2391 #if EV_CHILD_ENABLE
2392 static WL childs [EV_PID_HASHSIZE];
2393
2394 static ev_signal childev;
2395
2396 #ifndef WIFCONTINUED
2397 # define WIFCONTINUED(status) 0
2398 #endif
2399
2400 /* handle a single child status event */
2401 inline_speed void
2402 child_reap (EV_P_ int chain, int pid, int status)
2403 {
2404   ev_child *w;
2405   int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2406
2407   for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2408     {
2409       if ((w->pid == pid || !w->pid)
2410           && (!traced || (w->flags & 1)))
2411         {
2412           ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2413           w->rpid    = pid;
2414           w->rstatus = status;
2415           ev_feed_event (EV_A_ (W)w, EV_CHILD);
2416         }
2417     }
2418 }
2419
2420 #ifndef WCONTINUED
2421 # define WCONTINUED 0
2422 #endif
2423
2424 /* called on sigchld etc., calls waitpid */
2425 static void
2426 childcb (EV_P_ ev_signal *sw, int revents)
2427 {
2428   int pid, status;
2429
2430   /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2431   if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2432     if (!WCONTINUED
2433         || errno != EINVAL
2434         || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2435       return;
2436
2437   /* make sure we are called again until all children have been reaped */
2438   /* we need to do it this way so that the callback gets called before we continue */
2439   ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2440
2441   child_reap (EV_A_ pid, pid, status);
2442   if ((EV_PID_HASHSIZE) > 1)
2443     child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2444 }
2445
2446 #endif
2447
2448 /*****************************************************************************/
2449
2450 #if EV_USE_IOCP
2451 # include "ev_iocp.c"
2452 #endif
2453 #if EV_USE_PORT
2454 # include "ev_port.c"
2455 #endif
2456 #if EV_USE_KQUEUE
2457 # include "ev_kqueue.c"
2458 #endif
2459 #if EV_USE_EPOLL
2460 # include "ev_epoll.c"
2461 #endif
2462 #if EV_USE_POLL
2463 # include "ev_poll.c"
2464 #endif
2465 #if EV_USE_SELECT
2466 # include "ev_select.c"
2467 #endif
2468
2469 int ecb_cold
2470 ev_version_major (void) EV_THROW
2471 {
2472   return EV_VERSION_MAJOR;
2473 }
2474
2475 int ecb_cold
2476 ev_version_minor (void) EV_THROW
2477 {
2478   return EV_VERSION_MINOR;
2479 }
2480
2481 /* return true if we are running with elevated privileges and should ignore env variables */
2482 int inline_size ecb_cold
2483 enable_secure (void)
2484 {
2485 #ifdef _WIN32
2486   return 0;
2487 #else
2488   return getuid () != geteuid ()
2489       || getgid () != getegid ();
2490 #endif
2491 }
2492
2493 unsigned int ecb_cold
2494 ev_supported_backends (void) EV_THROW
2495 {
2496   unsigned int flags = 0;
2497
2498   if (EV_USE_PORT  ) flags |= EVBACKEND_PORT;
2499   if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2500   if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2501   if (EV_USE_POLL  ) flags |= EVBACKEND_POLL;
2502   if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2503   
2504   return flags;
2505 }
2506
2507 unsigned int ecb_cold
2508 ev_recommended_backends (void) EV_THROW
2509 {
2510   unsigned int flags = ev_supported_backends ();
2511
2512 #ifndef __NetBSD__
2513   /* kqueue is borked on everything but netbsd apparently */
2514   /* it usually doesn't work correctly on anything but sockets and pipes */
2515   flags &= ~EVBACKEND_KQUEUE;
2516 #endif
2517 #ifdef __APPLE__
2518   /* only select works correctly on that "unix-certified" platform */
2519   flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2520   flags &= ~EVBACKEND_POLL;   /* poll is based on kqueue from 10.5 onwards */
2521 #endif
2522 #ifdef __FreeBSD__
2523   flags &= ~EVBACKEND_POLL;   /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2524 #endif
2525
2526   return flags;
2527 }
2528
2529 unsigned int ecb_cold
2530 ev_embeddable_backends (void) EV_THROW
2531 {
2532   int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2533
2534   /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2535   if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2536     flags &= ~EVBACKEND_EPOLL;
2537
2538   return flags;
2539 }
2540
2541 unsigned int
2542 ev_backend (EV_P) EV_THROW
2543 {
2544   return backend;
2545 }
2546
2547 #if EV_FEATURE_API
2548 unsigned int
2549 ev_iteration (EV_P) EV_THROW
2550 {
2551   return loop_count;
2552 }
2553
2554 unsigned int
2555 ev_depth (EV_P) EV_THROW
2556 {
2557   return loop_depth;
2558 }
2559
2560 void
2561 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2562 {
2563   io_blocktime = interval;
2564 }
2565
2566 void
2567 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2568 {
2569   timeout_blocktime = interval;
2570 }
2571
2572 void
2573 ev_set_userdata (EV_P_ void *data) EV_THROW
2574 {
2575   userdata = data;
2576 }
2577
2578 void *
2579 ev_userdata (EV_P) EV_THROW
2580 {
2581   return userdata;
2582 }
2583
2584 void
2585 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2586 {
2587   invoke_cb = invoke_pending_cb;
2588 }
2589
2590 void
2591 ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
2592 {
2593   release_cb = release;
2594   acquire_cb = acquire;
2595 }
2596 #endif
2597
2598 /* initialise a loop structure, must be zero-initialised */
2599 static void noinline ecb_cold
2600 loop_init (EV_P_ unsigned int flags) EV_THROW
2601 {
2602   if (!backend)
2603     {
2604       origflags = flags;
2605
2606 #if EV_USE_REALTIME
2607       if (!have_realtime)
2608         {
2609           struct timespec ts;
2610
2611           if (!clock_gettime (CLOCK_REALTIME, &ts))
2612             have_realtime = 1;
2613         }
2614 #endif
2615
2616 #if EV_USE_MONOTONIC
2617       if (!have_monotonic)
2618         {
2619           struct timespec ts;
2620
2621           if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2622             have_monotonic = 1;
2623         }
2624 #endif
2625
2626       /* pid check not overridable via env */
2627 #ifndef _WIN32
2628       if (flags & EVFLAG_FORKCHECK)
2629         curpid = getpid ();
2630 #endif
2631
2632       if (!(flags & EVFLAG_NOENV)
2633           && !enable_secure ()
2634           && getenv ("LIBEV_FLAGS"))
2635         flags = atoi (getenv ("LIBEV_FLAGS"));
2636
2637       ev_rt_now          = ev_time ();
2638       mn_now             = get_clock ();
2639       now_floor          = mn_now;
2640       rtmn_diff          = ev_rt_now - mn_now;
2641 #if EV_FEATURE_API
2642       invoke_cb          = ev_invoke_pending;
2643 #endif
2644
2645       io_blocktime       = 0.;
2646       timeout_blocktime  = 0.;
2647       backend            = 0;
2648       backend_fd         = -1;
2649       sig_pending        = 0;
2650 #if EV_ASYNC_ENABLE
2651       async_pending      = 0;
2652 #endif
2653       pipe_write_skipped = 0;
2654       pipe_write_wanted  = 0;
2655       evpipe [0]         = -1;
2656       evpipe [1]         = -1;
2657 #if EV_USE_INOTIFY
2658       fs_fd              = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2659 #endif
2660 #if EV_USE_SIGNALFD
2661       sigfd              = flags & EVFLAG_SIGNALFD  ? -2 : -1;
2662 #endif
2663
2664       if (!(flags & EVBACKEND_MASK))
2665         flags |= ev_recommended_backends ();
2666
2667 #if EV_USE_IOCP
2668       if (!backend && (flags & EVBACKEND_IOCP  )) backend = iocp_init   (EV_A_ flags);
2669 #endif
2670 #if EV_USE_PORT
2671       if (!backend && (flags & EVBACKEND_PORT  )) backend = port_init   (EV_A_ flags);
2672 #endif
2673 #if EV_USE_KQUEUE
2674       if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2675 #endif
2676 #if EV_USE_EPOLL
2677       if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init  (EV_A_ flags);
2678 #endif
2679 #if EV_USE_POLL
2680       if (!backend && (flags & EVBACKEND_POLL  )) backend = poll_init   (EV_A_ flags);
2681 #endif
2682 #if EV_USE_SELECT
2683       if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2684 #endif
2685
2686       ev_prepare_init (&pending_w, pendingcb);
2687
2688 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2689       ev_init (&pipe_w, pipecb);
2690       ev_set_priority (&pipe_w, EV_MAXPRI);
2691 #endif
2692     }
2693 }
2694
2695 /* free up a loop structure */
2696 void ecb_cold
2697 ev_loop_destroy (EV_P)
2698 {
2699   int i;
2700
2701 #if EV_MULTIPLICITY
2702   /* mimic free (0) */
2703   if (!EV_A)
2704     return;
2705 #endif
2706
2707 #if EV_CLEANUP_ENABLE
2708   /* queue cleanup watchers (and execute them) */
2709   if (expect_false (cleanupcnt))
2710     {
2711       queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2712       EV_INVOKE_PENDING;
2713     }
2714 #endif
2715
2716 #if EV_CHILD_ENABLE
2717   if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2718     {
2719       ev_ref (EV_A); /* child watcher */
2720       ev_signal_stop (EV_A_ &childev);
2721     }
2722 #endif
2723
2724   if (ev_is_active (&pipe_w))
2725     {
2726       /*ev_ref (EV_A);*/
2727       /*ev_io_stop (EV_A_ &pipe_w);*/
2728
2729       if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2730       if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2731     }
2732
2733 #if EV_USE_SIGNALFD
2734   if (ev_is_active (&sigfd_w))
2735     close (sigfd);
2736 #endif
2737
2738 #if EV_USE_INOTIFY
2739   if (fs_fd >= 0)
2740     close (fs_fd);
2741 #endif
2742
2743   if (backend_fd >= 0)
2744     close (backend_fd);
2745
2746 #if EV_USE_IOCP
2747   if (backend == EVBACKEND_IOCP  ) iocp_destroy   (EV_A);
2748 #endif
2749 #if EV_USE_PORT
2750   if (backend == EVBACKEND_PORT  ) port_destroy   (EV_A);
2751 #endif
2752 #if EV_USE_KQUEUE
2753   if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2754 #endif
2755 #if EV_USE_EPOLL
2756   if (backend == EVBACKEND_EPOLL ) epoll_destroy  (EV_A);
2757 #endif
2758 #if EV_USE_POLL
2759   if (backend == EVBACKEND_POLL  ) poll_destroy   (EV_A);
2760 #endif
2761 #if EV_USE_SELECT
2762   if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2763 #endif
2764
2765   for (i = NUMPRI; i--; )
2766     {
2767       array_free (pending, [i]);
2768 #if EV_IDLE_ENABLE
2769       array_free (idle, [i]);
2770 #endif
2771     }
2772
2773   ev_free (anfds); anfds = 0; anfdmax = 0;
2774
2775   /* have to use the microsoft-never-gets-it-right macro */
2776   array_free (rfeed, EMPTY);
2777   array_free (fdchange, EMPTY);
2778   array_free (timer, EMPTY);
2779 #if EV_PERIODIC_ENABLE
2780   array_free (periodic, EMPTY);
2781 #endif
2782 #if EV_FORK_ENABLE
2783   array_free (fork, EMPTY);
2784 #endif
2785 #if EV_CLEANUP_ENABLE
2786   array_free (cleanup, EMPTY);
2787 #endif
2788   array_free (prepare, EMPTY);
2789   array_free (check, EMPTY);
2790 #if EV_ASYNC_ENABLE
2791   array_free (async, EMPTY);
2792 #endif
2793
2794   backend = 0;
2795
2796 #if EV_MULTIPLICITY
2797   if (ev_is_default_loop (EV_A))
2798 #endif
2799     ev_default_loop_ptr = 0;
2800 #if EV_MULTIPLICITY
2801   else
2802     ev_free (EV_A);
2803 #endif
2804 }
2805
2806 #if EV_USE_INOTIFY
2807 inline_size void infy_fork (EV_P);
2808 #endif
2809
2810 inline_size void
2811 loop_fork (EV_P)
2812 {
2813 #if EV_USE_PORT
2814   if (backend == EVBACKEND_PORT  ) port_fork   (EV_A);
2815 #endif
2816 #if EV_USE_KQUEUE
2817   if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2818 #endif
2819 #if EV_USE_EPOLL
2820   if (backend == EVBACKEND_EPOLL ) epoll_fork  (EV_A);
2821 #endif
2822 #if EV_USE_INOTIFY
2823   infy_fork (EV_A);
2824 #endif
2825
2826 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2827   if (ev_is_active (&pipe_w))
2828     {
2829       /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2830
2831       ev_ref (EV_A);
2832       ev_io_stop (EV_A_ &pipe_w);
2833
2834       if (evpipe [0] >= 0)
2835         EV_WIN32_CLOSE_FD (evpipe [0]);
2836
2837       evpipe_init (EV_A);
2838       /* iterate over everything, in case we missed something before */
2839       ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2840     }
2841 #endif
2842
2843   postfork = 0;
2844 }
2845
2846 #if EV_MULTIPLICITY
2847
2848 struct ev_loop * ecb_cold
2849 ev_loop_new (unsigned int flags) EV_THROW
2850 {
2851   EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2852
2853   memset (EV_A, 0, sizeof (struct ev_loop));
2854   loop_init (EV_A_ flags);
2855
2856   if (ev_backend (EV_A))
2857     return EV_A;
2858
2859   ev_free (EV_A);
2860   return 0;
2861 }
2862
2863 #endif /* multiplicity */
2864
2865 #if EV_VERIFY
2866 static void noinline ecb_cold
2867 verify_watcher (EV_P_ W w)
2868 {
2869   assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2870
2871   if (w->pending)
2872     assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2873 }
2874
2875 static void noinline ecb_cold
2876 verify_heap (EV_P_ ANHE *heap, int N)
2877 {
2878   int i;
2879
2880   for (i = HEAP0; i < N + HEAP0; ++i)
2881     {
2882       assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2883       assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2884       assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2885
2886       verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2887     }
2888 }
2889
2890 static void noinline ecb_cold
2891 array_verify (EV_P_ W *ws, int cnt)
2892 {
2893   while (cnt--)
2894     {
2895       assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2896       verify_watcher (EV_A_ ws [cnt]);
2897     }
2898 }
2899 #endif
2900
2901 #if EV_FEATURE_API
2902 void ecb_cold
2903 ev_verify (EV_P) EV_THROW
2904 {
2905 #if EV_VERIFY
2906   int i;
2907   WL w, w2;
2908
2909   assert (activecnt >= -1);
2910
2911   assert (fdchangemax >= fdchangecnt);
2912   for (i = 0; i < fdchangecnt; ++i)
2913     assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2914
2915   assert (anfdmax >= 0);
2916   for (i = 0; i < anfdmax; ++i)
2917     {
2918       int j = 0;
2919
2920       for (w = w2 = anfds [i].head; w; w = w->next)
2921         {
2922           verify_watcher (EV_A_ (W)w);
2923
2924           if (j++ & 1)
2925             {
2926               assert (("libev: io watcher list contains a loop", w != w2));
2927               w2 = w2->next;
2928             }
2929
2930           assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2931           assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2932         }
2933     }
2934
2935   assert (timermax >= timercnt);
2936   verify_heap (EV_A_ timers, timercnt);
2937
2938 #if EV_PERIODIC_ENABLE
2939   assert (periodicmax >= periodiccnt);
2940   verify_heap (EV_A_ periodics, periodiccnt);
2941 #endif
2942
2943   for (i = NUMPRI; i--; )
2944     {
2945       assert (pendingmax [i] >= pendingcnt [i]);
2946 #if EV_IDLE_ENABLE
2947       assert (idleall >= 0);
2948       assert (idlemax [i] >= idlecnt [i]);
2949       array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2950 #endif
2951     }
2952
2953 #if EV_FORK_ENABLE
2954   assert (forkmax >= forkcnt);
2955   array_verify (EV_A_ (W *)forks, forkcnt);
2956 #endif
2957
2958 #if EV_CLEANUP_ENABLE
2959   assert (cleanupmax >= cleanupcnt);
2960   array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2961 #endif
2962
2963 #if EV_ASYNC_ENABLE
2964   assert (asyncmax >= asynccnt);
2965   array_verify (EV_A_ (W *)asyncs, asynccnt);
2966 #endif
2967
2968 #if EV_PREPARE_ENABLE
2969   assert (preparemax >= preparecnt);
2970   array_verify (EV_A_ (W *)prepares, preparecnt);
2971 #endif
2972
2973 #if EV_CHECK_ENABLE
2974   assert (checkmax >= checkcnt);
2975   array_verify (EV_A_ (W *)checks, checkcnt);
2976 #endif
2977
2978 # if 0
2979 #if EV_CHILD_ENABLE
2980   for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2981   for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2982 #endif
2983 # endif
2984 #endif
2985 }
2986 #endif
2987
2988 #if EV_MULTIPLICITY
2989 struct ev_loop * ecb_cold
2990 #else
2991 int
2992 #endif
2993 ev_default_loop (unsigned int flags) EV_THROW
2994 {
2995   if (!ev_default_loop_ptr)
2996     {
2997 #if EV_MULTIPLICITY
2998       EV_P = ev_default_loop_ptr = &default_loop_struct;
2999 #else
3000       ev_default_loop_ptr = 1;
3001 #endif
3002
3003       loop_init (EV_A_ flags);
3004
3005       if (ev_backend (EV_A))
3006         {
3007 #if EV_CHILD_ENABLE
3008           ev_signal_init (&childev, childcb, SIGCHLD);
3009           ev_set_priority (&childev, EV_MAXPRI);
3010           ev_signal_start (EV_A_ &childev);
3011           ev_unref (EV_A); /* child watcher should not keep loop alive */
3012 #endif
3013         }
3014       else
3015         ev_default_loop_ptr = 0;
3016     }
3017
3018   return ev_default_loop_ptr;
3019 }
3020
3021 void
3022 ev_loop_fork (EV_P) EV_THROW
3023 {
3024   postfork = 1;
3025 }
3026
3027 /*****************************************************************************/
3028
3029 void
3030 ev_invoke (EV_P_ void *w, int revents)
3031 {
3032   EV_CB_INVOKE ((W)w, revents);
3033 }
3034
3035 unsigned int
3036 ev_pending_count (EV_P) EV_THROW
3037 {
3038   int pri;
3039   unsigned int count = 0;
3040
3041   for (pri = NUMPRI; pri--; )
3042     count += pendingcnt [pri];
3043
3044   return count;
3045 }
3046
3047 void noinline
3048 ev_invoke_pending (EV_P)
3049 {
3050   pendingpri = NUMPRI;
3051
3052   while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3053     {
3054       --pendingpri;
3055
3056       while (pendingcnt [pendingpri])
3057         {
3058           ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3059
3060           p->w->pending = 0;
3061           EV_CB_INVOKE (p->w, p->events);
3062           EV_FREQUENT_CHECK;
3063         }
3064     }
3065 }
3066
3067 #if EV_IDLE_ENABLE
3068 /* make idle watchers pending. this handles the "call-idle */
3069 /* only when higher priorities are idle" logic */
3070 inline_size void
3071 idle_reify (EV_P)
3072 {
3073   if (expect_false (idleall))
3074     {
3075       int pri;
3076
3077       for (pri = NUMPRI; pri--; )
3078         {
3079           if (pendingcnt [pri])
3080             break;
3081
3082           if (idlecnt [pri])
3083             {
3084               queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3085               break;
3086             }
3087         }
3088     }
3089 }
3090 #endif
3091
3092 /* make timers pending */
3093 inline_size void
3094 timers_reify (EV_P)
3095 {
3096   EV_FREQUENT_CHECK;
3097
3098   if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3099     {
3100       do
3101         {
3102           ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3103
3104           /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3105
3106           /* first reschedule or stop timer */
3107           if (w->repeat)
3108             {
3109               ev_at (w) += w->repeat;
3110               if (ev_at (w) < mn_now)
3111                 ev_at (w) = mn_now;
3112
3113               assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3114
3115               ANHE_at_cache (timers [HEAP0]);
3116               downheap (timers, timercnt, HEAP0);
3117             }
3118           else
3119             ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3120
3121           EV_FREQUENT_CHECK;
3122           feed_reverse (EV_A_ (W)w);
3123         }
3124       while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3125
3126       feed_reverse_done (EV_A_ EV_TIMER);
3127     }
3128 }
3129
3130 #if EV_PERIODIC_ENABLE
3131
3132 static void noinline
3133 periodic_recalc (EV_P_ ev_periodic *w)
3134 {
3135   ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3136   ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3137
3138   /* the above almost always errs on the low side */
3139   while (at <= ev_rt_now)
3140     {
3141       ev_tstamp nat = at + w->interval;
3142
3143       /* when resolution fails us, we use ev_rt_now */
3144       if (expect_false (nat == at))
3145         {
3146           at = ev_rt_now;
3147           break;
3148         }
3149
3150       at = nat;
3151     }
3152
3153   ev_at (w) = at;
3154 }
3155
3156 /* make periodics pending */
3157 inline_size void
3158 periodics_reify (EV_P)
3159 {
3160   EV_FREQUENT_CHECK;
3161
3162   while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3163     {
3164       do
3165         {
3166           ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3167
3168           /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3169
3170           /* first reschedule or stop timer */
3171           if (w->reschedule_cb)
3172             {
3173               ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3174
3175               assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3176
3177               ANHE_at_cache (periodics [HEAP0]);
3178               downheap (periodics, periodiccnt, HEAP0);
3179             }
3180           else if (w->interval)
3181             {
3182               periodic_recalc (EV_A_ w);
3183               ANHE_at_cache (periodics [HEAP0]);
3184               downheap (periodics, periodiccnt, HEAP0);
3185             }
3186           else
3187             ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3188
3189           EV_FREQUENT_CHECK;
3190           feed_reverse (EV_A_ (W)w);
3191         }
3192       while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3193
3194       feed_reverse_done (EV_A_ EV_PERIODIC);
3195     }
3196 }
3197
3198 /* simply recalculate all periodics */
3199 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3200 static void noinline ecb_cold
3201 periodics_reschedule (EV_P)
3202 {
3203   int i;
3204
3205   /* adjust periodics after time jump */
3206   for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3207     {
3208       ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3209
3210       if (w->reschedule_cb)
3211         ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3212       else if (w->interval)
3213         periodic_recalc (EV_A_ w);
3214
3215       ANHE_at_cache (periodics [i]);
3216     }
3217
3218   reheap (periodics, periodiccnt);
3219 }
3220 #endif
3221
3222 /* adjust all timers by a given offset */
3223 static void noinline ecb_cold
3224 timers_reschedule (EV_P_ ev_tstamp adjust)
3225 {
3226   int i;
3227
3228   for (i = 0; i < timercnt; ++i)
3229     {
3230       ANHE *he = timers + i + HEAP0;
3231       ANHE_w (*he)->at += adjust;
3232       ANHE_at_cache (*he);
3233     }
3234 }
3235
3236 /* fetch new monotonic and realtime times from the kernel */
3237 /* also detect if there was a timejump, and act accordingly */
3238 inline_speed void
3239 time_update (EV_P_ ev_tstamp max_block)
3240 {
3241 #if EV_USE_MONOTONIC
3242   if (expect_true (have_monotonic))
3243     {
3244       int i;
3245       ev_tstamp odiff = rtmn_diff;
3246
3247       mn_now = get_clock ();
3248
3249       /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3250       /* interpolate in the meantime */
3251       if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3252         {
3253           ev_rt_now = rtmn_diff + mn_now;
3254           return;
3255         }
3256
3257       now_floor = mn_now;
3258       ev_rt_now = ev_time ();
3259
3260       /* loop a few times, before making important decisions.
3261        * on the choice of "4": one iteration isn't enough,
3262        * in case we get preempted during the calls to
3263        * ev_time and get_clock. a second call is almost guaranteed
3264        * to succeed in that case, though. and looping a few more times
3265        * doesn't hurt either as we only do this on time-jumps or
3266        * in the unlikely event of having been preempted here.
3267        */
3268       for (i = 4; --i; )
3269         {
3270           ev_tstamp diff;
3271           rtmn_diff = ev_rt_now - mn_now;
3272
3273           diff = odiff - rtmn_diff;
3274
3275           if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3276             return; /* all is well */
3277
3278           ev_rt_now = ev_time ();
3279           mn_now    = get_clock ();
3280           now_floor = mn_now;
3281         }
3282
3283       /* no timer adjustment, as the monotonic clock doesn't jump */
3284       /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3285 # if EV_PERIODIC_ENABLE
3286       periodics_reschedule (EV_A);
3287 # endif
3288     }
3289   else
3290 #endif
3291     {
3292       ev_rt_now = ev_time ();
3293
3294       if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3295         {
3296           /* adjust timers. this is easy, as the offset is the same for all of them */
3297           timers_reschedule (EV_A_ ev_rt_now - mn_now);
3298 #if EV_PERIODIC_ENABLE
3299           periodics_reschedule (EV_A);
3300 #endif
3301         }
3302
3303       mn_now = ev_rt_now;
3304     }
3305 }
3306
3307 int
3308 ev_run (EV_P_ int flags)
3309 {
3310 #if EV_FEATURE_API
3311   ++loop_depth;
3312 #endif
3313
3314   assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3315
3316   loop_done = EVBREAK_CANCEL;
3317
3318   EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3319
3320   do
3321     {
3322 #if EV_VERIFY >= 2
3323       ev_verify (EV_A);
3324 #endif
3325
3326 #ifndef _WIN32
3327       if (expect_false (curpid)) /* penalise the forking check even more */
3328         if (expect_false (getpid () != curpid))
3329           {
3330             curpid = getpid ();
3331             postfork = 1;
3332           }
3333 #endif
3334
3335 #if EV_FORK_ENABLE
3336       /* we might have forked, so queue fork handlers */
3337       if (expect_false (postfork))
3338         if (forkcnt)
3339           {
3340             queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3341             EV_INVOKE_PENDING;
3342           }
3343 #endif
3344
3345 #if EV_PREPARE_ENABLE
3346       /* queue prepare watchers (and execute them) */
3347       if (expect_false (preparecnt))
3348         {
3349           queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3350           EV_INVOKE_PENDING;
3351         }
3352 #endif
3353
3354       if (expect_false (loop_done))
3355         break;
3356
3357       /* we might have forked, so reify kernel state if necessary */
3358       if (expect_false (postfork))
3359         loop_fork (EV_A);
3360
3361       /* update fd-related kernel structures */
3362       fd_reify (EV_A);
3363
3364       /* calculate blocking time */
3365       {
3366         ev_tstamp waittime  = 0.;
3367         ev_tstamp sleeptime = 0.;
3368
3369         /* remember old timestamp for io_blocktime calculation */
3370         ev_tstamp prev_mn_now = mn_now;
3371
3372         /* update time to cancel out callback processing overhead */
3373         time_update (EV_A_ 1e100);
3374
3375         /* from now on, we want a pipe-wake-up */
3376         pipe_write_wanted = 1;
3377
3378         ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3379
3380         if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3381           {
3382             waittime = MAX_BLOCKTIME;
3383
3384             if (timercnt)
3385               {
3386                 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3387                 if (waittime > to) waittime = to;
3388               }
3389
3390 #if EV_PERIODIC_ENABLE
3391             if (periodiccnt)
3392               {
3393                 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3394                 if (waittime > to) waittime = to;
3395               }
3396 #endif
3397
3398             /* don't let timeouts decrease the waittime below timeout_blocktime */
3399             if (expect_false (waittime < timeout_blocktime))
3400               waittime = timeout_blocktime;
3401
3402             /* at this point, we NEED to wait, so we have to ensure */
3403             /* to pass a minimum nonzero value to the backend */
3404             if (expect_false (waittime < backend_mintime))
3405               waittime = backend_mintime;
3406
3407             /* extra check because io_blocktime is commonly 0 */
3408             if (expect_false (io_blocktime))
3409               {
3410                 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3411
3412                 if (sleeptime > waittime - backend_mintime)
3413                   sleeptime = waittime - backend_mintime;
3414
3415                 if (expect_true (sleeptime > 0.))
3416                   {
3417                     ev_sleep (sleeptime);
3418                     waittime -= sleeptime;
3419                   }
3420               }
3421           }
3422
3423 #if EV_FEATURE_API
3424         ++loop_count;
3425 #endif
3426         assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3427         backend_poll (EV_A_ waittime);
3428         assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3429
3430         pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3431
3432         ECB_MEMORY_FENCE_ACQUIRE;
3433         if (pipe_write_skipped)
3434           {
3435             assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3436             ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3437           }
3438
3439
3440         /* update ev_rt_now, do magic */
3441         time_update (EV_A_ waittime + sleeptime);
3442       }
3443
3444       /* queue pending timers and reschedule them */
3445       timers_reify (EV_A); /* relative timers called last */
3446 #if EV_PERIODIC_ENABLE
3447       periodics_reify (EV_A); /* absolute timers called first */
3448 #endif
3449
3450 #if EV_IDLE_ENABLE
3451       /* queue idle watchers unless other events are pending */
3452       idle_reify (EV_A);
3453 #endif
3454
3455 #if EV_CHECK_ENABLE
3456       /* queue check watchers, to be executed first */
3457       if (expect_false (checkcnt))
3458         queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3459 #endif
3460
3461       EV_INVOKE_PENDING;
3462     }
3463   while (expect_true (
3464     activecnt
3465     && !loop_done
3466     && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3467   ));
3468
3469   if (loop_done == EVBREAK_ONE)
3470     loop_done = EVBREAK_CANCEL;
3471
3472 #if EV_FEATURE_API
3473   --loop_depth;
3474 #endif
3475
3476   return activecnt;
3477 }
3478
3479 void
3480 ev_break (EV_P_ int how) EV_THROW
3481 {
3482   loop_done = how;
3483 }
3484
3485 void
3486 ev_ref (EV_P) EV_THROW
3487 {
3488   ++activecnt;
3489 }
3490
3491 void
3492 ev_unref (EV_P) EV_THROW
3493 {
3494   --activecnt;
3495 }
3496
3497 void
3498 ev_now_update (EV_P) EV_THROW
3499 {
3500   time_update (EV_A_ 1e100);
3501 }
3502
3503 void
3504 ev_suspend (EV_P) EV_THROW
3505 {
3506   ev_now_update (EV_A);
3507 }
3508
3509 void
3510 ev_resume (EV_P) EV_THROW
3511 {
3512   ev_tstamp mn_prev = mn_now;
3513
3514   ev_now_update (EV_A);
3515   timers_reschedule (EV_A_ mn_now - mn_prev);
3516 #if EV_PERIODIC_ENABLE
3517   /* TODO: really do this? */
3518   periodics_reschedule (EV_A);
3519 #endif
3520 }
3521
3522 /*****************************************************************************/
3523 /* singly-linked list management, used when the expected list length is short */
3524
3525 inline_size void
3526 wlist_add (WL *head, WL elem)
3527 {
3528   elem->next = *head;
3529   *head = elem;
3530 }
3531
3532 inline_size void
3533 wlist_del (WL *head, WL elem)
3534 {
3535   while (*head)
3536     {
3537       if (expect_true (*head == elem))
3538         {
3539           *head = elem->next;
3540           break;
3541         }
3542
3543       head = &(*head)->next;
3544     }
3545 }
3546
3547 /* internal, faster, version of ev_clear_pending */
3548 inline_speed void
3549 clear_pending (EV_P_ W w)
3550 {
3551   if (w->pending)
3552     {
3553       pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3554       w->pending = 0;
3555     }
3556 }
3557
3558 int
3559 ev_clear_pending (EV_P_ void *w) EV_THROW
3560 {
3561   W w_ = (W)w;
3562   int pending = w_->pending;
3563
3564   if (expect_true (pending))
3565     {
3566       ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3567       p->w = (W)&pending_w;
3568       w_->pending = 0;
3569       return p->events;
3570     }
3571   else
3572     return 0;
3573 }
3574
3575 inline_size void
3576 pri_adjust (EV_P_ W w)
3577 {
3578   int pri = ev_priority (w);
3579   pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3580   pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3581   ev_set_priority (w, pri);
3582 }
3583
3584 inline_speed void
3585 ev_start (EV_P_ W w, int active)
3586 {
3587   pri_adjust (EV_A_ w);
3588   w->active = active;
3589   ev_ref (EV_A);
3590 }
3591
3592 inline_size void
3593 ev_stop (EV_P_ W w)
3594 {
3595   ev_unref (EV_A);
3596   w->active = 0;
3597 }
3598
3599 /*****************************************************************************/
3600
3601 void noinline
3602 ev_io_start (EV_P_ ev_io *w) EV_THROW
3603 {
3604   int fd = w->fd;
3605
3606   if (expect_false (ev_is_active (w)))
3607     return;
3608
3609   assert (("libev: ev_io_start called with negative fd", fd >= 0));
3610   assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3611
3612   EV_FREQUENT_CHECK;
3613
3614   ev_start (EV_A_ (W)w, 1);
3615   array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3616   wlist_add (&anfds[fd].head, (WL)w);
3617
3618   /* common bug, apparently */
3619   assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3620
3621   fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3622   w->events &= ~EV__IOFDSET;
3623
3624   EV_FREQUENT_CHECK;
3625 }
3626
3627 void noinline
3628 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3629 {
3630   clear_pending (EV_A_ (W)w);
3631   if (expect_false (!ev_is_active (w)))
3632     return;
3633
3634   assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3635
3636   EV_FREQUENT_CHECK;
3637
3638   wlist_del (&anfds[w->fd].head, (WL)w);
3639   ev_stop (EV_A_ (W)w);
3640
3641   fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3642
3643   EV_FREQUENT_CHECK;
3644 }
3645
3646 void noinline
3647 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3648 {
3649   if (expect_false (ev_is_active (w)))
3650     return;
3651
3652   ev_at (w) += mn_now;
3653
3654   assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3655
3656   EV_FREQUENT_CHECK;
3657
3658   ++timercnt;
3659   ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3660   array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3661   ANHE_w (timers [ev_active (w)]) = (WT)w;
3662   ANHE_at_cache (timers [ev_active (w)]);
3663   upheap (timers, ev_active (w));
3664
3665   EV_FREQUENT_CHECK;
3666
3667   /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3668 }
3669
3670 void noinline
3671 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3672 {
3673   clear_pending (EV_A_ (W)w);
3674   if (expect_false (!ev_is_active (w)))
3675     return;
3676
3677   EV_FREQUENT_CHECK;
3678
3679   {
3680     int active = ev_active (w);
3681
3682     assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3683
3684     --timercnt;
3685
3686     if (expect_true (active < timercnt + HEAP0))
3687       {
3688         timers [active] = timers [timercnt + HEAP0];
3689         adjustheap (timers, timercnt, active);
3690       }
3691   }
3692
3693   ev_at (w) -= mn_now;
3694
3695   ev_stop (EV_A_ (W)w);
3696
3697   EV_FREQUENT_CHECK;
3698 }
3699
3700 void noinline
3701 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3702 {
3703   EV_FREQUENT_CHECK;
3704
3705   clear_pending (EV_A_ (W)w);
3706
3707   if (ev_is_active (w))
3708     {
3709       if (w->repeat)
3710         {
3711           ev_at (w) = mn_now + w->repeat;
3712           ANHE_at_cache (timers [ev_active (w)]);
3713           adjustheap (timers, timercnt, ev_active (w));
3714         }
3715       else
3716         ev_timer_stop (EV_A_ w);
3717     }
3718   else if (w->repeat)
3719     {
3720       ev_at (w) = w->repeat;
3721       ev_timer_start (EV_A_ w);
3722     }
3723
3724   EV_FREQUENT_CHECK;
3725 }
3726
3727 ev_tstamp
3728 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3729 {
3730   return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3731 }
3732
3733 #if EV_PERIODIC_ENABLE
3734 void noinline
3735 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3736 {
3737   if (expect_false (ev_is_active (w)))
3738     return;
3739
3740   if (w->reschedule_cb)
3741     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3742   else if (w->interval)
3743     {
3744       assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3745       periodic_recalc (EV_A_ w);
3746     }
3747   else
3748     ev_at (w) = w->offset;
3749
3750   EV_FREQUENT_CHECK;
3751
3752   ++periodiccnt;
3753   ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3754   array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3755   ANHE_w (periodics [ev_active (w)]) = (WT)w;
3756   ANHE_at_cache (periodics [ev_active (w)]);
3757   upheap (periodics, ev_active (w));
3758
3759   EV_FREQUENT_CHECK;
3760
3761   /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3762 }
3763
3764 void noinline
3765 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3766 {
3767   clear_pending (EV_A_ (W)w);
3768   if (expect_false (!ev_is_active (w)))
3769     return;
3770
3771   EV_FREQUENT_CHECK;
3772
3773   {
3774     int active = ev_active (w);
3775
3776     assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3777
3778     --periodiccnt;
3779
3780     if (expect_true (active < periodiccnt + HEAP0))
3781       {
3782         periodics [active] = periodics [periodiccnt + HEAP0];
3783         adjustheap (periodics, periodiccnt, active);
3784       }
3785   }
3786
3787   ev_stop (EV_A_ (W)w);
3788
3789   EV_FREQUENT_CHECK;
3790 }
3791
3792 void noinline
3793 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3794 {
3795   /* TODO: use adjustheap and recalculation */
3796   ev_periodic_stop (EV_A_ w);
3797   ev_periodic_start (EV_A_ w);
3798 }
3799 #endif
3800
3801 #ifndef SA_RESTART
3802 # define SA_RESTART 0
3803 #endif
3804
3805 #if EV_SIGNAL_ENABLE
3806
3807 void noinline
3808 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3809 {
3810   if (expect_false (ev_is_active (w)))
3811     return;
3812
3813   assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3814
3815 #if EV_MULTIPLICITY
3816   assert (("libev: a signal must not be attached to two different loops",
3817            !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3818
3819   signals [w->signum - 1].loop = EV_A;
3820   ECB_MEMORY_FENCE_RELEASE;
3821 #endif
3822
3823   EV_FREQUENT_CHECK;
3824
3825 #if EV_USE_SIGNALFD
3826   if (sigfd == -2)
3827     {
3828       sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3829       if (sigfd < 0 && errno == EINVAL)
3830         sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3831
3832       if (sigfd >= 0)
3833         {
3834           fd_intern (sigfd); /* doing it twice will not hurt */
3835
3836           sigemptyset (&sigfd_set);
3837
3838           ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3839           ev_set_priority (&sigfd_w, EV_MAXPRI);
3840           ev_io_start (EV_A_ &sigfd_w);
3841           ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3842         }
3843     }
3844
3845   if (sigfd >= 0)
3846     {
3847       /* TODO: check .head */
3848       sigaddset (&sigfd_set, w->signum);
3849       sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3850
3851       signalfd (sigfd, &sigfd_set, 0);
3852     }
3853 #endif
3854
3855   ev_start (EV_A_ (W)w, 1);
3856   wlist_add (&signals [w->signum - 1].head, (WL)w);
3857
3858   if (!((WL)w)->next)
3859 # if EV_USE_SIGNALFD
3860     if (sigfd < 0) /*TODO*/
3861 # endif
3862       {
3863 # ifdef _WIN32
3864         evpipe_init (EV_A);
3865
3866         signal (w->signum, ev_sighandler);
3867 # else
3868         struct sigaction sa;
3869
3870         evpipe_init (EV_A);
3871
3872         sa.sa_handler = ev_sighandler;
3873         sigfillset (&sa.sa_mask);
3874         sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3875         sigaction (w->signum, &sa, 0);
3876
3877         if (origflags & EVFLAG_NOSIGMASK)
3878           {
3879             sigemptyset (&sa.sa_mask);
3880             sigaddset (&sa.sa_mask, w->signum);
3881             sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3882           }
3883 #endif
3884       }
3885
3886   EV_FREQUENT_CHECK;
3887 }
3888
3889 void noinline
3890 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3891 {
3892   clear_pending (EV_A_ (W)w);
3893   if (expect_false (!ev_is_active (w)))
3894     return;
3895
3896   EV_FREQUENT_CHECK;
3897
3898   wlist_del (&signals [w->signum - 1].head, (WL)w);
3899   ev_stop (EV_A_ (W)w);
3900
3901   if (!signals [w->signum - 1].head)
3902     {
3903 #if EV_MULTIPLICITY
3904       signals [w->signum - 1].loop = 0; /* unattach from signal */
3905 #endif
3906 #if EV_USE_SIGNALFD
3907       if (sigfd >= 0)
3908         {
3909           sigset_t ss;
3910
3911           sigemptyset (&ss);
3912           sigaddset (&ss, w->signum);
3913           sigdelset (&sigfd_set, w->signum);
3914
3915           signalfd (sigfd, &sigfd_set, 0);
3916           sigprocmask (SIG_UNBLOCK, &ss, 0);
3917         }
3918       else
3919 #endif
3920         signal (w->signum, SIG_DFL);
3921     }
3922
3923   EV_FREQUENT_CHECK;
3924 }
3925
3926 #endif
3927
3928 #if EV_CHILD_ENABLE
3929
3930 void
3931 ev_child_start (EV_P_ ev_child *w) EV_THROW
3932 {
3933 #if EV_MULTIPLICITY
3934   assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3935 #endif
3936   if (expect_false (ev_is_active (w)))
3937     return;
3938
3939   EV_FREQUENT_CHECK;
3940
3941   ev_start (EV_A_ (W)w, 1);
3942   wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3943
3944   EV_FREQUENT_CHECK;
3945 }
3946
3947 void
3948 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3949 {
3950   clear_pending (EV_A_ (W)w);
3951   if (expect_false (!ev_is_active (w)))
3952     return;
3953
3954   EV_FREQUENT_CHECK;
3955
3956   wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3957   ev_stop (EV_A_ (W)w);
3958
3959   EV_FREQUENT_CHECK;
3960 }
3961
3962 #endif
3963
3964 #if EV_STAT_ENABLE
3965
3966 # ifdef _WIN32
3967 #  undef lstat
3968 #  define lstat(a,b) _stati64 (a,b)
3969 # endif
3970
3971 #define DEF_STAT_INTERVAL  5.0074891
3972 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3973 #define MIN_STAT_INTERVAL  0.1074891
3974
3975 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3976
3977 #if EV_USE_INOTIFY
3978
3979 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3980 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3981
3982 static void noinline
3983 infy_add (EV_P_ ev_stat *w)
3984 {
3985   w->wd = inotify_add_watch (fs_fd, w->path,
3986                              IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3987                              | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3988                              | IN_DONT_FOLLOW | IN_MASK_ADD);
3989
3990   if (w->wd >= 0)
3991     {
3992       struct statfs sfs;
3993
3994       /* now local changes will be tracked by inotify, but remote changes won't */
3995       /* unless the filesystem is known to be local, we therefore still poll */
3996       /* also do poll on <2.6.25, but with normal frequency */
3997
3998       if (!fs_2625)
3999         w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4000       else if (!statfs (w->path, &sfs)
4001                && (sfs.f_type == 0x1373 /* devfs */
4002                    || sfs.f_type == 0x4006 /* fat */
4003                    || sfs.f_type == 0x4d44 /* msdos */
4004                    || sfs.f_type == 0xEF53 /* ext2/3 */
4005                    || sfs.f_type == 0x72b6 /* jffs2 */
4006                    || sfs.f_type == 0x858458f6 /* ramfs */
4007                    || sfs.f_type == 0x5346544e /* ntfs */
4008                    || sfs.f_type == 0x3153464a /* jfs */
4009                    || sfs.f_type == 0x9123683e /* btrfs */
4010                    || sfs.f_type == 0x52654973 /* reiser3 */
4011                    || sfs.f_type == 0x01021994 /* tmpfs */
4012                    || sfs.f_type == 0x58465342 /* xfs */))
4013         w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4014       else
4015         w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4016     }
4017   else
4018     {
4019       /* can't use inotify, continue to stat */
4020       w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4021
4022       /* if path is not there, monitor some parent directory for speedup hints */
4023       /* note that exceeding the hardcoded path limit is not a correctness issue, */
4024       /* but an efficiency issue only */
4025       if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4026         {
4027           char path [4096];
4028           strcpy (path, w->path);
4029
4030           do
4031             {
4032               int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4033                        | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4034
4035               char *pend = strrchr (path, '/');
4036
4037               if (!pend || pend == path)
4038                 break;
4039
4040               *pend = 0;
4041               w->wd = inotify_add_watch (fs_fd, path, mask);
4042             }
4043           while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4044         }
4045     }
4046
4047   if (w->wd >= 0)
4048     wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4049
4050   /* now re-arm timer, if required */
4051   if (ev_is_active (&w->timer)) ev_ref (EV_A);
4052   ev_timer_again (EV_A_ &w->timer);
4053   if (ev_is_active (&w->timer)) ev_unref (EV_A);
4054 }
4055
4056 static void noinline
4057 infy_del (EV_P_ ev_stat *w)
4058 {
4059   int slot;
4060   int wd = w->wd;
4061
4062   if (wd < 0)
4063     return;
4064
4065   w->wd = -2;
4066   slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4067   wlist_del (&fs_hash [slot].head, (WL)w);
4068
4069   /* remove this watcher, if others are watching it, they will rearm */
4070   inotify_rm_watch (fs_fd, wd);
4071 }
4072
4073 static void noinline
4074 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4075 {
4076   if (slot < 0)
4077     /* overflow, need to check for all hash slots */
4078     for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4079       infy_wd (EV_A_ slot, wd, ev);
4080   else
4081     {
4082       WL w_;
4083
4084       for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4085         {
4086           ev_stat *w = (ev_stat *)w_;
4087           w_ = w_->next; /* lets us remove this watcher and all before it */
4088
4089           if (w->wd == wd || wd == -1)
4090             {
4091               if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4092                 {
4093                   wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4094                   w->wd = -1;
4095                   infy_add (EV_A_ w); /* re-add, no matter what */
4096                 }
4097
4098               stat_timer_cb (EV_A_ &w->timer, 0);
4099             }
4100         }
4101     }
4102 }
4103
4104 static void
4105 infy_cb (EV_P_ ev_io *w, int revents)
4106 {
4107   char buf [EV_INOTIFY_BUFSIZE];
4108   int ofs;
4109   int len = read (fs_fd, buf, sizeof (buf));
4110
4111   for (ofs = 0; ofs < len; )
4112     {
4113       struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4114       infy_wd (EV_A_ ev->wd, ev->wd, ev);
4115       ofs += sizeof (struct inotify_event) + ev->len;
4116     }
4117 }
4118
4119 inline_size void ecb_cold
4120 ev_check_2625 (EV_P)
4121 {
4122   /* kernels < 2.6.25 are borked
4123    * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4124    */
4125   if (ev_linux_version () < 0x020619)
4126     return;
4127
4128   fs_2625 = 1;
4129 }
4130
4131 inline_size int
4132 infy_newfd (void)
4133 {
4134 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4135   int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4136   if (fd >= 0)
4137     return fd;
4138 #endif
4139   return inotify_init ();
4140 }
4141
4142 inline_size void
4143 infy_init (EV_P)
4144 {
4145   if (fs_fd != -2)
4146     return;
4147
4148   fs_fd = -1;
4149
4150   ev_check_2625 (EV_A);
4151
4152   fs_fd = infy_newfd ();
4153
4154   if (fs_fd >= 0)
4155     {
4156       fd_intern (fs_fd);
4157       ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4158       ev_set_priority (&fs_w, EV_MAXPRI);
4159       ev_io_start (EV_A_ &fs_w);
4160       ev_unref (EV_A);
4161     }
4162 }
4163
4164 inline_size void
4165 infy_fork (EV_P)
4166 {
4167   int slot;
4168
4169   if (fs_fd < 0)
4170     return;
4171
4172   ev_ref (EV_A);
4173   ev_io_stop (EV_A_ &fs_w);
4174   close (fs_fd);
4175   fs_fd = infy_newfd ();
4176
4177   if (fs_fd >= 0)
4178     {
4179       fd_intern (fs_fd);
4180       ev_io_set (&fs_w, fs_fd, EV_READ);
4181       ev_io_start (EV_A_ &fs_w);
4182       ev_unref (EV_A);
4183     }
4184
4185   for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4186     {
4187       WL w_ = fs_hash [slot].head;
4188       fs_hash [slot].head = 0;
4189
4190       while (w_)
4191         {
4192           ev_stat *w = (ev_stat *)w_;
4193           w_ = w_->next; /* lets us add this watcher */
4194
4195           w->wd = -1;
4196
4197           if (fs_fd >= 0)
4198             infy_add (EV_A_ w); /* re-add, no matter what */
4199           else
4200             {
4201               w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4202               if (ev_is_active (&w->timer)) ev_ref (EV_A);
4203               ev_timer_again (EV_A_ &w->timer);
4204               if (ev_is_active (&w->timer)) ev_unref (EV_A);
4205             }
4206         }
4207     }
4208 }
4209
4210 #endif
4211
4212 #ifdef _WIN32
4213 # define EV_LSTAT(p,b) _stati64 (p, b)
4214 #else
4215 # define EV_LSTAT(p,b) lstat (p, b)
4216 #endif
4217
4218 void
4219 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4220 {
4221   if (lstat (w->path, &w->attr) < 0)
4222     w->attr.st_nlink = 0;
4223   else if (!w->attr.st_nlink)
4224     w->attr.st_nlink = 1;
4225 }
4226
4227 static void noinline
4228 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4229 {
4230   ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4231
4232   ev_statdata prev = w->attr;
4233   ev_stat_stat (EV_A_ w);
4234
4235   /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4236   if (
4237     prev.st_dev      != w->attr.st_dev
4238     || prev.st_ino   != w->attr.st_ino
4239     || prev.st_mode  != w->attr.st_mode
4240     || prev.st_nlink != w->attr.st_nlink
4241     || prev.st_uid   != w->attr.st_uid
4242     || prev.st_gid   != w->attr.st_gid
4243     || prev.st_rdev  != w->attr.st_rdev
4244     || prev.st_size  != w->attr.st_size
4245     || prev.st_atime != w->attr.st_atime
4246     || prev.st_mtime != w->attr.st_mtime
4247     || prev.st_ctime != w->attr.st_ctime
4248   ) {
4249       /* we only update w->prev on actual differences */
4250       /* in case we test more often than invoke the callback, */
4251       /* to ensure that prev is always different to attr */
4252       w->prev = prev;
4253
4254       #if EV_USE_INOTIFY
4255         if (fs_fd >= 0)
4256           {
4257             infy_del (EV_A_ w);
4258             infy_add (EV_A_ w);
4259             ev_stat_stat (EV_A_ w); /* avoid race... */
4260           }
4261       #endif
4262
4263       ev_feed_event (EV_A_ w, EV_STAT);
4264     }
4265 }
4266
4267 void
4268 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4269 {
4270   if (expect_false (ev_is_active (w)))
4271     return;
4272
4273   ev_stat_stat (EV_A_ w);
4274
4275   if (w->interval < MIN_STAT_INTERVAL && w->interval)
4276     w->interval = MIN_STAT_INTERVAL;
4277
4278   ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4279   ev_set_priority (&w->timer, ev_priority (w));
4280
4281 #if EV_USE_INOTIFY
4282   infy_init (EV_A);
4283
4284   if (fs_fd >= 0)
4285     infy_add (EV_A_ w);
4286   else
4287 #endif
4288     {
4289       ev_timer_again (EV_A_ &w->timer);
4290       ev_unref (EV_A);
4291     }
4292
4293   ev_start (EV_A_ (W)w, 1);
4294
4295   EV_FREQUENT_CHECK;
4296 }
4297
4298 void
4299 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4300 {
4301   clear_pending (EV_A_ (W)w);
4302   if (expect_false (!ev_is_active (w)))
4303     return;
4304
4305   EV_FREQUENT_CHECK;
4306
4307 #if EV_USE_INOTIFY
4308   infy_del (EV_A_ w);
4309 #endif
4310
4311   if (ev_is_active (&w->timer))
4312     {
4313       ev_ref (EV_A);
4314       ev_timer_stop (EV_A_ &w->timer);
4315     }
4316
4317   ev_stop (EV_A_ (W)w);
4318
4319   EV_FREQUENT_CHECK;
4320 }
4321 #endif
4322
4323 #if EV_IDLE_ENABLE
4324 void
4325 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4326 {
4327   if (expect_false (ev_is_active (w)))
4328     return;
4329
4330   pri_adjust (EV_A_ (W)w);
4331
4332   EV_FREQUENT_CHECK;
4333
4334   {
4335     int active = ++idlecnt [ABSPRI (w)];
4336
4337     ++idleall;
4338     ev_start (EV_A_ (W)w, active);
4339
4340     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4341     idles [ABSPRI (w)][active - 1] = w;
4342   }
4343
4344   EV_FREQUENT_CHECK;
4345 }
4346
4347 void
4348 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4349 {
4350   clear_pending (EV_A_ (W)w);
4351   if (expect_false (!ev_is_active (w)))
4352     return;
4353
4354   EV_FREQUENT_CHECK;
4355
4356   {
4357     int active = ev_active (w);
4358
4359     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4360     ev_active (idles [ABSPRI (w)][active - 1]) = active;
4361
4362     ev_stop (EV_A_ (W)w);
4363     --idleall;
4364   }
4365
4366   EV_FREQUENT_CHECK;
4367 }
4368 #endif
4369
4370 #if EV_PREPARE_ENABLE
4371 void
4372 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4373 {
4374   if (expect_false (ev_is_active (w)))
4375     return;
4376
4377   EV_FREQUENT_CHECK;
4378
4379   ev_start (EV_A_ (W)w, ++preparecnt);
4380   array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4381   prepares [preparecnt - 1] = w;
4382
4383   EV_FREQUENT_CHECK;
4384 }
4385
4386 void
4387 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4388 {
4389   clear_pending (EV_A_ (W)w);
4390   if (expect_false (!ev_is_active (w)))
4391     return;
4392
4393   EV_FREQUENT_CHECK;
4394
4395   {
4396     int active = ev_active (w);
4397
4398     prepares [active - 1] = prepares [--preparecnt];
4399     ev_active (prepares [active - 1]) = active;
4400   }
4401
4402   ev_stop (EV_A_ (W)w);
4403
4404   EV_FREQUENT_CHECK;
4405 }
4406 #endif
4407
4408 #if EV_CHECK_ENABLE
4409 void
4410 ev_check_start (EV_P_ ev_check *w) EV_THROW
4411 {
4412   if (expect_false (ev_is_active (w)))
4413     return;
4414
4415   EV_FREQUENT_CHECK;
4416
4417   ev_start (EV_A_ (W)w, ++checkcnt);
4418   array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4419   checks [checkcnt - 1] = w;
4420
4421   EV_FREQUENT_CHECK;
4422 }
4423
4424 void
4425 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4426 {
4427   clear_pending (EV_A_ (W)w);
4428   if (expect_false (!ev_is_active (w)))
4429     return;
4430
4431   EV_FREQUENT_CHECK;
4432
4433   {
4434     int active = ev_active (w);
4435
4436     checks [active - 1] = checks [--checkcnt];
4437     ev_active (checks [active - 1]) = active;
4438   }
4439
4440   ev_stop (EV_A_ (W)w);
4441
4442   EV_FREQUENT_CHECK;
4443 }
4444 #endif
4445
4446 #if EV_EMBED_ENABLE
4447 void noinline
4448 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4449 {
4450   ev_run (w->other, EVRUN_NOWAIT);
4451 }
4452
4453 static void
4454 embed_io_cb (EV_P_ ev_io *io, int revents)
4455 {
4456   ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4457
4458   if (ev_cb (w))
4459     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4460   else
4461     ev_run (w->other, EVRUN_NOWAIT);
4462 }
4463
4464 static void
4465 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4466 {
4467   ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4468
4469   {
4470     EV_P = w->other;
4471
4472     while (fdchangecnt)
4473       {
4474         fd_reify (EV_A);
4475         ev_run (EV_A_ EVRUN_NOWAIT);
4476       }
4477   }
4478 }
4479
4480 static void
4481 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4482 {
4483   ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4484
4485   ev_embed_stop (EV_A_ w);
4486
4487   {
4488     EV_P = w->other;
4489
4490     ev_loop_fork (EV_A);
4491     ev_run (EV_A_ EVRUN_NOWAIT);
4492   }
4493
4494   ev_embed_start (EV_A_ w);
4495 }
4496
4497 #if 0
4498 static void
4499 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4500 {
4501   ev_idle_stop (EV_A_ idle);
4502 }
4503 #endif
4504
4505 void
4506 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4507 {
4508   if (expect_false (ev_is_active (w)))
4509     return;
4510
4511   {
4512     EV_P = w->other;
4513     assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4514     ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4515   }
4516
4517   EV_FREQUENT_CHECK;
4518
4519   ev_set_priority (&w->io, ev_priority (w));
4520   ev_io_start (EV_A_ &w->io);
4521
4522   ev_prepare_init (&w->prepare, embed_prepare_cb);
4523   ev_set_priority (&w->prepare, EV_MINPRI);
4524   ev_prepare_start (EV_A_ &w->prepare);
4525
4526   ev_fork_init (&w->fork, embed_fork_cb);
4527   ev_fork_start (EV_A_ &w->fork);
4528
4529   /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4530
4531   ev_start (EV_A_ (W)w, 1);
4532
4533   EV_FREQUENT_CHECK;
4534 }
4535
4536 void
4537 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4538 {
4539   clear_pending (EV_A_ (W)w);
4540   if (expect_false (!ev_is_active (w)))
4541     return;
4542
4543   EV_FREQUENT_CHECK;
4544
4545   ev_io_stop      (EV_A_ &w->io);
4546   ev_prepare_stop (EV_A_ &w->prepare);
4547   ev_fork_stop    (EV_A_ &w->fork);
4548
4549   ev_stop (EV_A_ (W)w);
4550
4551   EV_FREQUENT_CHECK;
4552 }
4553 #endif
4554
4555 #if EV_FORK_ENABLE
4556 void
4557 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4558 {
4559   if (expect_false (ev_is_active (w)))
4560     return;
4561
4562   EV_FREQUENT_CHECK;
4563
4564   ev_start (EV_A_ (W)w, ++forkcnt);
4565   array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4566   forks [forkcnt - 1] = w;
4567
4568   EV_FREQUENT_CHECK;
4569 }
4570
4571 void
4572 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4573 {
4574   clear_pending (EV_A_ (W)w);
4575   if (expect_false (!ev_is_active (w)))
4576     return;
4577
4578   EV_FREQUENT_CHECK;
4579
4580   {
4581     int active = ev_active (w);
4582
4583     forks [active - 1] = forks [--forkcnt];
4584     ev_active (forks [active - 1]) = active;
4585   }
4586
4587   ev_stop (EV_A_ (W)w);
4588
4589   EV_FREQUENT_CHECK;
4590 }
4591 #endif
4592
4593 #if EV_CLEANUP_ENABLE
4594 void
4595 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4596 {
4597   if (expect_false (ev_is_active (w)))
4598     return;
4599
4600   EV_FREQUENT_CHECK;
4601
4602   ev_start (EV_A_ (W)w, ++cleanupcnt);
4603   array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4604   cleanups [cleanupcnt - 1] = w;
4605
4606   /* cleanup watchers should never keep a refcount on the loop */
4607   ev_unref (EV_A);
4608   EV_FREQUENT_CHECK;
4609 }
4610
4611 void
4612 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4613 {
4614   clear_pending (EV_A_ (W)w);
4615   if (expect_false (!ev_is_active (w)))
4616     return;
4617
4618   EV_FREQUENT_CHECK;
4619   ev_ref (EV_A);
4620
4621   {
4622     int active = ev_active (w);
4623
4624     cleanups [active - 1] = cleanups [--cleanupcnt];
4625     ev_active (cleanups [active - 1]) = active;
4626   }
4627
4628   ev_stop (EV_A_ (W)w);
4629
4630   EV_FREQUENT_CHECK;
4631 }
4632 #endif
4633
4634 #if EV_ASYNC_ENABLE
4635 void
4636 ev_async_start (EV_P_ ev_async *w) EV_THROW
4637 {
4638   if (expect_false (ev_is_active (w)))
4639     return;
4640
4641   w->sent = 0;
4642
4643   evpipe_init (EV_A);
4644
4645   EV_FREQUENT_CHECK;
4646
4647   ev_start (EV_A_ (W)w, ++asynccnt);
4648   array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4649   asyncs [asynccnt - 1] = w;
4650
4651   EV_FREQUENT_CHECK;
4652 }
4653
4654 void
4655 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4656 {
4657   clear_pending (EV_A_ (W)w);
4658   if (expect_false (!ev_is_active (w)))
4659     return;
4660
4661   EV_FREQUENT_CHECK;
4662
4663   {
4664     int active = ev_active (w);
4665
4666     asyncs [active - 1] = asyncs [--asynccnt];
4667     ev_active (asyncs [active - 1]) = active;
4668   }
4669
4670   ev_stop (EV_A_ (W)w);
4671
4672   EV_FREQUENT_CHECK;
4673 }
4674
4675 void
4676 ev_async_send (EV_P_ ev_async *w) EV_THROW
4677 {
4678   w->sent = 1;
4679   evpipe_write (EV_A_ &async_pending);
4680 }
4681 #endif
4682
4683 /*****************************************************************************/
4684
4685 struct ev_once
4686 {
4687   ev_io io;
4688   ev_timer to;
4689   void (*cb)(int revents, void *arg);
4690   void *arg;
4691 };
4692
4693 static void
4694 once_cb (EV_P_ struct ev_once *once, int revents)
4695 {
4696   void (*cb)(int revents, void *arg) = once->cb;
4697   void *arg = once->arg;
4698
4699   ev_io_stop    (EV_A_ &once->io);
4700   ev_timer_stop (EV_A_ &once->to);
4701   ev_free (once);
4702
4703   cb (revents, arg);
4704 }
4705
4706 static void
4707 once_cb_io (EV_P_ ev_io *w, int revents)
4708 {
4709   struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4710
4711   once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4712 }
4713
4714 static void
4715 once_cb_to (EV_P_ ev_timer *w, int revents)
4716 {
4717   struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4718
4719   once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4720 }
4721
4722 void
4723 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4724 {
4725   struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4726
4727   if (expect_false (!once))
4728     {
4729       cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4730       return;
4731     }
4732
4733   once->cb  = cb;
4734   once->arg = arg;
4735
4736   ev_init (&once->io, once_cb_io);
4737   if (fd >= 0)
4738     {
4739       ev_io_set (&once->io, fd, events);
4740       ev_io_start (EV_A_ &once->io);
4741     }
4742
4743   ev_init (&once->to, once_cb_to);
4744   if (timeout >= 0.)
4745     {
4746       ev_timer_set (&once->to, timeout, 0.);
4747       ev_timer_start (EV_A_ &once->to);
4748     }
4749 }
4750
4751 /*****************************************************************************/
4752
4753 #if EV_WALK_ENABLE
4754 void ecb_cold
4755 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4756 {
4757   int i, j;
4758   ev_watcher_list *wl, *wn;
4759
4760   if (types & (EV_IO | EV_EMBED))
4761     for (i = 0; i < anfdmax; ++i)
4762       for (wl = anfds [i].head; wl; )
4763         {
4764           wn = wl->next;
4765
4766 #if EV_EMBED_ENABLE
4767           if (ev_cb ((ev_io *)wl) == embed_io_cb)
4768             {
4769               if (types & EV_EMBED)
4770                 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4771             }
4772           else
4773 #endif
4774 #if EV_USE_INOTIFY
4775           if (ev_cb ((ev_io *)wl) == infy_cb)
4776             ;
4777           else
4778 #endif
4779           if ((ev_io *)wl != &pipe_w)
4780             if (types & EV_IO)
4781               cb (EV_A_ EV_IO, wl);
4782
4783           wl = wn;
4784         }
4785
4786   if (types & (EV_TIMER | EV_STAT))
4787     for (i = timercnt + HEAP0; i-- > HEAP0; )
4788 #if EV_STAT_ENABLE
4789       /*TODO: timer is not always active*/
4790       if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4791         {
4792           if (types & EV_STAT)
4793             cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4794         }
4795       else
4796 #endif
4797       if (types & EV_TIMER)
4798         cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4799
4800 #if EV_PERIODIC_ENABLE
4801   if (types & EV_PERIODIC)
4802     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4803       cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4804 #endif
4805
4806 #if EV_IDLE_ENABLE
4807   if (types & EV_IDLE)
4808     for (j = NUMPRI; j--; )
4809       for (i = idlecnt [j]; i--; )
4810         cb (EV_A_ EV_IDLE, idles [j][i]);
4811 #endif
4812
4813 #if EV_FORK_ENABLE
4814   if (types & EV_FORK)
4815     for (i = forkcnt; i--; )
4816       if (ev_cb (forks [i]) != embed_fork_cb)
4817         cb (EV_A_ EV_FORK, forks [i]);
4818 #endif
4819
4820 #if EV_ASYNC_ENABLE
4821   if (types & EV_ASYNC)
4822     for (i = asynccnt; i--; )
4823       cb (EV_A_ EV_ASYNC, asyncs [i]);
4824 #endif
4825
4826 #if EV_PREPARE_ENABLE
4827   if (types & EV_PREPARE)
4828     for (i = preparecnt; i--; )
4829 # if EV_EMBED_ENABLE
4830       if (ev_cb (prepares [i]) != embed_prepare_cb)
4831 # endif
4832         cb (EV_A_ EV_PREPARE, prepares [i]);
4833 #endif
4834
4835 #if EV_CHECK_ENABLE
4836   if (types & EV_CHECK)
4837     for (i = checkcnt; i--; )
4838       cb (EV_A_ EV_CHECK, checks [i]);
4839 #endif
4840
4841 #if EV_SIGNAL_ENABLE
4842   if (types & EV_SIGNAL)
4843     for (i = 0; i < EV_NSIG - 1; ++i)
4844       for (wl = signals [i].head; wl; )
4845         {
4846           wn = wl->next;
4847           cb (EV_A_ EV_SIGNAL, wl);
4848           wl = wn;
4849         }
4850 #endif
4851
4852 #if EV_CHILD_ENABLE
4853   if (types & EV_CHILD)
4854     for (i = (EV_PID_HASHSIZE); i--; )
4855       for (wl = childs [i]; wl; )
4856         {
4857           wn = wl->next;
4858           cb (EV_A_ EV_CHILD, wl);
4859           wl = wn;
4860         }
4861 #endif
4862 /* EV_STAT     0x00001000 /* stat data changed */
4863 /* EV_EMBED    0x00010000 /* embedded event loop needs sweep */
4864 }
4865 #endif
4866
4867 #if EV_MULTIPLICITY
4868   #include "ev_wrap.h"
4869 #endif
4870