]> rtime.felk.cvut.cz Git - sojka/libev.git/blob - ev.c
temporary fence hack
[sojka/libev.git] / ev.c
1 /*
2  * libev event processing core, watcher management
3  *
4  * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without modifica-
8  * tion, are permitted provided that the following conditions are met:
9  *
10  *   1.  Redistributions of source code must retain the above copyright notice,
11  *       this list of conditions and the following disclaimer.
12  *
13  *   2.  Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in the
15  *       documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19  * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO
20  * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21  * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25  * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26  * OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * Alternatively, the contents of this file may be used under the terms of
29  * the GNU General Public License ("GPL") version 2 or any later version,
30  * in which case the provisions of the GPL are applicable instead of
31  * the above. If you wish to allow the use of your version of this file
32  * only under the terms of the GPL and not to allow others to use your
33  * version of this file under the BSD license, indicate your decision
34  * by deleting the provisions above and replace them with the notice
35  * and other provisions required by the GPL. If you do not delete the
36  * provisions above, a recipient may use your version of this file under
37  * either the BSD or the GPL.
38  */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 #  include EV_CONFIG_H
44 # else
45 #  include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 #  define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 #  ifndef EV_USE_CLOCK_SYSCALL
56 #   define EV_USE_CLOCK_SYSCALL 1
57 #   ifndef EV_USE_REALTIME
58 #    define EV_USE_REALTIME  0
59 #   endif
60 #   ifndef EV_USE_MONOTONIC
61 #    define EV_USE_MONOTONIC 1
62 #   endif
63 #  endif
64 # elif !defined(EV_USE_CLOCK_SYSCALL)
65 #  define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 #  ifndef EV_USE_MONOTONIC
70 #   define EV_USE_MONOTONIC 1
71 #  endif
72 #  ifndef EV_USE_REALTIME
73 #   define EV_USE_REALTIME  0
74 #  endif
75 # else
76 #  ifndef EV_USE_MONOTONIC
77 #   define EV_USE_MONOTONIC 0
78 #  endif
79 #  ifndef EV_USE_REALTIME
80 #   define EV_USE_REALTIME  0
81 #  endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 #  ifndef EV_USE_NANOSLEEP
86 #    define EV_USE_NANOSLEEP EV_FEATURE_OS
87 #  endif
88 # else
89 #   undef EV_USE_NANOSLEEP
90 #   define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 #  ifndef EV_USE_SELECT
95 #   define EV_USE_SELECT EV_FEATURE_BACKENDS
96 #  endif
97 # else
98 #  undef EV_USE_SELECT
99 #  define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 #  ifndef EV_USE_POLL
104 #   define EV_USE_POLL EV_FEATURE_BACKENDS
105 #  endif
106 # else
107 #  undef EV_USE_POLL
108 #  define EV_USE_POLL 0
109 # endif
110    
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 #  ifndef EV_USE_EPOLL
113 #   define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 #  endif
115 # else
116 #  undef EV_USE_EPOLL
117 #  define EV_USE_EPOLL 0
118 # endif
119    
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 #  ifndef EV_USE_KQUEUE
122 #   define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 #  endif
124 # else
125 #  undef EV_USE_KQUEUE
126 #  define EV_USE_KQUEUE 0
127 # endif
128    
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 #  ifndef EV_USE_PORT
131 #   define EV_USE_PORT EV_FEATURE_BACKENDS
132 #  endif
133 # else
134 #  undef EV_USE_PORT
135 #  define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 #  ifndef EV_USE_INOTIFY
140 #   define EV_USE_INOTIFY EV_FEATURE_OS
141 #  endif
142 # else
143 #  undef EV_USE_INOTIFY
144 #  define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 #  ifndef EV_USE_SIGNALFD
149 #   define EV_USE_SIGNALFD EV_FEATURE_OS
150 #  endif
151 # else
152 #  undef EV_USE_SIGNALFD
153 #  define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 #  ifndef EV_USE_EVENTFD
158 #   define EV_USE_EVENTFD EV_FEATURE_OS
159 #  endif
160 # else
161 #  undef EV_USE_EVENTFD
162 #  define EV_USE_EVENTFD 0
163 # endif
164  
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 EV_CPP(extern "C" {)
189
190 #ifndef _WIN32
191 # include <sys/time.h>
192 # include <sys/wait.h>
193 # include <unistd.h>
194 #else
195 # include <io.h>
196 # define WIN32_LEAN_AND_MEAN
197 # include <windows.h>
198 # ifndef EV_SELECT_IS_WINSOCKET
199 #  define EV_SELECT_IS_WINSOCKET 1
200 # endif
201 # undef EV_AVOID_STDIO
202 #endif
203
204 /* OS X, in its infinite idiocy, actually HARDCODES
205  * a limit of 1024 into their select. Where people have brains,
206  * OS X engineers apparently have a vacuum. Or maybe they were
207  * ordered to have a vacuum, or they do anything for money.
208  * This might help. Or not.
209  */
210 #define _DARWIN_UNLIMITED_SELECT 1
211
212 /* this block tries to deduce configuration from header-defined symbols and defaults */
213
214 /* try to deduce the maximum number of signals on this platform */
215 #if defined (EV_NSIG)
216 /* use what's provided */
217 #elif defined (NSIG)
218 # define EV_NSIG (NSIG)
219 #elif defined(_NSIG)
220 # define EV_NSIG (_NSIG)
221 #elif defined (SIGMAX)
222 # define EV_NSIG (SIGMAX+1)
223 #elif defined (SIG_MAX)
224 # define EV_NSIG (SIG_MAX+1)
225 #elif defined (_SIG_MAX)
226 # define EV_NSIG (_SIG_MAX+1)
227 #elif defined (MAXSIG)
228 # define EV_NSIG (MAXSIG+1)
229 #elif defined (MAX_SIG)
230 # define EV_NSIG (MAX_SIG+1)
231 #elif defined (SIGARRAYSIZE)
232 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233 #elif defined (_sys_nsig)
234 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235 #else
236 # error "unable to find value for NSIG, please report"
237 /* to make it compile regardless, just remove the above line, */
238 /* but consider reporting it, too! :) */
239 # define EV_NSIG 65
240 #endif
241
242 #ifndef EV_USE_FLOOR
243 # define EV_USE_FLOOR 0
244 #endif
245
246 #ifndef EV_USE_CLOCK_SYSCALL
247 # if __linux && __GLIBC__ >= 2
248 #  define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249 # else
250 #  define EV_USE_CLOCK_SYSCALL 0
251 # endif
252 #endif
253
254 #ifndef EV_USE_MONOTONIC
255 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256 #  define EV_USE_MONOTONIC EV_FEATURE_OS
257 # else
258 #  define EV_USE_MONOTONIC 0
259 # endif
260 #endif
261
262 #ifndef EV_USE_REALTIME
263 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264 #endif
265
266 #ifndef EV_USE_NANOSLEEP
267 # if _POSIX_C_SOURCE >= 199309L
268 #  define EV_USE_NANOSLEEP EV_FEATURE_OS
269 # else
270 #  define EV_USE_NANOSLEEP 0
271 # endif
272 #endif
273
274 #ifndef EV_USE_SELECT
275 # define EV_USE_SELECT EV_FEATURE_BACKENDS
276 #endif
277
278 #ifndef EV_USE_POLL
279 # ifdef _WIN32
280 #  define EV_USE_POLL 0
281 # else
282 #  define EV_USE_POLL EV_FEATURE_BACKENDS
283 # endif
284 #endif
285
286 #ifndef EV_USE_EPOLL
287 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288 #  define EV_USE_EPOLL EV_FEATURE_BACKENDS
289 # else
290 #  define EV_USE_EPOLL 0
291 # endif
292 #endif
293
294 #ifndef EV_USE_KQUEUE
295 # define EV_USE_KQUEUE 0
296 #endif
297
298 #ifndef EV_USE_PORT
299 # define EV_USE_PORT 0
300 #endif
301
302 #ifndef EV_USE_INOTIFY
303 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304 #  define EV_USE_INOTIFY EV_FEATURE_OS
305 # else
306 #  define EV_USE_INOTIFY 0
307 # endif
308 #endif
309
310 #ifndef EV_PID_HASHSIZE
311 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312 #endif
313
314 #ifndef EV_INOTIFY_HASHSIZE
315 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316 #endif
317
318 #ifndef EV_USE_EVENTFD
319 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320 #  define EV_USE_EVENTFD EV_FEATURE_OS
321 # else
322 #  define EV_USE_EVENTFD 0
323 # endif
324 #endif
325
326 #ifndef EV_USE_SIGNALFD
327 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328 #  define EV_USE_SIGNALFD EV_FEATURE_OS
329 # else
330 #  define EV_USE_SIGNALFD 0
331 # endif
332 #endif
333
334 #if 0 /* debugging */
335 # define EV_VERIFY 3
336 # define EV_USE_4HEAP 1
337 # define EV_HEAP_CACHE_AT 1
338 #endif
339
340 #ifndef EV_VERIFY
341 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342 #endif
343
344 #ifndef EV_USE_4HEAP
345 # define EV_USE_4HEAP EV_FEATURE_DATA
346 #endif
347
348 #ifndef EV_HEAP_CACHE_AT
349 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350 #endif
351
352 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353 /* which makes programs even slower. might work on other unices, too. */
354 #if EV_USE_CLOCK_SYSCALL
355 # include <syscall.h>
356 # ifdef SYS_clock_gettime
357 #  define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358 #  undef EV_USE_MONOTONIC
359 #  define EV_USE_MONOTONIC 1
360 # else
361 #  undef EV_USE_CLOCK_SYSCALL
362 #  define EV_USE_CLOCK_SYSCALL 0
363 # endif
364 #endif
365
366 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368 #ifdef _AIX
369 /* AIX has a completely broken poll.h header */
370 # undef EV_USE_POLL
371 # define EV_USE_POLL 0
372 #endif
373
374 #ifndef CLOCK_MONOTONIC
375 # undef EV_USE_MONOTONIC
376 # define EV_USE_MONOTONIC 0
377 #endif
378
379 #ifndef CLOCK_REALTIME
380 # undef EV_USE_REALTIME
381 # define EV_USE_REALTIME 0
382 #endif
383
384 #if !EV_STAT_ENABLE
385 # undef EV_USE_INOTIFY
386 # define EV_USE_INOTIFY 0
387 #endif
388
389 #if !EV_USE_NANOSLEEP
390 /* hp-ux has it in sys/time.h, which we unconditionally include above */
391 # if !defined(_WIN32) && !defined(__hpux)
392 #  include <sys/select.h>
393 # endif
394 #endif
395
396 #if EV_USE_INOTIFY
397 # include <sys/statfs.h>
398 # include <sys/inotify.h>
399 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400 # ifndef IN_DONT_FOLLOW
401 #  undef EV_USE_INOTIFY
402 #  define EV_USE_INOTIFY 0
403 # endif
404 #endif
405
406 #if EV_SELECT_IS_WINSOCKET
407 # include <winsock.h>
408 #endif
409
410 #if EV_USE_EVENTFD
411 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412 # include <stdint.h>
413 # ifndef EFD_NONBLOCK
414 #  define EFD_NONBLOCK O_NONBLOCK
415 # endif
416 # ifndef EFD_CLOEXEC
417 #  ifdef O_CLOEXEC
418 #   define EFD_CLOEXEC O_CLOEXEC
419 #  else
420 #   define EFD_CLOEXEC 02000000
421 #  endif
422 # endif
423 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424 #endif
425
426 #if EV_USE_SIGNALFD
427 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428 # include <stdint.h>
429 # ifndef SFD_NONBLOCK
430 #  define SFD_NONBLOCK O_NONBLOCK
431 # endif
432 # ifndef SFD_CLOEXEC
433 #  ifdef O_CLOEXEC
434 #   define SFD_CLOEXEC O_CLOEXEC
435 #  else
436 #   define SFD_CLOEXEC 02000000
437 #  endif
438 # endif
439 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441 struct signalfd_siginfo
442 {
443   uint32_t ssi_signo;
444   char pad[128 - sizeof (uint32_t)];
445 };
446 #endif
447
448 /**/
449
450 #if EV_VERIFY >= 3
451 # define EV_FREQUENT_CHECK ev_verify (EV_A)
452 #else
453 # define EV_FREQUENT_CHECK do { } while (0)
454 #endif
455
456 /*
457  * This is used to work around floating point rounding problems.
458  * This value is good at least till the year 4000.
459  */
460 #define MIN_INTERVAL  0.0001220703125 /* 1/2**13, good till 4000 */
461 /*#define MIN_INTERVAL  0.00000095367431640625 /* 1/2**20, good till 2200 */
462
463 #define MIN_TIMEJUMP  1. /* minimum timejump that gets detected (if monotonic clock available) */
464 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
465
466 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
469 /* the following are taken from libecb */
470 /* ecb.h start */
471
472 /* many compilers define _GNUC_ to some versions but then only implement
473  * what their idiot authors think are the "more important" extensions,
474  * causing enourmous grief in return for some better fake benchmark numbers.
475  * or so.
476  * we try to detect these and simply assume they are not gcc - if they have
477  * an issue with that they should have done it right in the first place.
478  */
479 #ifndef ECB_GCC_VERSION
480   #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
481     #define ECB_GCC_VERSION(major,minor) 0
482   #else
483     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
484   #endif
485 #endif
486
487 #if __cplusplus
488   #define ecb_inline static inline
489 #elif ECB_GCC_VERSION(2,5)
490   #define ecb_inline static __inline__
491 #elif ECB_C99
492   #define ecb_inline static inline
493 #else
494   #define ecb_inline static
495 #endif
496
497 #ifndef ECB_MEMORY_FENCE
498   #if ECB_GCC_VERSION(2,5)
499     #if __x86
500       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
501       #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
502       #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
503     #elif __amd64
504       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mfence" : : : "memory")
505       #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
506       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence")
507     #endif
508   #endif
509 #endif
510
511 #ifndef ECB_MEMORY_FENCE
512   #if ECB_GCC_VERSION(4,4)
513     #define ECB_MEMORY_FENCE         __sync_synchronize ()
514     #define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); })
515     #define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release      (&dummy   ); })
516   #elif defined(_WIN32) && defined(MemoryBarrier)
517     #define ECB_MEMORY_FENCE         MemoryBarrier ()
518     #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
519     #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
520   #endif
521 #endif
522
523 #ifndef ECB_MEMORY_FENCE
524   #include <pthread.h>
525
526   static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
527   #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
528   #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
529   #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
530 #endif
531
532 #if ECB_GCC_VERSION(3,1)
533   #define ecb_attribute(attrlist)        __attribute__(attrlist)
534   #define ecb_is_constant(expr)          __builtin_constant_p (expr)
535   #define ecb_expect(expr,value)         __builtin_expect ((expr),(value))
536   #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
537 #else
538   #define ecb_attribute(attrlist)
539   #define ecb_is_constant(expr)          0
540   #define ecb_expect(expr,value)         (expr)
541   #define ecb_prefetch(addr,rw,locality)
542 #endif
543
544 #define ecb_noinline   ecb_attribute ((__noinline__))
545 #define ecb_noreturn   ecb_attribute ((__noreturn__))
546 #define ecb_unused     ecb_attribute ((__unused__))
547 #define ecb_const      ecb_attribute ((__const__))
548 #define ecb_pure       ecb_attribute ((__pure__))
549
550 #if ECB_GCC_VERSION(4,3)
551   #define ecb_artificial ecb_attribute ((__artificial__))
552   #define ecb_hot        ecb_attribute ((__hot__))
553   #define ecb_cold       ecb_attribute ((__cold__))
554 #else
555   #define ecb_artificial
556   #define ecb_hot
557   #define ecb_cold
558 #endif
559
560 /* put around conditional expressions if you are very sure that the  */
561 /* expression is mostly true or mostly false. note that these return */
562 /* booleans, not the expression.                                     */
563 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
564 #define ecb_expect_true(expr)  ecb_expect (!!(expr), 1)
565 /* ecb.h end */
566
567 #define expect_false(cond) ecb_expect_false (cond)
568 #define expect_true(cond)  ecb_expect_true  (cond)
569 #define noinline           ecb_noinline
570
571 #define inline_size        ecb_inline
572
573 #if EV_FEATURE_CODE
574 # define inline_speed      ecb_inline
575 #else
576 # define inline_speed      static noinline
577 #endif
578
579 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
580
581 #if EV_MINPRI == EV_MAXPRI
582 # define ABSPRI(w) (((W)w), 0)
583 #else
584 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
585 #endif
586
587 #define EMPTY       /* required for microsofts broken pseudo-c compiler */
588 #define EMPTY2(a,b) /* used to suppress some warnings */
589
590 typedef ev_watcher *W;
591 typedef ev_watcher_list *WL;
592 typedef ev_watcher_time *WT;
593
594 #define ev_active(w) ((W)(w))->active
595 #define ev_at(w) ((WT)(w))->at
596
597 #if EV_USE_REALTIME
598 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
599 /* giving it a reasonably high chance of working on typical architectures */
600 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
601 #endif
602
603 #if EV_USE_MONOTONIC
604 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
605 #endif
606
607 #ifndef EV_FD_TO_WIN32_HANDLE
608 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
609 #endif
610 #ifndef EV_WIN32_HANDLE_TO_FD
611 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
612 #endif
613 #ifndef EV_WIN32_CLOSE_FD
614 # define EV_WIN32_CLOSE_FD(fd) close (fd)
615 #endif
616
617 #ifdef _WIN32
618 # include "ev_win32.c"
619 #endif
620
621 /*****************************************************************************/
622
623 /* define a suitable floor function (only used by periodics atm) */
624
625 #if EV_USE_FLOOR
626 # include <math.h>
627 # define ev_floor(v) floor (v)
628 #else
629
630 #include <float.h>
631
632 /* a floor() replacement function, should be independent of ev_tstamp type */
633 static ev_tstamp noinline
634 ev_floor (ev_tstamp v)
635 {
636   /* the choice of shift factor is not terribly important */
637 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
638   const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
639 #else
640   const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
641 #endif
642
643   /* argument too large for an unsigned long? */
644   if (expect_false (v >= shift))
645     {
646       ev_tstamp f;
647
648       if (v == v - 1.)
649         return v; /* very large number */
650
651       f = shift * ev_floor (v * (1. / shift));
652       return f + ev_floor (v - f);
653     }
654
655   /* special treatment for negative args? */
656   if (expect_false (v < 0.))
657     {
658       ev_tstamp f = -ev_floor (-v);
659
660       return f - (f == v ? 0 : 1);
661     }
662
663   /* fits into an unsigned long */
664   return (unsigned long)v;
665 }
666
667 #endif
668
669 /*****************************************************************************/
670
671 #ifdef __linux
672 # include <sys/utsname.h>
673 #endif
674
675 static unsigned int noinline ecb_cold
676 ev_linux_version (void)
677 {
678 #ifdef __linux
679   unsigned int v = 0;
680   struct utsname buf;
681   int i;
682   char *p = buf.release;
683
684   if (uname (&buf))
685     return 0;
686
687   for (i = 3+1; --i; )
688     {
689       unsigned int c = 0;
690
691       for (;;)
692         {
693           if (*p >= '0' && *p <= '9')
694             c = c * 10 + *p++ - '0';
695           else
696             {
697               p += *p == '.';
698               break;
699             }
700         }
701
702       v = (v << 8) | c;
703     }
704
705   return v;
706 #else
707   return 0;
708 #endif
709 }
710
711 /*****************************************************************************/
712
713 #if EV_AVOID_STDIO
714 static void noinline ecb_cold
715 ev_printerr (const char *msg)
716 {
717   write (STDERR_FILENO, msg, strlen (msg));
718 }
719 #endif
720
721 static void (*syserr_cb)(const char *msg);
722
723 void ecb_cold
724 ev_set_syserr_cb (void (*cb)(const char *msg))
725 {
726   syserr_cb = cb;
727 }
728
729 static void noinline ecb_cold
730 ev_syserr (const char *msg)
731 {
732   if (!msg)
733     msg = "(libev) system error";
734
735   if (syserr_cb)
736     syserr_cb (msg);
737   else
738     {
739 #if EV_AVOID_STDIO
740       ev_printerr (msg);
741       ev_printerr (": ");
742       ev_printerr (strerror (errno));
743       ev_printerr ("\n");
744 #else
745       perror (msg);
746 #endif
747       abort ();
748     }
749 }
750
751 static void *
752 ev_realloc_emul (void *ptr, long size)
753 {
754 #if __GLIBC__
755   return realloc (ptr, size);
756 #else
757   /* some systems, notably openbsd and darwin, fail to properly
758    * implement realloc (x, 0) (as required by both ansi c-89 and
759    * the single unix specification, so work around them here.
760    */
761
762   if (size)
763     return realloc (ptr, size);
764
765   free (ptr);
766   return 0;
767 #endif
768 }
769
770 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
771
772 void ecb_cold
773 ev_set_allocator (void *(*cb)(void *ptr, long size))
774 {
775   alloc = cb;
776 }
777
778 inline_speed void *
779 ev_realloc (void *ptr, long size)
780 {
781   ptr = alloc (ptr, size);
782
783   if (!ptr && size)
784     {
785 #if EV_AVOID_STDIO
786       ev_printerr ("(libev) memory allocation failed, aborting.\n");
787 #else
788       fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
789 #endif
790       abort ();
791     }
792
793   return ptr;
794 }
795
796 #define ev_malloc(size) ev_realloc (0, (size))
797 #define ev_free(ptr)    ev_realloc ((ptr), 0)
798
799 /*****************************************************************************/
800
801 /* set in reify when reification needed */
802 #define EV_ANFD_REIFY 1
803
804 /* file descriptor info structure */
805 typedef struct
806 {
807   WL head;
808   unsigned char events; /* the events watched for */
809   unsigned char reify;  /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
810   unsigned char emask;  /* the epoll backend stores the actual kernel mask in here */
811   unsigned char unused;
812 #if EV_USE_EPOLL
813   unsigned int egen;    /* generation counter to counter epoll bugs */
814 #endif
815 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
816   SOCKET handle;
817 #endif
818 #if EV_USE_IOCP
819   OVERLAPPED or, ow;
820 #endif
821 } ANFD;
822
823 /* stores the pending event set for a given watcher */
824 typedef struct
825 {
826   W w;
827   int events; /* the pending event set for the given watcher */
828 } ANPENDING;
829
830 #if EV_USE_INOTIFY
831 /* hash table entry per inotify-id */
832 typedef struct
833 {
834   WL head;
835 } ANFS;
836 #endif
837
838 /* Heap Entry */
839 #if EV_HEAP_CACHE_AT
840   /* a heap element */
841   typedef struct {
842     ev_tstamp at;
843     WT w;
844   } ANHE;
845
846   #define ANHE_w(he)        (he).w     /* access watcher, read-write */
847   #define ANHE_at(he)       (he).at    /* access cached at, read-only */
848   #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
849 #else
850   /* a heap element */
851   typedef WT ANHE;
852
853   #define ANHE_w(he)        (he)
854   #define ANHE_at(he)       (he)->at
855   #define ANHE_at_cache(he)
856 #endif
857
858 #if EV_MULTIPLICITY
859
860   struct ev_loop
861   {
862     ev_tstamp ev_rt_now;
863     #define ev_rt_now ((loop)->ev_rt_now)
864     #define VAR(name,decl) decl;
865       #include "ev_vars.h"
866     #undef VAR
867   };
868   #include "ev_wrap.h"
869
870   static struct ev_loop default_loop_struct;
871   struct ev_loop *ev_default_loop_ptr;
872
873 #else
874
875   ev_tstamp ev_rt_now;
876   #define VAR(name,decl) static decl;
877     #include "ev_vars.h"
878   #undef VAR
879
880   static int ev_default_loop_ptr;
881
882 #endif
883
884 #if EV_FEATURE_API
885 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
886 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
887 # define EV_INVOKE_PENDING invoke_cb (EV_A)
888 #else
889 # define EV_RELEASE_CB (void)0
890 # define EV_ACQUIRE_CB (void)0
891 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
892 #endif
893
894 #define EVBREAK_RECURSE 0x80
895
896 /*****************************************************************************/
897
898 #ifndef EV_HAVE_EV_TIME
899 ev_tstamp
900 ev_time (void)
901 {
902 #if EV_USE_REALTIME
903   if (expect_true (have_realtime))
904     {
905       struct timespec ts;
906       clock_gettime (CLOCK_REALTIME, &ts);
907       return ts.tv_sec + ts.tv_nsec * 1e-9;
908     }
909 #endif
910
911   struct timeval tv;
912   gettimeofday (&tv, 0);
913   return tv.tv_sec + tv.tv_usec * 1e-6;
914 }
915 #endif
916
917 inline_size ev_tstamp
918 get_clock (void)
919 {
920 #if EV_USE_MONOTONIC
921   if (expect_true (have_monotonic))
922     {
923       struct timespec ts;
924       clock_gettime (CLOCK_MONOTONIC, &ts);
925       return ts.tv_sec + ts.tv_nsec * 1e-9;
926     }
927 #endif
928
929   return ev_time ();
930 }
931
932 #if EV_MULTIPLICITY
933 ev_tstamp
934 ev_now (EV_P)
935 {
936   return ev_rt_now;
937 }
938 #endif
939
940 void
941 ev_sleep (ev_tstamp delay)
942 {
943   if (delay > 0.)
944     {
945 #if EV_USE_NANOSLEEP
946       struct timespec ts;
947
948       EV_TS_SET (ts, delay);
949       nanosleep (&ts, 0);
950 #elif defined(_WIN32)
951       Sleep ((unsigned long)(delay * 1e3));
952 #else
953       struct timeval tv;
954
955       /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
956       /* something not guaranteed by newer posix versions, but guaranteed */
957       /* by older ones */
958       EV_TV_SET (tv, delay);
959       select (0, 0, 0, 0, &tv);
960 #endif
961     }
962 }
963
964 /*****************************************************************************/
965
966 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
967
968 /* find a suitable new size for the given array, */
969 /* hopefully by rounding to a nice-to-malloc size */
970 inline_size int
971 array_nextsize (int elem, int cur, int cnt)
972 {
973   int ncur = cur + 1;
974
975   do
976     ncur <<= 1;
977   while (cnt > ncur);
978
979   /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
980   if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
981     {
982       ncur *= elem;
983       ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
984       ncur = ncur - sizeof (void *) * 4;
985       ncur /= elem;
986     }
987
988   return ncur;
989 }
990
991 static void * noinline ecb_cold
992 array_realloc (int elem, void *base, int *cur, int cnt)
993 {
994   *cur = array_nextsize (elem, *cur, cnt);
995   return ev_realloc (base, elem * *cur);
996 }
997
998 #define array_init_zero(base,count)     \
999   memset ((void *)(base), 0, sizeof (*(base)) * (count))
1000
1001 #define array_needsize(type,base,cur,cnt,init)                  \
1002   if (expect_false ((cnt) > (cur)))                             \
1003     {                                                           \
1004       int ecb_unused ocur_ = (cur);                                     \
1005       (base) = (type *)array_realloc                            \
1006          (sizeof (type), (base), &(cur), (cnt));                \
1007       init ((base) + (ocur_), (cur) - ocur_);                   \
1008     }
1009
1010 #if 0
1011 #define array_slim(type,stem)                                   \
1012   if (stem ## max < array_roundsize (stem ## cnt >> 2))         \
1013     {                                                           \
1014       stem ## max = array_roundsize (stem ## cnt >> 1);         \
1015       base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1016       fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1017     }
1018 #endif
1019
1020 #define array_free(stem, idx) \
1021   ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1022
1023 /*****************************************************************************/
1024
1025 /* dummy callback for pending events */
1026 static void noinline
1027 pendingcb (EV_P_ ev_prepare *w, int revents)
1028 {
1029 }
1030
1031 void noinline
1032 ev_feed_event (EV_P_ void *w, int revents)
1033 {
1034   W w_ = (W)w;
1035   int pri = ABSPRI (w_);
1036
1037   if (expect_false (w_->pending))
1038     pendings [pri][w_->pending - 1].events |= revents;
1039   else
1040     {
1041       w_->pending = ++pendingcnt [pri];
1042       array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1043       pendings [pri][w_->pending - 1].w      = w_;
1044       pendings [pri][w_->pending - 1].events = revents;
1045     }
1046 }
1047
1048 inline_speed void
1049 feed_reverse (EV_P_ W w)
1050 {
1051   array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1052   rfeeds [rfeedcnt++] = w;
1053 }
1054
1055 inline_size void
1056 feed_reverse_done (EV_P_ int revents)
1057 {
1058   do
1059     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1060   while (rfeedcnt);
1061 }
1062
1063 inline_speed void
1064 queue_events (EV_P_ W *events, int eventcnt, int type)
1065 {
1066   int i;
1067
1068   for (i = 0; i < eventcnt; ++i)
1069     ev_feed_event (EV_A_ events [i], type);
1070 }
1071
1072 /*****************************************************************************/
1073
1074 inline_speed void
1075 fd_event_nocheck (EV_P_ int fd, int revents)
1076 {
1077   ANFD *anfd = anfds + fd;
1078   ev_io *w;
1079
1080   for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1081     {
1082       int ev = w->events & revents;
1083
1084       if (ev)
1085         ev_feed_event (EV_A_ (W)w, ev);
1086     }
1087 }
1088
1089 /* do not submit kernel events for fds that have reify set */
1090 /* because that means they changed while we were polling for new events */
1091 inline_speed void
1092 fd_event (EV_P_ int fd, int revents)
1093 {
1094   ANFD *anfd = anfds + fd;
1095
1096   if (expect_true (!anfd->reify))
1097     fd_event_nocheck (EV_A_ fd, revents);
1098 }
1099
1100 void
1101 ev_feed_fd_event (EV_P_ int fd, int revents)
1102 {
1103   if (fd >= 0 && fd < anfdmax)
1104     fd_event_nocheck (EV_A_ fd, revents);
1105 }
1106
1107 /* make sure the external fd watch events are in-sync */
1108 /* with the kernel/libev internal state */
1109 inline_size void
1110 fd_reify (EV_P)
1111 {
1112   int i;
1113
1114 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1115   for (i = 0; i < fdchangecnt; ++i)
1116     {
1117       int fd = fdchanges [i];
1118       ANFD *anfd = anfds + fd;
1119
1120       if (anfd->reify & EV__IOFDSET && anfd->head)
1121         {
1122           SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1123
1124           if (handle != anfd->handle)
1125             {
1126               unsigned long arg;
1127
1128               assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1129
1130               /* handle changed, but fd didn't - we need to do it in two steps */
1131               backend_modify (EV_A_ fd, anfd->events, 0);
1132               anfd->events = 0;
1133               anfd->handle = handle;
1134             }
1135         }
1136     }
1137 #endif
1138
1139   for (i = 0; i < fdchangecnt; ++i)
1140     {
1141       int fd = fdchanges [i];
1142       ANFD *anfd = anfds + fd;
1143       ev_io *w;
1144
1145       unsigned char o_events = anfd->events;
1146       unsigned char o_reify  = anfd->reify;
1147
1148       anfd->reify  = 0;
1149
1150       /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1151         {
1152           anfd->events = 0;
1153
1154           for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1155             anfd->events |= (unsigned char)w->events;
1156
1157           if (o_events != anfd->events)
1158             o_reify = EV__IOFDSET; /* actually |= */
1159         }
1160
1161       if (o_reify & EV__IOFDSET)
1162         backend_modify (EV_A_ fd, o_events, anfd->events);
1163     }
1164
1165   fdchangecnt = 0;
1166 }
1167
1168 /* something about the given fd changed */
1169 inline_size void
1170 fd_change (EV_P_ int fd, int flags)
1171 {
1172   unsigned char reify = anfds [fd].reify;
1173   anfds [fd].reify |= flags;
1174
1175   if (expect_true (!reify))
1176     {
1177       ++fdchangecnt;
1178       array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1179       fdchanges [fdchangecnt - 1] = fd;
1180     }
1181 }
1182
1183 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1184 inline_speed void ecb_cold
1185 fd_kill (EV_P_ int fd)
1186 {
1187   ev_io *w;
1188
1189   while ((w = (ev_io *)anfds [fd].head))
1190     {
1191       ev_io_stop (EV_A_ w);
1192       ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1193     }
1194 }
1195
1196 /* check whether the given fd is actually valid, for error recovery */
1197 inline_size int ecb_cold
1198 fd_valid (int fd)
1199 {
1200 #ifdef _WIN32
1201   return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1202 #else
1203   return fcntl (fd, F_GETFD) != -1;
1204 #endif
1205 }
1206
1207 /* called on EBADF to verify fds */
1208 static void noinline ecb_cold
1209 fd_ebadf (EV_P)
1210 {
1211   int fd;
1212
1213   for (fd = 0; fd < anfdmax; ++fd)
1214     if (anfds [fd].events)
1215       if (!fd_valid (fd) && errno == EBADF)
1216         fd_kill (EV_A_ fd);
1217 }
1218
1219 /* called on ENOMEM in select/poll to kill some fds and retry */
1220 static void noinline ecb_cold
1221 fd_enomem (EV_P)
1222 {
1223   int fd;
1224
1225   for (fd = anfdmax; fd--; )
1226     if (anfds [fd].events)
1227       {
1228         fd_kill (EV_A_ fd);
1229         break;
1230       }
1231 }
1232
1233 /* usually called after fork if backend needs to re-arm all fds from scratch */
1234 static void noinline
1235 fd_rearm_all (EV_P)
1236 {
1237   int fd;
1238
1239   for (fd = 0; fd < anfdmax; ++fd)
1240     if (anfds [fd].events)
1241       {
1242         anfds [fd].events = 0;
1243         anfds [fd].emask  = 0;
1244         fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1245       }
1246 }
1247
1248 /* used to prepare libev internal fd's */
1249 /* this is not fork-safe */
1250 inline_speed void
1251 fd_intern (int fd)
1252 {
1253 #ifdef _WIN32
1254   unsigned long arg = 1;
1255   ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1256 #else
1257   fcntl (fd, F_SETFD, FD_CLOEXEC);
1258   fcntl (fd, F_SETFL, O_NONBLOCK);
1259 #endif
1260 }
1261
1262 /*****************************************************************************/
1263
1264 /*
1265  * the heap functions want a real array index. array index 0 is guaranteed to not
1266  * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1267  * the branching factor of the d-tree.
1268  */
1269
1270 /*
1271  * at the moment we allow libev the luxury of two heaps,
1272  * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1273  * which is more cache-efficient.
1274  * the difference is about 5% with 50000+ watchers.
1275  */
1276 #if EV_USE_4HEAP
1277
1278 #define DHEAP 4
1279 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1280 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1281 #define UPHEAP_DONE(p,k) ((p) == (k))
1282
1283 /* away from the root */
1284 inline_speed void
1285 downheap (ANHE *heap, int N, int k)
1286 {
1287   ANHE he = heap [k];
1288   ANHE *E = heap + N + HEAP0;
1289
1290   for (;;)
1291     {
1292       ev_tstamp minat;
1293       ANHE *minpos;
1294       ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1295
1296       /* find minimum child */
1297       if (expect_true (pos + DHEAP - 1 < E))
1298         {
1299           /* fast path */                               (minpos = pos + 0), (minat = ANHE_at (*minpos));
1300           if (               ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1301           if (               ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1302           if (               ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1303         }
1304       else if (pos < E)
1305         {
1306           /* slow path */                               (minpos = pos + 0), (minat = ANHE_at (*minpos));
1307           if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1308           if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1309           if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1310         }
1311       else
1312         break;
1313
1314       if (ANHE_at (he) <= minat)
1315         break;
1316
1317       heap [k] = *minpos;
1318       ev_active (ANHE_w (*minpos)) = k;
1319
1320       k = minpos - heap;
1321     }
1322
1323   heap [k] = he;
1324   ev_active (ANHE_w (he)) = k;
1325 }
1326
1327 #else /* 4HEAP */
1328
1329 #define HEAP0 1
1330 #define HPARENT(k) ((k) >> 1)
1331 #define UPHEAP_DONE(p,k) (!(p))
1332
1333 /* away from the root */
1334 inline_speed void
1335 downheap (ANHE *heap, int N, int k)
1336 {
1337   ANHE he = heap [k];
1338
1339   for (;;)
1340     {
1341       int c = k << 1;
1342
1343       if (c >= N + HEAP0)
1344         break;
1345
1346       c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1347            ? 1 : 0;
1348
1349       if (ANHE_at (he) <= ANHE_at (heap [c]))
1350         break;
1351
1352       heap [k] = heap [c];
1353       ev_active (ANHE_w (heap [k])) = k;
1354       
1355       k = c;
1356     }
1357
1358   heap [k] = he;
1359   ev_active (ANHE_w (he)) = k;
1360 }
1361 #endif
1362
1363 /* towards the root */
1364 inline_speed void
1365 upheap (ANHE *heap, int k)
1366 {
1367   ANHE he = heap [k];
1368
1369   for (;;)
1370     {
1371       int p = HPARENT (k);
1372
1373       if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1374         break;
1375
1376       heap [k] = heap [p];
1377       ev_active (ANHE_w (heap [k])) = k;
1378       k = p;
1379     }
1380
1381   heap [k] = he;
1382   ev_active (ANHE_w (he)) = k;
1383 }
1384
1385 /* move an element suitably so it is in a correct place */
1386 inline_size void
1387 adjustheap (ANHE *heap, int N, int k)
1388 {
1389   if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1390     upheap (heap, k);
1391   else
1392     downheap (heap, N, k);
1393 }
1394
1395 /* rebuild the heap: this function is used only once and executed rarely */
1396 inline_size void
1397 reheap (ANHE *heap, int N)
1398 {
1399   int i;
1400
1401   /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1402   /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1403   for (i = 0; i < N; ++i)
1404     upheap (heap, i + HEAP0);
1405 }
1406
1407 /*****************************************************************************/
1408
1409 /* associate signal watchers to a signal signal */
1410 typedef struct
1411 {
1412   EV_ATOMIC_T pending;
1413 #if EV_MULTIPLICITY
1414   EV_P;
1415 #endif
1416   WL head;
1417 } ANSIG;
1418
1419 static ANSIG signals [EV_NSIG - 1];
1420
1421 /*****************************************************************************/
1422
1423 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1424
1425 static void noinline ecb_cold
1426 evpipe_init (EV_P)
1427 {
1428   if (!ev_is_active (&pipe_w))
1429     {
1430 # if EV_USE_EVENTFD
1431       evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1432       if (evfd < 0 && errno == EINVAL)
1433         evfd = eventfd (0, 0);
1434
1435       if (evfd >= 0)
1436         {
1437           evpipe [0] = -1;
1438           fd_intern (evfd); /* doing it twice doesn't hurt */
1439           ev_io_set (&pipe_w, evfd, EV_READ);
1440         }
1441       else
1442 # endif
1443         {
1444           while (pipe (evpipe))
1445             ev_syserr ("(libev) error creating signal/async pipe");
1446
1447           fd_intern (evpipe [0]);
1448           fd_intern (evpipe [1]);
1449           ev_io_set (&pipe_w, evpipe [0], EV_READ);
1450         }
1451
1452       ev_io_start (EV_A_ &pipe_w);
1453       ev_unref (EV_A); /* watcher should not keep loop alive */
1454     }
1455 }
1456
1457 inline_speed void
1458 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1459 {
1460   if (expect_true (*flag))
1461     return;
1462
1463   *flag = 1;
1464
1465   ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1466
1467   pipe_write_skipped = 1;
1468
1469   ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1470
1471   if (pipe_write_wanted)
1472     {
1473       int old_errno;
1474
1475       pipe_write_skipped = 0; /* just an optimsiation, no fence needed */
1476
1477       old_errno = errno; /* save errno because write will clobber it */
1478
1479 #if EV_USE_EVENTFD
1480       if (evfd >= 0)
1481         {
1482           uint64_t counter = 1;
1483           write (evfd, &counter, sizeof (uint64_t));
1484         }
1485       else
1486 #endif
1487         {
1488           /* win32 people keep sending patches that change this write() to send() */
1489           /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1490           /* so when you think this write should be a send instead, please find out */
1491           /* where your send() is from - it's definitely not the microsoft send, and */
1492           /* tell me. thank you. */
1493           write (evpipe [1], &(evpipe [1]), 1);
1494         }
1495
1496       errno = old_errno;
1497     }
1498 }
1499
1500 /* called whenever the libev signal pipe */
1501 /* got some events (signal, async) */
1502 static void
1503 pipecb (EV_P_ ev_io *iow, int revents)
1504 {
1505   int i;
1506
1507   if (revents & EV_READ)
1508     {
1509 #if EV_USE_EVENTFD
1510       if (evfd >= 0)
1511         {
1512           uint64_t counter;
1513           read (evfd, &counter, sizeof (uint64_t));
1514         }
1515       else
1516 #endif
1517         {
1518           char dummy;
1519           /* see discussion in evpipe_write when you think this read should be recv in win32 */
1520           read (evpipe [0], &dummy, 1);
1521         }
1522     }
1523
1524   pipe_write_skipped = 0;
1525
1526 #if EV_SIGNAL_ENABLE
1527   if (sig_pending)
1528     {
1529       sig_pending = 0;
1530
1531       for (i = EV_NSIG - 1; i--; )
1532         if (expect_false (signals [i].pending))
1533           ev_feed_signal_event (EV_A_ i + 1);
1534     }
1535 #endif
1536
1537 #if EV_ASYNC_ENABLE
1538   if (async_pending)
1539     {
1540       async_pending = 0;
1541
1542       for (i = asynccnt; i--; )
1543         if (asyncs [i]->sent)
1544           {
1545             asyncs [i]->sent = 0;
1546             ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1547           }
1548     }
1549 #endif
1550 }
1551
1552 /*****************************************************************************/
1553
1554 void
1555 ev_feed_signal (int signum)
1556 {
1557 #if EV_MULTIPLICITY
1558   EV_P = signals [signum - 1].loop;
1559
1560   if (!EV_A)
1561     return;
1562 #endif
1563
1564   if (!ev_active (&pipe_w))
1565     return;
1566
1567   signals [signum - 1].pending = 1;
1568   evpipe_write (EV_A_ &sig_pending);
1569 }
1570
1571 static void
1572 ev_sighandler (int signum)
1573 {
1574 #ifdef _WIN32
1575   signal (signum, ev_sighandler);
1576 #endif
1577
1578   ev_feed_signal (signum);
1579 }
1580
1581 void noinline
1582 ev_feed_signal_event (EV_P_ int signum)
1583 {
1584   WL w;
1585
1586   if (expect_false (signum <= 0 || signum > EV_NSIG))
1587     return;
1588
1589   --signum;
1590
1591 #if EV_MULTIPLICITY
1592   /* it is permissible to try to feed a signal to the wrong loop */
1593   /* or, likely more useful, feeding a signal nobody is waiting for */
1594
1595   if (expect_false (signals [signum].loop != EV_A))
1596     return;
1597 #endif
1598
1599   signals [signum].pending = 0;
1600
1601   for (w = signals [signum].head; w; w = w->next)
1602     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1603 }
1604
1605 #if EV_USE_SIGNALFD
1606 static void
1607 sigfdcb (EV_P_ ev_io *iow, int revents)
1608 {
1609   struct signalfd_siginfo si[2], *sip; /* these structs are big */
1610
1611   for (;;)
1612     {
1613       ssize_t res = read (sigfd, si, sizeof (si));
1614
1615       /* not ISO-C, as res might be -1, but works with SuS */
1616       for (sip = si; (char *)sip < (char *)si + res; ++sip)
1617         ev_feed_signal_event (EV_A_ sip->ssi_signo);
1618
1619       if (res < (ssize_t)sizeof (si))
1620         break;
1621     }
1622 }
1623 #endif
1624
1625 #endif
1626
1627 /*****************************************************************************/
1628
1629 #if EV_CHILD_ENABLE
1630 static WL childs [EV_PID_HASHSIZE];
1631
1632 static ev_signal childev;
1633
1634 #ifndef WIFCONTINUED
1635 # define WIFCONTINUED(status) 0
1636 #endif
1637
1638 /* handle a single child status event */
1639 inline_speed void
1640 child_reap (EV_P_ int chain, int pid, int status)
1641 {
1642   ev_child *w;
1643   int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1644
1645   for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1646     {
1647       if ((w->pid == pid || !w->pid)
1648           && (!traced || (w->flags & 1)))
1649         {
1650           ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1651           w->rpid    = pid;
1652           w->rstatus = status;
1653           ev_feed_event (EV_A_ (W)w, EV_CHILD);
1654         }
1655     }
1656 }
1657
1658 #ifndef WCONTINUED
1659 # define WCONTINUED 0
1660 #endif
1661
1662 /* called on sigchld etc., calls waitpid */
1663 static void
1664 childcb (EV_P_ ev_signal *sw, int revents)
1665 {
1666   int pid, status;
1667
1668   /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1669   if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1670     if (!WCONTINUED
1671         || errno != EINVAL
1672         || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1673       return;
1674
1675   /* make sure we are called again until all children have been reaped */
1676   /* we need to do it this way so that the callback gets called before we continue */
1677   ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1678
1679   child_reap (EV_A_ pid, pid, status);
1680   if ((EV_PID_HASHSIZE) > 1)
1681     child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1682 }
1683
1684 #endif
1685
1686 /*****************************************************************************/
1687
1688 #if EV_USE_IOCP
1689 # include "ev_iocp.c"
1690 #endif
1691 #if EV_USE_PORT
1692 # include "ev_port.c"
1693 #endif
1694 #if EV_USE_KQUEUE
1695 # include "ev_kqueue.c"
1696 #endif
1697 #if EV_USE_EPOLL
1698 # include "ev_epoll.c"
1699 #endif
1700 #if EV_USE_POLL
1701 # include "ev_poll.c"
1702 #endif
1703 #if EV_USE_SELECT
1704 # include "ev_select.c"
1705 #endif
1706
1707 int ecb_cold
1708 ev_version_major (void)
1709 {
1710   return EV_VERSION_MAJOR;
1711 }
1712
1713 int ecb_cold
1714 ev_version_minor (void)
1715 {
1716   return EV_VERSION_MINOR;
1717 }
1718
1719 /* return true if we are running with elevated privileges and should ignore env variables */
1720 int inline_size ecb_cold
1721 enable_secure (void)
1722 {
1723 #ifdef _WIN32
1724   return 0;
1725 #else
1726   return getuid () != geteuid ()
1727       || getgid () != getegid ();
1728 #endif
1729 }
1730
1731 unsigned int ecb_cold
1732 ev_supported_backends (void)
1733 {
1734   unsigned int flags = 0;
1735
1736   if (EV_USE_PORT  ) flags |= EVBACKEND_PORT;
1737   if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1738   if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1739   if (EV_USE_POLL  ) flags |= EVBACKEND_POLL;
1740   if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1741   
1742   return flags;
1743 }
1744
1745 unsigned int ecb_cold
1746 ev_recommended_backends (void)
1747 {
1748   unsigned int flags = ev_supported_backends ();
1749
1750 #ifndef __NetBSD__
1751   /* kqueue is borked on everything but netbsd apparently */
1752   /* it usually doesn't work correctly on anything but sockets and pipes */
1753   flags &= ~EVBACKEND_KQUEUE;
1754 #endif
1755 #ifdef __APPLE__
1756   /* only select works correctly on that "unix-certified" platform */
1757   flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1758   flags &= ~EVBACKEND_POLL;   /* poll is based on kqueue from 10.5 onwards */
1759 #endif
1760 #ifdef __FreeBSD__
1761   flags &= ~EVBACKEND_POLL;   /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1762 #endif
1763
1764   return flags;
1765 }
1766
1767 unsigned int ecb_cold
1768 ev_embeddable_backends (void)
1769 {
1770   int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1771
1772   /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1773   if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1774     flags &= ~EVBACKEND_EPOLL;
1775
1776   return flags;
1777 }
1778
1779 unsigned int
1780 ev_backend (EV_P)
1781 {
1782   return backend;
1783 }
1784
1785 #if EV_FEATURE_API
1786 unsigned int
1787 ev_iteration (EV_P)
1788 {
1789   return loop_count;
1790 }
1791
1792 unsigned int
1793 ev_depth (EV_P)
1794 {
1795   return loop_depth;
1796 }
1797
1798 void
1799 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1800 {
1801   io_blocktime = interval;
1802 }
1803
1804 void
1805 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1806 {
1807   timeout_blocktime = interval;
1808 }
1809
1810 void
1811 ev_set_userdata (EV_P_ void *data)
1812 {
1813   userdata = data;
1814 }
1815
1816 void *
1817 ev_userdata (EV_P)
1818 {
1819   return userdata;
1820 }
1821
1822 void
1823 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1824 {
1825   invoke_cb = invoke_pending_cb;
1826 }
1827
1828 void
1829 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1830 {
1831   release_cb = release;
1832   acquire_cb = acquire;
1833 }
1834 #endif
1835
1836 /* initialise a loop structure, must be zero-initialised */
1837 static void noinline ecb_cold
1838 loop_init (EV_P_ unsigned int flags)
1839 {
1840   if (!backend)
1841     {
1842       origflags = flags;
1843
1844 #if EV_USE_REALTIME
1845       if (!have_realtime)
1846         {
1847           struct timespec ts;
1848
1849           if (!clock_gettime (CLOCK_REALTIME, &ts))
1850             have_realtime = 1;
1851         }
1852 #endif
1853
1854 #if EV_USE_MONOTONIC
1855       if (!have_monotonic)
1856         {
1857           struct timespec ts;
1858
1859           if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1860             have_monotonic = 1;
1861         }
1862 #endif
1863
1864       /* pid check not overridable via env */
1865 #ifndef _WIN32
1866       if (flags & EVFLAG_FORKCHECK)
1867         curpid = getpid ();
1868 #endif
1869
1870       if (!(flags & EVFLAG_NOENV)
1871           && !enable_secure ()
1872           && getenv ("LIBEV_FLAGS"))
1873         flags = atoi (getenv ("LIBEV_FLAGS"));
1874
1875       ev_rt_now          = ev_time ();
1876       mn_now             = get_clock ();
1877       now_floor          = mn_now;
1878       rtmn_diff          = ev_rt_now - mn_now;
1879 #if EV_FEATURE_API
1880       invoke_cb          = ev_invoke_pending;
1881 #endif
1882
1883       io_blocktime       = 0.;
1884       timeout_blocktime  = 0.;
1885       backend            = 0;
1886       backend_fd         = -1;
1887       sig_pending        = 0;
1888 #if EV_ASYNC_ENABLE
1889       async_pending      = 0;
1890 #endif
1891       pipe_write_skipped = 0;
1892       pipe_write_wanted  = 0;
1893 #if EV_USE_INOTIFY
1894       fs_fd              = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1895 #endif
1896 #if EV_USE_SIGNALFD
1897       sigfd              = flags & EVFLAG_SIGNALFD  ? -2 : -1;
1898 #endif
1899
1900       if (!(flags & EVBACKEND_MASK))
1901         flags |= ev_recommended_backends ();
1902
1903 #if EV_USE_IOCP
1904       if (!backend && (flags & EVBACKEND_IOCP  )) backend = iocp_init   (EV_A_ flags);
1905 #endif
1906 #if EV_USE_PORT
1907       if (!backend && (flags & EVBACKEND_PORT  )) backend = port_init   (EV_A_ flags);
1908 #endif
1909 #if EV_USE_KQUEUE
1910       if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1911 #endif
1912 #if EV_USE_EPOLL
1913       if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init  (EV_A_ flags);
1914 #endif
1915 #if EV_USE_POLL
1916       if (!backend && (flags & EVBACKEND_POLL  )) backend = poll_init   (EV_A_ flags);
1917 #endif
1918 #if EV_USE_SELECT
1919       if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1920 #endif
1921
1922       ev_prepare_init (&pending_w, pendingcb);
1923
1924 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1925       ev_init (&pipe_w, pipecb);
1926       ev_set_priority (&pipe_w, EV_MAXPRI);
1927 #endif
1928     }
1929 }
1930
1931 /* free up a loop structure */
1932 void ecb_cold
1933 ev_loop_destroy (EV_P)
1934 {
1935   int i;
1936
1937 #if EV_MULTIPLICITY
1938   /* mimic free (0) */
1939   if (!EV_A)
1940     return;
1941 #endif
1942
1943 #if EV_CLEANUP_ENABLE
1944   /* queue cleanup watchers (and execute them) */
1945   if (expect_false (cleanupcnt))
1946     {
1947       queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1948       EV_INVOKE_PENDING;
1949     }
1950 #endif
1951
1952 #if EV_CHILD_ENABLE
1953   if (ev_is_active (&childev))
1954     {
1955       ev_ref (EV_A); /* child watcher */
1956       ev_signal_stop (EV_A_ &childev);
1957     }
1958 #endif
1959
1960   if (ev_is_active (&pipe_w))
1961     {
1962       /*ev_ref (EV_A);*/
1963       /*ev_io_stop (EV_A_ &pipe_w);*/
1964
1965 #if EV_USE_EVENTFD
1966       if (evfd >= 0)
1967         close (evfd);
1968 #endif
1969
1970       if (evpipe [0] >= 0)
1971         {
1972           EV_WIN32_CLOSE_FD (evpipe [0]);
1973           EV_WIN32_CLOSE_FD (evpipe [1]);
1974         }
1975     }
1976
1977 #if EV_USE_SIGNALFD
1978   if (ev_is_active (&sigfd_w))
1979     close (sigfd);
1980 #endif
1981
1982 #if EV_USE_INOTIFY
1983   if (fs_fd >= 0)
1984     close (fs_fd);
1985 #endif
1986
1987   if (backend_fd >= 0)
1988     close (backend_fd);
1989
1990 #if EV_USE_IOCP
1991   if (backend == EVBACKEND_IOCP  ) iocp_destroy   (EV_A);
1992 #endif
1993 #if EV_USE_PORT
1994   if (backend == EVBACKEND_PORT  ) port_destroy   (EV_A);
1995 #endif
1996 #if EV_USE_KQUEUE
1997   if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1998 #endif
1999 #if EV_USE_EPOLL
2000   if (backend == EVBACKEND_EPOLL ) epoll_destroy  (EV_A);
2001 #endif
2002 #if EV_USE_POLL
2003   if (backend == EVBACKEND_POLL  ) poll_destroy   (EV_A);
2004 #endif
2005 #if EV_USE_SELECT
2006   if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2007 #endif
2008
2009   for (i = NUMPRI; i--; )
2010     {
2011       array_free (pending, [i]);
2012 #if EV_IDLE_ENABLE
2013       array_free (idle, [i]);
2014 #endif
2015     }
2016
2017   ev_free (anfds); anfds = 0; anfdmax = 0;
2018
2019   /* have to use the microsoft-never-gets-it-right macro */
2020   array_free (rfeed, EMPTY);
2021   array_free (fdchange, EMPTY);
2022   array_free (timer, EMPTY);
2023 #if EV_PERIODIC_ENABLE
2024   array_free (periodic, EMPTY);
2025 #endif
2026 #if EV_FORK_ENABLE
2027   array_free (fork, EMPTY);
2028 #endif
2029 #if EV_CLEANUP_ENABLE
2030   array_free (cleanup, EMPTY);
2031 #endif
2032   array_free (prepare, EMPTY);
2033   array_free (check, EMPTY);
2034 #if EV_ASYNC_ENABLE
2035   array_free (async, EMPTY);
2036 #endif
2037
2038   backend = 0;
2039
2040 #if EV_MULTIPLICITY
2041   if (ev_is_default_loop (EV_A))
2042 #endif
2043     ev_default_loop_ptr = 0;
2044 #if EV_MULTIPLICITY
2045   else
2046     ev_free (EV_A);
2047 #endif
2048 }
2049
2050 #if EV_USE_INOTIFY
2051 inline_size void infy_fork (EV_P);
2052 #endif
2053
2054 inline_size void
2055 loop_fork (EV_P)
2056 {
2057 #if EV_USE_PORT
2058   if (backend == EVBACKEND_PORT  ) port_fork   (EV_A);
2059 #endif
2060 #if EV_USE_KQUEUE
2061   if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2062 #endif
2063 #if EV_USE_EPOLL
2064   if (backend == EVBACKEND_EPOLL ) epoll_fork  (EV_A);
2065 #endif
2066 #if EV_USE_INOTIFY
2067   infy_fork (EV_A);
2068 #endif
2069
2070   if (ev_is_active (&pipe_w))
2071     {
2072       /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2073
2074       ev_ref (EV_A);
2075       ev_io_stop (EV_A_ &pipe_w);
2076
2077 #if EV_USE_EVENTFD
2078       if (evfd >= 0)
2079         close (evfd);
2080 #endif
2081
2082       if (evpipe [0] >= 0)
2083         {
2084           EV_WIN32_CLOSE_FD (evpipe [0]);
2085           EV_WIN32_CLOSE_FD (evpipe [1]);
2086         }
2087
2088 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2089       evpipe_init (EV_A);
2090       /* now iterate over everything, in case we missed something */
2091       pipecb (EV_A_ &pipe_w, EV_READ);
2092 #endif
2093     }
2094
2095   postfork = 0;
2096 }
2097
2098 #if EV_MULTIPLICITY
2099
2100 struct ev_loop * ecb_cold
2101 ev_loop_new (unsigned int flags)
2102 {
2103   EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2104
2105   memset (EV_A, 0, sizeof (struct ev_loop));
2106   loop_init (EV_A_ flags);
2107
2108   if (ev_backend (EV_A))
2109     return EV_A;
2110
2111   ev_free (EV_A);
2112   return 0;
2113 }
2114
2115 #endif /* multiplicity */
2116
2117 #if EV_VERIFY
2118 static void noinline ecb_cold
2119 verify_watcher (EV_P_ W w)
2120 {
2121   assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2122
2123   if (w->pending)
2124     assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2125 }
2126
2127 static void noinline ecb_cold
2128 verify_heap (EV_P_ ANHE *heap, int N)
2129 {
2130   int i;
2131
2132   for (i = HEAP0; i < N + HEAP0; ++i)
2133     {
2134       assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2135       assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2136       assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2137
2138       verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2139     }
2140 }
2141
2142 static void noinline ecb_cold
2143 array_verify (EV_P_ W *ws, int cnt)
2144 {
2145   while (cnt--)
2146     {
2147       assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2148       verify_watcher (EV_A_ ws [cnt]);
2149     }
2150 }
2151 #endif
2152
2153 #if EV_FEATURE_API
2154 void ecb_cold
2155 ev_verify (EV_P)
2156 {
2157 #if EV_VERIFY
2158   int i;
2159   WL w;
2160
2161   assert (activecnt >= -1);
2162
2163   assert (fdchangemax >= fdchangecnt);
2164   for (i = 0; i < fdchangecnt; ++i)
2165     assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2166
2167   assert (anfdmax >= 0);
2168   for (i = 0; i < anfdmax; ++i)
2169     for (w = anfds [i].head; w; w = w->next)
2170       {
2171         verify_watcher (EV_A_ (W)w);
2172         assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2173         assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2174       }
2175
2176   assert (timermax >= timercnt);
2177   verify_heap (EV_A_ timers, timercnt);
2178
2179 #if EV_PERIODIC_ENABLE
2180   assert (periodicmax >= periodiccnt);
2181   verify_heap (EV_A_ periodics, periodiccnt);
2182 #endif
2183
2184   for (i = NUMPRI; i--; )
2185     {
2186       assert (pendingmax [i] >= pendingcnt [i]);
2187 #if EV_IDLE_ENABLE
2188       assert (idleall >= 0);
2189       assert (idlemax [i] >= idlecnt [i]);
2190       array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2191 #endif
2192     }
2193
2194 #if EV_FORK_ENABLE
2195   assert (forkmax >= forkcnt);
2196   array_verify (EV_A_ (W *)forks, forkcnt);
2197 #endif
2198
2199 #if EV_CLEANUP_ENABLE
2200   assert (cleanupmax >= cleanupcnt);
2201   array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2202 #endif
2203
2204 #if EV_ASYNC_ENABLE
2205   assert (asyncmax >= asynccnt);
2206   array_verify (EV_A_ (W *)asyncs, asynccnt);
2207 #endif
2208
2209 #if EV_PREPARE_ENABLE
2210   assert (preparemax >= preparecnt);
2211   array_verify (EV_A_ (W *)prepares, preparecnt);
2212 #endif
2213
2214 #if EV_CHECK_ENABLE
2215   assert (checkmax >= checkcnt);
2216   array_verify (EV_A_ (W *)checks, checkcnt);
2217 #endif
2218
2219 # if 0
2220 #if EV_CHILD_ENABLE
2221   for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2222   for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2223 #endif
2224 # endif
2225 #endif
2226 }
2227 #endif
2228
2229 #if EV_MULTIPLICITY
2230 struct ev_loop * ecb_cold
2231 #else
2232 int
2233 #endif
2234 ev_default_loop (unsigned int flags)
2235 {
2236   if (!ev_default_loop_ptr)
2237     {
2238 #if EV_MULTIPLICITY
2239       EV_P = ev_default_loop_ptr = &default_loop_struct;
2240 #else
2241       ev_default_loop_ptr = 1;
2242 #endif
2243
2244       loop_init (EV_A_ flags);
2245
2246       if (ev_backend (EV_A))
2247         {
2248 #if EV_CHILD_ENABLE
2249           ev_signal_init (&childev, childcb, SIGCHLD);
2250           ev_set_priority (&childev, EV_MAXPRI);
2251           ev_signal_start (EV_A_ &childev);
2252           ev_unref (EV_A); /* child watcher should not keep loop alive */
2253 #endif
2254         }
2255       else
2256         ev_default_loop_ptr = 0;
2257     }
2258
2259   return ev_default_loop_ptr;
2260 }
2261
2262 void
2263 ev_loop_fork (EV_P)
2264 {
2265   postfork = 1; /* must be in line with ev_default_fork */
2266 }
2267
2268 /*****************************************************************************/
2269
2270 void
2271 ev_invoke (EV_P_ void *w, int revents)
2272 {
2273   EV_CB_INVOKE ((W)w, revents);
2274 }
2275
2276 unsigned int
2277 ev_pending_count (EV_P)
2278 {
2279   int pri;
2280   unsigned int count = 0;
2281
2282   for (pri = NUMPRI; pri--; )
2283     count += pendingcnt [pri];
2284
2285   return count;
2286 }
2287
2288 void noinline
2289 ev_invoke_pending (EV_P)
2290 {
2291   int pri;
2292
2293   for (pri = NUMPRI; pri--; )
2294     while (pendingcnt [pri])
2295       {
2296         ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2297
2298         p->w->pending = 0;
2299         EV_CB_INVOKE (p->w, p->events);
2300         EV_FREQUENT_CHECK;
2301       }
2302 }
2303
2304 #if EV_IDLE_ENABLE
2305 /* make idle watchers pending. this handles the "call-idle */
2306 /* only when higher priorities are idle" logic */
2307 inline_size void
2308 idle_reify (EV_P)
2309 {
2310   if (expect_false (idleall))
2311     {
2312       int pri;
2313
2314       for (pri = NUMPRI; pri--; )
2315         {
2316           if (pendingcnt [pri])
2317             break;
2318
2319           if (idlecnt [pri])
2320             {
2321               queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2322               break;
2323             }
2324         }
2325     }
2326 }
2327 #endif
2328
2329 /* make timers pending */
2330 inline_size void
2331 timers_reify (EV_P)
2332 {
2333   EV_FREQUENT_CHECK;
2334
2335   if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2336     {
2337       do
2338         {
2339           ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2340
2341           /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2342
2343           /* first reschedule or stop timer */
2344           if (w->repeat)
2345             {
2346               ev_at (w) += w->repeat;
2347               if (ev_at (w) < mn_now)
2348                 ev_at (w) = mn_now;
2349
2350               assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2351
2352               ANHE_at_cache (timers [HEAP0]);
2353               downheap (timers, timercnt, HEAP0);
2354             }
2355           else
2356             ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2357
2358           EV_FREQUENT_CHECK;
2359           feed_reverse (EV_A_ (W)w);
2360         }
2361       while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2362
2363       feed_reverse_done (EV_A_ EV_TIMER);
2364     }
2365 }
2366
2367 #if EV_PERIODIC_ENABLE
2368
2369 static void noinline
2370 periodic_recalc (EV_P_ ev_periodic *w)
2371 {
2372   ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2373   ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2374
2375   /* the above almost always errs on the low side */
2376   while (at <= ev_rt_now)
2377     {
2378       ev_tstamp nat = at + w->interval;
2379
2380       /* when resolution fails us, we use ev_rt_now */
2381       if (expect_false (nat == at))
2382         {
2383           at = ev_rt_now;
2384           break;
2385         }
2386
2387       at = nat;
2388     }
2389
2390   ev_at (w) = at;
2391 }
2392
2393 /* make periodics pending */
2394 inline_size void
2395 periodics_reify (EV_P)
2396 {
2397   EV_FREQUENT_CHECK;
2398
2399   while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2400     {
2401       int feed_count = 0;
2402
2403       do
2404         {
2405           ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2406
2407           /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2408
2409           /* first reschedule or stop timer */
2410           if (w->reschedule_cb)
2411             {
2412               ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2413
2414               assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2415
2416               ANHE_at_cache (periodics [HEAP0]);
2417               downheap (periodics, periodiccnt, HEAP0);
2418             }
2419           else if (w->interval)
2420             {
2421               periodic_recalc (EV_A_ w);
2422               ANHE_at_cache (periodics [HEAP0]);
2423               downheap (periodics, periodiccnt, HEAP0);
2424             }
2425           else
2426             ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2427
2428           EV_FREQUENT_CHECK;
2429           feed_reverse (EV_A_ (W)w);
2430         }
2431       while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2432
2433       feed_reverse_done (EV_A_ EV_PERIODIC);
2434     }
2435 }
2436
2437 /* simply recalculate all periodics */
2438 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2439 static void noinline ecb_cold
2440 periodics_reschedule (EV_P)
2441 {
2442   int i;
2443
2444   /* adjust periodics after time jump */
2445   for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2446     {
2447       ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2448
2449       if (w->reschedule_cb)
2450         ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2451       else if (w->interval)
2452         periodic_recalc (EV_A_ w);
2453
2454       ANHE_at_cache (periodics [i]);
2455     }
2456
2457   reheap (periodics, periodiccnt);
2458 }
2459 #endif
2460
2461 /* adjust all timers by a given offset */
2462 static void noinline ecb_cold
2463 timers_reschedule (EV_P_ ev_tstamp adjust)
2464 {
2465   int i;
2466
2467   for (i = 0; i < timercnt; ++i)
2468     {
2469       ANHE *he = timers + i + HEAP0;
2470       ANHE_w (*he)->at += adjust;
2471       ANHE_at_cache (*he);
2472     }
2473 }
2474
2475 /* fetch new monotonic and realtime times from the kernel */
2476 /* also detect if there was a timejump, and act accordingly */
2477 inline_speed void
2478 time_update (EV_P_ ev_tstamp max_block)
2479 {
2480 #if EV_USE_MONOTONIC
2481   if (expect_true (have_monotonic))
2482     {
2483       int i;
2484       ev_tstamp odiff = rtmn_diff;
2485
2486       mn_now = get_clock ();
2487
2488       /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2489       /* interpolate in the meantime */
2490       if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2491         {
2492           ev_rt_now = rtmn_diff + mn_now;
2493           return;
2494         }
2495
2496       now_floor = mn_now;
2497       ev_rt_now = ev_time ();
2498
2499       /* loop a few times, before making important decisions.
2500        * on the choice of "4": one iteration isn't enough,
2501        * in case we get preempted during the calls to
2502        * ev_time and get_clock. a second call is almost guaranteed
2503        * to succeed in that case, though. and looping a few more times
2504        * doesn't hurt either as we only do this on time-jumps or
2505        * in the unlikely event of having been preempted here.
2506        */
2507       for (i = 4; --i; )
2508         {
2509           ev_tstamp diff;
2510           rtmn_diff = ev_rt_now - mn_now;
2511
2512           diff = odiff - rtmn_diff;
2513
2514           if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2515             return; /* all is well */
2516
2517           ev_rt_now = ev_time ();
2518           mn_now    = get_clock ();
2519           now_floor = mn_now;
2520         }
2521
2522       /* no timer adjustment, as the monotonic clock doesn't jump */
2523       /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2524 # if EV_PERIODIC_ENABLE
2525       periodics_reschedule (EV_A);
2526 # endif
2527     }
2528   else
2529 #endif
2530     {
2531       ev_rt_now = ev_time ();
2532
2533       if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2534         {
2535           /* adjust timers. this is easy, as the offset is the same for all of them */
2536           timers_reschedule (EV_A_ ev_rt_now - mn_now);
2537 #if EV_PERIODIC_ENABLE
2538           periodics_reschedule (EV_A);
2539 #endif
2540         }
2541
2542       mn_now = ev_rt_now;
2543     }
2544 }
2545
2546 void
2547 ev_run (EV_P_ int flags)
2548 {
2549 #if EV_FEATURE_API
2550   ++loop_depth;
2551 #endif
2552
2553   assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2554
2555   loop_done = EVBREAK_CANCEL;
2556
2557   EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2558
2559   do
2560     {
2561 #if EV_VERIFY >= 2
2562       ev_verify (EV_A);
2563 #endif
2564
2565 #ifndef _WIN32
2566       if (expect_false (curpid)) /* penalise the forking check even more */
2567         if (expect_false (getpid () != curpid))
2568           {
2569             curpid = getpid ();
2570             postfork = 1;
2571           }
2572 #endif
2573
2574 #if EV_FORK_ENABLE
2575       /* we might have forked, so queue fork handlers */
2576       if (expect_false (postfork))
2577         if (forkcnt)
2578           {
2579             queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2580             EV_INVOKE_PENDING;
2581           }
2582 #endif
2583
2584 #if EV_PREPARE_ENABLE
2585       /* queue prepare watchers (and execute them) */
2586       if (expect_false (preparecnt))
2587         {
2588           queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2589           EV_INVOKE_PENDING;
2590         }
2591 #endif
2592
2593       if (expect_false (loop_done))
2594         break;
2595
2596       /* we might have forked, so reify kernel state if necessary */
2597       if (expect_false (postfork))
2598         loop_fork (EV_A);
2599
2600       /* update fd-related kernel structures */
2601       fd_reify (EV_A);
2602
2603       /* calculate blocking time */
2604       {
2605         ev_tstamp waittime  = 0.;
2606         ev_tstamp sleeptime = 0.;
2607
2608         /* remember old timestamp for io_blocktime calculation */
2609         ev_tstamp prev_mn_now = mn_now;
2610
2611         /* update time to cancel out callback processing overhead */
2612         time_update (EV_A_ 1e100);
2613
2614         /* from now on, we want a pipe-wake-up */
2615         pipe_write_wanted = 1;
2616
2617         ECB_MEMORY_FENCE; /* amke sure pipe_write_wanted is visible before we check for potential skips */
2618
2619         if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2620           {
2621             waittime = MAX_BLOCKTIME;
2622
2623             if (timercnt)
2624               {
2625                 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2626                 if (waittime > to) waittime = to;
2627               }
2628
2629 #if EV_PERIODIC_ENABLE
2630             if (periodiccnt)
2631               {
2632                 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2633                 if (waittime > to) waittime = to;
2634               }
2635 #endif
2636
2637             /* don't let timeouts decrease the waittime below timeout_blocktime */
2638             if (expect_false (waittime < timeout_blocktime))
2639               waittime = timeout_blocktime;
2640
2641             /* at this point, we NEED to wait, so we have to ensure */
2642             /* to pass a minimum nonzero value to the backend */
2643             if (expect_false (waittime < backend_mintime))
2644               waittime = backend_mintime;
2645
2646             /* extra check because io_blocktime is commonly 0 */
2647             if (expect_false (io_blocktime))
2648               {
2649                 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2650
2651                 if (sleeptime > waittime - backend_mintime)
2652                   sleeptime = waittime - backend_mintime;
2653
2654                 if (expect_true (sleeptime > 0.))
2655                   {
2656                     ev_sleep (sleeptime);
2657                     waittime -= sleeptime;
2658                   }
2659               }
2660           }
2661
2662 #if EV_FEATURE_API
2663         ++loop_count;
2664 #endif
2665         assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2666         backend_poll (EV_A_ waittime);
2667         assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2668
2669         pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2670
2671         if (pipe_write_skipped)
2672           {
2673             assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2674             ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2675           }
2676
2677
2678         /* update ev_rt_now, do magic */
2679         time_update (EV_A_ waittime + sleeptime);
2680       }
2681
2682       /* queue pending timers and reschedule them */
2683       timers_reify (EV_A); /* relative timers called last */
2684 #if EV_PERIODIC_ENABLE
2685       periodics_reify (EV_A); /* absolute timers called first */
2686 #endif
2687
2688 #if EV_IDLE_ENABLE
2689       /* queue idle watchers unless other events are pending */
2690       idle_reify (EV_A);
2691 #endif
2692
2693 #if EV_CHECK_ENABLE
2694       /* queue check watchers, to be executed first */
2695       if (expect_false (checkcnt))
2696         queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2697 #endif
2698
2699       EV_INVOKE_PENDING;
2700     }
2701   while (expect_true (
2702     activecnt
2703     && !loop_done
2704     && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2705   ));
2706
2707   if (loop_done == EVBREAK_ONE)
2708     loop_done = EVBREAK_CANCEL;
2709
2710 #if EV_FEATURE_API
2711   --loop_depth;
2712 #endif
2713 }
2714
2715 void
2716 ev_break (EV_P_ int how)
2717 {
2718   loop_done = how;
2719 }
2720
2721 void
2722 ev_ref (EV_P)
2723 {
2724   ++activecnt;
2725 }
2726
2727 void
2728 ev_unref (EV_P)
2729 {
2730   --activecnt;
2731 }
2732
2733 void
2734 ev_now_update (EV_P)
2735 {
2736   time_update (EV_A_ 1e100);
2737 }
2738
2739 void
2740 ev_suspend (EV_P)
2741 {
2742   ev_now_update (EV_A);
2743 }
2744
2745 void
2746 ev_resume (EV_P)
2747 {
2748   ev_tstamp mn_prev = mn_now;
2749
2750   ev_now_update (EV_A);
2751   timers_reschedule (EV_A_ mn_now - mn_prev);
2752 #if EV_PERIODIC_ENABLE
2753   /* TODO: really do this? */
2754   periodics_reschedule (EV_A);
2755 #endif
2756 }
2757
2758 /*****************************************************************************/
2759 /* singly-linked list management, used when the expected list length is short */
2760
2761 inline_size void
2762 wlist_add (WL *head, WL elem)
2763 {
2764   elem->next = *head;
2765   *head = elem;
2766 }
2767
2768 inline_size void
2769 wlist_del (WL *head, WL elem)
2770 {
2771   while (*head)
2772     {
2773       if (expect_true (*head == elem))
2774         {
2775           *head = elem->next;
2776           break;
2777         }
2778
2779       head = &(*head)->next;
2780     }
2781 }
2782
2783 /* internal, faster, version of ev_clear_pending */
2784 inline_speed void
2785 clear_pending (EV_P_ W w)
2786 {
2787   if (w->pending)
2788     {
2789       pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2790       w->pending = 0;
2791     }
2792 }
2793
2794 int
2795 ev_clear_pending (EV_P_ void *w)
2796 {
2797   W w_ = (W)w;
2798   int pending = w_->pending;
2799
2800   if (expect_true (pending))
2801     {
2802       ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2803       p->w = (W)&pending_w;
2804       w_->pending = 0;
2805       return p->events;
2806     }
2807   else
2808     return 0;
2809 }
2810
2811 inline_size void
2812 pri_adjust (EV_P_ W w)
2813 {
2814   int pri = ev_priority (w);
2815   pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2816   pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2817   ev_set_priority (w, pri);
2818 }
2819
2820 inline_speed void
2821 ev_start (EV_P_ W w, int active)
2822 {
2823   pri_adjust (EV_A_ w);
2824   w->active = active;
2825   ev_ref (EV_A);
2826 }
2827
2828 inline_size void
2829 ev_stop (EV_P_ W w)
2830 {
2831   ev_unref (EV_A);
2832   w->active = 0;
2833 }
2834
2835 /*****************************************************************************/
2836
2837 void noinline
2838 ev_io_start (EV_P_ ev_io *w)
2839 {
2840   int fd = w->fd;
2841
2842   if (expect_false (ev_is_active (w)))
2843     return;
2844
2845   assert (("libev: ev_io_start called with negative fd", fd >= 0));
2846   assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2847
2848   EV_FREQUENT_CHECK;
2849
2850   ev_start (EV_A_ (W)w, 1);
2851   array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2852   wlist_add (&anfds[fd].head, (WL)w);
2853
2854   fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2855   w->events &= ~EV__IOFDSET;
2856
2857   EV_FREQUENT_CHECK;
2858 }
2859
2860 void noinline
2861 ev_io_stop (EV_P_ ev_io *w)
2862 {
2863   clear_pending (EV_A_ (W)w);
2864   if (expect_false (!ev_is_active (w)))
2865     return;
2866
2867   assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2868
2869   EV_FREQUENT_CHECK;
2870
2871   wlist_del (&anfds[w->fd].head, (WL)w);
2872   ev_stop (EV_A_ (W)w);
2873
2874   fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2875
2876   EV_FREQUENT_CHECK;
2877 }
2878
2879 void noinline
2880 ev_timer_start (EV_P_ ev_timer *w)
2881 {
2882   if (expect_false (ev_is_active (w)))
2883     return;
2884
2885   ev_at (w) += mn_now;
2886
2887   assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2888
2889   EV_FREQUENT_CHECK;
2890
2891   ++timercnt;
2892   ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2893   array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2894   ANHE_w (timers [ev_active (w)]) = (WT)w;
2895   ANHE_at_cache (timers [ev_active (w)]);
2896   upheap (timers, ev_active (w));
2897
2898   EV_FREQUENT_CHECK;
2899
2900   /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2901 }
2902
2903 void noinline
2904 ev_timer_stop (EV_P_ ev_timer *w)
2905 {
2906   clear_pending (EV_A_ (W)w);
2907   if (expect_false (!ev_is_active (w)))
2908     return;
2909
2910   EV_FREQUENT_CHECK;
2911
2912   {
2913     int active = ev_active (w);
2914
2915     assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2916
2917     --timercnt;
2918
2919     if (expect_true (active < timercnt + HEAP0))
2920       {
2921         timers [active] = timers [timercnt + HEAP0];
2922         adjustheap (timers, timercnt, active);
2923       }
2924   }
2925
2926   ev_at (w) -= mn_now;
2927
2928   ev_stop (EV_A_ (W)w);
2929
2930   EV_FREQUENT_CHECK;
2931 }
2932
2933 void noinline
2934 ev_timer_again (EV_P_ ev_timer *w)
2935 {
2936   EV_FREQUENT_CHECK;
2937
2938   if (ev_is_active (w))
2939     {
2940       if (w->repeat)
2941         {
2942           ev_at (w) = mn_now + w->repeat;
2943           ANHE_at_cache (timers [ev_active (w)]);
2944           adjustheap (timers, timercnt, ev_active (w));
2945         }
2946       else
2947         ev_timer_stop (EV_A_ w);
2948     }
2949   else if (w->repeat)
2950     {
2951       ev_at (w) = w->repeat;
2952       ev_timer_start (EV_A_ w);
2953     }
2954
2955   EV_FREQUENT_CHECK;
2956 }
2957
2958 ev_tstamp
2959 ev_timer_remaining (EV_P_ ev_timer *w)
2960 {
2961   return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2962 }
2963
2964 #if EV_PERIODIC_ENABLE
2965 void noinline
2966 ev_periodic_start (EV_P_ ev_periodic *w)
2967 {
2968   if (expect_false (ev_is_active (w)))
2969     return;
2970
2971   if (w->reschedule_cb)
2972     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2973   else if (w->interval)
2974     {
2975       assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2976       periodic_recalc (EV_A_ w);
2977     }
2978   else
2979     ev_at (w) = w->offset;
2980
2981   EV_FREQUENT_CHECK;
2982
2983   ++periodiccnt;
2984   ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2985   array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2986   ANHE_w (periodics [ev_active (w)]) = (WT)w;
2987   ANHE_at_cache (periodics [ev_active (w)]);
2988   upheap (periodics, ev_active (w));
2989
2990   EV_FREQUENT_CHECK;
2991
2992   /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2993 }
2994
2995 void noinline
2996 ev_periodic_stop (EV_P_ ev_periodic *w)
2997 {
2998   clear_pending (EV_A_ (W)w);
2999   if (expect_false (!ev_is_active (w)))
3000     return;
3001
3002   EV_FREQUENT_CHECK;
3003
3004   {
3005     int active = ev_active (w);
3006
3007     assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3008
3009     --periodiccnt;
3010
3011     if (expect_true (active < periodiccnt + HEAP0))
3012       {
3013         periodics [active] = periodics [periodiccnt + HEAP0];
3014         adjustheap (periodics, periodiccnt, active);
3015       }
3016   }
3017
3018   ev_stop (EV_A_ (W)w);
3019
3020   EV_FREQUENT_CHECK;
3021 }
3022
3023 void noinline
3024 ev_periodic_again (EV_P_ ev_periodic *w)
3025 {
3026   /* TODO: use adjustheap and recalculation */
3027   ev_periodic_stop (EV_A_ w);
3028   ev_periodic_start (EV_A_ w);
3029 }
3030 #endif
3031
3032 #ifndef SA_RESTART
3033 # define SA_RESTART 0
3034 #endif
3035
3036 #if EV_SIGNAL_ENABLE
3037
3038 void noinline
3039 ev_signal_start (EV_P_ ev_signal *w)
3040 {
3041   if (expect_false (ev_is_active (w)))
3042     return;
3043
3044   assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3045
3046 #if EV_MULTIPLICITY
3047   assert (("libev: a signal must not be attached to two different loops",
3048            !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3049
3050   signals [w->signum - 1].loop = EV_A;
3051 #endif
3052
3053   EV_FREQUENT_CHECK;
3054
3055 #if EV_USE_SIGNALFD
3056   if (sigfd == -2)
3057     {
3058       sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3059       if (sigfd < 0 && errno == EINVAL)
3060         sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3061
3062       if (sigfd >= 0)
3063         {
3064           fd_intern (sigfd); /* doing it twice will not hurt */
3065
3066           sigemptyset (&sigfd_set);
3067
3068           ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3069           ev_set_priority (&sigfd_w, EV_MAXPRI);
3070           ev_io_start (EV_A_ &sigfd_w);
3071           ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3072         }
3073     }
3074
3075   if (sigfd >= 0)
3076     {
3077       /* TODO: check .head */
3078       sigaddset (&sigfd_set, w->signum);
3079       sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3080
3081       signalfd (sigfd, &sigfd_set, 0);
3082     }
3083 #endif
3084
3085   ev_start (EV_A_ (W)w, 1);
3086   wlist_add (&signals [w->signum - 1].head, (WL)w);
3087
3088   if (!((WL)w)->next)
3089 # if EV_USE_SIGNALFD
3090     if (sigfd < 0) /*TODO*/
3091 # endif
3092       {
3093 # ifdef _WIN32
3094         evpipe_init (EV_A);
3095
3096         signal (w->signum, ev_sighandler);
3097 # else
3098         struct sigaction sa;
3099
3100         evpipe_init (EV_A);
3101
3102         sa.sa_handler = ev_sighandler;
3103         sigfillset (&sa.sa_mask);
3104         sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3105         sigaction (w->signum, &sa, 0);
3106
3107         if (origflags & EVFLAG_NOSIGMASK)
3108           {
3109             sigemptyset (&sa.sa_mask);
3110             sigaddset (&sa.sa_mask, w->signum);
3111             sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3112           }
3113 #endif
3114       }
3115
3116   EV_FREQUENT_CHECK;
3117 }
3118
3119 void noinline
3120 ev_signal_stop (EV_P_ ev_signal *w)
3121 {
3122   clear_pending (EV_A_ (W)w);
3123   if (expect_false (!ev_is_active (w)))
3124     return;
3125
3126   EV_FREQUENT_CHECK;
3127
3128   wlist_del (&signals [w->signum - 1].head, (WL)w);
3129   ev_stop (EV_A_ (W)w);
3130
3131   if (!signals [w->signum - 1].head)
3132     {
3133 #if EV_MULTIPLICITY
3134       signals [w->signum - 1].loop = 0; /* unattach from signal */
3135 #endif
3136 #if EV_USE_SIGNALFD
3137       if (sigfd >= 0)
3138         {
3139           sigset_t ss;
3140
3141           sigemptyset (&ss);
3142           sigaddset (&ss, w->signum);
3143           sigdelset (&sigfd_set, w->signum);
3144
3145           signalfd (sigfd, &sigfd_set, 0);
3146           sigprocmask (SIG_UNBLOCK, &ss, 0);
3147         }
3148       else
3149 #endif
3150         signal (w->signum, SIG_DFL);
3151     }
3152
3153   EV_FREQUENT_CHECK;
3154 }
3155
3156 #endif
3157
3158 #if EV_CHILD_ENABLE
3159
3160 void
3161 ev_child_start (EV_P_ ev_child *w)
3162 {
3163 #if EV_MULTIPLICITY
3164   assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3165 #endif
3166   if (expect_false (ev_is_active (w)))
3167     return;
3168
3169   EV_FREQUENT_CHECK;
3170
3171   ev_start (EV_A_ (W)w, 1);
3172   wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3173
3174   EV_FREQUENT_CHECK;
3175 }
3176
3177 void
3178 ev_child_stop (EV_P_ ev_child *w)
3179 {
3180   clear_pending (EV_A_ (W)w);
3181   if (expect_false (!ev_is_active (w)))
3182     return;
3183
3184   EV_FREQUENT_CHECK;
3185
3186   wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3187   ev_stop (EV_A_ (W)w);
3188
3189   EV_FREQUENT_CHECK;
3190 }
3191
3192 #endif
3193
3194 #if EV_STAT_ENABLE
3195
3196 # ifdef _WIN32
3197 #  undef lstat
3198 #  define lstat(a,b) _stati64 (a,b)
3199 # endif
3200
3201 #define DEF_STAT_INTERVAL  5.0074891
3202 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3203 #define MIN_STAT_INTERVAL  0.1074891
3204
3205 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3206
3207 #if EV_USE_INOTIFY
3208
3209 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3210 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3211
3212 static void noinline
3213 infy_add (EV_P_ ev_stat *w)
3214 {
3215   w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3216
3217   if (w->wd >= 0)
3218     {
3219       struct statfs sfs;
3220
3221       /* now local changes will be tracked by inotify, but remote changes won't */
3222       /* unless the filesystem is known to be local, we therefore still poll */
3223       /* also do poll on <2.6.25, but with normal frequency */
3224
3225       if (!fs_2625)
3226         w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3227       else if (!statfs (w->path, &sfs)
3228                && (sfs.f_type == 0x1373 /* devfs */
3229                    || sfs.f_type == 0xEF53 /* ext2/3 */
3230                    || sfs.f_type == 0x3153464a /* jfs */
3231                    || sfs.f_type == 0x52654973 /* reiser3 */
3232                    || sfs.f_type == 0x01021994 /* tempfs */
3233                    || sfs.f_type == 0x58465342 /* xfs */))
3234         w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3235       else
3236         w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3237     }
3238   else
3239     {
3240       /* can't use inotify, continue to stat */
3241       w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3242
3243       /* if path is not there, monitor some parent directory for speedup hints */
3244       /* note that exceeding the hardcoded path limit is not a correctness issue, */
3245       /* but an efficiency issue only */
3246       if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3247         {
3248           char path [4096];
3249           strcpy (path, w->path);
3250
3251           do
3252             {
3253               int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3254                        | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3255
3256               char *pend = strrchr (path, '/');
3257
3258               if (!pend || pend == path)
3259                 break;
3260
3261               *pend = 0;
3262               w->wd = inotify_add_watch (fs_fd, path, mask);
3263             }
3264           while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3265         }
3266     }
3267
3268   if (w->wd >= 0)
3269     wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3270
3271   /* now re-arm timer, if required */
3272   if (ev_is_active (&w->timer)) ev_ref (EV_A);
3273   ev_timer_again (EV_A_ &w->timer);
3274   if (ev_is_active (&w->timer)) ev_unref (EV_A);
3275 }
3276
3277 static void noinline
3278 infy_del (EV_P_ ev_stat *w)
3279 {
3280   int slot;
3281   int wd = w->wd;
3282
3283   if (wd < 0)
3284     return;
3285
3286   w->wd = -2;
3287   slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3288   wlist_del (&fs_hash [slot].head, (WL)w);
3289
3290   /* remove this watcher, if others are watching it, they will rearm */
3291   inotify_rm_watch (fs_fd, wd);
3292 }
3293
3294 static void noinline
3295 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3296 {
3297   if (slot < 0)
3298     /* overflow, need to check for all hash slots */
3299     for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3300       infy_wd (EV_A_ slot, wd, ev);
3301   else
3302     {
3303       WL w_;
3304
3305       for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3306         {
3307           ev_stat *w = (ev_stat *)w_;
3308           w_ = w_->next; /* lets us remove this watcher and all before it */
3309
3310           if (w->wd == wd || wd == -1)
3311             {
3312               if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3313                 {
3314                   wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3315                   w->wd = -1;
3316                   infy_add (EV_A_ w); /* re-add, no matter what */
3317                 }
3318
3319               stat_timer_cb (EV_A_ &w->timer, 0);
3320             }
3321         }
3322     }
3323 }
3324
3325 static void
3326 infy_cb (EV_P_ ev_io *w, int revents)
3327 {
3328   char buf [EV_INOTIFY_BUFSIZE];
3329   int ofs;
3330   int len = read (fs_fd, buf, sizeof (buf));
3331
3332   for (ofs = 0; ofs < len; )
3333     {
3334       struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3335       infy_wd (EV_A_ ev->wd, ev->wd, ev);
3336       ofs += sizeof (struct inotify_event) + ev->len;
3337     }
3338 }
3339
3340 inline_size void ecb_cold
3341 ev_check_2625 (EV_P)
3342 {
3343   /* kernels < 2.6.25 are borked
3344    * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3345    */
3346   if (ev_linux_version () < 0x020619)
3347     return;
3348
3349   fs_2625 = 1;
3350 }
3351
3352 inline_size int
3353 infy_newfd (void)
3354 {
3355 #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3356   int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3357   if (fd >= 0)
3358     return fd;
3359 #endif
3360   return inotify_init ();
3361 }
3362
3363 inline_size void
3364 infy_init (EV_P)
3365 {
3366   if (fs_fd != -2)
3367     return;
3368
3369   fs_fd = -1;
3370
3371   ev_check_2625 (EV_A);
3372
3373   fs_fd = infy_newfd ();
3374
3375   if (fs_fd >= 0)
3376     {
3377       fd_intern (fs_fd);
3378       ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3379       ev_set_priority (&fs_w, EV_MAXPRI);
3380       ev_io_start (EV_A_ &fs_w);
3381       ev_unref (EV_A);
3382     }
3383 }
3384
3385 inline_size void
3386 infy_fork (EV_P)
3387 {
3388   int slot;
3389
3390   if (fs_fd < 0)
3391     return;
3392
3393   ev_ref (EV_A);
3394   ev_io_stop (EV_A_ &fs_w);
3395   close (fs_fd);
3396   fs_fd = infy_newfd ();
3397
3398   if (fs_fd >= 0)
3399     {
3400       fd_intern (fs_fd);
3401       ev_io_set (&fs_w, fs_fd, EV_READ);
3402       ev_io_start (EV_A_ &fs_w);
3403       ev_unref (EV_A);
3404     }
3405
3406   for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3407     {
3408       WL w_ = fs_hash [slot].head;
3409       fs_hash [slot].head = 0;
3410
3411       while (w_)
3412         {
3413           ev_stat *w = (ev_stat *)w_;
3414           w_ = w_->next; /* lets us add this watcher */
3415
3416           w->wd = -1;
3417
3418           if (fs_fd >= 0)
3419             infy_add (EV_A_ w); /* re-add, no matter what */
3420           else
3421             {
3422               w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3423               if (ev_is_active (&w->timer)) ev_ref (EV_A);
3424               ev_timer_again (EV_A_ &w->timer);
3425               if (ev_is_active (&w->timer)) ev_unref (EV_A);
3426             }
3427         }
3428     }
3429 }
3430
3431 #endif
3432
3433 #ifdef _WIN32
3434 # define EV_LSTAT(p,b) _stati64 (p, b)
3435 #else
3436 # define EV_LSTAT(p,b) lstat (p, b)
3437 #endif
3438
3439 void
3440 ev_stat_stat (EV_P_ ev_stat *w)
3441 {
3442   if (lstat (w->path, &w->attr) < 0)
3443     w->attr.st_nlink = 0;
3444   else if (!w->attr.st_nlink)
3445     w->attr.st_nlink = 1;
3446 }
3447
3448 static void noinline
3449 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3450 {
3451   ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3452
3453   ev_statdata prev = w->attr;
3454   ev_stat_stat (EV_A_ w);
3455
3456   /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3457   if (
3458     prev.st_dev      != w->attr.st_dev
3459     || prev.st_ino   != w->attr.st_ino
3460     || prev.st_mode  != w->attr.st_mode
3461     || prev.st_nlink != w->attr.st_nlink
3462     || prev.st_uid   != w->attr.st_uid
3463     || prev.st_gid   != w->attr.st_gid
3464     || prev.st_rdev  != w->attr.st_rdev
3465     || prev.st_size  != w->attr.st_size
3466     || prev.st_atime != w->attr.st_atime
3467     || prev.st_mtime != w->attr.st_mtime
3468     || prev.st_ctime != w->attr.st_ctime
3469   ) {
3470       /* we only update w->prev on actual differences */
3471       /* in case we test more often than invoke the callback, */
3472       /* to ensure that prev is always different to attr */
3473       w->prev = prev;
3474
3475       #if EV_USE_INOTIFY
3476         if (fs_fd >= 0)
3477           {
3478             infy_del (EV_A_ w);
3479             infy_add (EV_A_ w);
3480             ev_stat_stat (EV_A_ w); /* avoid race... */
3481           }
3482       #endif
3483
3484       ev_feed_event (EV_A_ w, EV_STAT);
3485     }
3486 }
3487
3488 void
3489 ev_stat_start (EV_P_ ev_stat *w)
3490 {
3491   if (expect_false (ev_is_active (w)))
3492     return;
3493
3494   ev_stat_stat (EV_A_ w);
3495
3496   if (w->interval < MIN_STAT_INTERVAL && w->interval)
3497     w->interval = MIN_STAT_INTERVAL;
3498
3499   ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3500   ev_set_priority (&w->timer, ev_priority (w));
3501
3502 #if EV_USE_INOTIFY
3503   infy_init (EV_A);
3504
3505   if (fs_fd >= 0)
3506     infy_add (EV_A_ w);
3507   else
3508 #endif
3509     {
3510       ev_timer_again (EV_A_ &w->timer);
3511       ev_unref (EV_A);
3512     }
3513
3514   ev_start (EV_A_ (W)w, 1);
3515
3516   EV_FREQUENT_CHECK;
3517 }
3518
3519 void
3520 ev_stat_stop (EV_P_ ev_stat *w)
3521 {
3522   clear_pending (EV_A_ (W)w);
3523   if (expect_false (!ev_is_active (w)))
3524     return;
3525
3526   EV_FREQUENT_CHECK;
3527
3528 #if EV_USE_INOTIFY
3529   infy_del (EV_A_ w);
3530 #endif
3531
3532   if (ev_is_active (&w->timer))
3533     {
3534       ev_ref (EV_A);
3535       ev_timer_stop (EV_A_ &w->timer);
3536     }
3537
3538   ev_stop (EV_A_ (W)w);
3539
3540   EV_FREQUENT_CHECK;
3541 }
3542 #endif
3543
3544 #if EV_IDLE_ENABLE
3545 void
3546 ev_idle_start (EV_P_ ev_idle *w)
3547 {
3548   if (expect_false (ev_is_active (w)))
3549     return;
3550
3551   pri_adjust (EV_A_ (W)w);
3552
3553   EV_FREQUENT_CHECK;
3554
3555   {
3556     int active = ++idlecnt [ABSPRI (w)];
3557
3558     ++idleall;
3559     ev_start (EV_A_ (W)w, active);
3560
3561     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3562     idles [ABSPRI (w)][active - 1] = w;
3563   }
3564
3565   EV_FREQUENT_CHECK;
3566 }
3567
3568 void
3569 ev_idle_stop (EV_P_ ev_idle *w)
3570 {
3571   clear_pending (EV_A_ (W)w);
3572   if (expect_false (!ev_is_active (w)))
3573     return;
3574
3575   EV_FREQUENT_CHECK;
3576
3577   {
3578     int active = ev_active (w);
3579
3580     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3581     ev_active (idles [ABSPRI (w)][active - 1]) = active;
3582
3583     ev_stop (EV_A_ (W)w);
3584     --idleall;
3585   }
3586
3587   EV_FREQUENT_CHECK;
3588 }
3589 #endif
3590
3591 #if EV_PREPARE_ENABLE
3592 void
3593 ev_prepare_start (EV_P_ ev_prepare *w)
3594 {
3595   if (expect_false (ev_is_active (w)))
3596     return;
3597
3598   EV_FREQUENT_CHECK;
3599
3600   ev_start (EV_A_ (W)w, ++preparecnt);
3601   array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3602   prepares [preparecnt - 1] = w;
3603
3604   EV_FREQUENT_CHECK;
3605 }
3606
3607 void
3608 ev_prepare_stop (EV_P_ ev_prepare *w)
3609 {
3610   clear_pending (EV_A_ (W)w);
3611   if (expect_false (!ev_is_active (w)))
3612     return;
3613
3614   EV_FREQUENT_CHECK;
3615
3616   {
3617     int active = ev_active (w);
3618
3619     prepares [active - 1] = prepares [--preparecnt];
3620     ev_active (prepares [active - 1]) = active;
3621   }
3622
3623   ev_stop (EV_A_ (W)w);
3624
3625   EV_FREQUENT_CHECK;
3626 }
3627 #endif
3628
3629 #if EV_CHECK_ENABLE
3630 void
3631 ev_check_start (EV_P_ ev_check *w)
3632 {
3633   if (expect_false (ev_is_active (w)))
3634     return;
3635
3636   EV_FREQUENT_CHECK;
3637
3638   ev_start (EV_A_ (W)w, ++checkcnt);
3639   array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3640   checks [checkcnt - 1] = w;
3641
3642   EV_FREQUENT_CHECK;
3643 }
3644
3645 void
3646 ev_check_stop (EV_P_ ev_check *w)
3647 {
3648   clear_pending (EV_A_ (W)w);
3649   if (expect_false (!ev_is_active (w)))
3650     return;
3651
3652   EV_FREQUENT_CHECK;
3653
3654   {
3655     int active = ev_active (w);
3656
3657     checks [active - 1] = checks [--checkcnt];
3658     ev_active (checks [active - 1]) = active;
3659   }
3660
3661   ev_stop (EV_A_ (W)w);
3662
3663   EV_FREQUENT_CHECK;
3664 }
3665 #endif
3666
3667 #if EV_EMBED_ENABLE
3668 void noinline
3669 ev_embed_sweep (EV_P_ ev_embed *w)
3670 {
3671   ev_run (w->other, EVRUN_NOWAIT);
3672 }
3673
3674 static void
3675 embed_io_cb (EV_P_ ev_io *io, int revents)
3676 {
3677   ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3678
3679   if (ev_cb (w))
3680     ev_feed_event (EV_A_ (W)w, EV_EMBED);
3681   else
3682     ev_run (w->other, EVRUN_NOWAIT);
3683 }
3684
3685 static void
3686 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3687 {
3688   ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3689
3690   {
3691     EV_P = w->other;
3692
3693     while (fdchangecnt)
3694       {
3695         fd_reify (EV_A);
3696         ev_run (EV_A_ EVRUN_NOWAIT);
3697       }
3698   }
3699 }
3700
3701 static void
3702 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3703 {
3704   ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3705
3706   ev_embed_stop (EV_A_ w);
3707
3708   {
3709     EV_P = w->other;
3710
3711     ev_loop_fork (EV_A);
3712     ev_run (EV_A_ EVRUN_NOWAIT);
3713   }
3714
3715   ev_embed_start (EV_A_ w);
3716 }
3717
3718 #if 0
3719 static void
3720 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3721 {
3722   ev_idle_stop (EV_A_ idle);
3723 }
3724 #endif
3725
3726 void
3727 ev_embed_start (EV_P_ ev_embed *w)
3728 {
3729   if (expect_false (ev_is_active (w)))
3730     return;
3731
3732   {
3733     EV_P = w->other;
3734     assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3735     ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3736   }
3737
3738   EV_FREQUENT_CHECK;
3739
3740   ev_set_priority (&w->io, ev_priority (w));
3741   ev_io_start (EV_A_ &w->io);
3742
3743   ev_prepare_init (&w->prepare, embed_prepare_cb);
3744   ev_set_priority (&w->prepare, EV_MINPRI);
3745   ev_prepare_start (EV_A_ &w->prepare);
3746
3747   ev_fork_init (&w->fork, embed_fork_cb);
3748   ev_fork_start (EV_A_ &w->fork);
3749
3750   /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3751
3752   ev_start (EV_A_ (W)w, 1);
3753
3754   EV_FREQUENT_CHECK;
3755 }
3756
3757 void
3758 ev_embed_stop (EV_P_ ev_embed *w)
3759 {
3760   clear_pending (EV_A_ (W)w);
3761   if (expect_false (!ev_is_active (w)))
3762     return;
3763
3764   EV_FREQUENT_CHECK;
3765
3766   ev_io_stop      (EV_A_ &w->io);
3767   ev_prepare_stop (EV_A_ &w->prepare);
3768   ev_fork_stop    (EV_A_ &w->fork);
3769
3770   ev_stop (EV_A_ (W)w);
3771
3772   EV_FREQUENT_CHECK;
3773 }
3774 #endif
3775
3776 #if EV_FORK_ENABLE
3777 void
3778 ev_fork_start (EV_P_ ev_fork *w)
3779 {
3780   if (expect_false (ev_is_active (w)))
3781     return;
3782
3783   EV_FREQUENT_CHECK;
3784
3785   ev_start (EV_A_ (W)w, ++forkcnt);
3786   array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3787   forks [forkcnt - 1] = w;
3788
3789   EV_FREQUENT_CHECK;
3790 }
3791
3792 void
3793 ev_fork_stop (EV_P_ ev_fork *w)
3794 {
3795   clear_pending (EV_A_ (W)w);
3796   if (expect_false (!ev_is_active (w)))
3797     return;
3798
3799   EV_FREQUENT_CHECK;
3800
3801   {
3802     int active = ev_active (w);
3803
3804     forks [active - 1] = forks [--forkcnt];
3805     ev_active (forks [active - 1]) = active;
3806   }
3807
3808   ev_stop (EV_A_ (W)w);
3809
3810   EV_FREQUENT_CHECK;
3811 }
3812 #endif
3813
3814 #if EV_CLEANUP_ENABLE
3815 void
3816 ev_cleanup_start (EV_P_ ev_cleanup *w)
3817 {
3818   if (expect_false (ev_is_active (w)))
3819     return;
3820
3821   EV_FREQUENT_CHECK;
3822
3823   ev_start (EV_A_ (W)w, ++cleanupcnt);
3824   array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3825   cleanups [cleanupcnt - 1] = w;
3826
3827   /* cleanup watchers should never keep a refcount on the loop */
3828   ev_unref (EV_A);
3829   EV_FREQUENT_CHECK;
3830 }
3831
3832 void
3833 ev_cleanup_stop (EV_P_ ev_cleanup *w)
3834 {
3835   clear_pending (EV_A_ (W)w);
3836   if (expect_false (!ev_is_active (w)))
3837     return;
3838
3839   EV_FREQUENT_CHECK;
3840   ev_ref (EV_A);
3841
3842   {
3843     int active = ev_active (w);
3844
3845     cleanups [active - 1] = cleanups [--cleanupcnt];
3846     ev_active (cleanups [active - 1]) = active;
3847   }
3848
3849   ev_stop (EV_A_ (W)w);
3850
3851   EV_FREQUENT_CHECK;
3852 }
3853 #endif
3854
3855 #if EV_ASYNC_ENABLE
3856 void
3857 ev_async_start (EV_P_ ev_async *w)
3858 {
3859   if (expect_false (ev_is_active (w)))
3860     return;
3861
3862   w->sent = 0;
3863
3864   evpipe_init (EV_A);
3865
3866   EV_FREQUENT_CHECK;
3867
3868   ev_start (EV_A_ (W)w, ++asynccnt);
3869   array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3870   asyncs [asynccnt - 1] = w;
3871
3872   EV_FREQUENT_CHECK;
3873 }
3874
3875 void
3876 ev_async_stop (EV_P_ ev_async *w)
3877 {
3878   clear_pending (EV_A_ (W)w);
3879   if (expect_false (!ev_is_active (w)))
3880     return;
3881
3882   EV_FREQUENT_CHECK;
3883
3884   {
3885     int active = ev_active (w);
3886
3887     asyncs [active - 1] = asyncs [--asynccnt];
3888     ev_active (asyncs [active - 1]) = active;
3889   }
3890
3891   ev_stop (EV_A_ (W)w);
3892
3893   EV_FREQUENT_CHECK;
3894 }
3895
3896 void
3897 ev_async_send (EV_P_ ev_async *w)
3898 {
3899   w->sent = 1;
3900   evpipe_write (EV_A_ &async_pending);
3901 }
3902 #endif
3903
3904 /*****************************************************************************/
3905
3906 struct ev_once
3907 {
3908   ev_io io;
3909   ev_timer to;
3910   void (*cb)(int revents, void *arg);
3911   void *arg;
3912 };
3913
3914 static void
3915 once_cb (EV_P_ struct ev_once *once, int revents)
3916 {
3917   void (*cb)(int revents, void *arg) = once->cb;
3918   void *arg = once->arg;
3919
3920   ev_io_stop    (EV_A_ &once->io);
3921   ev_timer_stop (EV_A_ &once->to);
3922   ev_free (once);
3923
3924   cb (revents, arg);
3925 }
3926
3927 static void
3928 once_cb_io (EV_P_ ev_io *w, int revents)
3929 {
3930   struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3931
3932   once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
3933 }
3934
3935 static void
3936 once_cb_to (EV_P_ ev_timer *w, int revents)
3937 {
3938   struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3939
3940   once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3941 }
3942
3943 void
3944 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
3945 {
3946   struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3947
3948   if (expect_false (!once))
3949     {
3950       cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3951       return;
3952     }
3953
3954   once->cb  = cb;
3955   once->arg = arg;
3956
3957   ev_init (&once->io, once_cb_io);
3958   if (fd >= 0)
3959     {
3960       ev_io_set (&once->io, fd, events);
3961       ev_io_start (EV_A_ &once->io);
3962     }
3963
3964   ev_init (&once->to, once_cb_to);
3965   if (timeout >= 0.)
3966     {
3967       ev_timer_set (&once->to, timeout, 0.);
3968       ev_timer_start (EV_A_ &once->to);
3969     }
3970 }
3971
3972 /*****************************************************************************/
3973
3974 #if EV_WALK_ENABLE
3975 void ecb_cold
3976 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3977 {
3978   int i, j;
3979   ev_watcher_list *wl, *wn;
3980
3981   if (types & (EV_IO | EV_EMBED))
3982     for (i = 0; i < anfdmax; ++i)
3983       for (wl = anfds [i].head; wl; )
3984         {
3985           wn = wl->next;
3986
3987 #if EV_EMBED_ENABLE
3988           if (ev_cb ((ev_io *)wl) == embed_io_cb)
3989             {
3990               if (types & EV_EMBED)
3991                 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3992             }
3993           else
3994 #endif
3995 #if EV_USE_INOTIFY
3996           if (ev_cb ((ev_io *)wl) == infy_cb)
3997             ;
3998           else
3999 #endif
4000           if ((ev_io *)wl != &pipe_w)
4001             if (types & EV_IO)
4002               cb (EV_A_ EV_IO, wl);
4003
4004           wl = wn;
4005         }
4006
4007   if (types & (EV_TIMER | EV_STAT))
4008     for (i = timercnt + HEAP0; i-- > HEAP0; )
4009 #if EV_STAT_ENABLE
4010       /*TODO: timer is not always active*/
4011       if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4012         {
4013           if (types & EV_STAT)
4014             cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4015         }
4016       else
4017 #endif
4018       if (types & EV_TIMER)
4019         cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4020
4021 #if EV_PERIODIC_ENABLE
4022   if (types & EV_PERIODIC)
4023     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4024       cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4025 #endif
4026
4027 #if EV_IDLE_ENABLE
4028   if (types & EV_IDLE)
4029     for (j = NUMPRI; i--; )
4030       for (i = idlecnt [j]; i--; )
4031         cb (EV_A_ EV_IDLE, idles [j][i]);
4032 #endif
4033
4034 #if EV_FORK_ENABLE
4035   if (types & EV_FORK)
4036     for (i = forkcnt; i--; )
4037       if (ev_cb (forks [i]) != embed_fork_cb)
4038         cb (EV_A_ EV_FORK, forks [i]);
4039 #endif
4040
4041 #if EV_ASYNC_ENABLE
4042   if (types & EV_ASYNC)
4043     for (i = asynccnt; i--; )
4044       cb (EV_A_ EV_ASYNC, asyncs [i]);
4045 #endif
4046
4047 #if EV_PREPARE_ENABLE
4048   if (types & EV_PREPARE)
4049     for (i = preparecnt; i--; )
4050 # if EV_EMBED_ENABLE
4051       if (ev_cb (prepares [i]) != embed_prepare_cb)
4052 # endif
4053         cb (EV_A_ EV_PREPARE, prepares [i]);
4054 #endif
4055
4056 #if EV_CHECK_ENABLE
4057   if (types & EV_CHECK)
4058     for (i = checkcnt; i--; )
4059       cb (EV_A_ EV_CHECK, checks [i]);
4060 #endif
4061
4062 #if EV_SIGNAL_ENABLE
4063   if (types & EV_SIGNAL)
4064     for (i = 0; i < EV_NSIG - 1; ++i)
4065       for (wl = signals [i].head; wl; )
4066         {
4067           wn = wl->next;
4068           cb (EV_A_ EV_SIGNAL, wl);
4069           wl = wn;
4070         }
4071 #endif
4072
4073 #if EV_CHILD_ENABLE
4074   if (types & EV_CHILD)
4075     for (i = (EV_PID_HASHSIZE); i--; )
4076       for (wl = childs [i]; wl; )
4077         {
4078           wn = wl->next;
4079           cb (EV_A_ EV_CHILD, wl);
4080           wl = wn;
4081         }
4082 #endif
4083 /* EV_STAT     0x00001000 /* stat data changed */
4084 /* EV_EMBED    0x00010000 /* embedded event loop needs sweep */
4085 }
4086 #endif
4087
4088 #if EV_MULTIPLICITY
4089   #include "ev_wrap.h"
4090 #endif
4091
4092 EV_CPP(})
4093