]> rtime.felk.cvut.cz Git - sojka/libev.git/blob - ev.c
*** empty log message ***
[sojka/libev.git] / ev.c
1 /*
2  * libev event processing core, watcher management
3  *
4  * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without modifica-
8  * tion, are permitted provided that the following conditions are met:
9  *
10  *   1.  Redistributions of source code must retain the above copyright notice,
11  *       this list of conditions and the following disclaimer.
12  *
13  *   2.  Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in the
15  *       documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19  * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO
20  * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21  * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25  * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26  * OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * Alternatively, the contents of this file may be used under the terms of
29  * the GNU General Public License ("GPL") version 2 or any later version,
30  * in which case the provisions of the GPL are applicable instead of
31  * the above. If you wish to allow the use of your version of this file
32  * only under the terms of the GPL and not to allow others to use your
33  * version of this file under the BSD license, indicate your decision
34  * by deleting the provisions above and replace them with the notice
35  * and other provisions required by the GPL. If you do not delete the
36  * provisions above, a recipient may use your version of this file under
37  * either the BSD or the GPL.
38  */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 #  include EV_CONFIG_H
44 # else
45 #  include "config.h"
46 # endif
47
48 # if HAVE_FLOOR
49 #  ifndef EV_USE_FLOOR
50 #   define EV_USE_FLOOR 1
51 #  endif
52 # endif
53
54 # if HAVE_CLOCK_SYSCALL
55 #  ifndef EV_USE_CLOCK_SYSCALL
56 #   define EV_USE_CLOCK_SYSCALL 1
57 #   ifndef EV_USE_REALTIME
58 #    define EV_USE_REALTIME  0
59 #   endif
60 #   ifndef EV_USE_MONOTONIC
61 #    define EV_USE_MONOTONIC 1
62 #   endif
63 #  endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 #  define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 #  ifndef EV_USE_MONOTONIC
70 #   define EV_USE_MONOTONIC 1
71 #  endif
72 #  ifndef EV_USE_REALTIME
73 #   define EV_USE_REALTIME  0
74 #  endif
75 # else
76 #  ifndef EV_USE_MONOTONIC
77 #   define EV_USE_MONOTONIC 0
78 #  endif
79 #  ifndef EV_USE_REALTIME
80 #   define EV_USE_REALTIME  0
81 #  endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 #  ifndef EV_USE_NANOSLEEP
86 #    define EV_USE_NANOSLEEP EV_FEATURE_OS
87 #  endif
88 # else
89 #   undef EV_USE_NANOSLEEP
90 #   define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 #  ifndef EV_USE_SELECT
95 #   define EV_USE_SELECT EV_FEATURE_BACKENDS
96 #  endif
97 # else
98 #  undef EV_USE_SELECT
99 #  define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 #  ifndef EV_USE_POLL
104 #   define EV_USE_POLL EV_FEATURE_BACKENDS
105 #  endif
106 # else
107 #  undef EV_USE_POLL
108 #  define EV_USE_POLL 0
109 # endif
110    
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 #  ifndef EV_USE_EPOLL
113 #   define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 #  endif
115 # else
116 #  undef EV_USE_EPOLL
117 #  define EV_USE_EPOLL 0
118 # endif
119    
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 #  ifndef EV_USE_KQUEUE
122 #   define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 #  endif
124 # else
125 #  undef EV_USE_KQUEUE
126 #  define EV_USE_KQUEUE 0
127 # endif
128    
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 #  ifndef EV_USE_PORT
131 #   define EV_USE_PORT EV_FEATURE_BACKENDS
132 #  endif
133 # else
134 #  undef EV_USE_PORT
135 #  define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 #  ifndef EV_USE_INOTIFY
140 #   define EV_USE_INOTIFY EV_FEATURE_OS
141 #  endif
142 # else
143 #  undef EV_USE_INOTIFY
144 #  define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 #  ifndef EV_USE_SIGNALFD
149 #   define EV_USE_SIGNALFD EV_FEATURE_OS
150 #  endif
151 # else
152 #  undef EV_USE_SIGNALFD
153 #  define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 #  ifndef EV_USE_EVENTFD
158 #   define EV_USE_EVENTFD EV_FEATURE_OS
159 #  endif
160 # else
161 #  undef EV_USE_EVENTFD
162 #  define EV_USE_EVENTFD 0
163 # endif
164  
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <winsock2.h>
207 # include <windows.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 #  define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213
214 /* OS X, in its infinite idiocy, actually HARDCODES
215  * a limit of 1024 into their select. Where people have brains,
216  * OS X engineers apparently have a vacuum. Or maybe they were
217  * ordered to have a vacuum, or they do anything for money.
218  * This might help. Or not.
219  */
220 #define _DARWIN_UNLIMITED_SELECT 1
221
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # define EV_NSIG (8 * sizeof (sigset_t) + 1)
247 #endif
248
249 #ifndef EV_USE_FLOOR
250 # define EV_USE_FLOOR 0
251 #endif
252
253 #ifndef EV_USE_CLOCK_SYSCALL
254 # if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255 #  define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256 # else
257 #  define EV_USE_CLOCK_SYSCALL 0
258 # endif
259 #endif
260
261 #if !(_POSIX_TIMERS > 0)
262 # ifndef EV_USE_MONOTONIC
263 #  define EV_USE_MONOTONIC 0
264 # endif
265 # ifndef EV_USE_REALTIME
266 #  define EV_USE_REALTIME 0
267 # endif
268 #endif
269
270 #ifndef EV_USE_MONOTONIC
271 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272 #  define EV_USE_MONOTONIC EV_FEATURE_OS
273 # else
274 #  define EV_USE_MONOTONIC 0
275 # endif
276 #endif
277
278 #ifndef EV_USE_REALTIME
279 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
280 #endif
281
282 #ifndef EV_USE_NANOSLEEP
283 # if _POSIX_C_SOURCE >= 199309L
284 #  define EV_USE_NANOSLEEP EV_FEATURE_OS
285 # else
286 #  define EV_USE_NANOSLEEP 0
287 # endif
288 #endif
289
290 #ifndef EV_USE_SELECT
291 # define EV_USE_SELECT EV_FEATURE_BACKENDS
292 #endif
293
294 #ifndef EV_USE_POLL
295 # ifdef _WIN32
296 #  define EV_USE_POLL 0
297 # else
298 #  define EV_USE_POLL EV_FEATURE_BACKENDS
299 # endif
300 #endif
301
302 #ifndef EV_USE_EPOLL
303 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304 #  define EV_USE_EPOLL EV_FEATURE_BACKENDS
305 # else
306 #  define EV_USE_EPOLL 0
307 # endif
308 #endif
309
310 #ifndef EV_USE_KQUEUE
311 # define EV_USE_KQUEUE 0
312 #endif
313
314 #ifndef EV_USE_PORT
315 # define EV_USE_PORT 0
316 #endif
317
318 #ifndef EV_USE_INOTIFY
319 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
320 #  define EV_USE_INOTIFY EV_FEATURE_OS
321 # else
322 #  define EV_USE_INOTIFY 0
323 # endif
324 #endif
325
326 #ifndef EV_PID_HASHSIZE
327 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
328 #endif
329
330 #ifndef EV_INOTIFY_HASHSIZE
331 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332 #endif
333
334 #ifndef EV_USE_EVENTFD
335 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336 #  define EV_USE_EVENTFD EV_FEATURE_OS
337 # else
338 #  define EV_USE_EVENTFD 0
339 # endif
340 #endif
341
342 #ifndef EV_USE_SIGNALFD
343 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
344 #  define EV_USE_SIGNALFD EV_FEATURE_OS
345 # else
346 #  define EV_USE_SIGNALFD 0
347 # endif
348 #endif
349
350 #if 0 /* debugging */
351 # define EV_VERIFY 3
352 # define EV_USE_4HEAP 1
353 # define EV_HEAP_CACHE_AT 1
354 #endif
355
356 #ifndef EV_VERIFY
357 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358 #endif
359
360 #ifndef EV_USE_4HEAP
361 # define EV_USE_4HEAP EV_FEATURE_DATA
362 #endif
363
364 #ifndef EV_HEAP_CACHE_AT
365 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366 #endif
367
368 #ifdef ANDROID
369 /* supposedly, android doesn't typedef fd_mask */
370 # undef EV_USE_SELECT
371 # define EV_USE_SELECT 0
372 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373 # undef EV_USE_CLOCK_SYSCALL
374 # define EV_USE_CLOCK_SYSCALL 0
375 #endif
376
377 /* aix's poll.h seems to cause lots of trouble */
378 #ifdef _AIX
379 /* AIX has a completely broken poll.h header */
380 # undef EV_USE_POLL
381 # define EV_USE_POLL 0
382 #endif
383
384 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385 /* which makes programs even slower. might work on other unices, too. */
386 #if EV_USE_CLOCK_SYSCALL
387 # include <sys/syscall.h>
388 # ifdef SYS_clock_gettime
389 #  define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390 #  undef EV_USE_MONOTONIC
391 #  define EV_USE_MONOTONIC 1
392 # else
393 #  undef EV_USE_CLOCK_SYSCALL
394 #  define EV_USE_CLOCK_SYSCALL 0
395 # endif
396 #endif
397
398 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
399
400 #ifndef CLOCK_MONOTONIC
401 # undef EV_USE_MONOTONIC
402 # define EV_USE_MONOTONIC 0
403 #endif
404
405 #ifndef CLOCK_REALTIME
406 # undef EV_USE_REALTIME
407 # define EV_USE_REALTIME 0
408 #endif
409
410 #if !EV_STAT_ENABLE
411 # undef EV_USE_INOTIFY
412 # define EV_USE_INOTIFY 0
413 #endif
414
415 #if !EV_USE_NANOSLEEP
416 /* hp-ux has it in sys/time.h, which we unconditionally include above */
417 # if !defined _WIN32 && !defined __hpux
418 #  include <sys/select.h>
419 # endif
420 #endif
421
422 #if EV_USE_INOTIFY
423 # include <sys/statfs.h>
424 # include <sys/inotify.h>
425 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426 # ifndef IN_DONT_FOLLOW
427 #  undef EV_USE_INOTIFY
428 #  define EV_USE_INOTIFY 0
429 # endif
430 #endif
431
432 #if EV_USE_EVENTFD
433 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434 # include <stdint.h>
435 # ifndef EFD_NONBLOCK
436 #  define EFD_NONBLOCK O_NONBLOCK
437 # endif
438 # ifndef EFD_CLOEXEC
439 #  ifdef O_CLOEXEC
440 #   define EFD_CLOEXEC O_CLOEXEC
441 #  else
442 #   define EFD_CLOEXEC 02000000
443 #  endif
444 # endif
445 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446 #endif
447
448 #if EV_USE_SIGNALFD
449 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450 # include <stdint.h>
451 # ifndef SFD_NONBLOCK
452 #  define SFD_NONBLOCK O_NONBLOCK
453 # endif
454 # ifndef SFD_CLOEXEC
455 #  ifdef O_CLOEXEC
456 #   define SFD_CLOEXEC O_CLOEXEC
457 #  else
458 #   define SFD_CLOEXEC 02000000
459 #  endif
460 # endif
461 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463 struct signalfd_siginfo
464 {
465   uint32_t ssi_signo;
466   char pad[128 - sizeof (uint32_t)];
467 };
468 #endif
469
470 /**/
471
472 #if EV_VERIFY >= 3
473 # define EV_FREQUENT_CHECK ev_verify (EV_A)
474 #else
475 # define EV_FREQUENT_CHECK do { } while (0)
476 #endif
477
478 /*
479  * This is used to work around floating point rounding problems.
480  * This value is good at least till the year 4000.
481  */
482 #define MIN_INTERVAL  0.0001220703125 /* 1/2**13, good till 4000 */
483 /*#define MIN_INTERVAL  0.00000095367431640625 /* 1/2**20, good till 2200 */
484
485 #define MIN_TIMEJUMP  1. /* minimum timejump that gets detected (if monotonic clock available) */
486 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
487
488 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492 /* ECB.H BEGIN */
493 /*
494  * libecb - http://software.schmorp.de/pkg/libecb
495  *
496  * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497  * Copyright (©) 2011 Emanuele Giaquinta
498  * All rights reserved.
499  *
500  * Redistribution and use in source and binary forms, with or without modifica-
501  * tion, are permitted provided that the following conditions are met:
502  *
503  *   1.  Redistributions of source code must retain the above copyright notice,
504  *       this list of conditions and the following disclaimer.
505  *
506  *   2.  Redistributions in binary form must reproduce the above copyright
507  *       notice, this list of conditions and the following disclaimer in the
508  *       documentation and/or other materials provided with the distribution.
509  *
510  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512  * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO
513  * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514  * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518  * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519  * OF THE POSSIBILITY OF SUCH DAMAGE.
520  *
521  * Alternatively, the contents of this file may be used under the terms of
522  * the GNU General Public License ("GPL") version 2 or any later version,
523  * in which case the provisions of the GPL are applicable instead of
524  * the above. If you wish to allow the use of your version of this file
525  * only under the terms of the GPL and not to allow others to use your
526  * version of this file under the BSD license, indicate your decision
527  * by deleting the provisions above and replace them with the notice
528  * and other provisions required by the GPL. If you do not delete the
529  * provisions above, a recipient may use your version of this file under
530  * either the BSD or the GPL.
531  */
532
533 #ifndef ECB_H
534 #define ECB_H
535
536 /* 16 bits major, 16 bits minor */
537 #define ECB_VERSION 0x00010004
538
539 #ifdef _WIN32
540   typedef   signed char   int8_t;
541   typedef unsigned char  uint8_t;
542   typedef   signed short  int16_t;
543   typedef unsigned short uint16_t;
544   typedef   signed int    int32_t;
545   typedef unsigned int   uint32_t;
546   #if __GNUC__
547     typedef   signed long long int64_t;
548     typedef unsigned long long uint64_t;
549   #else /* _MSC_VER || __BORLANDC__ */
550     typedef   signed __int64   int64_t;
551     typedef unsigned __int64   uint64_t;
552   #endif
553   #ifdef _WIN64
554     #define ECB_PTRSIZE 8
555     typedef uint64_t uintptr_t;
556     typedef  int64_t  intptr_t;
557   #else
558     #define ECB_PTRSIZE 4
559     typedef uint32_t uintptr_t;
560     typedef  int32_t  intptr_t;
561   #endif
562 #else
563   #include <inttypes.h>
564   #if UINTMAX_MAX > 0xffffffffU
565     #define ECB_PTRSIZE 8
566   #else
567     #define ECB_PTRSIZE 4
568   #endif
569 #endif
570
571 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572 #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573
574 /* work around x32 idiocy by defining proper macros */
575 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576   #if _ILP32
577     #define ECB_AMD64_X32 1
578   #else
579     #define ECB_AMD64 1
580   #endif
581 #endif
582
583 /* many compilers define _GNUC_ to some versions but then only implement
584  * what their idiot authors think are the "more important" extensions,
585  * causing enormous grief in return for some better fake benchmark numbers.
586  * or so.
587  * we try to detect these and simply assume they are not gcc - if they have
588  * an issue with that they should have done it right in the first place.
589  */
590 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591   #define ECB_GCC_VERSION(major,minor) 0
592 #else
593   #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594 #endif
595
596 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597
598 #if __clang__ && defined __has_builtin
599   #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600 #else
601   #define ECB_CLANG_BUILTIN(x) 0
602 #endif
603
604 #if __clang__ && defined __has_extension
605   #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606 #else
607   #define ECB_CLANG_EXTENSION(x) 0
608 #endif
609
610 #define ECB_CPP   (__cplusplus+0)
611 #define ECB_CPP11 (__cplusplus >= 201103L)
612
613 #if ECB_CPP
614   #define ECB_C            0
615   #define ECB_STDC_VERSION 0
616 #else
617   #define ECB_C            1
618   #define ECB_STDC_VERSION __STDC_VERSION__
619 #endif
620
621 #define ECB_C99   (ECB_STDC_VERSION >= 199901L)
622 #define ECB_C11   (ECB_STDC_VERSION >= 201112L)
623
624 #if ECB_CPP
625   #define ECB_EXTERN_C extern "C"
626   #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627   #define ECB_EXTERN_C_END }
628 #else
629   #define ECB_EXTERN_C extern
630   #define ECB_EXTERN_C_BEG
631   #define ECB_EXTERN_C_END
632 #endif
633
634 /*****************************************************************************/
635
636 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637 /* ECB_NO_SMP     - ecb might be used in multiple threads, but only on a single cpu */
638
639 #if ECB_NO_THREADS
640   #define ECB_NO_SMP 1
641 #endif
642
643 #if ECB_NO_SMP
644   #define ECB_MEMORY_FENCE do { } while (0)
645 #endif
646
647 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
648 #if __xlC__ && ECB_CPP
649   #include <builtins.h>
650 #endif
651
652 #ifndef ECB_MEMORY_FENCE
653   #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
654     #if __i386 || __i386__
655       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
656       #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ (""                        : : : "memory")
657       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
658     #elif ECB_GCC_AMD64
659       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mfence"   : : : "memory")
660       #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ (""         : : : "memory")
661       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
662     #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
663       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("sync"     : : : "memory")
664     #elif defined __ARM_ARCH_6__  || defined __ARM_ARCH_6J__  \
665        || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
666       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
667     #elif defined __ARM_ARCH_7__  || defined __ARM_ARCH_7A__  \
668        || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
669       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("dmb"      : : : "memory")
670     #elif __aarch64__
671       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("dmb ish"  : : : "memory")
672     #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
673       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
674       #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad"                            : : : "memory")
675       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore             | #StoreStore")
676     #elif defined __s390__ || defined __s390x__
677       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("bcr 15,0" : : : "memory")
678     #elif defined __mips__
679       /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
680       /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
681       #define ECB_MEMORY_FENCE         __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
682     #elif defined __alpha__
683       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mb"       : : : "memory")
684     #elif defined __hppa__
685       #define ECB_MEMORY_FENCE         __asm__ __volatile__ (""         : : : "memory")
686       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
687     #elif defined __ia64__
688       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mf"       : : : "memory")
689     #elif defined __m68k__
690       #define ECB_MEMORY_FENCE         __asm__ __volatile__ (""         : : : "memory")
691     #elif defined __m88k__
692       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
693     #elif defined __sh__
694       #define ECB_MEMORY_FENCE         __asm__ __volatile__ (""         : : : "memory")
695     #endif
696   #endif
697 #endif
698
699 #ifndef ECB_MEMORY_FENCE
700   #if ECB_GCC_VERSION(4,7)
701     /* see comment below (stdatomic.h) about the C11 memory model. */
702     #define ECB_MEMORY_FENCE         __atomic_thread_fence (__ATOMIC_SEQ_CST)
703     #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
704     #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
705
706   #elif ECB_CLANG_EXTENSION(c_atomic)
707     /* see comment below (stdatomic.h) about the C11 memory model. */
708     #define ECB_MEMORY_FENCE         __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
709     #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
710     #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
711
712   #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
713     #define ECB_MEMORY_FENCE         __sync_synchronize ()
714   #elif _MSC_VER >= 1500 /* VC++ 2008 */
715     /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
716     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
717     #define ECB_MEMORY_FENCE         _ReadWriteBarrier (); MemoryBarrier()
718     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
719     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
720   #elif _MSC_VER >= 1400 /* VC++ 2005 */
721     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
722     #define ECB_MEMORY_FENCE         _ReadWriteBarrier ()
723     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
724     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
725   #elif defined _WIN32
726     #include <WinNT.h>
727     #define ECB_MEMORY_FENCE         MemoryBarrier () /* actually just xchg on x86... scary */
728   #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
729     #include <mbarrier.h>
730     #define ECB_MEMORY_FENCE         __machine_rw_barrier ()
731     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier  ()
732     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier  ()
733   #elif __xlC__
734     #define ECB_MEMORY_FENCE         __sync ()
735   #endif
736 #endif
737
738 #ifndef ECB_MEMORY_FENCE
739   #if ECB_C11 && !defined __STDC_NO_ATOMICS__
740     /* we assume that these memory fences work on all variables/all memory accesses, */
741     /* not just C11 atomics and atomic accesses */
742     #include <stdatomic.h>
743     /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
744     /* any fence other than seq_cst, which isn't very efficient for us. */
745     /* Why that is, we don't know - either the C11 memory model is quite useless */
746     /* for most usages, or gcc and clang have a bug */
747     /* I *currently* lean towards the latter, and inefficiently implement */
748     /* all three of ecb's fences as a seq_cst fence */
749     /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
750     /* for all __atomic_thread_fence's except seq_cst */
751     #define ECB_MEMORY_FENCE         atomic_thread_fence (memory_order_seq_cst)
752   #endif
753 #endif
754
755 #ifndef ECB_MEMORY_FENCE
756   #if !ECB_AVOID_PTHREADS
757     /*
758      * if you get undefined symbol references to pthread_mutex_lock,
759      * or failure to find pthread.h, then you should implement
760      * the ECB_MEMORY_FENCE operations for your cpu/compiler
761      * OR provide pthread.h and link against the posix thread library
762      * of your system.
763      */
764     #include <pthread.h>
765     #define ECB_NEEDS_PTHREADS 1
766     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
767
768     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
769     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
770   #endif
771 #endif
772
773 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
774   #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
775 #endif
776
777 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
778   #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
779 #endif
780
781 /*****************************************************************************/
782
783 #if ECB_CPP
784   #define ecb_inline static inline
785 #elif ECB_GCC_VERSION(2,5)
786   #define ecb_inline static __inline__
787 #elif ECB_C99
788   #define ecb_inline static inline
789 #else
790   #define ecb_inline static
791 #endif
792
793 #if ECB_GCC_VERSION(3,3)
794   #define ecb_restrict __restrict__
795 #elif ECB_C99
796   #define ecb_restrict restrict
797 #else
798   #define ecb_restrict
799 #endif
800
801 typedef int ecb_bool;
802
803 #define ECB_CONCAT_(a, b) a ## b
804 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
805 #define ECB_STRINGIFY_(a) # a
806 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
807 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
808
809 #define ecb_function_ ecb_inline
810
811 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
812   #define ecb_attribute(attrlist)        __attribute__ (attrlist)
813 #else
814   #define ecb_attribute(attrlist)
815 #endif
816
817 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
818   #define ecb_is_constant(expr)          __builtin_constant_p (expr)
819 #else
820   /* possible C11 impl for integral types
821   typedef struct ecb_is_constant_struct ecb_is_constant_struct;
822   #define ecb_is_constant(expr)          _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
823
824   #define ecb_is_constant(expr)          0
825 #endif
826
827 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
828   #define ecb_expect(expr,value)         __builtin_expect ((expr),(value))
829 #else
830   #define ecb_expect(expr,value)         (expr)
831 #endif
832
833 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
834   #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
835 #else
836   #define ecb_prefetch(addr,rw,locality)
837 #endif
838
839 /* no emulation for ecb_decltype */
840 #if ECB_CPP11
841   // older implementations might have problems with decltype(x)::type, work around it
842   template<class T> struct ecb_decltype_t { typedef T type; };
843   #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
844 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
845   #define ecb_decltype(x) __typeof__ (x)
846 #endif
847
848 #if _MSC_VER >= 1300
849   #define ecb_deprecated __declspec (deprecated)
850 #else
851   #define ecb_deprecated ecb_attribute ((__deprecated__))
852 #endif
853
854 #if _MSC_VER >= 1500
855   #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
856 #elif ECB_GCC_VERSION(4,5)
857   #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
858 #else
859   #define ecb_deprecated_message(msg) ecb_deprecated
860 #endif
861
862 #if _MSC_VER >= 1400
863   #define ecb_noinline __declspec (noinline)
864 #else
865   #define ecb_noinline ecb_attribute ((__noinline__))
866 #endif
867
868 #define ecb_unused     ecb_attribute ((__unused__))
869 #define ecb_const      ecb_attribute ((__const__))
870 #define ecb_pure       ecb_attribute ((__pure__))
871
872 #if ECB_C11 || __IBMC_NORETURN
873   /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
874   #define ecb_noreturn   _Noreturn
875 #elif ECB_CPP11
876   #define ecb_noreturn   [[noreturn]]
877 #elif _MSC_VER >= 1200
878   /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
879   #define ecb_noreturn   __declspec (noreturn)
880 #else
881   #define ecb_noreturn   ecb_attribute ((__noreturn__))
882 #endif
883
884 #if ECB_GCC_VERSION(4,3)
885   #define ecb_artificial ecb_attribute ((__artificial__))
886   #define ecb_hot        ecb_attribute ((__hot__))
887   #define ecb_cold       ecb_attribute ((__cold__))
888 #else
889   #define ecb_artificial
890   #define ecb_hot
891   #define ecb_cold
892 #endif
893
894 /* put around conditional expressions if you are very sure that the  */
895 /* expression is mostly true or mostly false. note that these return */
896 /* booleans, not the expression.                                     */
897 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
898 #define ecb_expect_true(expr)  ecb_expect (!!(expr), 1)
899 /* for compatibility to the rest of the world */
900 #define ecb_likely(expr)   ecb_expect_true  (expr)
901 #define ecb_unlikely(expr) ecb_expect_false (expr)
902
903 /* count trailing zero bits and count # of one bits */
904 #if ECB_GCC_VERSION(3,4) \
905     || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
906         && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
907         && ECB_CLANG_BUILTIN(__builtin_popcount))
908   /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
909   #define ecb_ld32(x)      (__builtin_clz      (x) ^ 31)
910   #define ecb_ld64(x)      (__builtin_clzll    (x) ^ 63)
911   #define ecb_ctz32(x)      __builtin_ctz      (x)
912   #define ecb_ctz64(x)      __builtin_ctzll    (x)
913   #define ecb_popcount32(x) __builtin_popcount (x)
914   /* no popcountll */
915 #else
916   ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
917   ecb_function_ ecb_const int
918   ecb_ctz32 (uint32_t x)
919   {
920     int r = 0;
921
922     x &= ~x + 1; /* this isolates the lowest bit */
923
924 #if ECB_branchless_on_i386
925     r += !!(x & 0xaaaaaaaa) << 0;
926     r += !!(x & 0xcccccccc) << 1;
927     r += !!(x & 0xf0f0f0f0) << 2;
928     r += !!(x & 0xff00ff00) << 3;
929     r += !!(x & 0xffff0000) << 4;
930 #else
931     if (x & 0xaaaaaaaa) r +=  1;
932     if (x & 0xcccccccc) r +=  2;
933     if (x & 0xf0f0f0f0) r +=  4;
934     if (x & 0xff00ff00) r +=  8;
935     if (x & 0xffff0000) r += 16;
936 #endif
937
938     return r;
939   }
940
941   ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
942   ecb_function_ ecb_const int
943   ecb_ctz64 (uint64_t x)
944   {
945     int shift = x & 0xffffffffU ? 0 : 32;
946     return ecb_ctz32 (x >> shift) + shift;
947   }
948
949   ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
950   ecb_function_ ecb_const int
951   ecb_popcount32 (uint32_t x)
952   {
953     x -=  (x >> 1) & 0x55555555;
954     x  = ((x >> 2) & 0x33333333) + (x & 0x33333333);
955     x  = ((x >> 4) + x) & 0x0f0f0f0f;
956     x *= 0x01010101;
957
958     return x >> 24;
959   }
960
961   ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
962   ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
963   {
964     int r = 0;
965
966     if (x >> 16) { x >>= 16; r += 16; }
967     if (x >>  8) { x >>=  8; r +=  8; }
968     if (x >>  4) { x >>=  4; r +=  4; }
969     if (x >>  2) { x >>=  2; r +=  2; }
970     if (x >>  1) {           r +=  1; }
971
972     return r;
973   }
974
975   ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
976   ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
977   {
978     int r = 0;
979
980     if (x >> 32) { x >>= 32; r += 32; }
981
982     return r + ecb_ld32 (x);
983   }
984 #endif
985
986 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
987 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
988 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
989 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
990
991 ecb_function_ ecb_const uint8_t  ecb_bitrev8  (uint8_t  x);
992 ecb_function_ ecb_const uint8_t  ecb_bitrev8  (uint8_t  x)
993 {
994   return (  (x * 0x0802U & 0x22110U)
995           | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
996 }
997
998 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
999 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1000 {
1001   x = ((x >>  1) &     0x5555) | ((x &     0x5555) <<  1);
1002   x = ((x >>  2) &     0x3333) | ((x &     0x3333) <<  2);
1003   x = ((x >>  4) &     0x0f0f) | ((x &     0x0f0f) <<  4);
1004   x = ( x >>  8              ) | ( x               <<  8);
1005
1006   return x;
1007 }
1008
1009 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1010 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1011 {
1012   x = ((x >>  1) & 0x55555555) | ((x & 0x55555555) <<  1);
1013   x = ((x >>  2) & 0x33333333) | ((x & 0x33333333) <<  2);
1014   x = ((x >>  4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) <<  4);
1015   x = ((x >>  8) & 0x00ff00ff) | ((x & 0x00ff00ff) <<  8);
1016   x = ( x >> 16              ) | ( x               << 16);
1017
1018   return x;
1019 }
1020
1021 /* popcount64 is only available on 64 bit cpus as gcc builtin */
1022 /* so for this version we are lazy */
1023 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1024 ecb_function_ ecb_const int
1025 ecb_popcount64 (uint64_t x)
1026 {
1027   return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1028 }
1029
1030 ecb_inline ecb_const uint8_t  ecb_rotl8  (uint8_t  x, unsigned int count);
1031 ecb_inline ecb_const uint8_t  ecb_rotr8  (uint8_t  x, unsigned int count);
1032 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1033 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1034 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1035 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1036 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1037 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1038
1039 ecb_inline ecb_const uint8_t  ecb_rotl8  (uint8_t  x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1040 ecb_inline ecb_const uint8_t  ecb_rotr8  (uint8_t  x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1041 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1042 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1043 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1044 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1045 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1046 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1047
1048 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1049   #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1050   #define ecb_bswap16(x)  __builtin_bswap16 (x)
1051   #else
1052   #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1053   #endif
1054   #define ecb_bswap32(x)  __builtin_bswap32 (x)
1055   #define ecb_bswap64(x)  __builtin_bswap64 (x)
1056 #elif _MSC_VER
1057   #include <stdlib.h>
1058   #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1059   #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong  ((uint32_t)(x)))
1060   #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1061 #else
1062   ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1063   ecb_function_ ecb_const uint16_t
1064   ecb_bswap16 (uint16_t x)
1065   {
1066     return ecb_rotl16 (x, 8);
1067   }
1068
1069   ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1070   ecb_function_ ecb_const uint32_t
1071   ecb_bswap32 (uint32_t x)
1072   {
1073     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1074   }
1075
1076   ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1077   ecb_function_ ecb_const uint64_t
1078   ecb_bswap64 (uint64_t x)
1079   {
1080     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1081   }
1082 #endif
1083
1084 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1085   #define ecb_unreachable() __builtin_unreachable ()
1086 #else
1087   /* this seems to work fine, but gcc always emits a warning for it :/ */
1088   ecb_inline ecb_noreturn void ecb_unreachable (void);
1089   ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1090 #endif
1091
1092 /* try to tell the compiler that some condition is definitely true */
1093 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1094
1095 ecb_inline ecb_const unsigned char ecb_byteorder_helper (void);
1096 ecb_inline ecb_const unsigned char
1097 ecb_byteorder_helper (void)
1098 {
1099   /* the union code still generates code under pressure in gcc, */
1100   /* but less than using pointers, and always seems to */
1101   /* successfully return a constant. */
1102   /* the reason why we have this horrible preprocessor mess */
1103   /* is to avoid it in all cases, at least on common architectures */
1104   /* or when using a recent enough gcc version (>= 4.6) */
1105 #if ((__i386 || __i386__) && !__VOS__) || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64
1106   return 0x44;
1107 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1108   return 0x44;
1109 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1110   return 0x11;
1111 #else
1112   union
1113   {
1114     uint32_t i;
1115     uint8_t c;
1116   } u = { 0x11223344 };
1117   return u.c;
1118 #endif
1119 }
1120
1121 ecb_inline ecb_const ecb_bool ecb_big_endian    (void);
1122 ecb_inline ecb_const ecb_bool ecb_big_endian    (void) { return ecb_byteorder_helper () == 0x11; }
1123 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1124 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1125
1126 #if ECB_GCC_VERSION(3,0) || ECB_C99
1127   #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1128 #else
1129   #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1130 #endif
1131
1132 #if ECB_CPP
1133   template<typename T>
1134   static inline T ecb_div_rd (T val, T div)
1135   {
1136     return val < 0 ? - ((-val + div - 1) / div) : (val          ) / div;
1137   }
1138   template<typename T>
1139   static inline T ecb_div_ru (T val, T div)
1140   {
1141     return val < 0 ? - ((-val          ) / div) : (val + div - 1) / div;
1142   }
1143 #else
1144   #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val)            ) / (div))
1145   #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val)            ) / (div)) : ((val) + (div) - 1) / (div))
1146 #endif
1147
1148 #if ecb_cplusplus_does_not_suck
1149   /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1150   template<typename T, int N>
1151   static inline int ecb_array_length (const T (&arr)[N])
1152   {
1153     return N;
1154   }
1155 #else
1156   #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1157 #endif
1158
1159 /*******************************************************************************/
1160 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1161
1162 /* basically, everything uses "ieee pure-endian" floating point numbers */
1163 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1164 #if 0 \
1165     || __i386 || __i386__ \
1166     || ECB_GCC_AMD64 \
1167     || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1168     || defined __s390__ || defined __s390x__ \
1169     || defined __mips__ \
1170     || defined __alpha__ \
1171     || defined __hppa__ \
1172     || defined __ia64__ \
1173     || defined __m68k__ \
1174     || defined __m88k__ \
1175     || defined __sh__ \
1176     || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1177     || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1178     || defined __aarch64__
1179   #define ECB_STDFP 1
1180   #include <string.h> /* for memcpy */
1181 #else
1182   #define ECB_STDFP 0
1183 #endif
1184
1185 #ifndef ECB_NO_LIBM
1186
1187   #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1188
1189   /* only the oldest of old doesn't have this one. solaris. */
1190   #ifdef INFINITY
1191     #define ECB_INFINITY INFINITY
1192   #else
1193     #define ECB_INFINITY HUGE_VAL
1194   #endif
1195
1196   #ifdef NAN
1197     #define ECB_NAN NAN
1198   #else
1199     #define ECB_NAN ECB_INFINITY
1200   #endif
1201
1202   #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1203     #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1204     #define ecb_frexpf(x,e) frexpf ((x), (e))
1205   #else
1206     #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1207     #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1208   #endif
1209
1210   /* converts an ieee half/binary16 to a float */
1211   ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1212   ecb_function_ ecb_const float
1213   ecb_binary16_to_float (uint16_t x)
1214   {
1215     int e = (x >> 10) & 0x1f;
1216     int m = x & 0x3ff;
1217     float r;
1218
1219     if      (!e     ) r = ecb_ldexpf (m        ,    -24);
1220     else if (e != 31) r = ecb_ldexpf (m + 0x400, e - 25);
1221     else if (m      ) r = ECB_NAN;
1222     else              r = ECB_INFINITY;
1223
1224     return x & 0x8000 ? -r : r;
1225   }
1226
1227   /* convert a float to ieee single/binary32 */
1228   ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1229   ecb_function_ ecb_const uint32_t
1230   ecb_float_to_binary32 (float x)
1231   {
1232     uint32_t r;
1233
1234     #if ECB_STDFP
1235       memcpy (&r, &x, 4);
1236     #else
1237       /* slow emulation, works for anything but -0 */
1238       uint32_t m;
1239       int e;
1240
1241       if (x == 0e0f                    ) return 0x00000000U;
1242       if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1243       if (x < -3.40282346638528860e+38f) return 0xff800000U;
1244       if (x != x                       ) return 0x7fbfffffU;
1245
1246       m = ecb_frexpf (x, &e) * 0x1000000U;
1247
1248       r = m & 0x80000000U;
1249
1250       if (r)
1251         m = -m;
1252
1253       if (e <= -126)
1254         {
1255           m &= 0xffffffU;
1256           m >>= (-125 - e);
1257           e = -126;
1258         }
1259
1260       r |= (e + 126) << 23;
1261       r |= m & 0x7fffffU;
1262     #endif
1263
1264     return r;
1265   }
1266
1267   /* converts an ieee single/binary32 to a float */
1268   ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1269   ecb_function_ ecb_const float
1270   ecb_binary32_to_float (uint32_t x)
1271   {
1272     float r;
1273
1274     #if ECB_STDFP
1275       memcpy (&r, &x, 4);
1276     #else
1277       /* emulation, only works for normals and subnormals and +0 */
1278       int neg = x >> 31;
1279       int e = (x >> 23) & 0xffU;
1280
1281       x &= 0x7fffffU;
1282
1283       if (e)
1284         x |= 0x800000U;
1285       else
1286         e = 1;
1287
1288       /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1289       r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1290
1291       r = neg ? -r : r;
1292     #endif
1293
1294     return r;
1295   }
1296
1297   /* convert a double to ieee double/binary64 */
1298   ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1299   ecb_function_ ecb_const uint64_t
1300   ecb_double_to_binary64 (double x)
1301   {
1302     uint64_t r;
1303
1304     #if ECB_STDFP
1305       memcpy (&r, &x, 8);
1306     #else
1307       /* slow emulation, works for anything but -0 */
1308       uint64_t m;
1309       int e;
1310
1311       if (x == 0e0                     ) return 0x0000000000000000U;
1312       if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1313       if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1314       if (x != x                       ) return 0X7ff7ffffffffffffU;
1315
1316       m = frexp (x, &e) * 0x20000000000000U;
1317
1318       r = m & 0x8000000000000000;;
1319
1320       if (r)
1321         m = -m;
1322
1323       if (e <= -1022)
1324         {
1325           m &= 0x1fffffffffffffU;
1326           m >>= (-1021 - e);
1327           e = -1022;
1328         }
1329
1330       r |= ((uint64_t)(e + 1022)) << 52;
1331       r |= m & 0xfffffffffffffU;
1332     #endif
1333
1334     return r;
1335   }
1336
1337   /* converts an ieee double/binary64 to a double */
1338   ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1339   ecb_function_ ecb_const double
1340   ecb_binary64_to_double (uint64_t x)
1341   {
1342     double r;
1343
1344     #if ECB_STDFP
1345       memcpy (&r, &x, 8);
1346     #else
1347       /* emulation, only works for normals and subnormals and +0 */
1348       int neg = x >> 63;
1349       int e = (x >> 52) & 0x7ffU;
1350
1351       x &= 0xfffffffffffffU;
1352
1353       if (e)
1354         x |= 0x10000000000000U;
1355       else
1356         e = 1;
1357
1358       /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1359       r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1360
1361       r = neg ? -r : r;
1362     #endif
1363
1364     return r;
1365   }
1366
1367 #endif
1368
1369 #endif
1370
1371 /* ECB.H END */
1372
1373 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1374 /* if your architecture doesn't need memory fences, e.g. because it is
1375  * single-cpu/core, or if you use libev in a project that doesn't use libev
1376  * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1377  * libev, in which cases the memory fences become nops.
1378  * alternatively, you can remove this #error and link against libpthread,
1379  * which will then provide the memory fences.
1380  */
1381 # error "memory fences not defined for your architecture, please report"
1382 #endif
1383
1384 #ifndef ECB_MEMORY_FENCE
1385 # define ECB_MEMORY_FENCE do { } while (0)
1386 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1387 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1388 #endif
1389
1390 #define expect_false(cond) ecb_expect_false (cond)
1391 #define expect_true(cond)  ecb_expect_true  (cond)
1392 #define noinline           ecb_noinline
1393
1394 #define inline_size        ecb_inline
1395
1396 #if EV_FEATURE_CODE
1397 # define inline_speed      ecb_inline
1398 #else
1399 # define inline_speed      static noinline
1400 #endif
1401
1402 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1403
1404 #if EV_MINPRI == EV_MAXPRI
1405 # define ABSPRI(w) (((W)w), 0)
1406 #else
1407 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1408 #endif
1409
1410 #define EMPTY       /* required for microsofts broken pseudo-c compiler */
1411 #define EMPTY2(a,b) /* used to suppress some warnings */
1412
1413 typedef ev_watcher *W;
1414 typedef ev_watcher_list *WL;
1415 typedef ev_watcher_time *WT;
1416
1417 #define ev_active(w) ((W)(w))->active
1418 #define ev_at(w) ((WT)(w))->at
1419
1420 #if EV_USE_REALTIME
1421 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1422 /* giving it a reasonably high chance of working on typical architectures */
1423 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1424 #endif
1425
1426 #if EV_USE_MONOTONIC
1427 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1428 #endif
1429
1430 #ifndef EV_FD_TO_WIN32_HANDLE
1431 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1432 #endif
1433 #ifndef EV_WIN32_HANDLE_TO_FD
1434 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1435 #endif
1436 #ifndef EV_WIN32_CLOSE_FD
1437 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1438 #endif
1439
1440 #ifdef _WIN32
1441 # include "ev_win32.c"
1442 #endif
1443
1444 /*****************************************************************************/
1445
1446 /* define a suitable floor function (only used by periodics atm) */
1447
1448 #if EV_USE_FLOOR
1449 # include <math.h>
1450 # define ev_floor(v) floor (v)
1451 #else
1452
1453 #include <float.h>
1454
1455 /* a floor() replacement function, should be independent of ev_tstamp type */
1456 static ev_tstamp noinline
1457 ev_floor (ev_tstamp v)
1458 {
1459   /* the choice of shift factor is not terribly important */
1460 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1461   const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1462 #else
1463   const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1464 #endif
1465
1466   /* argument too large for an unsigned long? */
1467   if (expect_false (v >= shift))
1468     {
1469       ev_tstamp f;
1470
1471       if (v == v - 1.)
1472         return v; /* very large number */
1473
1474       f = shift * ev_floor (v * (1. / shift));
1475       return f + ev_floor (v - f);
1476     }
1477
1478   /* special treatment for negative args? */
1479   if (expect_false (v < 0.))
1480     {
1481       ev_tstamp f = -ev_floor (-v);
1482
1483       return f - (f == v ? 0 : 1);
1484     }
1485
1486   /* fits into an unsigned long */
1487   return (unsigned long)v;
1488 }
1489
1490 #endif
1491
1492 /*****************************************************************************/
1493
1494 #ifdef __linux
1495 # include <sys/utsname.h>
1496 #endif
1497
1498 static unsigned int noinline ecb_cold
1499 ev_linux_version (void)
1500 {
1501 #ifdef __linux
1502   unsigned int v = 0;
1503   struct utsname buf;
1504   int i;
1505   char *p = buf.release;
1506
1507   if (uname (&buf))
1508     return 0;
1509
1510   for (i = 3+1; --i; )
1511     {
1512       unsigned int c = 0;
1513
1514       for (;;)
1515         {
1516           if (*p >= '0' && *p <= '9')
1517             c = c * 10 + *p++ - '0';
1518           else
1519             {
1520               p += *p == '.';
1521               break;
1522             }
1523         }
1524
1525       v = (v << 8) | c;
1526     }
1527
1528   return v;
1529 #else
1530   return 0;
1531 #endif
1532 }
1533
1534 /*****************************************************************************/
1535
1536 #if EV_AVOID_STDIO
1537 static void noinline ecb_cold
1538 ev_printerr (const char *msg)
1539 {
1540   write (STDERR_FILENO, msg, strlen (msg));
1541 }
1542 #endif
1543
1544 static void (*syserr_cb)(const char *msg) EV_THROW;
1545
1546 void ecb_cold
1547 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1548 {
1549   syserr_cb = cb;
1550 }
1551
1552 static void noinline ecb_cold
1553 ev_syserr (const char *msg)
1554 {
1555   if (!msg)
1556     msg = "(libev) system error";
1557
1558   if (syserr_cb)
1559     syserr_cb (msg);
1560   else
1561     {
1562 #if EV_AVOID_STDIO
1563       ev_printerr (msg);
1564       ev_printerr (": ");
1565       ev_printerr (strerror (errno));
1566       ev_printerr ("\n");
1567 #else
1568       perror (msg);
1569 #endif
1570       abort ();
1571     }
1572 }
1573
1574 static void *
1575 ev_realloc_emul (void *ptr, long size) EV_THROW
1576 {
1577   /* some systems, notably openbsd and darwin, fail to properly
1578    * implement realloc (x, 0) (as required by both ansi c-89 and
1579    * the single unix specification, so work around them here.
1580    * recently, also (at least) fedora and debian started breaking it,
1581    * despite documenting it otherwise.
1582    */
1583
1584   if (size)
1585     return realloc (ptr, size);
1586
1587   free (ptr);
1588   return 0;
1589 }
1590
1591 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1592
1593 void ecb_cold
1594 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1595 {
1596   alloc = cb;
1597 }
1598
1599 inline_speed void *
1600 ev_realloc (void *ptr, long size)
1601 {
1602   ptr = alloc (ptr, size);
1603
1604   if (!ptr && size)
1605     {
1606 #if EV_AVOID_STDIO
1607       ev_printerr ("(libev) memory allocation failed, aborting.\n");
1608 #else
1609       fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1610 #endif
1611       abort ();
1612     }
1613
1614   return ptr;
1615 }
1616
1617 #define ev_malloc(size) ev_realloc (0, (size))
1618 #define ev_free(ptr)    ev_realloc ((ptr), 0)
1619
1620 /*****************************************************************************/
1621
1622 /* set in reify when reification needed */
1623 #define EV_ANFD_REIFY 1
1624
1625 /* file descriptor info structure */
1626 typedef struct
1627 {
1628   WL head;
1629   unsigned char events; /* the events watched for */
1630   unsigned char reify;  /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1631   unsigned char emask;  /* the epoll backend stores the actual kernel mask in here */
1632   unsigned char unused;
1633 #if EV_USE_EPOLL
1634   unsigned int egen;    /* generation counter to counter epoll bugs */
1635 #endif
1636 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1637   SOCKET handle;
1638 #endif
1639 #if EV_USE_IOCP
1640   OVERLAPPED or, ow;
1641 #endif
1642 } ANFD;
1643
1644 /* stores the pending event set for a given watcher */
1645 typedef struct
1646 {
1647   W w;
1648   int events; /* the pending event set for the given watcher */
1649 } ANPENDING;
1650
1651 #if EV_USE_INOTIFY
1652 /* hash table entry per inotify-id */
1653 typedef struct
1654 {
1655   WL head;
1656 } ANFS;
1657 #endif
1658
1659 /* Heap Entry */
1660 #if EV_HEAP_CACHE_AT
1661   /* a heap element */
1662   typedef struct {
1663     ev_tstamp at;
1664     WT w;
1665   } ANHE;
1666
1667   #define ANHE_w(he)        (he).w     /* access watcher, read-write */
1668   #define ANHE_at(he)       (he).at    /* access cached at, read-only */
1669   #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1670 #else
1671   /* a heap element */
1672   typedef WT ANHE;
1673
1674   #define ANHE_w(he)        (he)
1675   #define ANHE_at(he)       (he)->at
1676   #define ANHE_at_cache(he)
1677 #endif
1678
1679 #if EV_MULTIPLICITY
1680
1681   struct ev_loop
1682   {
1683     ev_tstamp ev_rt_now;
1684     #define ev_rt_now ((loop)->ev_rt_now)
1685     #define VAR(name,decl) decl;
1686       #include "ev_vars.h"
1687     #undef VAR
1688   };
1689   #include "ev_wrap.h"
1690
1691   static struct ev_loop default_loop_struct;
1692   EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1693
1694 #else
1695
1696   EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1697   #define VAR(name,decl) static decl;
1698     #include "ev_vars.h"
1699   #undef VAR
1700
1701   static int ev_default_loop_ptr;
1702
1703 #endif
1704
1705 #if EV_FEATURE_API
1706 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1707 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1708 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1709 #else
1710 # define EV_RELEASE_CB (void)0
1711 # define EV_ACQUIRE_CB (void)0
1712 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1713 #endif
1714
1715 #define EVBREAK_RECURSE 0x80
1716
1717 /*****************************************************************************/
1718
1719 #ifndef EV_HAVE_EV_TIME
1720 ev_tstamp
1721 ev_time (void) EV_THROW
1722 {
1723 #if EV_USE_REALTIME
1724   if (expect_true (have_realtime))
1725     {
1726       struct timespec ts;
1727       clock_gettime (CLOCK_REALTIME, &ts);
1728       return ts.tv_sec + ts.tv_nsec * 1e-9;
1729     }
1730 #endif
1731
1732   struct timeval tv;
1733   gettimeofday (&tv, 0);
1734   return tv.tv_sec + tv.tv_usec * 1e-6;
1735 }
1736 #endif
1737
1738 inline_size ev_tstamp
1739 get_clock (void)
1740 {
1741 #if EV_USE_MONOTONIC
1742   if (expect_true (have_monotonic))
1743     {
1744       struct timespec ts;
1745       clock_gettime (CLOCK_MONOTONIC, &ts);
1746       return ts.tv_sec + ts.tv_nsec * 1e-9;
1747     }
1748 #endif
1749
1750   return ev_time ();
1751 }
1752
1753 #if EV_MULTIPLICITY
1754 ev_tstamp
1755 ev_now (EV_P) EV_THROW
1756 {
1757   return ev_rt_now;
1758 }
1759 #endif
1760
1761 void
1762 ev_sleep (ev_tstamp delay) EV_THROW
1763 {
1764   if (delay > 0.)
1765     {
1766 #if EV_USE_NANOSLEEP
1767       struct timespec ts;
1768
1769       EV_TS_SET (ts, delay);
1770       nanosleep (&ts, 0);
1771 #elif defined _WIN32
1772       Sleep ((unsigned long)(delay * 1e3));
1773 #else
1774       struct timeval tv;
1775
1776       /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1777       /* something not guaranteed by newer posix versions, but guaranteed */
1778       /* by older ones */
1779       EV_TV_SET (tv, delay);
1780       select (0, 0, 0, 0, &tv);
1781 #endif
1782     }
1783 }
1784
1785 /*****************************************************************************/
1786
1787 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1788
1789 /* find a suitable new size for the given array, */
1790 /* hopefully by rounding to a nice-to-malloc size */
1791 inline_size int
1792 array_nextsize (int elem, int cur, int cnt)
1793 {
1794   int ncur = cur + 1;
1795
1796   do
1797     ncur <<= 1;
1798   while (cnt > ncur);
1799
1800   /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1801   if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1802     {
1803       ncur *= elem;
1804       ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1805       ncur = ncur - sizeof (void *) * 4;
1806       ncur /= elem;
1807     }
1808
1809   return ncur;
1810 }
1811
1812 static void * noinline ecb_cold
1813 array_realloc (int elem, void *base, int *cur, int cnt)
1814 {
1815   *cur = array_nextsize (elem, *cur, cnt);
1816   return ev_realloc (base, elem * *cur);
1817 }
1818
1819 #define array_init_zero(base,count)     \
1820   memset ((void *)(base), 0, sizeof (*(base)) * (count))
1821
1822 #define array_needsize(type,base,cur,cnt,init)                  \
1823   if (expect_false ((cnt) > (cur)))                             \
1824     {                                                           \
1825       int ecb_unused ocur_ = (cur);                                     \
1826       (base) = (type *)array_realloc                            \
1827          (sizeof (type), (base), &(cur), (cnt));                \
1828       init ((base) + (ocur_), (cur) - ocur_);                   \
1829     }
1830
1831 #if 0
1832 #define array_slim(type,stem)                                   \
1833   if (stem ## max < array_roundsize (stem ## cnt >> 2))         \
1834     {                                                           \
1835       stem ## max = array_roundsize (stem ## cnt >> 1);         \
1836       base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1837       fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1838     }
1839 #endif
1840
1841 #define array_free(stem, idx) \
1842   ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1843
1844 /*****************************************************************************/
1845
1846 /* dummy callback for pending events */
1847 static void noinline
1848 pendingcb (EV_P_ ev_prepare *w, int revents)
1849 {
1850 }
1851
1852 void noinline
1853 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1854 {
1855   W w_ = (W)w;
1856   int pri = ABSPRI (w_);
1857
1858   if (expect_false (w_->pending))
1859     pendings [pri][w_->pending - 1].events |= revents;
1860   else
1861     {
1862       w_->pending = ++pendingcnt [pri];
1863       array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1864       pendings [pri][w_->pending - 1].w      = w_;
1865       pendings [pri][w_->pending - 1].events = revents;
1866     }
1867
1868   pendingpri = NUMPRI - 1;
1869 }
1870
1871 inline_speed void
1872 feed_reverse (EV_P_ W w)
1873 {
1874   array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1875   rfeeds [rfeedcnt++] = w;
1876 }
1877
1878 inline_size void
1879 feed_reverse_done (EV_P_ int revents)
1880 {
1881   do
1882     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1883   while (rfeedcnt);
1884 }
1885
1886 inline_speed void
1887 queue_events (EV_P_ W *events, int eventcnt, int type)
1888 {
1889   int i;
1890
1891   for (i = 0; i < eventcnt; ++i)
1892     ev_feed_event (EV_A_ events [i], type);
1893 }
1894
1895 /*****************************************************************************/
1896
1897 inline_speed void
1898 fd_event_nocheck (EV_P_ int fd, int revents)
1899 {
1900   ANFD *anfd = anfds + fd;
1901   ev_io *w;
1902
1903   for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1904     {
1905       int ev = w->events & revents;
1906
1907       if (ev)
1908         ev_feed_event (EV_A_ (W)w, ev);
1909     }
1910 }
1911
1912 /* do not submit kernel events for fds that have reify set */
1913 /* because that means they changed while we were polling for new events */
1914 inline_speed void
1915 fd_event (EV_P_ int fd, int revents)
1916 {
1917   ANFD *anfd = anfds + fd;
1918
1919   if (expect_true (!anfd->reify))
1920     fd_event_nocheck (EV_A_ fd, revents);
1921 }
1922
1923 void
1924 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1925 {
1926   if (fd >= 0 && fd < anfdmax)
1927     fd_event_nocheck (EV_A_ fd, revents);
1928 }
1929
1930 /* make sure the external fd watch events are in-sync */
1931 /* with the kernel/libev internal state */
1932 inline_size void
1933 fd_reify (EV_P)
1934 {
1935   int i;
1936
1937 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1938   for (i = 0; i < fdchangecnt; ++i)
1939     {
1940       int fd = fdchanges [i];
1941       ANFD *anfd = anfds + fd;
1942
1943       if (anfd->reify & EV__IOFDSET && anfd->head)
1944         {
1945           SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1946
1947           if (handle != anfd->handle)
1948             {
1949               unsigned long arg;
1950
1951               assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1952
1953               /* handle changed, but fd didn't - we need to do it in two steps */
1954               backend_modify (EV_A_ fd, anfd->events, 0);
1955               anfd->events = 0;
1956               anfd->handle = handle;
1957             }
1958         }
1959     }
1960 #endif
1961
1962   for (i = 0; i < fdchangecnt; ++i)
1963     {
1964       int fd = fdchanges [i];
1965       ANFD *anfd = anfds + fd;
1966       ev_io *w;
1967
1968       unsigned char o_events = anfd->events;
1969       unsigned char o_reify  = anfd->reify;
1970
1971       anfd->reify  = 0;
1972
1973       /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1974         {
1975           anfd->events = 0;
1976
1977           for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1978             anfd->events |= (unsigned char)w->events;
1979
1980           if (o_events != anfd->events)
1981             o_reify = EV__IOFDSET; /* actually |= */
1982         }
1983
1984       if (o_reify & EV__IOFDSET)
1985         backend_modify (EV_A_ fd, o_events, anfd->events);
1986     }
1987
1988   fdchangecnt = 0;
1989 }
1990
1991 /* something about the given fd changed */
1992 inline_size void
1993 fd_change (EV_P_ int fd, int flags)
1994 {
1995   unsigned char reify = anfds [fd].reify;
1996   anfds [fd].reify |= flags;
1997
1998   if (expect_true (!reify))
1999     {
2000       ++fdchangecnt;
2001       array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
2002       fdchanges [fdchangecnt - 1] = fd;
2003     }
2004 }
2005
2006 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2007 inline_speed void ecb_cold
2008 fd_kill (EV_P_ int fd)
2009 {
2010   ev_io *w;
2011
2012   while ((w = (ev_io *)anfds [fd].head))
2013     {
2014       ev_io_stop (EV_A_ w);
2015       ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
2016     }
2017 }
2018
2019 /* check whether the given fd is actually valid, for error recovery */
2020 inline_size int ecb_cold
2021 fd_valid (int fd)
2022 {
2023 #ifdef _WIN32
2024   return EV_FD_TO_WIN32_HANDLE (fd) != -1;
2025 #else
2026   return fcntl (fd, F_GETFD) != -1;
2027 #endif
2028 }
2029
2030 /* called on EBADF to verify fds */
2031 static void noinline ecb_cold
2032 fd_ebadf (EV_P)
2033 {
2034   int fd;
2035
2036   for (fd = 0; fd < anfdmax; ++fd)
2037     if (anfds [fd].events)
2038       if (!fd_valid (fd) && errno == EBADF)
2039         fd_kill (EV_A_ fd);
2040 }
2041
2042 /* called on ENOMEM in select/poll to kill some fds and retry */
2043 static void noinline ecb_cold
2044 fd_enomem (EV_P)
2045 {
2046   int fd;
2047
2048   for (fd = anfdmax; fd--; )
2049     if (anfds [fd].events)
2050       {
2051         fd_kill (EV_A_ fd);
2052         break;
2053       }
2054 }
2055
2056 /* usually called after fork if backend needs to re-arm all fds from scratch */
2057 static void noinline
2058 fd_rearm_all (EV_P)
2059 {
2060   int fd;
2061
2062   for (fd = 0; fd < anfdmax; ++fd)
2063     if (anfds [fd].events)
2064       {
2065         anfds [fd].events = 0;
2066         anfds [fd].emask  = 0;
2067         fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
2068       }
2069 }
2070
2071 /* used to prepare libev internal fd's */
2072 /* this is not fork-safe */
2073 inline_speed void
2074 fd_intern (int fd)
2075 {
2076 #ifdef _WIN32
2077   unsigned long arg = 1;
2078   ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2079 #else
2080   fcntl (fd, F_SETFD, FD_CLOEXEC);
2081   fcntl (fd, F_SETFL, O_NONBLOCK);
2082 #endif
2083 }
2084
2085 /*****************************************************************************/
2086
2087 /*
2088  * the heap functions want a real array index. array index 0 is guaranteed to not
2089  * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2090  * the branching factor of the d-tree.
2091  */
2092
2093 /*
2094  * at the moment we allow libev the luxury of two heaps,
2095  * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2096  * which is more cache-efficient.
2097  * the difference is about 5% with 50000+ watchers.
2098  */
2099 #if EV_USE_4HEAP
2100
2101 #define DHEAP 4
2102 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
2103 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2104 #define UPHEAP_DONE(p,k) ((p) == (k))
2105
2106 /* away from the root */
2107 inline_speed void
2108 downheap (ANHE *heap, int N, int k)
2109 {
2110   ANHE he = heap [k];
2111   ANHE *E = heap + N + HEAP0;
2112
2113   for (;;)
2114     {
2115       ev_tstamp minat;
2116       ANHE *minpos;
2117       ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2118
2119       /* find minimum child */
2120       if (expect_true (pos + DHEAP - 1 < E))
2121         {
2122           /* fast path */                               (minpos = pos + 0), (minat = ANHE_at (*minpos));
2123           if (               ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2124           if (               ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2125           if (               ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2126         }
2127       else if (pos < E)
2128         {
2129           /* slow path */                               (minpos = pos + 0), (minat = ANHE_at (*minpos));
2130           if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2131           if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2132           if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2133         }
2134       else
2135         break;
2136
2137       if (ANHE_at (he) <= minat)
2138         break;
2139
2140       heap [k] = *minpos;
2141       ev_active (ANHE_w (*minpos)) = k;
2142
2143       k = minpos - heap;
2144     }
2145
2146   heap [k] = he;
2147   ev_active (ANHE_w (he)) = k;
2148 }
2149
2150 #else /* 4HEAP */
2151
2152 #define HEAP0 1
2153 #define HPARENT(k) ((k) >> 1)
2154 #define UPHEAP_DONE(p,k) (!(p))
2155
2156 /* away from the root */
2157 inline_speed void
2158 downheap (ANHE *heap, int N, int k)
2159 {
2160   ANHE he = heap [k];
2161
2162   for (;;)
2163     {
2164       int c = k << 1;
2165
2166       if (c >= N + HEAP0)
2167         break;
2168
2169       c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2170            ? 1 : 0;
2171
2172       if (ANHE_at (he) <= ANHE_at (heap [c]))
2173         break;
2174
2175       heap [k] = heap [c];
2176       ev_active (ANHE_w (heap [k])) = k;
2177       
2178       k = c;
2179     }
2180
2181   heap [k] = he;
2182   ev_active (ANHE_w (he)) = k;
2183 }
2184 #endif
2185
2186 /* towards the root */
2187 inline_speed void
2188 upheap (ANHE *heap, int k)
2189 {
2190   ANHE he = heap [k];
2191
2192   for (;;)
2193     {
2194       int p = HPARENT (k);
2195
2196       if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2197         break;
2198
2199       heap [k] = heap [p];
2200       ev_active (ANHE_w (heap [k])) = k;
2201       k = p;
2202     }
2203
2204   heap [k] = he;
2205   ev_active (ANHE_w (he)) = k;
2206 }
2207
2208 /* move an element suitably so it is in a correct place */
2209 inline_size void
2210 adjustheap (ANHE *heap, int N, int k)
2211 {
2212   if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2213     upheap (heap, k);
2214   else
2215     downheap (heap, N, k);
2216 }
2217
2218 /* rebuild the heap: this function is used only once and executed rarely */
2219 inline_size void
2220 reheap (ANHE *heap, int N)
2221 {
2222   int i;
2223
2224   /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2225   /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2226   for (i = 0; i < N; ++i)
2227     upheap (heap, i + HEAP0);
2228 }
2229
2230 /*****************************************************************************/
2231
2232 /* associate signal watchers to a signal signal */
2233 typedef struct
2234 {
2235   EV_ATOMIC_T pending;
2236 #if EV_MULTIPLICITY
2237   EV_P;
2238 #endif
2239   WL head;
2240 } ANSIG;
2241
2242 static ANSIG signals [EV_NSIG - 1];
2243
2244 /*****************************************************************************/
2245
2246 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2247
2248 static void noinline ecb_cold
2249 evpipe_init (EV_P)
2250 {
2251   if (!ev_is_active (&pipe_w))
2252     {
2253       int fds [2];
2254
2255 # if EV_USE_EVENTFD
2256       fds [0] = -1;
2257       fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2258       if (fds [1] < 0 && errno == EINVAL)
2259         fds [1] = eventfd (0, 0);
2260
2261       if (fds [1] < 0)
2262 # endif
2263         {
2264           while (pipe (fds))
2265             ev_syserr ("(libev) error creating signal/async pipe");
2266
2267           fd_intern (fds [0]);
2268         }
2269
2270       evpipe [0] = fds [0];
2271
2272       if (evpipe [1] < 0)
2273         evpipe [1] = fds [1]; /* first call, set write fd */
2274       else
2275         {
2276           /* on subsequent calls, do not change evpipe [1] */
2277           /* so that evpipe_write can always rely on its value. */
2278           /* this branch does not do anything sensible on windows, */
2279           /* so must not be executed on windows */
2280
2281           dup2 (fds [1], evpipe [1]);
2282           close (fds [1]);
2283         }
2284
2285       fd_intern (evpipe [1]);
2286
2287       ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2288       ev_io_start (EV_A_ &pipe_w);
2289       ev_unref (EV_A); /* watcher should not keep loop alive */
2290     }
2291 }
2292
2293 inline_speed void
2294 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2295 {
2296   ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2297
2298   if (expect_true (*flag))
2299     return;
2300
2301   *flag = 1;
2302   ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2303
2304   pipe_write_skipped = 1;
2305
2306   ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2307
2308   if (pipe_write_wanted)
2309     {
2310       int old_errno;
2311
2312       pipe_write_skipped = 0;
2313       ECB_MEMORY_FENCE_RELEASE;
2314
2315       old_errno = errno; /* save errno because write will clobber it */
2316
2317 #if EV_USE_EVENTFD
2318       if (evpipe [0] < 0)
2319         {
2320           uint64_t counter = 1;
2321           write (evpipe [1], &counter, sizeof (uint64_t));
2322         }
2323       else
2324 #endif
2325         {
2326 #ifdef _WIN32
2327           WSABUF buf;
2328           DWORD sent;
2329           buf.buf = &buf;
2330           buf.len = 1;
2331           WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2332 #else
2333           write (evpipe [1], &(evpipe [1]), 1);
2334 #endif
2335         }
2336
2337       errno = old_errno;
2338     }
2339 }
2340
2341 /* called whenever the libev signal pipe */
2342 /* got some events (signal, async) */
2343 static void
2344 pipecb (EV_P_ ev_io *iow, int revents)
2345 {
2346   int i;
2347
2348   if (revents & EV_READ)
2349     {
2350 #if EV_USE_EVENTFD
2351       if (evpipe [0] < 0)
2352         {
2353           uint64_t counter;
2354           read (evpipe [1], &counter, sizeof (uint64_t));
2355         }
2356       else
2357 #endif
2358         {
2359           char dummy[4];
2360 #ifdef _WIN32
2361           WSABUF buf;
2362           DWORD recvd;
2363           DWORD flags = 0;
2364           buf.buf = dummy;
2365           buf.len = sizeof (dummy);
2366           WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2367 #else
2368           read (evpipe [0], &dummy, sizeof (dummy));
2369 #endif
2370         }
2371     }
2372
2373   pipe_write_skipped = 0;
2374
2375   ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2376
2377 #if EV_SIGNAL_ENABLE
2378   if (sig_pending)
2379     {
2380       sig_pending = 0;
2381
2382       ECB_MEMORY_FENCE;
2383
2384       for (i = EV_NSIG - 1; i--; )
2385         if (expect_false (signals [i].pending))
2386           ev_feed_signal_event (EV_A_ i + 1);
2387     }
2388 #endif
2389
2390 #if EV_ASYNC_ENABLE
2391   if (async_pending)
2392     {
2393       async_pending = 0;
2394
2395       ECB_MEMORY_FENCE;
2396
2397       for (i = asynccnt; i--; )
2398         if (asyncs [i]->sent)
2399           {
2400             asyncs [i]->sent = 0;
2401             ECB_MEMORY_FENCE_RELEASE;
2402             ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2403           }
2404     }
2405 #endif
2406 }
2407
2408 /*****************************************************************************/
2409
2410 void
2411 ev_feed_signal (int signum) EV_THROW
2412 {
2413 #if EV_MULTIPLICITY
2414   EV_P;
2415   ECB_MEMORY_FENCE_ACQUIRE;
2416   EV_A = signals [signum - 1].loop;
2417
2418   if (!EV_A)
2419     return;
2420 #endif
2421
2422   signals [signum - 1].pending = 1;
2423   evpipe_write (EV_A_ &sig_pending);
2424 }
2425
2426 static void
2427 ev_sighandler (int signum)
2428 {
2429 #ifdef _WIN32
2430   signal (signum, ev_sighandler);
2431 #endif
2432
2433   ev_feed_signal (signum);
2434 }
2435
2436 void noinline
2437 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2438 {
2439   WL w;
2440
2441   if (expect_false (signum <= 0 || signum >= EV_NSIG))
2442     return;
2443
2444   --signum;
2445
2446 #if EV_MULTIPLICITY
2447   /* it is permissible to try to feed a signal to the wrong loop */
2448   /* or, likely more useful, feeding a signal nobody is waiting for */
2449
2450   if (expect_false (signals [signum].loop != EV_A))
2451     return;
2452 #endif
2453
2454   signals [signum].pending = 0;
2455   ECB_MEMORY_FENCE_RELEASE;
2456
2457   for (w = signals [signum].head; w; w = w->next)
2458     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2459 }
2460
2461 #if EV_USE_SIGNALFD
2462 static void
2463 sigfdcb (EV_P_ ev_io *iow, int revents)
2464 {
2465   struct signalfd_siginfo si[2], *sip; /* these structs are big */
2466
2467   for (;;)
2468     {
2469       ssize_t res = read (sigfd, si, sizeof (si));
2470
2471       /* not ISO-C, as res might be -1, but works with SuS */
2472       for (sip = si; (char *)sip < (char *)si + res; ++sip)
2473         ev_feed_signal_event (EV_A_ sip->ssi_signo);
2474
2475       if (res < (ssize_t)sizeof (si))
2476         break;
2477     }
2478 }
2479 #endif
2480
2481 #endif
2482
2483 /*****************************************************************************/
2484
2485 #if EV_CHILD_ENABLE
2486 static WL childs [EV_PID_HASHSIZE];
2487
2488 static ev_signal childev;
2489
2490 #ifndef WIFCONTINUED
2491 # define WIFCONTINUED(status) 0
2492 #endif
2493
2494 /* handle a single child status event */
2495 inline_speed void
2496 child_reap (EV_P_ int chain, int pid, int status)
2497 {
2498   ev_child *w;
2499   int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2500
2501   for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2502     {
2503       if ((w->pid == pid || !w->pid)
2504           && (!traced || (w->flags & 1)))
2505         {
2506           ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2507           w->rpid    = pid;
2508           w->rstatus = status;
2509           ev_feed_event (EV_A_ (W)w, EV_CHILD);
2510         }
2511     }
2512 }
2513
2514 #ifndef WCONTINUED
2515 # define WCONTINUED 0
2516 #endif
2517
2518 /* called on sigchld etc., calls waitpid */
2519 static void
2520 childcb (EV_P_ ev_signal *sw, int revents)
2521 {
2522   int pid, status;
2523
2524   /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2525   if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2526     if (!WCONTINUED
2527         || errno != EINVAL
2528         || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2529       return;
2530
2531   /* make sure we are called again until all children have been reaped */
2532   /* we need to do it this way so that the callback gets called before we continue */
2533   ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2534
2535   child_reap (EV_A_ pid, pid, status);
2536   if ((EV_PID_HASHSIZE) > 1)
2537     child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2538 }
2539
2540 #endif
2541
2542 /*****************************************************************************/
2543
2544 #if EV_USE_IOCP
2545 # include "ev_iocp.c"
2546 #endif
2547 #if EV_USE_PORT
2548 # include "ev_port.c"
2549 #endif
2550 #if EV_USE_KQUEUE
2551 # include "ev_kqueue.c"
2552 #endif
2553 #if EV_USE_EPOLL
2554 # include "ev_epoll.c"
2555 #endif
2556 #if EV_USE_POLL
2557 # include "ev_poll.c"
2558 #endif
2559 #if EV_USE_SELECT
2560 # include "ev_select.c"
2561 #endif
2562
2563 int ecb_cold
2564 ev_version_major (void) EV_THROW
2565 {
2566   return EV_VERSION_MAJOR;
2567 }
2568
2569 int ecb_cold
2570 ev_version_minor (void) EV_THROW
2571 {
2572   return EV_VERSION_MINOR;
2573 }
2574
2575 /* return true if we are running with elevated privileges and should ignore env variables */
2576 int inline_size ecb_cold
2577 enable_secure (void)
2578 {
2579 #ifdef _WIN32
2580   return 0;
2581 #else
2582   return getuid () != geteuid ()
2583       || getgid () != getegid ();
2584 #endif
2585 }
2586
2587 unsigned int ecb_cold
2588 ev_supported_backends (void) EV_THROW
2589 {
2590   unsigned int flags = 0;
2591
2592   if (EV_USE_PORT  ) flags |= EVBACKEND_PORT;
2593   if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2594   if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2595   if (EV_USE_POLL  ) flags |= EVBACKEND_POLL;
2596   if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2597   
2598   return flags;
2599 }
2600
2601 unsigned int ecb_cold
2602 ev_recommended_backends (void) EV_THROW
2603 {
2604   unsigned int flags = ev_supported_backends ();
2605
2606 #ifndef __NetBSD__
2607   /* kqueue is borked on everything but netbsd apparently */
2608   /* it usually doesn't work correctly on anything but sockets and pipes */
2609   flags &= ~EVBACKEND_KQUEUE;
2610 #endif
2611 #ifdef __APPLE__
2612   /* only select works correctly on that "unix-certified" platform */
2613   flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2614   flags &= ~EVBACKEND_POLL;   /* poll is based on kqueue from 10.5 onwards */
2615 #endif
2616 #ifdef __FreeBSD__
2617   flags &= ~EVBACKEND_POLL;   /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2618 #endif
2619
2620   return flags;
2621 }
2622
2623 unsigned int ecb_cold
2624 ev_embeddable_backends (void) EV_THROW
2625 {
2626   int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2627
2628   /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2629   if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2630     flags &= ~EVBACKEND_EPOLL;
2631
2632   return flags;
2633 }
2634
2635 unsigned int
2636 ev_backend (EV_P) EV_THROW
2637 {
2638   return backend;
2639 }
2640
2641 #if EV_FEATURE_API
2642 unsigned int
2643 ev_iteration (EV_P) EV_THROW
2644 {
2645   return loop_count;
2646 }
2647
2648 unsigned int
2649 ev_depth (EV_P) EV_THROW
2650 {
2651   return loop_depth;
2652 }
2653
2654 void
2655 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2656 {
2657   io_blocktime = interval;
2658 }
2659
2660 void
2661 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2662 {
2663   timeout_blocktime = interval;
2664 }
2665
2666 void
2667 ev_set_userdata (EV_P_ void *data) EV_THROW
2668 {
2669   userdata = data;
2670 }
2671
2672 void *
2673 ev_userdata (EV_P) EV_THROW
2674 {
2675   return userdata;
2676 }
2677
2678 void
2679 ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2680 {
2681   invoke_cb = invoke_pending_cb;
2682 }
2683
2684 void
2685 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2686 {
2687   release_cb = release;
2688   acquire_cb = acquire;
2689 }
2690 #endif
2691
2692 /* initialise a loop structure, must be zero-initialised */
2693 static void noinline ecb_cold
2694 loop_init (EV_P_ unsigned int flags) EV_THROW
2695 {
2696   if (!backend)
2697     {
2698       origflags = flags;
2699
2700 #if EV_USE_REALTIME
2701       if (!have_realtime)
2702         {
2703           struct timespec ts;
2704
2705           if (!clock_gettime (CLOCK_REALTIME, &ts))
2706             have_realtime = 1;
2707         }
2708 #endif
2709
2710 #if EV_USE_MONOTONIC
2711       if (!have_monotonic)
2712         {
2713           struct timespec ts;
2714
2715           if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2716             have_monotonic = 1;
2717         }
2718 #endif
2719
2720       /* pid check not overridable via env */
2721 #ifndef _WIN32
2722       if (flags & EVFLAG_FORKCHECK)
2723         curpid = getpid ();
2724 #endif
2725
2726       if (!(flags & EVFLAG_NOENV)
2727           && !enable_secure ()
2728           && getenv ("LIBEV_FLAGS"))
2729         flags = atoi (getenv ("LIBEV_FLAGS"));
2730
2731       ev_rt_now          = ev_time ();
2732       mn_now             = get_clock ();
2733       now_floor          = mn_now;
2734       rtmn_diff          = ev_rt_now - mn_now;
2735 #if EV_FEATURE_API
2736       invoke_cb          = ev_invoke_pending;
2737 #endif
2738
2739       io_blocktime       = 0.;
2740       timeout_blocktime  = 0.;
2741       backend            = 0;
2742       backend_fd         = -1;
2743       sig_pending        = 0;
2744 #if EV_ASYNC_ENABLE
2745       async_pending      = 0;
2746 #endif
2747       pipe_write_skipped = 0;
2748       pipe_write_wanted  = 0;
2749       evpipe [0]         = -1;
2750       evpipe [1]         = -1;
2751 #if EV_USE_INOTIFY
2752       fs_fd              = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2753 #endif
2754 #if EV_USE_SIGNALFD
2755       sigfd              = flags & EVFLAG_SIGNALFD  ? -2 : -1;
2756 #endif
2757
2758       if (!(flags & EVBACKEND_MASK))
2759         flags |= ev_recommended_backends ();
2760
2761 #if EV_USE_IOCP
2762       if (!backend && (flags & EVBACKEND_IOCP  )) backend = iocp_init   (EV_A_ flags);
2763 #endif
2764 #if EV_USE_PORT
2765       if (!backend && (flags & EVBACKEND_PORT  )) backend = port_init   (EV_A_ flags);
2766 #endif
2767 #if EV_USE_KQUEUE
2768       if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2769 #endif
2770 #if EV_USE_EPOLL
2771       if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init  (EV_A_ flags);
2772 #endif
2773 #if EV_USE_POLL
2774       if (!backend && (flags & EVBACKEND_POLL  )) backend = poll_init   (EV_A_ flags);
2775 #endif
2776 #if EV_USE_SELECT
2777       if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2778 #endif
2779
2780       ev_prepare_init (&pending_w, pendingcb);
2781
2782 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2783       ev_init (&pipe_w, pipecb);
2784       ev_set_priority (&pipe_w, EV_MAXPRI);
2785 #endif
2786     }
2787 }
2788
2789 /* free up a loop structure */
2790 void ecb_cold
2791 ev_loop_destroy (EV_P)
2792 {
2793   int i;
2794
2795 #if EV_MULTIPLICITY
2796   /* mimic free (0) */
2797   if (!EV_A)
2798     return;
2799 #endif
2800
2801 #if EV_CLEANUP_ENABLE
2802   /* queue cleanup watchers (and execute them) */
2803   if (expect_false (cleanupcnt))
2804     {
2805       queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2806       EV_INVOKE_PENDING;
2807     }
2808 #endif
2809
2810 #if EV_CHILD_ENABLE
2811   if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2812     {
2813       ev_ref (EV_A); /* child watcher */
2814       ev_signal_stop (EV_A_ &childev);
2815     }
2816 #endif
2817
2818   if (ev_is_active (&pipe_w))
2819     {
2820       /*ev_ref (EV_A);*/
2821       /*ev_io_stop (EV_A_ &pipe_w);*/
2822
2823       if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2824       if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2825     }
2826
2827 #if EV_USE_SIGNALFD
2828   if (ev_is_active (&sigfd_w))
2829     close (sigfd);
2830 #endif
2831
2832 #if EV_USE_INOTIFY
2833   if (fs_fd >= 0)
2834     close (fs_fd);
2835 #endif
2836
2837   if (backend_fd >= 0)
2838     close (backend_fd);
2839
2840 #if EV_USE_IOCP
2841   if (backend == EVBACKEND_IOCP  ) iocp_destroy   (EV_A);
2842 #endif
2843 #if EV_USE_PORT
2844   if (backend == EVBACKEND_PORT  ) port_destroy   (EV_A);
2845 #endif
2846 #if EV_USE_KQUEUE
2847   if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2848 #endif
2849 #if EV_USE_EPOLL
2850   if (backend == EVBACKEND_EPOLL ) epoll_destroy  (EV_A);
2851 #endif
2852 #if EV_USE_POLL
2853   if (backend == EVBACKEND_POLL  ) poll_destroy   (EV_A);
2854 #endif
2855 #if EV_USE_SELECT
2856   if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2857 #endif
2858
2859   for (i = NUMPRI; i--; )
2860     {
2861       array_free (pending, [i]);
2862 #if EV_IDLE_ENABLE
2863       array_free (idle, [i]);
2864 #endif
2865     }
2866
2867   ev_free (anfds); anfds = 0; anfdmax = 0;
2868
2869   /* have to use the microsoft-never-gets-it-right macro */
2870   array_free (rfeed, EMPTY);
2871   array_free (fdchange, EMPTY);
2872   array_free (timer, EMPTY);
2873 #if EV_PERIODIC_ENABLE
2874   array_free (periodic, EMPTY);
2875 #endif
2876 #if EV_FORK_ENABLE
2877   array_free (fork, EMPTY);
2878 #endif
2879 #if EV_CLEANUP_ENABLE
2880   array_free (cleanup, EMPTY);
2881 #endif
2882   array_free (prepare, EMPTY);
2883   array_free (check, EMPTY);
2884 #if EV_ASYNC_ENABLE
2885   array_free (async, EMPTY);
2886 #endif
2887
2888   backend = 0;
2889
2890 #if EV_MULTIPLICITY
2891   if (ev_is_default_loop (EV_A))
2892 #endif
2893     ev_default_loop_ptr = 0;
2894 #if EV_MULTIPLICITY
2895   else
2896     ev_free (EV_A);
2897 #endif
2898 }
2899
2900 #if EV_USE_INOTIFY
2901 inline_size void infy_fork (EV_P);
2902 #endif
2903
2904 inline_size void
2905 loop_fork (EV_P)
2906 {
2907 #if EV_USE_PORT
2908   if (backend == EVBACKEND_PORT  ) port_fork   (EV_A);
2909 #endif
2910 #if EV_USE_KQUEUE
2911   if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2912 #endif
2913 #if EV_USE_EPOLL
2914   if (backend == EVBACKEND_EPOLL ) epoll_fork  (EV_A);
2915 #endif
2916 #if EV_USE_INOTIFY
2917   infy_fork (EV_A);
2918 #endif
2919
2920 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2921   if (ev_is_active (&pipe_w))
2922     {
2923       /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2924
2925       ev_ref (EV_A);
2926       ev_io_stop (EV_A_ &pipe_w);
2927
2928       if (evpipe [0] >= 0)
2929         EV_WIN32_CLOSE_FD (evpipe [0]);
2930
2931       evpipe_init (EV_A);
2932       /* iterate over everything, in case we missed something before */
2933       ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2934     }
2935 #endif
2936
2937   postfork = 0;
2938 }
2939
2940 #if EV_MULTIPLICITY
2941
2942 struct ev_loop * ecb_cold
2943 ev_loop_new (unsigned int flags) EV_THROW
2944 {
2945   EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2946
2947   memset (EV_A, 0, sizeof (struct ev_loop));
2948   loop_init (EV_A_ flags);
2949
2950   if (ev_backend (EV_A))
2951     return EV_A;
2952
2953   ev_free (EV_A);
2954   return 0;
2955 }
2956
2957 #endif /* multiplicity */
2958
2959 #if EV_VERIFY
2960 static void noinline ecb_cold
2961 verify_watcher (EV_P_ W w)
2962 {
2963   assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2964
2965   if (w->pending)
2966     assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2967 }
2968
2969 static void noinline ecb_cold
2970 verify_heap (EV_P_ ANHE *heap, int N)
2971 {
2972   int i;
2973
2974   for (i = HEAP0; i < N + HEAP0; ++i)
2975     {
2976       assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2977       assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2978       assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2979
2980       verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2981     }
2982 }
2983
2984 static void noinline ecb_cold
2985 array_verify (EV_P_ W *ws, int cnt)
2986 {
2987   while (cnt--)
2988     {
2989       assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2990       verify_watcher (EV_A_ ws [cnt]);
2991     }
2992 }
2993 #endif
2994
2995 #if EV_FEATURE_API
2996 void ecb_cold
2997 ev_verify (EV_P) EV_THROW
2998 {
2999 #if EV_VERIFY
3000   int i;
3001   WL w, w2;
3002
3003   assert (activecnt >= -1);
3004
3005   assert (fdchangemax >= fdchangecnt);
3006   for (i = 0; i < fdchangecnt; ++i)
3007     assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3008
3009   assert (anfdmax >= 0);
3010   for (i = 0; i < anfdmax; ++i)
3011     {
3012       int j = 0;
3013
3014       for (w = w2 = anfds [i].head; w; w = w->next)
3015         {
3016           verify_watcher (EV_A_ (W)w);
3017
3018           if (j++ & 1)
3019             {
3020               assert (("libev: io watcher list contains a loop", w != w2));
3021               w2 = w2->next;
3022             }
3023
3024           assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3025           assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3026         }
3027     }
3028
3029   assert (timermax >= timercnt);
3030   verify_heap (EV_A_ timers, timercnt);
3031
3032 #if EV_PERIODIC_ENABLE
3033   assert (periodicmax >= periodiccnt);
3034   verify_heap (EV_A_ periodics, periodiccnt);
3035 #endif
3036
3037   for (i = NUMPRI; i--; )
3038     {
3039       assert (pendingmax [i] >= pendingcnt [i]);
3040 #if EV_IDLE_ENABLE
3041       assert (idleall >= 0);
3042       assert (idlemax [i] >= idlecnt [i]);
3043       array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3044 #endif
3045     }
3046
3047 #if EV_FORK_ENABLE
3048   assert (forkmax >= forkcnt);
3049   array_verify (EV_A_ (W *)forks, forkcnt);
3050 #endif
3051
3052 #if EV_CLEANUP_ENABLE
3053   assert (cleanupmax >= cleanupcnt);
3054   array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3055 #endif
3056
3057 #if EV_ASYNC_ENABLE
3058   assert (asyncmax >= asynccnt);
3059   array_verify (EV_A_ (W *)asyncs, asynccnt);
3060 #endif
3061
3062 #if EV_PREPARE_ENABLE
3063   assert (preparemax >= preparecnt);
3064   array_verify (EV_A_ (W *)prepares, preparecnt);
3065 #endif
3066
3067 #if EV_CHECK_ENABLE
3068   assert (checkmax >= checkcnt);
3069   array_verify (EV_A_ (W *)checks, checkcnt);
3070 #endif
3071
3072 # if 0
3073 #if EV_CHILD_ENABLE
3074   for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3075   for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3076 #endif
3077 # endif
3078 #endif
3079 }
3080 #endif
3081
3082 #if EV_MULTIPLICITY
3083 struct ev_loop * ecb_cold
3084 #else
3085 int
3086 #endif
3087 ev_default_loop (unsigned int flags) EV_THROW
3088 {
3089   if (!ev_default_loop_ptr)
3090     {
3091 #if EV_MULTIPLICITY
3092       EV_P = ev_default_loop_ptr = &default_loop_struct;
3093 #else
3094       ev_default_loop_ptr = 1;
3095 #endif
3096
3097       loop_init (EV_A_ flags);
3098
3099       if (ev_backend (EV_A))
3100         {
3101 #if EV_CHILD_ENABLE
3102           ev_signal_init (&childev, childcb, SIGCHLD);
3103           ev_set_priority (&childev, EV_MAXPRI);
3104           ev_signal_start (EV_A_ &childev);
3105           ev_unref (EV_A); /* child watcher should not keep loop alive */
3106 #endif
3107         }
3108       else
3109         ev_default_loop_ptr = 0;
3110     }
3111
3112   return ev_default_loop_ptr;
3113 }
3114
3115 void
3116 ev_loop_fork (EV_P) EV_THROW
3117 {
3118   postfork = 1;
3119 }
3120
3121 /*****************************************************************************/
3122
3123 void
3124 ev_invoke (EV_P_ void *w, int revents)
3125 {
3126   EV_CB_INVOKE ((W)w, revents);
3127 }
3128
3129 unsigned int
3130 ev_pending_count (EV_P) EV_THROW
3131 {
3132   int pri;
3133   unsigned int count = 0;
3134
3135   for (pri = NUMPRI; pri--; )
3136     count += pendingcnt [pri];
3137
3138   return count;
3139 }
3140
3141 void noinline
3142 ev_invoke_pending (EV_P)
3143 {
3144   pendingpri = NUMPRI;
3145
3146   while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3147     {
3148       --pendingpri;
3149
3150       while (pendingcnt [pendingpri])
3151         {
3152           ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
3153
3154           p->w->pending = 0;
3155           EV_CB_INVOKE (p->w, p->events);
3156           EV_FREQUENT_CHECK;
3157         }
3158     }
3159 }
3160
3161 #if EV_IDLE_ENABLE
3162 /* make idle watchers pending. this handles the "call-idle */
3163 /* only when higher priorities are idle" logic */
3164 inline_size void
3165 idle_reify (EV_P)
3166 {
3167   if (expect_false (idleall))
3168     {
3169       int pri;
3170
3171       for (pri = NUMPRI; pri--; )
3172         {
3173           if (pendingcnt [pri])
3174             break;
3175
3176           if (idlecnt [pri])
3177             {
3178               queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3179               break;
3180             }
3181         }
3182     }
3183 }
3184 #endif
3185
3186 /* make timers pending */
3187 inline_size void
3188 timers_reify (EV_P)
3189 {
3190   EV_FREQUENT_CHECK;
3191
3192   if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3193     {
3194       do
3195         {
3196           ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3197
3198           /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3199
3200           /* first reschedule or stop timer */
3201           if (w->repeat)
3202             {
3203               ev_at (w) += w->repeat;
3204               if (ev_at (w) < mn_now)
3205                 ev_at (w) = mn_now;
3206
3207               assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3208
3209               ANHE_at_cache (timers [HEAP0]);
3210               downheap (timers, timercnt, HEAP0);
3211             }
3212           else
3213             ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3214
3215           EV_FREQUENT_CHECK;
3216           feed_reverse (EV_A_ (W)w);
3217         }
3218       while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3219
3220       feed_reverse_done (EV_A_ EV_TIMER);
3221     }
3222 }
3223
3224 #if EV_PERIODIC_ENABLE
3225
3226 static void noinline
3227 periodic_recalc (EV_P_ ev_periodic *w)
3228 {
3229   ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3230   ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3231
3232   /* the above almost always errs on the low side */
3233   while (at <= ev_rt_now)
3234     {
3235       ev_tstamp nat = at + w->interval;
3236
3237       /* when resolution fails us, we use ev_rt_now */
3238       if (expect_false (nat == at))
3239         {
3240           at = ev_rt_now;
3241           break;
3242         }
3243
3244       at = nat;
3245     }
3246
3247   ev_at (w) = at;
3248 }
3249
3250 /* make periodics pending */
3251 inline_size void
3252 periodics_reify (EV_P)
3253 {
3254   EV_FREQUENT_CHECK;
3255
3256   while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3257     {
3258       do
3259         {
3260           ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3261
3262           /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3263
3264           /* first reschedule or stop timer */
3265           if (w->reschedule_cb)
3266             {
3267               ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3268
3269               assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3270
3271               ANHE_at_cache (periodics [HEAP0]);
3272               downheap (periodics, periodiccnt, HEAP0);
3273             }
3274           else if (w->interval)
3275             {
3276               periodic_recalc (EV_A_ w);
3277               ANHE_at_cache (periodics [HEAP0]);
3278               downheap (periodics, periodiccnt, HEAP0);
3279             }
3280           else
3281             ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3282
3283           EV_FREQUENT_CHECK;
3284           feed_reverse (EV_A_ (W)w);
3285         }
3286       while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3287
3288       feed_reverse_done (EV_A_ EV_PERIODIC);
3289     }
3290 }
3291
3292 /* simply recalculate all periodics */
3293 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3294 static void noinline ecb_cold
3295 periodics_reschedule (EV_P)
3296 {
3297   int i;
3298
3299   /* adjust periodics after time jump */
3300   for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3301     {
3302       ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3303
3304       if (w->reschedule_cb)
3305         ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3306       else if (w->interval)
3307         periodic_recalc (EV_A_ w);
3308
3309       ANHE_at_cache (periodics [i]);
3310     }
3311
3312   reheap (periodics, periodiccnt);
3313 }
3314 #endif
3315
3316 /* adjust all timers by a given offset */
3317 static void noinline ecb_cold
3318 timers_reschedule (EV_P_ ev_tstamp adjust)
3319 {
3320   int i;
3321
3322   for (i = 0; i < timercnt; ++i)
3323     {
3324       ANHE *he = timers + i + HEAP0;
3325       ANHE_w (*he)->at += adjust;
3326       ANHE_at_cache (*he);
3327     }
3328 }
3329
3330 /* fetch new monotonic and realtime times from the kernel */
3331 /* also detect if there was a timejump, and act accordingly */
3332 inline_speed void
3333 time_update (EV_P_ ev_tstamp max_block)
3334 {
3335 #if EV_USE_MONOTONIC
3336   if (expect_true (have_monotonic))
3337     {
3338       int i;
3339       ev_tstamp odiff = rtmn_diff;
3340
3341       mn_now = get_clock ();
3342
3343       /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3344       /* interpolate in the meantime */
3345       if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3346         {
3347           ev_rt_now = rtmn_diff + mn_now;
3348           return;
3349         }
3350
3351       now_floor = mn_now;
3352       ev_rt_now = ev_time ();
3353
3354       /* loop a few times, before making important decisions.
3355        * on the choice of "4": one iteration isn't enough,
3356        * in case we get preempted during the calls to
3357        * ev_time and get_clock. a second call is almost guaranteed
3358        * to succeed in that case, though. and looping a few more times
3359        * doesn't hurt either as we only do this on time-jumps or
3360        * in the unlikely event of having been preempted here.
3361        */
3362       for (i = 4; --i; )
3363         {
3364           ev_tstamp diff;
3365           rtmn_diff = ev_rt_now - mn_now;
3366
3367           diff = odiff - rtmn_diff;
3368
3369           if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3370             return; /* all is well */
3371
3372           ev_rt_now = ev_time ();
3373           mn_now    = get_clock ();
3374           now_floor = mn_now;
3375         }
3376
3377       /* no timer adjustment, as the monotonic clock doesn't jump */
3378       /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3379 # if EV_PERIODIC_ENABLE
3380       periodics_reschedule (EV_A);
3381 # endif
3382     }
3383   else
3384 #endif
3385     {
3386       ev_rt_now = ev_time ();
3387
3388       if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3389         {
3390           /* adjust timers. this is easy, as the offset is the same for all of them */
3391           timers_reschedule (EV_A_ ev_rt_now - mn_now);
3392 #if EV_PERIODIC_ENABLE
3393           periodics_reschedule (EV_A);
3394 #endif
3395         }
3396
3397       mn_now = ev_rt_now;
3398     }
3399 }
3400
3401 int
3402 ev_run (EV_P_ int flags)
3403 {
3404 #if EV_FEATURE_API
3405   ++loop_depth;
3406 #endif
3407
3408   assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3409
3410   loop_done = EVBREAK_CANCEL;
3411
3412   EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3413
3414   do
3415     {
3416 #if EV_VERIFY >= 2
3417       ev_verify (EV_A);
3418 #endif
3419
3420 #ifndef _WIN32
3421       if (expect_false (curpid)) /* penalise the forking check even more */
3422         if (expect_false (getpid () != curpid))
3423           {
3424             curpid = getpid ();
3425             postfork = 1;
3426           }
3427 #endif
3428
3429 #if EV_FORK_ENABLE
3430       /* we might have forked, so queue fork handlers */
3431       if (expect_false (postfork))
3432         if (forkcnt)
3433           {
3434             queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3435             EV_INVOKE_PENDING;
3436           }
3437 #endif
3438
3439 #if EV_PREPARE_ENABLE
3440       /* queue prepare watchers (and execute them) */
3441       if (expect_false (preparecnt))
3442         {
3443           queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3444           EV_INVOKE_PENDING;
3445         }
3446 #endif
3447
3448       if (expect_false (loop_done))
3449         break;
3450
3451       /* we might have forked, so reify kernel state if necessary */
3452       if (expect_false (postfork))
3453         loop_fork (EV_A);
3454
3455       /* update fd-related kernel structures */
3456       fd_reify (EV_A);
3457
3458       /* calculate blocking time */
3459       {
3460         ev_tstamp waittime  = 0.;
3461         ev_tstamp sleeptime = 0.;
3462
3463         /* remember old timestamp for io_blocktime calculation */
3464         ev_tstamp prev_mn_now = mn_now;
3465
3466         /* update time to cancel out callback processing overhead */
3467         time_update (EV_A_ 1e100);
3468
3469         /* from now on, we want a pipe-wake-up */
3470         pipe_write_wanted = 1;
3471
3472         ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3473
3474         if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3475           {
3476             waittime = MAX_BLOCKTIME;
3477
3478             if (timercnt)
3479               {
3480                 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3481                 if (waittime > to) waittime = to;
3482               }
3483
3484 #if EV_PERIODIC_ENABLE
3485             if (periodiccnt)
3486               {
3487                 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3488                 if (waittime > to) waittime = to;
3489               }
3490 #endif
3491
3492             /* don't let timeouts decrease the waittime below timeout_blocktime */
3493             if (expect_false (waittime < timeout_blocktime))
3494               waittime = timeout_blocktime;
3495
3496             /* at this point, we NEED to wait, so we have to ensure */
3497             /* to pass a minimum nonzero value to the backend */
3498             if (expect_false (waittime < backend_mintime))
3499               waittime = backend_mintime;
3500
3501             /* extra check because io_blocktime is commonly 0 */
3502             if (expect_false (io_blocktime))
3503               {
3504                 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3505
3506                 if (sleeptime > waittime - backend_mintime)
3507                   sleeptime = waittime - backend_mintime;
3508
3509                 if (expect_true (sleeptime > 0.))
3510                   {
3511                     ev_sleep (sleeptime);
3512                     waittime -= sleeptime;
3513                   }
3514               }
3515           }
3516
3517 #if EV_FEATURE_API
3518         ++loop_count;
3519 #endif
3520         assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3521         backend_poll (EV_A_ waittime);
3522         assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3523
3524         pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3525
3526         ECB_MEMORY_FENCE_ACQUIRE;
3527         if (pipe_write_skipped)
3528           {
3529             assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3530             ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3531           }
3532
3533
3534         /* update ev_rt_now, do magic */
3535         time_update (EV_A_ waittime + sleeptime);
3536       }
3537
3538       /* queue pending timers and reschedule them */
3539       timers_reify (EV_A); /* relative timers called last */
3540 #if EV_PERIODIC_ENABLE
3541       periodics_reify (EV_A); /* absolute timers called first */
3542 #endif
3543
3544 #if EV_IDLE_ENABLE
3545       /* queue idle watchers unless other events are pending */
3546       idle_reify (EV_A);
3547 #endif
3548
3549 #if EV_CHECK_ENABLE
3550       /* queue check watchers, to be executed first */
3551       if (expect_false (checkcnt))
3552         queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3553 #endif
3554
3555       EV_INVOKE_PENDING;
3556     }
3557   while (expect_true (
3558     activecnt
3559     && !loop_done
3560     && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3561   ));
3562
3563   if (loop_done == EVBREAK_ONE)
3564     loop_done = EVBREAK_CANCEL;
3565
3566 #if EV_FEATURE_API
3567   --loop_depth;
3568 #endif
3569
3570   return activecnt;
3571 }
3572
3573 void
3574 ev_break (EV_P_ int how) EV_THROW
3575 {
3576   loop_done = how;
3577 }
3578
3579 void
3580 ev_ref (EV_P) EV_THROW
3581 {
3582   ++activecnt;
3583 }
3584
3585 void
3586 ev_unref (EV_P) EV_THROW
3587 {
3588   --activecnt;
3589 }
3590
3591 void
3592 ev_now_update (EV_P) EV_THROW
3593 {
3594   time_update (EV_A_ 1e100);
3595 }
3596
3597 void
3598 ev_suspend (EV_P) EV_THROW
3599 {
3600   ev_now_update (EV_A);
3601 }
3602
3603 void
3604 ev_resume (EV_P) EV_THROW
3605 {
3606   ev_tstamp mn_prev = mn_now;
3607
3608   ev_now_update (EV_A);
3609   timers_reschedule (EV_A_ mn_now - mn_prev);
3610 #if EV_PERIODIC_ENABLE
3611   /* TODO: really do this? */
3612   periodics_reschedule (EV_A);
3613 #endif
3614 }
3615
3616 /*****************************************************************************/
3617 /* singly-linked list management, used when the expected list length is short */
3618
3619 inline_size void
3620 wlist_add (WL *head, WL elem)
3621 {
3622   elem->next = *head;
3623   *head = elem;
3624 }
3625
3626 inline_size void
3627 wlist_del (WL *head, WL elem)
3628 {
3629   while (*head)
3630     {
3631       if (expect_true (*head == elem))
3632         {
3633           *head = elem->next;
3634           break;
3635         }
3636
3637       head = &(*head)->next;
3638     }
3639 }
3640
3641 /* internal, faster, version of ev_clear_pending */
3642 inline_speed void
3643 clear_pending (EV_P_ W w)
3644 {
3645   if (w->pending)
3646     {
3647       pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3648       w->pending = 0;
3649     }
3650 }
3651
3652 int
3653 ev_clear_pending (EV_P_ void *w) EV_THROW
3654 {
3655   W w_ = (W)w;
3656   int pending = w_->pending;
3657
3658   if (expect_true (pending))
3659     {
3660       ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3661       p->w = (W)&pending_w;
3662       w_->pending = 0;
3663       return p->events;
3664     }
3665   else
3666     return 0;
3667 }
3668
3669 inline_size void
3670 pri_adjust (EV_P_ W w)
3671 {
3672   int pri = ev_priority (w);
3673   pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3674   pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3675   ev_set_priority (w, pri);
3676 }
3677
3678 inline_speed void
3679 ev_start (EV_P_ W w, int active)
3680 {
3681   pri_adjust (EV_A_ w);
3682   w->active = active;
3683   ev_ref (EV_A);
3684 }
3685
3686 inline_size void
3687 ev_stop (EV_P_ W w)
3688 {
3689   ev_unref (EV_A);
3690   w->active = 0;
3691 }
3692
3693 /*****************************************************************************/
3694
3695 void noinline
3696 ev_io_start (EV_P_ ev_io *w) EV_THROW
3697 {
3698   int fd = w->fd;
3699
3700   if (expect_false (ev_is_active (w)))
3701     return;
3702
3703   assert (("libev: ev_io_start called with negative fd", fd >= 0));
3704   assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3705
3706   EV_FREQUENT_CHECK;
3707
3708   ev_start (EV_A_ (W)w, 1);
3709   array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3710   wlist_add (&anfds[fd].head, (WL)w);
3711
3712   /* common bug, apparently */
3713   assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3714
3715   fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3716   w->events &= ~EV__IOFDSET;
3717
3718   EV_FREQUENT_CHECK;
3719 }
3720
3721 void noinline
3722 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3723 {
3724   clear_pending (EV_A_ (W)w);
3725   if (expect_false (!ev_is_active (w)))
3726     return;
3727
3728   assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3729
3730   EV_FREQUENT_CHECK;
3731
3732   wlist_del (&anfds[w->fd].head, (WL)w);
3733   ev_stop (EV_A_ (W)w);
3734
3735   fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3736
3737   EV_FREQUENT_CHECK;
3738 }
3739
3740 void noinline
3741 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3742 {
3743   if (expect_false (ev_is_active (w)))
3744     return;
3745
3746   ev_at (w) += mn_now;
3747
3748   assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3749
3750   EV_FREQUENT_CHECK;
3751
3752   ++timercnt;
3753   ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3754   array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3755   ANHE_w (timers [ev_active (w)]) = (WT)w;
3756   ANHE_at_cache (timers [ev_active (w)]);
3757   upheap (timers, ev_active (w));
3758
3759   EV_FREQUENT_CHECK;
3760
3761   /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3762 }
3763
3764 void noinline
3765 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3766 {
3767   clear_pending (EV_A_ (W)w);
3768   if (expect_false (!ev_is_active (w)))
3769     return;
3770
3771   EV_FREQUENT_CHECK;
3772
3773   {
3774     int active = ev_active (w);
3775
3776     assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3777
3778     --timercnt;
3779
3780     if (expect_true (active < timercnt + HEAP0))
3781       {
3782         timers [active] = timers [timercnt + HEAP0];
3783         adjustheap (timers, timercnt, active);
3784       }
3785   }
3786
3787   ev_at (w) -= mn_now;
3788
3789   ev_stop (EV_A_ (W)w);
3790
3791   EV_FREQUENT_CHECK;
3792 }
3793
3794 void noinline
3795 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3796 {
3797   EV_FREQUENT_CHECK;
3798
3799   clear_pending (EV_A_ (W)w);
3800
3801   if (ev_is_active (w))
3802     {
3803       if (w->repeat)
3804         {
3805           ev_at (w) = mn_now + w->repeat;
3806           ANHE_at_cache (timers [ev_active (w)]);
3807           adjustheap (timers, timercnt, ev_active (w));
3808         }
3809       else
3810         ev_timer_stop (EV_A_ w);
3811     }
3812   else if (w->repeat)
3813     {
3814       ev_at (w) = w->repeat;
3815       ev_timer_start (EV_A_ w);
3816     }
3817
3818   EV_FREQUENT_CHECK;
3819 }
3820
3821 ev_tstamp
3822 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3823 {
3824   return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3825 }
3826
3827 #if EV_PERIODIC_ENABLE
3828 void noinline
3829 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3830 {
3831   if (expect_false (ev_is_active (w)))
3832     return;
3833
3834   if (w->reschedule_cb)
3835     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3836   else if (w->interval)
3837     {
3838       assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3839       periodic_recalc (EV_A_ w);
3840     }
3841   else
3842     ev_at (w) = w->offset;
3843
3844   EV_FREQUENT_CHECK;
3845
3846   ++periodiccnt;
3847   ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3848   array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3849   ANHE_w (periodics [ev_active (w)]) = (WT)w;
3850   ANHE_at_cache (periodics [ev_active (w)]);
3851   upheap (periodics, ev_active (w));
3852
3853   EV_FREQUENT_CHECK;
3854
3855   /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3856 }
3857
3858 void noinline
3859 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3860 {
3861   clear_pending (EV_A_ (W)w);
3862   if (expect_false (!ev_is_active (w)))
3863     return;
3864
3865   EV_FREQUENT_CHECK;
3866
3867   {
3868     int active = ev_active (w);
3869
3870     assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3871
3872     --periodiccnt;
3873
3874     if (expect_true (active < periodiccnt + HEAP0))
3875       {
3876         periodics [active] = periodics [periodiccnt + HEAP0];
3877         adjustheap (periodics, periodiccnt, active);
3878       }
3879   }
3880
3881   ev_stop (EV_A_ (W)w);
3882
3883   EV_FREQUENT_CHECK;
3884 }
3885
3886 void noinline
3887 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3888 {
3889   /* TODO: use adjustheap and recalculation */
3890   ev_periodic_stop (EV_A_ w);
3891   ev_periodic_start (EV_A_ w);
3892 }
3893 #endif
3894
3895 #ifndef SA_RESTART
3896 # define SA_RESTART 0
3897 #endif
3898
3899 #if EV_SIGNAL_ENABLE
3900
3901 void noinline
3902 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3903 {
3904   if (expect_false (ev_is_active (w)))
3905     return;
3906
3907   assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3908
3909 #if EV_MULTIPLICITY
3910   assert (("libev: a signal must not be attached to two different loops",
3911            !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3912
3913   signals [w->signum - 1].loop = EV_A;
3914   ECB_MEMORY_FENCE_RELEASE;
3915 #endif
3916
3917   EV_FREQUENT_CHECK;
3918
3919 #if EV_USE_SIGNALFD
3920   if (sigfd == -2)
3921     {
3922       sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3923       if (sigfd < 0 && errno == EINVAL)
3924         sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3925
3926       if (sigfd >= 0)
3927         {
3928           fd_intern (sigfd); /* doing it twice will not hurt */
3929
3930           sigemptyset (&sigfd_set);
3931
3932           ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3933           ev_set_priority (&sigfd_w, EV_MAXPRI);
3934           ev_io_start (EV_A_ &sigfd_w);
3935           ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3936         }
3937     }
3938
3939   if (sigfd >= 0)
3940     {
3941       /* TODO: check .head */
3942       sigaddset (&sigfd_set, w->signum);
3943       sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3944
3945       signalfd (sigfd, &sigfd_set, 0);
3946     }
3947 #endif
3948
3949   ev_start (EV_A_ (W)w, 1);
3950   wlist_add (&signals [w->signum - 1].head, (WL)w);
3951
3952   if (!((WL)w)->next)
3953 # if EV_USE_SIGNALFD
3954     if (sigfd < 0) /*TODO*/
3955 # endif
3956       {
3957 # ifdef _WIN32
3958         evpipe_init (EV_A);
3959
3960         signal (w->signum, ev_sighandler);
3961 # else
3962         struct sigaction sa;
3963
3964         evpipe_init (EV_A);
3965
3966         sa.sa_handler = ev_sighandler;
3967         sigfillset (&sa.sa_mask);
3968         sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3969         sigaction (w->signum, &sa, 0);
3970
3971         if (origflags & EVFLAG_NOSIGMASK)
3972           {
3973             sigemptyset (&sa.sa_mask);
3974             sigaddset (&sa.sa_mask, w->signum);
3975             sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3976           }
3977 #endif
3978       }
3979
3980   EV_FREQUENT_CHECK;
3981 }
3982
3983 void noinline
3984 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3985 {
3986   clear_pending (EV_A_ (W)w);
3987   if (expect_false (!ev_is_active (w)))
3988     return;
3989
3990   EV_FREQUENT_CHECK;
3991
3992   wlist_del (&signals [w->signum - 1].head, (WL)w);
3993   ev_stop (EV_A_ (W)w);
3994
3995   if (!signals [w->signum - 1].head)
3996     {
3997 #if EV_MULTIPLICITY
3998       signals [w->signum - 1].loop = 0; /* unattach from signal */
3999 #endif
4000 #if EV_USE_SIGNALFD
4001       if (sigfd >= 0)
4002         {
4003           sigset_t ss;
4004
4005           sigemptyset (&ss);
4006           sigaddset (&ss, w->signum);
4007           sigdelset (&sigfd_set, w->signum);
4008
4009           signalfd (sigfd, &sigfd_set, 0);
4010           sigprocmask (SIG_UNBLOCK, &ss, 0);
4011         }
4012       else
4013 #endif
4014         signal (w->signum, SIG_DFL);
4015     }
4016
4017   EV_FREQUENT_CHECK;
4018 }
4019
4020 #endif
4021
4022 #if EV_CHILD_ENABLE
4023
4024 void
4025 ev_child_start (EV_P_ ev_child *w) EV_THROW
4026 {
4027 #if EV_MULTIPLICITY
4028   assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
4029 #endif
4030   if (expect_false (ev_is_active (w)))
4031     return;
4032
4033   EV_FREQUENT_CHECK;
4034
4035   ev_start (EV_A_ (W)w, 1);
4036   wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4037
4038   EV_FREQUENT_CHECK;
4039 }
4040
4041 void
4042 ev_child_stop (EV_P_ ev_child *w) EV_THROW
4043 {
4044   clear_pending (EV_A_ (W)w);
4045   if (expect_false (!ev_is_active (w)))
4046     return;
4047
4048   EV_FREQUENT_CHECK;
4049
4050   wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4051   ev_stop (EV_A_ (W)w);
4052
4053   EV_FREQUENT_CHECK;
4054 }
4055
4056 #endif
4057
4058 #if EV_STAT_ENABLE
4059
4060 # ifdef _WIN32
4061 #  undef lstat
4062 #  define lstat(a,b) _stati64 (a,b)
4063 # endif
4064
4065 #define DEF_STAT_INTERVAL  5.0074891
4066 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
4067 #define MIN_STAT_INTERVAL  0.1074891
4068
4069 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
4070
4071 #if EV_USE_INOTIFY
4072
4073 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4074 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4075
4076 static void noinline
4077 infy_add (EV_P_ ev_stat *w)
4078 {
4079   w->wd = inotify_add_watch (fs_fd, w->path,
4080                              IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4081                              | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4082                              | IN_DONT_FOLLOW | IN_MASK_ADD);
4083
4084   if (w->wd >= 0)
4085     {
4086       struct statfs sfs;
4087
4088       /* now local changes will be tracked by inotify, but remote changes won't */
4089       /* unless the filesystem is known to be local, we therefore still poll */
4090       /* also do poll on <2.6.25, but with normal frequency */
4091
4092       if (!fs_2625)
4093         w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4094       else if (!statfs (w->path, &sfs)
4095                && (sfs.f_type == 0x1373 /* devfs */
4096                    || sfs.f_type == 0x4006 /* fat */
4097                    || sfs.f_type == 0x4d44 /* msdos */
4098                    || sfs.f_type == 0xEF53 /* ext2/3 */
4099                    || sfs.f_type == 0x72b6 /* jffs2 */
4100                    || sfs.f_type == 0x858458f6 /* ramfs */
4101                    || sfs.f_type == 0x5346544e /* ntfs */
4102                    || sfs.f_type == 0x3153464a /* jfs */
4103                    || sfs.f_type == 0x9123683e /* btrfs */
4104                    || sfs.f_type == 0x52654973 /* reiser3 */
4105                    || sfs.f_type == 0x01021994 /* tmpfs */
4106                    || sfs.f_type == 0x58465342 /* xfs */))
4107         w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4108       else
4109         w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
4110     }
4111   else
4112     {
4113       /* can't use inotify, continue to stat */
4114       w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4115
4116       /* if path is not there, monitor some parent directory for speedup hints */
4117       /* note that exceeding the hardcoded path limit is not a correctness issue, */
4118       /* but an efficiency issue only */
4119       if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
4120         {
4121           char path [4096];
4122           strcpy (path, w->path);
4123
4124           do
4125             {
4126               int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
4127                        | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
4128
4129               char *pend = strrchr (path, '/');
4130
4131               if (!pend || pend == path)
4132                 break;
4133
4134               *pend = 0;
4135               w->wd = inotify_add_watch (fs_fd, path, mask);
4136             }
4137           while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
4138         }
4139     }
4140
4141   if (w->wd >= 0)
4142     wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4143
4144   /* now re-arm timer, if required */
4145   if (ev_is_active (&w->timer)) ev_ref (EV_A);
4146   ev_timer_again (EV_A_ &w->timer);
4147   if (ev_is_active (&w->timer)) ev_unref (EV_A);
4148 }
4149
4150 static void noinline
4151 infy_del (EV_P_ ev_stat *w)
4152 {
4153   int slot;
4154   int wd = w->wd;
4155
4156   if (wd < 0)
4157     return;
4158
4159   w->wd = -2;
4160   slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4161   wlist_del (&fs_hash [slot].head, (WL)w);
4162
4163   /* remove this watcher, if others are watching it, they will rearm */
4164   inotify_rm_watch (fs_fd, wd);
4165 }
4166
4167 static void noinline
4168 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4169 {
4170   if (slot < 0)
4171     /* overflow, need to check for all hash slots */
4172     for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4173       infy_wd (EV_A_ slot, wd, ev);
4174   else
4175     {
4176       WL w_;
4177
4178       for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4179         {
4180           ev_stat *w = (ev_stat *)w_;
4181           w_ = w_->next; /* lets us remove this watcher and all before it */
4182
4183           if (w->wd == wd || wd == -1)
4184             {
4185               if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4186                 {
4187                   wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4188                   w->wd = -1;
4189                   infy_add (EV_A_ w); /* re-add, no matter what */
4190                 }
4191
4192               stat_timer_cb (EV_A_ &w->timer, 0);
4193             }
4194         }
4195     }
4196 }
4197
4198 static void
4199 infy_cb (EV_P_ ev_io *w, int revents)
4200 {
4201   char buf [EV_INOTIFY_BUFSIZE];
4202   int ofs;
4203   int len = read (fs_fd, buf, sizeof (buf));
4204
4205   for (ofs = 0; ofs < len; )
4206     {
4207       struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4208       infy_wd (EV_A_ ev->wd, ev->wd, ev);
4209       ofs += sizeof (struct inotify_event) + ev->len;
4210     }
4211 }
4212
4213 inline_size void ecb_cold
4214 ev_check_2625 (EV_P)
4215 {
4216   /* kernels < 2.6.25 are borked
4217    * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4218    */
4219   if (ev_linux_version () < 0x020619)
4220     return;
4221
4222   fs_2625 = 1;
4223 }
4224
4225 inline_size int
4226 infy_newfd (void)
4227 {
4228 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4229   int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4230   if (fd >= 0)
4231     return fd;
4232 #endif
4233   return inotify_init ();
4234 }
4235
4236 inline_size void
4237 infy_init (EV_P)
4238 {
4239   if (fs_fd != -2)
4240     return;
4241
4242   fs_fd = -1;
4243
4244   ev_check_2625 (EV_A);
4245
4246   fs_fd = infy_newfd ();
4247
4248   if (fs_fd >= 0)
4249     {
4250       fd_intern (fs_fd);
4251       ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4252       ev_set_priority (&fs_w, EV_MAXPRI);
4253       ev_io_start (EV_A_ &fs_w);
4254       ev_unref (EV_A);
4255     }
4256 }
4257
4258 inline_size void
4259 infy_fork (EV_P)
4260 {
4261   int slot;
4262
4263   if (fs_fd < 0)
4264     return;
4265
4266   ev_ref (EV_A);
4267   ev_io_stop (EV_A_ &fs_w);
4268   close (fs_fd);
4269   fs_fd = infy_newfd ();
4270
4271   if (fs_fd >= 0)
4272     {
4273       fd_intern (fs_fd);
4274       ev_io_set (&fs_w, fs_fd, EV_READ);
4275       ev_io_start (EV_A_ &fs_w);
4276       ev_unref (EV_A);
4277     }
4278
4279   for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4280     {
4281       WL w_ = fs_hash [slot].head;
4282       fs_hash [slot].head = 0;
4283
4284       while (w_)
4285         {
4286           ev_stat *w = (ev_stat *)w_;
4287           w_ = w_->next; /* lets us add this watcher */
4288
4289           w->wd = -1;
4290
4291           if (fs_fd >= 0)
4292             infy_add (EV_A_ w); /* re-add, no matter what */
4293           else
4294             {
4295               w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4296               if (ev_is_active (&w->timer)) ev_ref (EV_A);
4297               ev_timer_again (EV_A_ &w->timer);
4298               if (ev_is_active (&w->timer)) ev_unref (EV_A);
4299             }
4300         }
4301     }
4302 }
4303
4304 #endif
4305
4306 #ifdef _WIN32
4307 # define EV_LSTAT(p,b) _stati64 (p, b)
4308 #else
4309 # define EV_LSTAT(p,b) lstat (p, b)
4310 #endif
4311
4312 void
4313 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4314 {
4315   if (lstat (w->path, &w->attr) < 0)
4316     w->attr.st_nlink = 0;
4317   else if (!w->attr.st_nlink)
4318     w->attr.st_nlink = 1;
4319 }
4320
4321 static void noinline
4322 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4323 {
4324   ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4325
4326   ev_statdata prev = w->attr;
4327   ev_stat_stat (EV_A_ w);
4328
4329   /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4330   if (
4331     prev.st_dev      != w->attr.st_dev
4332     || prev.st_ino   != w->attr.st_ino
4333     || prev.st_mode  != w->attr.st_mode
4334     || prev.st_nlink != w->attr.st_nlink
4335     || prev.st_uid   != w->attr.st_uid
4336     || prev.st_gid   != w->attr.st_gid
4337     || prev.st_rdev  != w->attr.st_rdev
4338     || prev.st_size  != w->attr.st_size
4339     || prev.st_atime != w->attr.st_atime
4340     || prev.st_mtime != w->attr.st_mtime
4341     || prev.st_ctime != w->attr.st_ctime
4342   ) {
4343       /* we only update w->prev on actual differences */
4344       /* in case we test more often than invoke the callback, */
4345       /* to ensure that prev is always different to attr */
4346       w->prev = prev;
4347
4348       #if EV_USE_INOTIFY
4349         if (fs_fd >= 0)
4350           {
4351             infy_del (EV_A_ w);
4352             infy_add (EV_A_ w);
4353             ev_stat_stat (EV_A_ w); /* avoid race... */
4354           }
4355       #endif
4356
4357       ev_feed_event (EV_A_ w, EV_STAT);
4358     }
4359 }
4360
4361 void
4362 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4363 {
4364   if (expect_false (ev_is_active (w)))
4365     return;
4366
4367   ev_stat_stat (EV_A_ w);
4368
4369   if (w->interval < MIN_STAT_INTERVAL && w->interval)
4370     w->interval = MIN_STAT_INTERVAL;
4371
4372   ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4373   ev_set_priority (&w->timer, ev_priority (w));
4374
4375 #if EV_USE_INOTIFY
4376   infy_init (EV_A);
4377
4378   if (fs_fd >= 0)
4379     infy_add (EV_A_ w);
4380   else
4381 #endif
4382     {
4383       ev_timer_again (EV_A_ &w->timer);
4384       ev_unref (EV_A);
4385     }
4386
4387   ev_start (EV_A_ (W)w, 1);
4388
4389   EV_FREQUENT_CHECK;
4390 }
4391
4392 void
4393 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4394 {
4395   clear_pending (EV_A_ (W)w);
4396   if (expect_false (!ev_is_active (w)))
4397     return;
4398
4399   EV_FREQUENT_CHECK;
4400
4401 #if EV_USE_INOTIFY
4402   infy_del (EV_A_ w);
4403 #endif
4404
4405   if (ev_is_active (&w->timer))
4406     {
4407       ev_ref (EV_A);
4408       ev_timer_stop (EV_A_ &w->timer);
4409     }
4410
4411   ev_stop (EV_A_ (W)w);
4412
4413   EV_FREQUENT_CHECK;
4414 }
4415 #endif
4416
4417 #if EV_IDLE_ENABLE
4418 void
4419 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4420 {
4421   if (expect_false (ev_is_active (w)))
4422     return;
4423
4424   pri_adjust (EV_A_ (W)w);
4425
4426   EV_FREQUENT_CHECK;
4427
4428   {
4429     int active = ++idlecnt [ABSPRI (w)];
4430
4431     ++idleall;
4432     ev_start (EV_A_ (W)w, active);
4433
4434     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4435     idles [ABSPRI (w)][active - 1] = w;
4436   }
4437
4438   EV_FREQUENT_CHECK;
4439 }
4440
4441 void
4442 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4443 {
4444   clear_pending (EV_A_ (W)w);
4445   if (expect_false (!ev_is_active (w)))
4446     return;
4447
4448   EV_FREQUENT_CHECK;
4449
4450   {
4451     int active = ev_active (w);
4452
4453     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4454     ev_active (idles [ABSPRI (w)][active - 1]) = active;
4455
4456     ev_stop (EV_A_ (W)w);
4457     --idleall;
4458   }
4459
4460   EV_FREQUENT_CHECK;
4461 }
4462 #endif
4463
4464 #if EV_PREPARE_ENABLE
4465 void
4466 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4467 {
4468   if (expect_false (ev_is_active (w)))
4469     return;
4470
4471   EV_FREQUENT_CHECK;
4472
4473   ev_start (EV_A_ (W)w, ++preparecnt);
4474   array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4475   prepares [preparecnt - 1] = w;
4476
4477   EV_FREQUENT_CHECK;
4478 }
4479
4480 void
4481 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4482 {
4483   clear_pending (EV_A_ (W)w);
4484   if (expect_false (!ev_is_active (w)))
4485     return;
4486
4487   EV_FREQUENT_CHECK;
4488
4489   {
4490     int active = ev_active (w);
4491
4492     prepares [active - 1] = prepares [--preparecnt];
4493     ev_active (prepares [active - 1]) = active;
4494   }
4495
4496   ev_stop (EV_A_ (W)w);
4497
4498   EV_FREQUENT_CHECK;
4499 }
4500 #endif
4501
4502 #if EV_CHECK_ENABLE
4503 void
4504 ev_check_start (EV_P_ ev_check *w) EV_THROW
4505 {
4506   if (expect_false (ev_is_active (w)))
4507     return;
4508
4509   EV_FREQUENT_CHECK;
4510
4511   ev_start (EV_A_ (W)w, ++checkcnt);
4512   array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4513   checks [checkcnt - 1] = w;
4514
4515   EV_FREQUENT_CHECK;
4516 }
4517
4518 void
4519 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4520 {
4521   clear_pending (EV_A_ (W)w);
4522   if (expect_false (!ev_is_active (w)))
4523     return;
4524
4525   EV_FREQUENT_CHECK;
4526
4527   {
4528     int active = ev_active (w);
4529
4530     checks [active - 1] = checks [--checkcnt];
4531     ev_active (checks [active - 1]) = active;
4532   }
4533
4534   ev_stop (EV_A_ (W)w);
4535
4536   EV_FREQUENT_CHECK;
4537 }
4538 #endif
4539
4540 #if EV_EMBED_ENABLE
4541 void noinline
4542 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4543 {
4544   ev_run (w->other, EVRUN_NOWAIT);
4545 }
4546
4547 static void
4548 embed_io_cb (EV_P_ ev_io *io, int revents)
4549 {
4550   ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4551
4552   if (ev_cb (w))
4553     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4554   else
4555     ev_run (w->other, EVRUN_NOWAIT);
4556 }
4557
4558 static void
4559 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4560 {
4561   ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4562
4563   {
4564     EV_P = w->other;
4565
4566     while (fdchangecnt)
4567       {
4568         fd_reify (EV_A);
4569         ev_run (EV_A_ EVRUN_NOWAIT);
4570       }
4571   }
4572 }
4573
4574 static void
4575 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4576 {
4577   ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4578
4579   ev_embed_stop (EV_A_ w);
4580
4581   {
4582     EV_P = w->other;
4583
4584     ev_loop_fork (EV_A);
4585     ev_run (EV_A_ EVRUN_NOWAIT);
4586   }
4587
4588   ev_embed_start (EV_A_ w);
4589 }
4590
4591 #if 0
4592 static void
4593 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4594 {
4595   ev_idle_stop (EV_A_ idle);
4596 }
4597 #endif
4598
4599 void
4600 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4601 {
4602   if (expect_false (ev_is_active (w)))
4603     return;
4604
4605   {
4606     EV_P = w->other;
4607     assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4608     ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4609   }
4610
4611   EV_FREQUENT_CHECK;
4612
4613   ev_set_priority (&w->io, ev_priority (w));
4614   ev_io_start (EV_A_ &w->io);
4615
4616   ev_prepare_init (&w->prepare, embed_prepare_cb);
4617   ev_set_priority (&w->prepare, EV_MINPRI);
4618   ev_prepare_start (EV_A_ &w->prepare);
4619
4620   ev_fork_init (&w->fork, embed_fork_cb);
4621   ev_fork_start (EV_A_ &w->fork);
4622
4623   /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4624
4625   ev_start (EV_A_ (W)w, 1);
4626
4627   EV_FREQUENT_CHECK;
4628 }
4629
4630 void
4631 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4632 {
4633   clear_pending (EV_A_ (W)w);
4634   if (expect_false (!ev_is_active (w)))
4635     return;
4636
4637   EV_FREQUENT_CHECK;
4638
4639   ev_io_stop      (EV_A_ &w->io);
4640   ev_prepare_stop (EV_A_ &w->prepare);
4641   ev_fork_stop    (EV_A_ &w->fork);
4642
4643   ev_stop (EV_A_ (W)w);
4644
4645   EV_FREQUENT_CHECK;
4646 }
4647 #endif
4648
4649 #if EV_FORK_ENABLE
4650 void
4651 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4652 {
4653   if (expect_false (ev_is_active (w)))
4654     return;
4655
4656   EV_FREQUENT_CHECK;
4657
4658   ev_start (EV_A_ (W)w, ++forkcnt);
4659   array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4660   forks [forkcnt - 1] = w;
4661
4662   EV_FREQUENT_CHECK;
4663 }
4664
4665 void
4666 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4667 {
4668   clear_pending (EV_A_ (W)w);
4669   if (expect_false (!ev_is_active (w)))
4670     return;
4671
4672   EV_FREQUENT_CHECK;
4673
4674   {
4675     int active = ev_active (w);
4676
4677     forks [active - 1] = forks [--forkcnt];
4678     ev_active (forks [active - 1]) = active;
4679   }
4680
4681   ev_stop (EV_A_ (W)w);
4682
4683   EV_FREQUENT_CHECK;
4684 }
4685 #endif
4686
4687 #if EV_CLEANUP_ENABLE
4688 void
4689 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4690 {
4691   if (expect_false (ev_is_active (w)))
4692     return;
4693
4694   EV_FREQUENT_CHECK;
4695
4696   ev_start (EV_A_ (W)w, ++cleanupcnt);
4697   array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4698   cleanups [cleanupcnt - 1] = w;
4699
4700   /* cleanup watchers should never keep a refcount on the loop */
4701   ev_unref (EV_A);
4702   EV_FREQUENT_CHECK;
4703 }
4704
4705 void
4706 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4707 {
4708   clear_pending (EV_A_ (W)w);
4709   if (expect_false (!ev_is_active (w)))
4710     return;
4711
4712   EV_FREQUENT_CHECK;
4713   ev_ref (EV_A);
4714
4715   {
4716     int active = ev_active (w);
4717
4718     cleanups [active - 1] = cleanups [--cleanupcnt];
4719     ev_active (cleanups [active - 1]) = active;
4720   }
4721
4722   ev_stop (EV_A_ (W)w);
4723
4724   EV_FREQUENT_CHECK;
4725 }
4726 #endif
4727
4728 #if EV_ASYNC_ENABLE
4729 void
4730 ev_async_start (EV_P_ ev_async *w) EV_THROW
4731 {
4732   if (expect_false (ev_is_active (w)))
4733     return;
4734
4735   w->sent = 0;
4736
4737   evpipe_init (EV_A);
4738
4739   EV_FREQUENT_CHECK;
4740
4741   ev_start (EV_A_ (W)w, ++asynccnt);
4742   array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4743   asyncs [asynccnt - 1] = w;
4744
4745   EV_FREQUENT_CHECK;
4746 }
4747
4748 void
4749 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4750 {
4751   clear_pending (EV_A_ (W)w);
4752   if (expect_false (!ev_is_active (w)))
4753     return;
4754
4755   EV_FREQUENT_CHECK;
4756
4757   {
4758     int active = ev_active (w);
4759
4760     asyncs [active - 1] = asyncs [--asynccnt];
4761     ev_active (asyncs [active - 1]) = active;
4762   }
4763
4764   ev_stop (EV_A_ (W)w);
4765
4766   EV_FREQUENT_CHECK;
4767 }
4768
4769 void
4770 ev_async_send (EV_P_ ev_async *w) EV_THROW
4771 {
4772   w->sent = 1;
4773   evpipe_write (EV_A_ &async_pending);
4774 }
4775 #endif
4776
4777 /*****************************************************************************/
4778
4779 struct ev_once
4780 {
4781   ev_io io;
4782   ev_timer to;
4783   void (*cb)(int revents, void *arg);
4784   void *arg;
4785 };
4786
4787 static void
4788 once_cb (EV_P_ struct ev_once *once, int revents)
4789 {
4790   void (*cb)(int revents, void *arg) = once->cb;
4791   void *arg = once->arg;
4792
4793   ev_io_stop    (EV_A_ &once->io);
4794   ev_timer_stop (EV_A_ &once->to);
4795   ev_free (once);
4796
4797   cb (revents, arg);
4798 }
4799
4800 static void
4801 once_cb_io (EV_P_ ev_io *w, int revents)
4802 {
4803   struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4804
4805   once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4806 }
4807
4808 static void
4809 once_cb_to (EV_P_ ev_timer *w, int revents)
4810 {
4811   struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4812
4813   once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4814 }
4815
4816 void
4817 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4818 {
4819   struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4820
4821   if (expect_false (!once))
4822     {
4823       cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4824       return;
4825     }
4826
4827   once->cb  = cb;
4828   once->arg = arg;
4829
4830   ev_init (&once->io, once_cb_io);
4831   if (fd >= 0)
4832     {
4833       ev_io_set (&once->io, fd, events);
4834       ev_io_start (EV_A_ &once->io);
4835     }
4836
4837   ev_init (&once->to, once_cb_to);
4838   if (timeout >= 0.)
4839     {
4840       ev_timer_set (&once->to, timeout, 0.);
4841       ev_timer_start (EV_A_ &once->to);
4842     }
4843 }
4844
4845 /*****************************************************************************/
4846
4847 #if EV_WALK_ENABLE
4848 void ecb_cold
4849 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4850 {
4851   int i, j;
4852   ev_watcher_list *wl, *wn;
4853
4854   if (types & (EV_IO | EV_EMBED))
4855     for (i = 0; i < anfdmax; ++i)
4856       for (wl = anfds [i].head; wl; )
4857         {
4858           wn = wl->next;
4859
4860 #if EV_EMBED_ENABLE
4861           if (ev_cb ((ev_io *)wl) == embed_io_cb)
4862             {
4863               if (types & EV_EMBED)
4864                 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4865             }
4866           else
4867 #endif
4868 #if EV_USE_INOTIFY
4869           if (ev_cb ((ev_io *)wl) == infy_cb)
4870             ;
4871           else
4872 #endif
4873           if ((ev_io *)wl != &pipe_w)
4874             if (types & EV_IO)
4875               cb (EV_A_ EV_IO, wl);
4876
4877           wl = wn;
4878         }
4879
4880   if (types & (EV_TIMER | EV_STAT))
4881     for (i = timercnt + HEAP0; i-- > HEAP0; )
4882 #if EV_STAT_ENABLE
4883       /*TODO: timer is not always active*/
4884       if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4885         {
4886           if (types & EV_STAT)
4887             cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4888         }
4889       else
4890 #endif
4891       if (types & EV_TIMER)
4892         cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4893
4894 #if EV_PERIODIC_ENABLE
4895   if (types & EV_PERIODIC)
4896     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4897       cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4898 #endif
4899
4900 #if EV_IDLE_ENABLE
4901   if (types & EV_IDLE)
4902     for (j = NUMPRI; j--; )
4903       for (i = idlecnt [j]; i--; )
4904         cb (EV_A_ EV_IDLE, idles [j][i]);
4905 #endif
4906
4907 #if EV_FORK_ENABLE
4908   if (types & EV_FORK)
4909     for (i = forkcnt; i--; )
4910       if (ev_cb (forks [i]) != embed_fork_cb)
4911         cb (EV_A_ EV_FORK, forks [i]);
4912 #endif
4913
4914 #if EV_ASYNC_ENABLE
4915   if (types & EV_ASYNC)
4916     for (i = asynccnt; i--; )
4917       cb (EV_A_ EV_ASYNC, asyncs [i]);
4918 #endif
4919
4920 #if EV_PREPARE_ENABLE
4921   if (types & EV_PREPARE)
4922     for (i = preparecnt; i--; )
4923 # if EV_EMBED_ENABLE
4924       if (ev_cb (prepares [i]) != embed_prepare_cb)
4925 # endif
4926         cb (EV_A_ EV_PREPARE, prepares [i]);
4927 #endif
4928
4929 #if EV_CHECK_ENABLE
4930   if (types & EV_CHECK)
4931     for (i = checkcnt; i--; )
4932       cb (EV_A_ EV_CHECK, checks [i]);
4933 #endif
4934
4935 #if EV_SIGNAL_ENABLE
4936   if (types & EV_SIGNAL)
4937     for (i = 0; i < EV_NSIG - 1; ++i)
4938       for (wl = signals [i].head; wl; )
4939         {
4940           wn = wl->next;
4941           cb (EV_A_ EV_SIGNAL, wl);
4942           wl = wn;
4943         }
4944 #endif
4945
4946 #if EV_CHILD_ENABLE
4947   if (types & EV_CHILD)
4948     for (i = (EV_PID_HASHSIZE); i--; )
4949       for (wl = childs [i]; wl; )
4950         {
4951           wn = wl->next;
4952           cb (EV_A_ EV_CHILD, wl);
4953           wl = wn;
4954         }
4955 #endif
4956 /* EV_STAT     0x00001000 /* stat data changed */
4957 /* EV_EMBED    0x00010000 /* embedded event loop needs sweep */
4958 }
4959 #endif
4960
4961 #if EV_MULTIPLICITY
4962   #include "ev_wrap.h"
4963 #endif
4964