]> rtime.felk.cvut.cz Git - sojka/libev.git/blob - ev.c
*** empty log message ***
[sojka/libev.git] / ev.c
1 /*
2  * libev event processing core, watcher management
3  *
4  * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without modifica-
8  * tion, are permitted provided that the following conditions are met:
9  *
10  *   1.  Redistributions of source code must retain the above copyright notice,
11  *       this list of conditions and the following disclaimer.
12  *
13  *   2.  Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in the
15  *       documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19  * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO
20  * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21  * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25  * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26  * OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * Alternatively, the contents of this file may be used under the terms of
29  * the GNU General Public License ("GPL") version 2 or any later version,
30  * in which case the provisions of the GPL are applicable instead of
31  * the above. If you wish to allow the use of your version of this file
32  * only under the terms of the GPL and not to allow others to use your
33  * version of this file under the BSD license, indicate your decision
34  * by deleting the provisions above and replace them with the notice
35  * and other provisions required by the GPL. If you do not delete the
36  * provisions above, a recipient may use your version of this file under
37  * either the BSD or the GPL.
38  */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 #  include EV_CONFIG_H
44 # else
45 #  include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 #  define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 #  ifndef EV_USE_CLOCK_SYSCALL
56 #   define EV_USE_CLOCK_SYSCALL 1
57 #   ifndef EV_USE_REALTIME
58 #    define EV_USE_REALTIME  0
59 #   endif
60 #   ifndef EV_USE_MONOTONIC
61 #    define EV_USE_MONOTONIC 1
62 #   endif
63 #  endif
64 # elif !defined EV_USE_CLOCK_SYSCALL
65 #  define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 #  ifndef EV_USE_MONOTONIC
70 #   define EV_USE_MONOTONIC 1
71 #  endif
72 #  ifndef EV_USE_REALTIME
73 #   define EV_USE_REALTIME  0
74 #  endif
75 # else
76 #  ifndef EV_USE_MONOTONIC
77 #   define EV_USE_MONOTONIC 0
78 #  endif
79 #  ifndef EV_USE_REALTIME
80 #   define EV_USE_REALTIME  0
81 #  endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 #  ifndef EV_USE_NANOSLEEP
86 #    define EV_USE_NANOSLEEP EV_FEATURE_OS
87 #  endif
88 # else
89 #   undef EV_USE_NANOSLEEP
90 #   define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 #  ifndef EV_USE_SELECT
95 #   define EV_USE_SELECT EV_FEATURE_BACKENDS
96 #  endif
97 # else
98 #  undef EV_USE_SELECT
99 #  define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 #  ifndef EV_USE_POLL
104 #   define EV_USE_POLL EV_FEATURE_BACKENDS
105 #  endif
106 # else
107 #  undef EV_USE_POLL
108 #  define EV_USE_POLL 0
109 # endif
110    
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 #  ifndef EV_USE_EPOLL
113 #   define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 #  endif
115 # else
116 #  undef EV_USE_EPOLL
117 #  define EV_USE_EPOLL 0
118 # endif
119    
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 #  ifndef EV_USE_KQUEUE
122 #   define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 #  endif
124 # else
125 #  undef EV_USE_KQUEUE
126 #  define EV_USE_KQUEUE 0
127 # endif
128    
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 #  ifndef EV_USE_PORT
131 #   define EV_USE_PORT EV_FEATURE_BACKENDS
132 #  endif
133 # else
134 #  undef EV_USE_PORT
135 #  define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 #  ifndef EV_USE_INOTIFY
140 #   define EV_USE_INOTIFY EV_FEATURE_OS
141 #  endif
142 # else
143 #  undef EV_USE_INOTIFY
144 #  define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 #  ifndef EV_USE_SIGNALFD
149 #   define EV_USE_SIGNALFD EV_FEATURE_OS
150 #  endif
151 # else
152 #  undef EV_USE_SIGNALFD
153 #  define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 #  ifndef EV_USE_EVENTFD
158 #   define EV_USE_EVENTFD EV_FEATURE_OS
159 #  endif
160 # else
161 #  undef EV_USE_EVENTFD
162 #  define EV_USE_EVENTFD 0
163 # endif
164  
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 #if EV_NO_THREADS
189 # undef EV_NO_SMP
190 # define EV_NO_SMP 1
191 # undef ECB_NO_THREADS
192 # define ECB_NO_THREADS 1
193 #endif
194 #if EV_NO_SMP
195 # undef EV_NO_SMP
196 # define ECB_NO_SMP 1
197 #endif
198
199 #ifndef _WIN32
200 # include <sys/time.h>
201 # include <sys/wait.h>
202 # include <unistd.h>
203 #else
204 # include <io.h>
205 # define WIN32_LEAN_AND_MEAN
206 # include <winsock2.h>
207 # include <windows.h>
208 # ifndef EV_SELECT_IS_WINSOCKET
209 #  define EV_SELECT_IS_WINSOCKET 1
210 # endif
211 # undef EV_AVOID_STDIO
212 #endif
213
214 /* OS X, in its infinite idiocy, actually HARDCODES
215  * a limit of 1024 into their select. Where people have brains,
216  * OS X engineers apparently have a vacuum. Or maybe they were
217  * ordered to have a vacuum, or they do anything for money.
218  * This might help. Or not.
219  */
220 #define _DARWIN_UNLIMITED_SELECT 1
221
222 /* this block tries to deduce configuration from header-defined symbols and defaults */
223
224 /* try to deduce the maximum number of signals on this platform */
225 #if defined EV_NSIG
226 /* use what's provided */
227 #elif defined NSIG
228 # define EV_NSIG (NSIG)
229 #elif defined _NSIG
230 # define EV_NSIG (_NSIG)
231 #elif defined SIGMAX
232 # define EV_NSIG (SIGMAX+1)
233 #elif defined SIG_MAX
234 # define EV_NSIG (SIG_MAX+1)
235 #elif defined _SIG_MAX
236 # define EV_NSIG (_SIG_MAX+1)
237 #elif defined MAXSIG
238 # define EV_NSIG (MAXSIG+1)
239 #elif defined MAX_SIG
240 # define EV_NSIG (MAX_SIG+1)
241 #elif defined SIGARRAYSIZE
242 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243 #elif defined _sys_nsig
244 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245 #else
246 # error "unable to find value for NSIG, please report"
247 /* to make it compile regardless, just remove the above line, */
248 /* but consider reporting it, too! :) */
249 # define EV_NSIG 65
250 #endif
251
252 #ifndef EV_USE_FLOOR
253 # define EV_USE_FLOOR 0
254 #endif
255
256 #ifndef EV_USE_CLOCK_SYSCALL
257 # if __linux && __GLIBC__ >= 2
258 #  define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259 # else
260 #  define EV_USE_CLOCK_SYSCALL 0
261 # endif
262 #endif
263
264 #ifndef EV_USE_MONOTONIC
265 # if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266 #  define EV_USE_MONOTONIC EV_FEATURE_OS
267 # else
268 #  define EV_USE_MONOTONIC 0
269 # endif
270 #endif
271
272 #ifndef EV_USE_REALTIME
273 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274 #endif
275
276 #ifndef EV_USE_NANOSLEEP
277 # if _POSIX_C_SOURCE >= 199309L
278 #  define EV_USE_NANOSLEEP EV_FEATURE_OS
279 # else
280 #  define EV_USE_NANOSLEEP 0
281 # endif
282 #endif
283
284 #ifndef EV_USE_SELECT
285 # define EV_USE_SELECT EV_FEATURE_BACKENDS
286 #endif
287
288 #ifndef EV_USE_POLL
289 # ifdef _WIN32
290 #  define EV_USE_POLL 0
291 # else
292 #  define EV_USE_POLL EV_FEATURE_BACKENDS
293 # endif
294 #endif
295
296 #ifndef EV_USE_EPOLL
297 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298 #  define EV_USE_EPOLL EV_FEATURE_BACKENDS
299 # else
300 #  define EV_USE_EPOLL 0
301 # endif
302 #endif
303
304 #ifndef EV_USE_KQUEUE
305 # define EV_USE_KQUEUE 0
306 #endif
307
308 #ifndef EV_USE_PORT
309 # define EV_USE_PORT 0
310 #endif
311
312 #ifndef EV_USE_INOTIFY
313 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314 #  define EV_USE_INOTIFY EV_FEATURE_OS
315 # else
316 #  define EV_USE_INOTIFY 0
317 # endif
318 #endif
319
320 #ifndef EV_PID_HASHSIZE
321 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322 #endif
323
324 #ifndef EV_INOTIFY_HASHSIZE
325 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326 #endif
327
328 #ifndef EV_USE_EVENTFD
329 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330 #  define EV_USE_EVENTFD EV_FEATURE_OS
331 # else
332 #  define EV_USE_EVENTFD 0
333 # endif
334 #endif
335
336 #ifndef EV_USE_SIGNALFD
337 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338 #  define EV_USE_SIGNALFD EV_FEATURE_OS
339 # else
340 #  define EV_USE_SIGNALFD 0
341 # endif
342 #endif
343
344 #if 0 /* debugging */
345 # define EV_VERIFY 3
346 # define EV_USE_4HEAP 1
347 # define EV_HEAP_CACHE_AT 1
348 #endif
349
350 #ifndef EV_VERIFY
351 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352 #endif
353
354 #ifndef EV_USE_4HEAP
355 # define EV_USE_4HEAP EV_FEATURE_DATA
356 #endif
357
358 #ifndef EV_HEAP_CACHE_AT
359 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360 #endif
361
362 #ifdef ANDROID
363 /* supposedly, android doesn't typedef fd_mask */
364 # undef EV_USE_SELECT
365 # define EV_USE_SELECT 0
366 /* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367 # undef EV_USE_CLOCK_SYSCALL
368 # define EV_USE_CLOCK_SYSCALL 0
369 #endif
370
371 /* aix's poll.h seems to cause lots of trouble */
372 #ifdef _AIX
373 /* AIX has a completely broken poll.h header */
374 # undef EV_USE_POLL
375 # define EV_USE_POLL 0
376 #endif
377
378 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379 /* which makes programs even slower. might work on other unices, too. */
380 #if EV_USE_CLOCK_SYSCALL
381 # include <sys/syscall.h>
382 # ifdef SYS_clock_gettime
383 #  define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384 #  undef EV_USE_MONOTONIC
385 #  define EV_USE_MONOTONIC 1
386 # else
387 #  undef EV_USE_CLOCK_SYSCALL
388 #  define EV_USE_CLOCK_SYSCALL 0
389 # endif
390 #endif
391
392 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
393
394 #ifndef CLOCK_MONOTONIC
395 # undef EV_USE_MONOTONIC
396 # define EV_USE_MONOTONIC 0
397 #endif
398
399 #ifndef CLOCK_REALTIME
400 # undef EV_USE_REALTIME
401 # define EV_USE_REALTIME 0
402 #endif
403
404 #if !EV_STAT_ENABLE
405 # undef EV_USE_INOTIFY
406 # define EV_USE_INOTIFY 0
407 #endif
408
409 #if !EV_USE_NANOSLEEP
410 /* hp-ux has it in sys/time.h, which we unconditionally include above */
411 # if !defined _WIN32 && !defined __hpux
412 #  include <sys/select.h>
413 # endif
414 #endif
415
416 #if EV_USE_INOTIFY
417 # include <sys/statfs.h>
418 # include <sys/inotify.h>
419 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420 # ifndef IN_DONT_FOLLOW
421 #  undef EV_USE_INOTIFY
422 #  define EV_USE_INOTIFY 0
423 # endif
424 #endif
425
426 #if EV_USE_EVENTFD
427 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428 # include <stdint.h>
429 # ifndef EFD_NONBLOCK
430 #  define EFD_NONBLOCK O_NONBLOCK
431 # endif
432 # ifndef EFD_CLOEXEC
433 #  ifdef O_CLOEXEC
434 #   define EFD_CLOEXEC O_CLOEXEC
435 #  else
436 #   define EFD_CLOEXEC 02000000
437 #  endif
438 # endif
439 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440 #endif
441
442 #if EV_USE_SIGNALFD
443 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444 # include <stdint.h>
445 # ifndef SFD_NONBLOCK
446 #  define SFD_NONBLOCK O_NONBLOCK
447 # endif
448 # ifndef SFD_CLOEXEC
449 #  ifdef O_CLOEXEC
450 #   define SFD_CLOEXEC O_CLOEXEC
451 #  else
452 #   define SFD_CLOEXEC 02000000
453 #  endif
454 # endif
455 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456
457 struct signalfd_siginfo
458 {
459   uint32_t ssi_signo;
460   char pad[128 - sizeof (uint32_t)];
461 };
462 #endif
463
464 /**/
465
466 #if EV_VERIFY >= 3
467 # define EV_FREQUENT_CHECK ev_verify (EV_A)
468 #else
469 # define EV_FREQUENT_CHECK do { } while (0)
470 #endif
471
472 /*
473  * This is used to work around floating point rounding problems.
474  * This value is good at least till the year 4000.
475  */
476 #define MIN_INTERVAL  0.0001220703125 /* 1/2**13, good till 4000 */
477 /*#define MIN_INTERVAL  0.00000095367431640625 /* 1/2**20, good till 2200 */
478
479 #define MIN_TIMEJUMP  1. /* minimum timejump that gets detected (if monotonic clock available) */
480 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
481
482 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484
485 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486 /* ECB.H BEGIN */
487 /*
488  * libecb - http://software.schmorp.de/pkg/libecb
489  *
490  * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491  * Copyright (©) 2011 Emanuele Giaquinta
492  * All rights reserved.
493  *
494  * Redistribution and use in source and binary forms, with or without modifica-
495  * tion, are permitted provided that the following conditions are met:
496  *
497  *   1.  Redistributions of source code must retain the above copyright notice,
498  *       this list of conditions and the following disclaimer.
499  *
500  *   2.  Redistributions in binary form must reproduce the above copyright
501  *       notice, this list of conditions and the following disclaimer in the
502  *       documentation and/or other materials provided with the distribution.
503  *
504  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506  * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO
507  * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508  * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512  * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513  * OF THE POSSIBILITY OF SUCH DAMAGE.
514  */
515
516 #ifndef ECB_H
517 #define ECB_H
518
519 /* 16 bits major, 16 bits minor */
520 #define ECB_VERSION 0x00010003
521
522 #ifdef _WIN32
523   typedef   signed char   int8_t;
524   typedef unsigned char  uint8_t;
525   typedef   signed short  int16_t;
526   typedef unsigned short uint16_t;
527   typedef   signed int    int32_t;
528   typedef unsigned int   uint32_t;
529   #if __GNUC__
530     typedef   signed long long int64_t;
531     typedef unsigned long long uint64_t;
532   #else /* _MSC_VER || __BORLANDC__ */
533     typedef   signed __int64   int64_t;
534     typedef unsigned __int64   uint64_t;
535   #endif
536   #ifdef _WIN64
537     #define ECB_PTRSIZE 8
538     typedef uint64_t uintptr_t;
539     typedef  int64_t  intptr_t;
540   #else
541     #define ECB_PTRSIZE 4
542     typedef uint32_t uintptr_t;
543     typedef  int32_t  intptr_t;
544   #endif
545 #else
546   #include <inttypes.h>
547   #if UINTMAX_MAX > 0xffffffffU
548     #define ECB_PTRSIZE 8
549   #else
550     #define ECB_PTRSIZE 4
551   #endif
552 #endif
553
554 /* work around x32 idiocy by defining proper macros */
555 #if __x86_64 || _M_AMD64
556   #if __ILP32
557     #define ECB_AMD64_X32 1
558   #else
559     #define ECB_AMD64 1
560   #endif
561 #endif
562
563 /* many compilers define _GNUC_ to some versions but then only implement
564  * what their idiot authors think are the "more important" extensions,
565  * causing enormous grief in return for some better fake benchmark numbers.
566  * or so.
567  * we try to detect these and simply assume they are not gcc - if they have
568  * an issue with that they should have done it right in the first place.
569  */
570 #ifndef ECB_GCC_VERSION
571   #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
572     #define ECB_GCC_VERSION(major,minor) 0
573   #else
574     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
575   #endif
576 #endif
577
578 #define ECB_C     (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
579 #define ECB_C99   (__STDC_VERSION__ >= 199901L)
580 #define ECB_C11   (__STDC_VERSION__ >= 201112L)
581 #define ECB_CPP   (__cplusplus+0)
582 #define ECB_CPP11 (__cplusplus >= 201103L)
583
584 #if ECB_CPP
585   #define ECB_EXTERN_C extern "C"
586   #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
587   #define ECB_EXTERN_C_END }
588 #else
589   #define ECB_EXTERN_C extern
590   #define ECB_EXTERN_C_BEG
591   #define ECB_EXTERN_C_END
592 #endif
593
594 /*****************************************************************************/
595
596 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
597 /* ECB_NO_SMP     - ecb might be used in multiple threads, but only on a single cpu */
598
599 #if ECB_NO_THREADS
600   #define ECB_NO_SMP 1
601 #endif
602
603 #if ECB_NO_SMP
604   #define ECB_MEMORY_FENCE do { } while (0)
605 #endif
606
607 #ifndef ECB_MEMORY_FENCE
608   #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
609     #if __i386 || __i386__
610       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
611       #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ (""                        : : : "memory")
612       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
613     #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
614       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mfence"   : : : "memory")
615       #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ (""         : : : "memory")
616       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
617     #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
618       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("sync"     : : : "memory")
619     #elif defined __ARM_ARCH_6__  || defined __ARM_ARCH_6J__  \
620        || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
621       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
622     #elif defined __ARM_ARCH_7__  || defined __ARM_ARCH_7A__  \
623        || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
624       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("dmb"      : : : "memory")
625     #elif __sparc || __sparc__
626       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
627       #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad"                            : : : "memory")
628       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore             | #StoreStore")
629     #elif defined __s390__ || defined __s390x__
630       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("bcr 15,0" : : : "memory")
631     #elif defined __mips__
632       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("sync"     : : : "memory")
633     #elif defined __alpha__
634       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mb"       : : : "memory")
635     #elif defined __hppa__
636       #define ECB_MEMORY_FENCE         __asm__ __volatile__ (""         : : : "memory")
637       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
638     #elif defined __ia64__
639       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mf"       : : : "memory")
640     #endif
641   #endif
642 #endif
643
644 #ifndef ECB_MEMORY_FENCE
645   #if ECB_GCC_VERSION(4,7)
646     /* see comment below (stdatomic.h) about the C11 memory model. */
647     #define ECB_MEMORY_FENCE         __atomic_thread_fence (__ATOMIC_SEQ_CST)
648
649   /* The __has_feature syntax from clang is so misdesigned that we cannot use it
650    * without risking compile time errors with other compilers. We *could*
651    * define our own ecb_clang_has_feature, but I just can't be bothered to work
652    * around this shit time and again.
653    * #elif defined __clang && __has_feature (cxx_atomic)
654    *   // see comment below (stdatomic.h) about the C11 memory model.
655    *   #define ECB_MEMORY_FENCE         __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
656    */
657
658   #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
659     #define ECB_MEMORY_FENCE         __sync_synchronize ()
660   #elif _MSC_VER >= 1400 /* VC++ 2005 */
661     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
662     #define ECB_MEMORY_FENCE         _ReadWriteBarrier ()
663     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
664     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
665   #elif defined _WIN32
666     #include <WinNT.h>
667     #define ECB_MEMORY_FENCE         MemoryBarrier () /* actually just xchg on x86... scary */
668   #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
669     #include <mbarrier.h>
670     #define ECB_MEMORY_FENCE         __machine_rw_barrier ()
671     #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier  ()
672     #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier  ()
673   #elif __xlC__
674     #define ECB_MEMORY_FENCE         __sync ()
675   #endif
676 #endif
677
678 #ifndef ECB_MEMORY_FENCE
679   #if ECB_C11 && !defined __STDC_NO_ATOMICS__
680     /* we assume that these memory fences work on all variables/all memory accesses, */
681     /* not just C11 atomics and atomic accesses */
682     #include <stdatomic.h>
683     /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
684     /* any fence other than seq_cst, which isn't very efficient for us. */
685     /* Why that is, we don't know - either the C11 memory model is quite useless */
686     /* for most usages, or gcc and clang have a bug */
687     /* I *currently* lean towards the latter, and inefficiently implement */
688     /* all three of ecb's fences as a seq_cst fence */
689     #define ECB_MEMORY_FENCE         atomic_thread_fence (memory_order_seq_cst)
690   #endif
691 #endif
692
693 #ifndef ECB_MEMORY_FENCE
694   #if !ECB_AVOID_PTHREADS
695     /*
696      * if you get undefined symbol references to pthread_mutex_lock,
697      * or failure to find pthread.h, then you should implement
698      * the ECB_MEMORY_FENCE operations for your cpu/compiler
699      * OR provide pthread.h and link against the posix thread library
700      * of your system.
701      */
702     #include <pthread.h>
703     #define ECB_NEEDS_PTHREADS 1
704     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
705
706     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
707     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
708   #endif
709 #endif
710
711 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
712   #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
713 #endif
714
715 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
716   #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
717 #endif
718
719 /*****************************************************************************/
720
721 #if __cplusplus
722   #define ecb_inline static inline
723 #elif ECB_GCC_VERSION(2,5)
724   #define ecb_inline static __inline__
725 #elif ECB_C99
726   #define ecb_inline static inline
727 #else
728   #define ecb_inline static
729 #endif
730
731 #if ECB_GCC_VERSION(3,3)
732   #define ecb_restrict __restrict__
733 #elif ECB_C99
734   #define ecb_restrict restrict
735 #else
736   #define ecb_restrict
737 #endif
738
739 typedef int ecb_bool;
740
741 #define ECB_CONCAT_(a, b) a ## b
742 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
743 #define ECB_STRINGIFY_(a) # a
744 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
745
746 #define ecb_function_ ecb_inline
747
748 #if ECB_GCC_VERSION(3,1)
749   #define ecb_attribute(attrlist)        __attribute__(attrlist)
750   #define ecb_is_constant(expr)          __builtin_constant_p (expr)
751   #define ecb_expect(expr,value)         __builtin_expect ((expr),(value))
752   #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
753 #else
754   #define ecb_attribute(attrlist)
755   #define ecb_is_constant(expr)          0
756   #define ecb_expect(expr,value)         (expr)
757   #define ecb_prefetch(addr,rw,locality)
758 #endif
759
760 /* no emulation for ecb_decltype */
761 #if ECB_GCC_VERSION(4,5)
762   #define ecb_decltype(x) __decltype(x)
763 #elif ECB_GCC_VERSION(3,0)
764   #define ecb_decltype(x) __typeof(x)
765 #endif
766
767 #define ecb_noinline   ecb_attribute ((__noinline__))
768 #define ecb_unused     ecb_attribute ((__unused__))
769 #define ecb_const      ecb_attribute ((__const__))
770 #define ecb_pure       ecb_attribute ((__pure__))
771
772 #if ECB_C11
773   #define ecb_noreturn   _Noreturn
774 #else
775   #define ecb_noreturn   ecb_attribute ((__noreturn__))
776 #endif
777
778 #if ECB_GCC_VERSION(4,3)
779   #define ecb_artificial ecb_attribute ((__artificial__))
780   #define ecb_hot        ecb_attribute ((__hot__))
781   #define ecb_cold       ecb_attribute ((__cold__))
782 #else
783   #define ecb_artificial
784   #define ecb_hot
785   #define ecb_cold
786 #endif
787
788 /* put around conditional expressions if you are very sure that the  */
789 /* expression is mostly true or mostly false. note that these return */
790 /* booleans, not the expression.                                     */
791 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
792 #define ecb_expect_true(expr)  ecb_expect (!!(expr), 1)
793 /* for compatibility to the rest of the world */
794 #define ecb_likely(expr)   ecb_expect_true  (expr)
795 #define ecb_unlikely(expr) ecb_expect_false (expr)
796
797 /* count trailing zero bits and count # of one bits */
798 #if ECB_GCC_VERSION(3,4)
799   /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
800   #define ecb_ld32(x)      (__builtin_clz      (x) ^ 31)
801   #define ecb_ld64(x)      (__builtin_clzll    (x) ^ 63)
802   #define ecb_ctz32(x)      __builtin_ctz      (x)
803   #define ecb_ctz64(x)      __builtin_ctzll    (x)
804   #define ecb_popcount32(x) __builtin_popcount (x)
805   /* no popcountll */
806 #else
807   ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
808   ecb_function_ int
809   ecb_ctz32 (uint32_t x)
810   {
811     int r = 0;
812
813     x &= ~x + 1; /* this isolates the lowest bit */
814
815 #if ECB_branchless_on_i386
816     r += !!(x & 0xaaaaaaaa) << 0;
817     r += !!(x & 0xcccccccc) << 1;
818     r += !!(x & 0xf0f0f0f0) << 2;
819     r += !!(x & 0xff00ff00) << 3;
820     r += !!(x & 0xffff0000) << 4;
821 #else
822     if (x & 0xaaaaaaaa) r +=  1;
823     if (x & 0xcccccccc) r +=  2;
824     if (x & 0xf0f0f0f0) r +=  4;
825     if (x & 0xff00ff00) r +=  8;
826     if (x & 0xffff0000) r += 16;
827 #endif
828
829     return r;
830   }
831
832   ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
833   ecb_function_ int
834   ecb_ctz64 (uint64_t x)
835   {
836     int shift = x & 0xffffffffU ? 0 : 32;
837     return ecb_ctz32 (x >> shift) + shift;
838   }
839
840   ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
841   ecb_function_ int
842   ecb_popcount32 (uint32_t x)
843   {
844     x -=  (x >> 1) & 0x55555555;
845     x  = ((x >> 2) & 0x33333333) + (x & 0x33333333);
846     x  = ((x >> 4) + x) & 0x0f0f0f0f;
847     x *= 0x01010101;
848
849     return x >> 24;
850   }
851
852   ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
853   ecb_function_ int ecb_ld32 (uint32_t x)
854   {
855     int r = 0;
856
857     if (x >> 16) { x >>= 16; r += 16; }
858     if (x >>  8) { x >>=  8; r +=  8; }
859     if (x >>  4) { x >>=  4; r +=  4; }
860     if (x >>  2) { x >>=  2; r +=  2; }
861     if (x >>  1) {           r +=  1; }
862
863     return r;
864   }
865
866   ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
867   ecb_function_ int ecb_ld64 (uint64_t x)
868   {
869     int r = 0;
870
871     if (x >> 32) { x >>= 32; r += 32; }
872
873     return r + ecb_ld32 (x);
874   }
875 #endif
876
877 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
878 ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
879 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
880 ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
881
882 ecb_function_ uint8_t  ecb_bitrev8  (uint8_t  x) ecb_const;
883 ecb_function_ uint8_t  ecb_bitrev8  (uint8_t  x)
884 {
885   return (  (x * 0x0802U & 0x22110U)
886           | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16; 
887 }
888
889 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
890 ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
891 {
892   x = ((x >>  1) &     0x5555) | ((x &     0x5555) <<  1);
893   x = ((x >>  2) &     0x3333) | ((x &     0x3333) <<  2);
894   x = ((x >>  4) &     0x0f0f) | ((x &     0x0f0f) <<  4);
895   x = ( x >>  8              ) | ( x               <<  8);
896
897   return x;
898 }
899
900 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
901 ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
902 {
903   x = ((x >>  1) & 0x55555555) | ((x & 0x55555555) <<  1);
904   x = ((x >>  2) & 0x33333333) | ((x & 0x33333333) <<  2);
905   x = ((x >>  4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) <<  4);
906   x = ((x >>  8) & 0x00ff00ff) | ((x & 0x00ff00ff) <<  8);
907   x = ( x >> 16              ) | ( x               << 16);
908
909   return x;
910 }
911
912 /* popcount64 is only available on 64 bit cpus as gcc builtin */
913 /* so for this version we are lazy */
914 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
915 ecb_function_ int
916 ecb_popcount64 (uint64_t x)
917 {
918   return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
919 }
920
921 ecb_inline uint8_t  ecb_rotl8  (uint8_t  x, unsigned int count) ecb_const;
922 ecb_inline uint8_t  ecb_rotr8  (uint8_t  x, unsigned int count) ecb_const;
923 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
924 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
925 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
926 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
927 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
928 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
929
930 ecb_inline uint8_t  ecb_rotl8  (uint8_t  x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
931 ecb_inline uint8_t  ecb_rotr8  (uint8_t  x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
932 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
933 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
934 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
935 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
936 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
937 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
938
939 #if ECB_GCC_VERSION(4,3)
940   #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
941   #define ecb_bswap32(x)  __builtin_bswap32 (x)
942   #define ecb_bswap64(x)  __builtin_bswap64 (x)
943 #else
944   ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
945   ecb_function_ uint16_t
946   ecb_bswap16 (uint16_t x)
947   {
948     return ecb_rotl16 (x, 8);
949   }
950
951   ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
952   ecb_function_ uint32_t
953   ecb_bswap32 (uint32_t x)
954   {
955     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
956   }
957
958   ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
959   ecb_function_ uint64_t
960   ecb_bswap64 (uint64_t x)
961   {
962     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
963   }
964 #endif
965
966 #if ECB_GCC_VERSION(4,5)
967   #define ecb_unreachable() __builtin_unreachable ()
968 #else
969   /* this seems to work fine, but gcc always emits a warning for it :/ */
970   ecb_inline void ecb_unreachable (void) ecb_noreturn;
971   ecb_inline void ecb_unreachable (void) { }
972 #endif
973
974 /* try to tell the compiler that some condition is definitely true */
975 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
976
977 ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
978 ecb_inline unsigned char
979 ecb_byteorder_helper (void)
980 {
981   /* the union code still generates code under pressure in gcc, */
982   /* but less than using pointers, and always seems to */
983   /* successfully return a constant. */
984   /* the reason why we have this horrible preprocessor mess */
985   /* is to avoid it in all cases, at least on common architectures */
986   /* or when using a recent enough gcc version (>= 4.6) */
987 #if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
988   return 0x44;
989 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
990   return 0x44;
991 #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
992   return 0x11;
993 #else
994   union
995   {
996     uint32_t i;
997     uint8_t c;
998   } u = { 0x11223344 };
999   return u.c;
1000 #endif
1001 }
1002
1003 ecb_inline ecb_bool ecb_big_endian    (void) ecb_const;
1004 ecb_inline ecb_bool ecb_big_endian    (void) { return ecb_byteorder_helper () == 0x11; }
1005 ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1006 ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1007
1008 #if ECB_GCC_VERSION(3,0) || ECB_C99
1009   #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1010 #else
1011   #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1012 #endif
1013
1014 #if __cplusplus
1015   template<typename T>
1016   static inline T ecb_div_rd (T val, T div)
1017   {
1018     return val < 0 ? - ((-val + div - 1) / div) : (val          ) / div;
1019   }
1020   template<typename T>
1021   static inline T ecb_div_ru (T val, T div)
1022   {
1023     return val < 0 ? - ((-val          ) / div) : (val + div - 1) / div;
1024   }
1025 #else
1026   #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val)            ) / (div))
1027   #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val)            ) / (div)) : ((val) + (div) - 1) / (div))
1028 #endif
1029
1030 #if ecb_cplusplus_does_not_suck
1031   /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1032   template<typename T, int N>
1033   static inline int ecb_array_length (const T (&arr)[N])
1034   {
1035     return N;
1036   }
1037 #else
1038   #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1039 #endif
1040
1041 /*******************************************************************************/
1042 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1043
1044 /* basically, everything uses "ieee pure-endian" floating point numbers */
1045 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1046 #if 0 \
1047     || __i386 || __i386__ \
1048     || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1049     || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1050     || defined __arm__ && defined __ARM_EABI__ \
1051     || defined __s390__ || defined __s390x__ \
1052     || defined __mips__ \
1053     || defined __alpha__ \
1054     || defined __hppa__ \
1055     || defined __ia64__ \
1056     || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1057   #define ECB_STDFP 1
1058   #include <string.h> /* for memcpy */
1059 #else
1060   #define ECB_STDFP 0
1061   #include <math.h> /* for frexp*, ldexp* */
1062 #endif
1063
1064 #ifndef ECB_NO_LIBM
1065
1066   /* convert a float to ieee single/binary32 */
1067   ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1068   ecb_function_ uint32_t
1069   ecb_float_to_binary32 (float x)
1070   {
1071     uint32_t r;
1072
1073     #if ECB_STDFP
1074       memcpy (&r, &x, 4);
1075     #else
1076       /* slow emulation, works for anything but -0 */
1077       uint32_t m;
1078       int e;
1079
1080       if (x == 0e0f                    ) return 0x00000000U;
1081       if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1082       if (x < -3.40282346638528860e+38f) return 0xff800000U;
1083       if (x != x                       ) return 0x7fbfffffU;
1084
1085       m = frexpf (x, &e) * 0x1000000U;
1086
1087       r = m & 0x80000000U;
1088
1089       if (r)
1090         m = -m;
1091
1092       if (e <= -126)
1093         {
1094           m &= 0xffffffU;
1095           m >>= (-125 - e);
1096           e = -126;
1097         }
1098
1099       r |= (e + 126) << 23;
1100       r |= m & 0x7fffffU;
1101     #endif
1102
1103     return r;
1104   }
1105
1106   /* converts an ieee single/binary32 to a float */
1107   ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1108   ecb_function_ float
1109   ecb_binary32_to_float (uint32_t x)
1110   {
1111     float r;
1112
1113     #if ECB_STDFP
1114       memcpy (&r, &x, 4);
1115     #else
1116       /* emulation, only works for normals and subnormals and +0 */
1117       int neg = x >> 31;
1118       int e = (x >> 23) & 0xffU;
1119
1120       x &= 0x7fffffU;
1121
1122       if (e)
1123         x |= 0x800000U;
1124       else
1125         e = 1;
1126
1127       /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1128       r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1129
1130       r = neg ? -r : r;
1131     #endif
1132
1133     return r;
1134   }
1135
1136   /* convert a double to ieee double/binary64 */
1137   ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1138   ecb_function_ uint64_t
1139   ecb_double_to_binary64 (double x)
1140   {
1141     uint64_t r;
1142
1143     #if ECB_STDFP
1144       memcpy (&r, &x, 8);
1145     #else
1146       /* slow emulation, works for anything but -0 */
1147       uint64_t m;
1148       int e;
1149
1150       if (x == 0e0                     ) return 0x0000000000000000U;
1151       if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1152       if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1153       if (x != x                       ) return 0X7ff7ffffffffffffU;
1154
1155       m = frexp (x, &e) * 0x20000000000000U;
1156
1157       r = m & 0x8000000000000000;;
1158
1159       if (r)
1160         m = -m;
1161
1162       if (e <= -1022)
1163         {
1164           m &= 0x1fffffffffffffU;
1165           m >>= (-1021 - e);
1166           e = -1022;
1167         }
1168
1169       r |= ((uint64_t)(e + 1022)) << 52;
1170       r |= m & 0xfffffffffffffU;
1171     #endif
1172
1173     return r;
1174   }
1175
1176   /* converts an ieee double/binary64 to a double */
1177   ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1178   ecb_function_ double
1179   ecb_binary64_to_double (uint64_t x)
1180   {
1181     double r;
1182
1183     #if ECB_STDFP
1184       memcpy (&r, &x, 8);
1185     #else
1186       /* emulation, only works for normals and subnormals and +0 */
1187       int neg = x >> 63;
1188       int e = (x >> 52) & 0x7ffU;
1189
1190       x &= 0xfffffffffffffU;
1191
1192       if (e)
1193         x |= 0x10000000000000U;
1194       else
1195         e = 1;
1196
1197       /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1198       r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1199
1200       r = neg ? -r : r;
1201     #endif
1202
1203     return r;
1204   }
1205
1206 #endif
1207
1208 #endif
1209
1210 /* ECB.H END */
1211
1212 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1213 /* if your architecture doesn't need memory fences, e.g. because it is
1214  * single-cpu/core, or if you use libev in a project that doesn't use libev
1215  * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1216  * libev, in which cases the memory fences become nops.
1217  * alternatively, you can remove this #error and link against libpthread,
1218  * which will then provide the memory fences.
1219  */
1220 # error "memory fences not defined for your architecture, please report"
1221 #endif
1222
1223 #ifndef ECB_MEMORY_FENCE
1224 # define ECB_MEMORY_FENCE do { } while (0)
1225 # define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1226 # define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1227 #endif
1228
1229 #define expect_false(cond) ecb_expect_false (cond)
1230 #define expect_true(cond)  ecb_expect_true  (cond)
1231 #define noinline           ecb_noinline
1232
1233 #define inline_size        ecb_inline
1234
1235 #if EV_FEATURE_CODE
1236 # define inline_speed      ecb_inline
1237 #else
1238 # define inline_speed      static noinline
1239 #endif
1240
1241 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1242
1243 #if EV_MINPRI == EV_MAXPRI
1244 # define ABSPRI(w) (((W)w), 0)
1245 #else
1246 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1247 #endif
1248
1249 #define EMPTY       /* required for microsofts broken pseudo-c compiler */
1250 #define EMPTY2(a,b) /* used to suppress some warnings */
1251
1252 typedef ev_watcher *W;
1253 typedef ev_watcher_list *WL;
1254 typedef ev_watcher_time *WT;
1255
1256 #define ev_active(w) ((W)(w))->active
1257 #define ev_at(w) ((WT)(w))->at
1258
1259 #if EV_USE_REALTIME
1260 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
1261 /* giving it a reasonably high chance of working on typical architectures */
1262 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1263 #endif
1264
1265 #if EV_USE_MONOTONIC
1266 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1267 #endif
1268
1269 #ifndef EV_FD_TO_WIN32_HANDLE
1270 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1271 #endif
1272 #ifndef EV_WIN32_HANDLE_TO_FD
1273 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1274 #endif
1275 #ifndef EV_WIN32_CLOSE_FD
1276 # define EV_WIN32_CLOSE_FD(fd) close (fd)
1277 #endif
1278
1279 #ifdef _WIN32
1280 # include "ev_win32.c"
1281 #endif
1282
1283 /*****************************************************************************/
1284
1285 /* define a suitable floor function (only used by periodics atm) */
1286
1287 #if EV_USE_FLOOR
1288 # include <math.h>
1289 # define ev_floor(v) floor (v)
1290 #else
1291
1292 #include <float.h>
1293
1294 /* a floor() replacement function, should be independent of ev_tstamp type */
1295 static ev_tstamp noinline
1296 ev_floor (ev_tstamp v)
1297 {
1298   /* the choice of shift factor is not terribly important */
1299 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1300   const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1301 #else
1302   const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1303 #endif
1304
1305   /* argument too large for an unsigned long? */
1306   if (expect_false (v >= shift))
1307     {
1308       ev_tstamp f;
1309
1310       if (v == v - 1.)
1311         return v; /* very large number */
1312
1313       f = shift * ev_floor (v * (1. / shift));
1314       return f + ev_floor (v - f);
1315     }
1316
1317   /* special treatment for negative args? */
1318   if (expect_false (v < 0.))
1319     {
1320       ev_tstamp f = -ev_floor (-v);
1321
1322       return f - (f == v ? 0 : 1);
1323     }
1324
1325   /* fits into an unsigned long */
1326   return (unsigned long)v;
1327 }
1328
1329 #endif
1330
1331 /*****************************************************************************/
1332
1333 #ifdef __linux
1334 # include <sys/utsname.h>
1335 #endif
1336
1337 static unsigned int noinline ecb_cold
1338 ev_linux_version (void)
1339 {
1340 #ifdef __linux
1341   unsigned int v = 0;
1342   struct utsname buf;
1343   int i;
1344   char *p = buf.release;
1345
1346   if (uname (&buf))
1347     return 0;
1348
1349   for (i = 3+1; --i; )
1350     {
1351       unsigned int c = 0;
1352
1353       for (;;)
1354         {
1355           if (*p >= '0' && *p <= '9')
1356             c = c * 10 + *p++ - '0';
1357           else
1358             {
1359               p += *p == '.';
1360               break;
1361             }
1362         }
1363
1364       v = (v << 8) | c;
1365     }
1366
1367   return v;
1368 #else
1369   return 0;
1370 #endif
1371 }
1372
1373 /*****************************************************************************/
1374
1375 #if EV_AVOID_STDIO
1376 static void noinline ecb_cold
1377 ev_printerr (const char *msg)
1378 {
1379   write (STDERR_FILENO, msg, strlen (msg));
1380 }
1381 #endif
1382
1383 static void (*syserr_cb)(const char *msg) EV_THROW;
1384
1385 void ecb_cold
1386 ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
1387 {
1388   syserr_cb = cb;
1389 }
1390
1391 static void noinline ecb_cold
1392 ev_syserr (const char *msg)
1393 {
1394   if (!msg)
1395     msg = "(libev) system error";
1396
1397   if (syserr_cb)
1398     syserr_cb (msg);
1399   else
1400     {
1401 #if EV_AVOID_STDIO
1402       ev_printerr (msg);
1403       ev_printerr (": ");
1404       ev_printerr (strerror (errno));
1405       ev_printerr ("\n");
1406 #else
1407       perror (msg);
1408 #endif
1409       abort ();
1410     }
1411 }
1412
1413 static void *
1414 ev_realloc_emul (void *ptr, long size) EV_THROW
1415 {
1416   /* some systems, notably openbsd and darwin, fail to properly
1417    * implement realloc (x, 0) (as required by both ansi c-89 and
1418    * the single unix specification, so work around them here.
1419    * recently, also (at least) fedora and debian started breaking it,
1420    * despite documenting it otherwise.
1421    */
1422
1423   if (size)
1424     return realloc (ptr, size);
1425
1426   free (ptr);
1427   return 0;
1428 }
1429
1430 static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
1431
1432 void ecb_cold
1433 ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
1434 {
1435   alloc = cb;
1436 }
1437
1438 inline_speed void *
1439 ev_realloc (void *ptr, long size)
1440 {
1441   ptr = alloc (ptr, size);
1442
1443   if (!ptr && size)
1444     {
1445 #if EV_AVOID_STDIO
1446       ev_printerr ("(libev) memory allocation failed, aborting.\n");
1447 #else
1448       fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1449 #endif
1450       abort ();
1451     }
1452
1453   return ptr;
1454 }
1455
1456 #define ev_malloc(size) ev_realloc (0, (size))
1457 #define ev_free(ptr)    ev_realloc ((ptr), 0)
1458
1459 /*****************************************************************************/
1460
1461 /* set in reify when reification needed */
1462 #define EV_ANFD_REIFY 1
1463
1464 /* file descriptor info structure */
1465 typedef struct
1466 {
1467   WL head;
1468   unsigned char events; /* the events watched for */
1469   unsigned char reify;  /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1470   unsigned char emask;  /* the epoll backend stores the actual kernel mask in here */
1471   unsigned char unused;
1472 #if EV_USE_EPOLL
1473   unsigned int egen;    /* generation counter to counter epoll bugs */
1474 #endif
1475 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1476   SOCKET handle;
1477 #endif
1478 #if EV_USE_IOCP
1479   OVERLAPPED or, ow;
1480 #endif
1481 } ANFD;
1482
1483 /* stores the pending event set for a given watcher */
1484 typedef struct
1485 {
1486   W w;
1487   int events; /* the pending event set for the given watcher */
1488 } ANPENDING;
1489
1490 #if EV_USE_INOTIFY
1491 /* hash table entry per inotify-id */
1492 typedef struct
1493 {
1494   WL head;
1495 } ANFS;
1496 #endif
1497
1498 /* Heap Entry */
1499 #if EV_HEAP_CACHE_AT
1500   /* a heap element */
1501   typedef struct {
1502     ev_tstamp at;
1503     WT w;
1504   } ANHE;
1505
1506   #define ANHE_w(he)        (he).w     /* access watcher, read-write */
1507   #define ANHE_at(he)       (he).at    /* access cached at, read-only */
1508   #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1509 #else
1510   /* a heap element */
1511   typedef WT ANHE;
1512
1513   #define ANHE_w(he)        (he)
1514   #define ANHE_at(he)       (he)->at
1515   #define ANHE_at_cache(he)
1516 #endif
1517
1518 #if EV_MULTIPLICITY
1519
1520   struct ev_loop
1521   {
1522     ev_tstamp ev_rt_now;
1523     #define ev_rt_now ((loop)->ev_rt_now)
1524     #define VAR(name,decl) decl;
1525       #include "ev_vars.h"
1526     #undef VAR
1527   };
1528   #include "ev_wrap.h"
1529
1530   static struct ev_loop default_loop_struct;
1531   EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
1532
1533 #else
1534
1535   EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
1536   #define VAR(name,decl) static decl;
1537     #include "ev_vars.h"
1538   #undef VAR
1539
1540   static int ev_default_loop_ptr;
1541
1542 #endif
1543
1544 #if EV_FEATURE_API
1545 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1546 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1547 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1548 #else
1549 # define EV_RELEASE_CB (void)0
1550 # define EV_ACQUIRE_CB (void)0
1551 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1552 #endif
1553
1554 #define EVBREAK_RECURSE 0x80
1555
1556 /*****************************************************************************/
1557
1558 #ifndef EV_HAVE_EV_TIME
1559 ev_tstamp
1560 ev_time (void) EV_THROW
1561 {
1562 #if EV_USE_REALTIME
1563   if (expect_true (have_realtime))
1564     {
1565       struct timespec ts;
1566       clock_gettime (CLOCK_REALTIME, &ts);
1567       return ts.tv_sec + ts.tv_nsec * 1e-9;
1568     }
1569 #endif
1570
1571   struct timeval tv;
1572   gettimeofday (&tv, 0);
1573   return tv.tv_sec + tv.tv_usec * 1e-6;
1574 }
1575 #endif
1576
1577 inline_size ev_tstamp
1578 get_clock (void)
1579 {
1580 #if EV_USE_MONOTONIC
1581   if (expect_true (have_monotonic))
1582     {
1583       struct timespec ts;
1584       clock_gettime (CLOCK_MONOTONIC, &ts);
1585       return ts.tv_sec + ts.tv_nsec * 1e-9;
1586     }
1587 #endif
1588
1589   return ev_time ();
1590 }
1591
1592 #if EV_MULTIPLICITY
1593 ev_tstamp
1594 ev_now (EV_P) EV_THROW
1595 {
1596   return ev_rt_now;
1597 }
1598 #endif
1599
1600 void
1601 ev_sleep (ev_tstamp delay) EV_THROW
1602 {
1603   if (delay > 0.)
1604     {
1605 #if EV_USE_NANOSLEEP
1606       struct timespec ts;
1607
1608       EV_TS_SET (ts, delay);
1609       nanosleep (&ts, 0);
1610 #elif defined _WIN32
1611       Sleep ((unsigned long)(delay * 1e3));
1612 #else
1613       struct timeval tv;
1614
1615       /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1616       /* something not guaranteed by newer posix versions, but guaranteed */
1617       /* by older ones */
1618       EV_TV_SET (tv, delay);
1619       select (0, 0, 0, 0, &tv);
1620 #endif
1621     }
1622 }
1623
1624 /*****************************************************************************/
1625
1626 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1627
1628 /* find a suitable new size for the given array, */
1629 /* hopefully by rounding to a nice-to-malloc size */
1630 inline_size int
1631 array_nextsize (int elem, int cur, int cnt)
1632 {
1633   int ncur = cur + 1;
1634
1635   do
1636     ncur <<= 1;
1637   while (cnt > ncur);
1638
1639   /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1640   if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1641     {
1642       ncur *= elem;
1643       ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1644       ncur = ncur - sizeof (void *) * 4;
1645       ncur /= elem;
1646     }
1647
1648   return ncur;
1649 }
1650
1651 static void * noinline ecb_cold
1652 array_realloc (int elem, void *base, int *cur, int cnt)
1653 {
1654   *cur = array_nextsize (elem, *cur, cnt);
1655   return ev_realloc (base, elem * *cur);
1656 }
1657
1658 #define array_init_zero(base,count)     \
1659   memset ((void *)(base), 0, sizeof (*(base)) * (count))
1660
1661 #define array_needsize(type,base,cur,cnt,init)                  \
1662   if (expect_false ((cnt) > (cur)))                             \
1663     {                                                           \
1664       int ecb_unused ocur_ = (cur);                                     \
1665       (base) = (type *)array_realloc                            \
1666          (sizeof (type), (base), &(cur), (cnt));                \
1667       init ((base) + (ocur_), (cur) - ocur_);                   \
1668     }
1669
1670 #if 0
1671 #define array_slim(type,stem)                                   \
1672   if (stem ## max < array_roundsize (stem ## cnt >> 2))         \
1673     {                                                           \
1674       stem ## max = array_roundsize (stem ## cnt >> 1);         \
1675       base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1676       fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1677     }
1678 #endif
1679
1680 #define array_free(stem, idx) \
1681   ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1682
1683 /*****************************************************************************/
1684
1685 /* dummy callback for pending events */
1686 static void noinline
1687 pendingcb (EV_P_ ev_prepare *w, int revents)
1688 {
1689 }
1690
1691 void noinline
1692 ev_feed_event (EV_P_ void *w, int revents) EV_THROW
1693 {
1694   W w_ = (W)w;
1695   int pri = ABSPRI (w_);
1696
1697   if (expect_false (w_->pending))
1698     pendings [pri][w_->pending - 1].events |= revents;
1699   else
1700     {
1701       w_->pending = ++pendingcnt [pri];
1702       array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1703       pendings [pri][w_->pending - 1].w      = w_;
1704       pendings [pri][w_->pending - 1].events = revents;
1705     }
1706
1707   pendingpri = NUMPRI - 1;
1708 }
1709
1710 inline_speed void
1711 feed_reverse (EV_P_ W w)
1712 {
1713   array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1714   rfeeds [rfeedcnt++] = w;
1715 }
1716
1717 inline_size void
1718 feed_reverse_done (EV_P_ int revents)
1719 {
1720   do
1721     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1722   while (rfeedcnt);
1723 }
1724
1725 inline_speed void
1726 queue_events (EV_P_ W *events, int eventcnt, int type)
1727 {
1728   int i;
1729
1730   for (i = 0; i < eventcnt; ++i)
1731     ev_feed_event (EV_A_ events [i], type);
1732 }
1733
1734 /*****************************************************************************/
1735
1736 inline_speed void
1737 fd_event_nocheck (EV_P_ int fd, int revents)
1738 {
1739   ANFD *anfd = anfds + fd;
1740   ev_io *w;
1741
1742   for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1743     {
1744       int ev = w->events & revents;
1745
1746       if (ev)
1747         ev_feed_event (EV_A_ (W)w, ev);
1748     }
1749 }
1750
1751 /* do not submit kernel events for fds that have reify set */
1752 /* because that means they changed while we were polling for new events */
1753 inline_speed void
1754 fd_event (EV_P_ int fd, int revents)
1755 {
1756   ANFD *anfd = anfds + fd;
1757
1758   if (expect_true (!anfd->reify))
1759     fd_event_nocheck (EV_A_ fd, revents);
1760 }
1761
1762 void
1763 ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
1764 {
1765   if (fd >= 0 && fd < anfdmax)
1766     fd_event_nocheck (EV_A_ fd, revents);
1767 }
1768
1769 /* make sure the external fd watch events are in-sync */
1770 /* with the kernel/libev internal state */
1771 inline_size void
1772 fd_reify (EV_P)
1773 {
1774   int i;
1775
1776 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1777   for (i = 0; i < fdchangecnt; ++i)
1778     {
1779       int fd = fdchanges [i];
1780       ANFD *anfd = anfds + fd;
1781
1782       if (anfd->reify & EV__IOFDSET && anfd->head)
1783         {
1784           SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1785
1786           if (handle != anfd->handle)
1787             {
1788               unsigned long arg;
1789
1790               assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1791
1792               /* handle changed, but fd didn't - we need to do it in two steps */
1793               backend_modify (EV_A_ fd, anfd->events, 0);
1794               anfd->events = 0;
1795               anfd->handle = handle;
1796             }
1797         }
1798     }
1799 #endif
1800
1801   for (i = 0; i < fdchangecnt; ++i)
1802     {
1803       int fd = fdchanges [i];
1804       ANFD *anfd = anfds + fd;
1805       ev_io *w;
1806
1807       unsigned char o_events = anfd->events;
1808       unsigned char o_reify  = anfd->reify;
1809
1810       anfd->reify  = 0;
1811
1812       /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1813         {
1814           anfd->events = 0;
1815
1816           for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1817             anfd->events |= (unsigned char)w->events;
1818
1819           if (o_events != anfd->events)
1820             o_reify = EV__IOFDSET; /* actually |= */
1821         }
1822
1823       if (o_reify & EV__IOFDSET)
1824         backend_modify (EV_A_ fd, o_events, anfd->events);
1825     }
1826
1827   fdchangecnt = 0;
1828 }
1829
1830 /* something about the given fd changed */
1831 inline_size void
1832 fd_change (EV_P_ int fd, int flags)
1833 {
1834   unsigned char reify = anfds [fd].reify;
1835   anfds [fd].reify |= flags;
1836
1837   if (expect_true (!reify))
1838     {
1839       ++fdchangecnt;
1840       array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1841       fdchanges [fdchangecnt - 1] = fd;
1842     }
1843 }
1844
1845 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1846 inline_speed void ecb_cold
1847 fd_kill (EV_P_ int fd)
1848 {
1849   ev_io *w;
1850
1851   while ((w = (ev_io *)anfds [fd].head))
1852     {
1853       ev_io_stop (EV_A_ w);
1854       ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1855     }
1856 }
1857
1858 /* check whether the given fd is actually valid, for error recovery */
1859 inline_size int ecb_cold
1860 fd_valid (int fd)
1861 {
1862 #ifdef _WIN32
1863   return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1864 #else
1865   return fcntl (fd, F_GETFD) != -1;
1866 #endif
1867 }
1868
1869 /* called on EBADF to verify fds */
1870 static void noinline ecb_cold
1871 fd_ebadf (EV_P)
1872 {
1873   int fd;
1874
1875   for (fd = 0; fd < anfdmax; ++fd)
1876     if (anfds [fd].events)
1877       if (!fd_valid (fd) && errno == EBADF)
1878         fd_kill (EV_A_ fd);
1879 }
1880
1881 /* called on ENOMEM in select/poll to kill some fds and retry */
1882 static void noinline ecb_cold
1883 fd_enomem (EV_P)
1884 {
1885   int fd;
1886
1887   for (fd = anfdmax; fd--; )
1888     if (anfds [fd].events)
1889       {
1890         fd_kill (EV_A_ fd);
1891         break;
1892       }
1893 }
1894
1895 /* usually called after fork if backend needs to re-arm all fds from scratch */
1896 static void noinline
1897 fd_rearm_all (EV_P)
1898 {
1899   int fd;
1900
1901   for (fd = 0; fd < anfdmax; ++fd)
1902     if (anfds [fd].events)
1903       {
1904         anfds [fd].events = 0;
1905         anfds [fd].emask  = 0;
1906         fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1907       }
1908 }
1909
1910 /* used to prepare libev internal fd's */
1911 /* this is not fork-safe */
1912 inline_speed void
1913 fd_intern (int fd)
1914 {
1915 #ifdef _WIN32
1916   unsigned long arg = 1;
1917   ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1918 #else
1919   fcntl (fd, F_SETFD, FD_CLOEXEC);
1920   fcntl (fd, F_SETFL, O_NONBLOCK);
1921 #endif
1922 }
1923
1924 /*****************************************************************************/
1925
1926 /*
1927  * the heap functions want a real array index. array index 0 is guaranteed to not
1928  * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1929  * the branching factor of the d-tree.
1930  */
1931
1932 /*
1933  * at the moment we allow libev the luxury of two heaps,
1934  * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1935  * which is more cache-efficient.
1936  * the difference is about 5% with 50000+ watchers.
1937  */
1938 #if EV_USE_4HEAP
1939
1940 #define DHEAP 4
1941 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1942 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1943 #define UPHEAP_DONE(p,k) ((p) == (k))
1944
1945 /* away from the root */
1946 inline_speed void
1947 downheap (ANHE *heap, int N, int k)
1948 {
1949   ANHE he = heap [k];
1950   ANHE *E = heap + N + HEAP0;
1951
1952   for (;;)
1953     {
1954       ev_tstamp minat;
1955       ANHE *minpos;
1956       ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1957
1958       /* find minimum child */
1959       if (expect_true (pos + DHEAP - 1 < E))
1960         {
1961           /* fast path */                               (minpos = pos + 0), (minat = ANHE_at (*minpos));
1962           if (               ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1963           if (               ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1964           if (               ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1965         }
1966       else if (pos < E)
1967         {
1968           /* slow path */                               (minpos = pos + 0), (minat = ANHE_at (*minpos));
1969           if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1970           if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1971           if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1972         }
1973       else
1974         break;
1975
1976       if (ANHE_at (he) <= minat)
1977         break;
1978
1979       heap [k] = *minpos;
1980       ev_active (ANHE_w (*minpos)) = k;
1981
1982       k = minpos - heap;
1983     }
1984
1985   heap [k] = he;
1986   ev_active (ANHE_w (he)) = k;
1987 }
1988
1989 #else /* 4HEAP */
1990
1991 #define HEAP0 1
1992 #define HPARENT(k) ((k) >> 1)
1993 #define UPHEAP_DONE(p,k) (!(p))
1994
1995 /* away from the root */
1996 inline_speed void
1997 downheap (ANHE *heap, int N, int k)
1998 {
1999   ANHE he = heap [k];
2000
2001   for (;;)
2002     {
2003       int c = k << 1;
2004
2005       if (c >= N + HEAP0)
2006         break;
2007
2008       c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2009            ? 1 : 0;
2010
2011       if (ANHE_at (he) <= ANHE_at (heap [c]))
2012         break;
2013
2014       heap [k] = heap [c];
2015       ev_active (ANHE_w (heap [k])) = k;
2016       
2017       k = c;
2018     }
2019
2020   heap [k] = he;
2021   ev_active (ANHE_w (he)) = k;
2022 }
2023 #endif
2024
2025 /* towards the root */
2026 inline_speed void
2027 upheap (ANHE *heap, int k)
2028 {
2029   ANHE he = heap [k];
2030
2031   for (;;)
2032     {
2033       int p = HPARENT (k);
2034
2035       if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2036         break;
2037
2038       heap [k] = heap [p];
2039       ev_active (ANHE_w (heap [k])) = k;
2040       k = p;
2041     }
2042
2043   heap [k] = he;
2044   ev_active (ANHE_w (he)) = k;
2045 }
2046
2047 /* move an element suitably so it is in a correct place */
2048 inline_size void
2049 adjustheap (ANHE *heap, int N, int k)
2050 {
2051   if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2052     upheap (heap, k);
2053   else
2054     downheap (heap, N, k);
2055 }
2056
2057 /* rebuild the heap: this function is used only once and executed rarely */
2058 inline_size void
2059 reheap (ANHE *heap, int N)
2060 {
2061   int i;
2062
2063   /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2064   /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2065   for (i = 0; i < N; ++i)
2066     upheap (heap, i + HEAP0);
2067 }
2068
2069 /*****************************************************************************/
2070
2071 /* associate signal watchers to a signal signal */
2072 typedef struct
2073 {
2074   EV_ATOMIC_T pending;
2075 #if EV_MULTIPLICITY
2076   EV_P;
2077 #endif
2078   WL head;
2079 } ANSIG;
2080
2081 static ANSIG signals [EV_NSIG - 1];
2082
2083 /*****************************************************************************/
2084
2085 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2086
2087 static void noinline ecb_cold
2088 evpipe_init (EV_P)
2089 {
2090   if (!ev_is_active (&pipe_w))
2091     {
2092       int fds [2];
2093
2094 # if EV_USE_EVENTFD
2095       fds [0] = -1;
2096       fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2097       if (fds [1] < 0 && errno == EINVAL)
2098         fds [1] = eventfd (0, 0);
2099
2100       if (fds [1] < 0)
2101 # endif
2102         {
2103           while (pipe (fds))
2104             ev_syserr ("(libev) error creating signal/async pipe");
2105
2106           fd_intern (fds [0]);
2107         }
2108
2109       evpipe [0] = fds [0];
2110
2111       if (evpipe [1] < 0)
2112         evpipe [1] = fds [1]; /* first call, set write fd */
2113       else
2114         {
2115           /* on subsequent calls, do not change evpipe [1] */
2116           /* so that evpipe_write can always rely on its value. */
2117           /* this branch does not do anything sensible on windows, */
2118           /* so must not be executed on windows */
2119
2120           dup2 (fds [1], evpipe [1]);
2121           close (fds [1]);
2122         }
2123
2124       fd_intern (evpipe [1]);
2125
2126       ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2127       ev_io_start (EV_A_ &pipe_w);
2128       ev_unref (EV_A); /* watcher should not keep loop alive */
2129     }
2130 }
2131
2132 inline_speed void
2133 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2134 {
2135   ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2136
2137   if (expect_true (*flag))
2138     return;
2139
2140   *flag = 1;
2141   ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2142
2143   pipe_write_skipped = 1;
2144
2145   ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2146
2147   if (pipe_write_wanted)
2148     {
2149       int old_errno;
2150
2151       pipe_write_skipped = 0;
2152       ECB_MEMORY_FENCE_RELEASE;
2153
2154       old_errno = errno; /* save errno because write will clobber it */
2155
2156 #if EV_USE_EVENTFD
2157       if (evpipe [0] < 0)
2158         {
2159           uint64_t counter = 1;
2160           write (evpipe [1], &counter, sizeof (uint64_t));
2161         }
2162       else
2163 #endif
2164         {
2165 #ifdef _WIN32
2166           WSABUF buf;
2167           DWORD sent;
2168           buf.buf = &buf;
2169           buf.len = 1;
2170           WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2171 #else
2172           write (evpipe [1], &(evpipe [1]), 1);
2173 #endif
2174         }
2175
2176       errno = old_errno;
2177     }
2178 }
2179
2180 /* called whenever the libev signal pipe */
2181 /* got some events (signal, async) */
2182 static void
2183 pipecb (EV_P_ ev_io *iow, int revents)
2184 {
2185   int i;
2186
2187   if (revents & EV_READ)
2188     {
2189 #if EV_USE_EVENTFD
2190       if (evpipe [0] < 0)
2191         {
2192           uint64_t counter;
2193           read (evpipe [1], &counter, sizeof (uint64_t));
2194         }
2195       else
2196 #endif
2197         {
2198           char dummy[4];
2199 #ifdef _WIN32
2200           WSABUF buf;
2201           DWORD recvd;
2202           DWORD flags = 0;
2203           buf.buf = dummy;
2204           buf.len = sizeof (dummy);
2205           WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2206 #else
2207           read (evpipe [0], &dummy, sizeof (dummy));
2208 #endif
2209         }
2210     }
2211
2212   pipe_write_skipped = 0;
2213
2214   ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2215
2216 #if EV_SIGNAL_ENABLE
2217   if (sig_pending)
2218     {
2219       sig_pending = 0;
2220
2221       ECB_MEMORY_FENCE;
2222
2223       for (i = EV_NSIG - 1; i--; )
2224         if (expect_false (signals [i].pending))
2225           ev_feed_signal_event (EV_A_ i + 1);
2226     }
2227 #endif
2228
2229 #if EV_ASYNC_ENABLE
2230   if (async_pending)
2231     {
2232       async_pending = 0;
2233
2234       ECB_MEMORY_FENCE;
2235
2236       for (i = asynccnt; i--; )
2237         if (asyncs [i]->sent)
2238           {
2239             asyncs [i]->sent = 0;
2240             ECB_MEMORY_FENCE_RELEASE;
2241             ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2242           }
2243     }
2244 #endif
2245 }
2246
2247 /*****************************************************************************/
2248
2249 void
2250 ev_feed_signal (int signum) EV_THROW
2251 {
2252 #if EV_MULTIPLICITY
2253   EV_P;
2254   ECB_MEMORY_FENCE_ACQUIRE;
2255   EV_A = signals [signum - 1].loop;
2256
2257   if (!EV_A)
2258     return;
2259 #endif
2260
2261   signals [signum - 1].pending = 1;
2262   evpipe_write (EV_A_ &sig_pending);
2263 }
2264
2265 static void
2266 ev_sighandler (int signum)
2267 {
2268 #ifdef _WIN32
2269   signal (signum, ev_sighandler);
2270 #endif
2271
2272   ev_feed_signal (signum);
2273 }
2274
2275 void noinline
2276 ev_feed_signal_event (EV_P_ int signum) EV_THROW
2277 {
2278   WL w;
2279
2280   if (expect_false (signum <= 0 || signum >= EV_NSIG))
2281     return;
2282
2283   --signum;
2284
2285 #if EV_MULTIPLICITY
2286   /* it is permissible to try to feed a signal to the wrong loop */
2287   /* or, likely more useful, feeding a signal nobody is waiting for */
2288
2289   if (expect_false (signals [signum].loop != EV_A))
2290     return;
2291 #endif
2292
2293   signals [signum].pending = 0;
2294   ECB_MEMORY_FENCE_RELEASE;
2295
2296   for (w = signals [signum].head; w; w = w->next)
2297     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2298 }
2299
2300 #if EV_USE_SIGNALFD
2301 static void
2302 sigfdcb (EV_P_ ev_io *iow, int revents)
2303 {
2304   struct signalfd_siginfo si[2], *sip; /* these structs are big */
2305
2306   for (;;)
2307     {
2308       ssize_t res = read (sigfd, si, sizeof (si));
2309
2310       /* not ISO-C, as res might be -1, but works with SuS */
2311       for (sip = si; (char *)sip < (char *)si + res; ++sip)
2312         ev_feed_signal_event (EV_A_ sip->ssi_signo);
2313
2314       if (res < (ssize_t)sizeof (si))
2315         break;
2316     }
2317 }
2318 #endif
2319
2320 #endif
2321
2322 /*****************************************************************************/
2323
2324 #if EV_CHILD_ENABLE
2325 static WL childs [EV_PID_HASHSIZE];
2326
2327 static ev_signal childev;
2328
2329 #ifndef WIFCONTINUED
2330 # define WIFCONTINUED(status) 0
2331 #endif
2332
2333 /* handle a single child status event */
2334 inline_speed void
2335 child_reap (EV_P_ int chain, int pid, int status)
2336 {
2337   ev_child *w;
2338   int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2339
2340   for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2341     {
2342       if ((w->pid == pid || !w->pid)
2343           && (!traced || (w->flags & 1)))
2344         {
2345           ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2346           w->rpid    = pid;
2347           w->rstatus = status;
2348           ev_feed_event (EV_A_ (W)w, EV_CHILD);
2349         }
2350     }
2351 }
2352
2353 #ifndef WCONTINUED
2354 # define WCONTINUED 0
2355 #endif
2356
2357 /* called on sigchld etc., calls waitpid */
2358 static void
2359 childcb (EV_P_ ev_signal *sw, int revents)
2360 {
2361   int pid, status;
2362
2363   /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
2364   if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
2365     if (!WCONTINUED
2366         || errno != EINVAL
2367         || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2368       return;
2369
2370   /* make sure we are called again until all children have been reaped */
2371   /* we need to do it this way so that the callback gets called before we continue */
2372   ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
2373
2374   child_reap (EV_A_ pid, pid, status);
2375   if ((EV_PID_HASHSIZE) > 1)
2376     child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
2377 }
2378
2379 #endif
2380
2381 /*****************************************************************************/
2382
2383 #if EV_USE_IOCP
2384 # include "ev_iocp.c"
2385 #endif
2386 #if EV_USE_PORT
2387 # include "ev_port.c"
2388 #endif
2389 #if EV_USE_KQUEUE
2390 # include "ev_kqueue.c"
2391 #endif
2392 #if EV_USE_EPOLL
2393 # include "ev_epoll.c"
2394 #endif
2395 #if EV_USE_POLL
2396 # include "ev_poll.c"
2397 #endif
2398 #if EV_USE_SELECT
2399 # include "ev_select.c"
2400 #endif
2401
2402 int ecb_cold
2403 ev_version_major (void) EV_THROW
2404 {
2405   return EV_VERSION_MAJOR;
2406 }
2407
2408 int ecb_cold
2409 ev_version_minor (void) EV_THROW
2410 {
2411   return EV_VERSION_MINOR;
2412 }
2413
2414 /* return true if we are running with elevated privileges and should ignore env variables */
2415 int inline_size ecb_cold
2416 enable_secure (void)
2417 {
2418 #ifdef _WIN32
2419   return 0;
2420 #else
2421   return getuid () != geteuid ()
2422       || getgid () != getegid ();
2423 #endif
2424 }
2425
2426 unsigned int ecb_cold
2427 ev_supported_backends (void) EV_THROW
2428 {
2429   unsigned int flags = 0;
2430
2431   if (EV_USE_PORT  ) flags |= EVBACKEND_PORT;
2432   if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2433   if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2434   if (EV_USE_POLL  ) flags |= EVBACKEND_POLL;
2435   if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2436   
2437   return flags;
2438 }
2439
2440 unsigned int ecb_cold
2441 ev_recommended_backends (void) EV_THROW
2442 {
2443   unsigned int flags = ev_supported_backends ();
2444
2445 #ifndef __NetBSD__
2446   /* kqueue is borked on everything but netbsd apparently */
2447   /* it usually doesn't work correctly on anything but sockets and pipes */
2448   flags &= ~EVBACKEND_KQUEUE;
2449 #endif
2450 #ifdef __APPLE__
2451   /* only select works correctly on that "unix-certified" platform */
2452   flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2453   flags &= ~EVBACKEND_POLL;   /* poll is based on kqueue from 10.5 onwards */
2454 #endif
2455 #ifdef __FreeBSD__
2456   flags &= ~EVBACKEND_POLL;   /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2457 #endif
2458
2459   return flags;
2460 }
2461
2462 unsigned int ecb_cold
2463 ev_embeddable_backends (void) EV_THROW
2464 {
2465   int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2466
2467   /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2468   if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2469     flags &= ~EVBACKEND_EPOLL;
2470
2471   return flags;
2472 }
2473
2474 unsigned int
2475 ev_backend (EV_P) EV_THROW
2476 {
2477   return backend;
2478 }
2479
2480 #if EV_FEATURE_API
2481 unsigned int
2482 ev_iteration (EV_P) EV_THROW
2483 {
2484   return loop_count;
2485 }
2486
2487 unsigned int
2488 ev_depth (EV_P) EV_THROW
2489 {
2490   return loop_depth;
2491 }
2492
2493 void
2494 ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2495 {
2496   io_blocktime = interval;
2497 }
2498
2499 void
2500 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2501 {
2502   timeout_blocktime = interval;
2503 }
2504
2505 void
2506 ev_set_userdata (EV_P_ void *data) EV_THROW
2507 {
2508   userdata = data;
2509 }
2510
2511 void *
2512 ev_userdata (EV_P) EV_THROW
2513 {
2514   return userdata;
2515 }
2516
2517 void
2518 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2519 {
2520   invoke_cb = invoke_pending_cb;
2521 }
2522
2523 void
2524 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2525 {
2526   release_cb = release;
2527   acquire_cb = acquire;
2528 }
2529 #endif
2530
2531 /* initialise a loop structure, must be zero-initialised */
2532 static void noinline ecb_cold
2533 loop_init (EV_P_ unsigned int flags) EV_THROW
2534 {
2535   if (!backend)
2536     {
2537       origflags = flags;
2538
2539 #if EV_USE_REALTIME
2540       if (!have_realtime)
2541         {
2542           struct timespec ts;
2543
2544           if (!clock_gettime (CLOCK_REALTIME, &ts))
2545             have_realtime = 1;
2546         }
2547 #endif
2548
2549 #if EV_USE_MONOTONIC
2550       if (!have_monotonic)
2551         {
2552           struct timespec ts;
2553
2554           if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2555             have_monotonic = 1;
2556         }
2557 #endif
2558
2559       /* pid check not overridable via env */
2560 #ifndef _WIN32
2561       if (flags & EVFLAG_FORKCHECK)
2562         curpid = getpid ();
2563 #endif
2564
2565       if (!(flags & EVFLAG_NOENV)
2566           && !enable_secure ()
2567           && getenv ("LIBEV_FLAGS"))
2568         flags = atoi (getenv ("LIBEV_FLAGS"));
2569
2570       ev_rt_now          = ev_time ();
2571       mn_now             = get_clock ();
2572       now_floor          = mn_now;
2573       rtmn_diff          = ev_rt_now - mn_now;
2574 #if EV_FEATURE_API
2575       invoke_cb          = ev_invoke_pending;
2576 #endif
2577
2578       io_blocktime       = 0.;
2579       timeout_blocktime  = 0.;
2580       backend            = 0;
2581       backend_fd         = -1;
2582       sig_pending        = 0;
2583 #if EV_ASYNC_ENABLE
2584       async_pending      = 0;
2585 #endif
2586       pipe_write_skipped = 0;
2587       pipe_write_wanted  = 0;
2588       evpipe [0]         = -1;
2589       evpipe [1]         = -1;
2590 #if EV_USE_INOTIFY
2591       fs_fd              = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2592 #endif
2593 #if EV_USE_SIGNALFD
2594       sigfd              = flags & EVFLAG_SIGNALFD  ? -2 : -1;
2595 #endif
2596
2597       if (!(flags & EVBACKEND_MASK))
2598         flags |= ev_recommended_backends ();
2599
2600 #if EV_USE_IOCP
2601       if (!backend && (flags & EVBACKEND_IOCP  )) backend = iocp_init   (EV_A_ flags);
2602 #endif
2603 #if EV_USE_PORT
2604       if (!backend && (flags & EVBACKEND_PORT  )) backend = port_init   (EV_A_ flags);
2605 #endif
2606 #if EV_USE_KQUEUE
2607       if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2608 #endif
2609 #if EV_USE_EPOLL
2610       if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init  (EV_A_ flags);
2611 #endif
2612 #if EV_USE_POLL
2613       if (!backend && (flags & EVBACKEND_POLL  )) backend = poll_init   (EV_A_ flags);
2614 #endif
2615 #if EV_USE_SELECT
2616       if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2617 #endif
2618
2619       ev_prepare_init (&pending_w, pendingcb);
2620
2621 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2622       ev_init (&pipe_w, pipecb);
2623       ev_set_priority (&pipe_w, EV_MAXPRI);
2624 #endif
2625     }
2626 }
2627
2628 /* free up a loop structure */
2629 void ecb_cold
2630 ev_loop_destroy (EV_P)
2631 {
2632   int i;
2633
2634 #if EV_MULTIPLICITY
2635   /* mimic free (0) */
2636   if (!EV_A)
2637     return;
2638 #endif
2639
2640 #if EV_CLEANUP_ENABLE
2641   /* queue cleanup watchers (and execute them) */
2642   if (expect_false (cleanupcnt))
2643     {
2644       queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2645       EV_INVOKE_PENDING;
2646     }
2647 #endif
2648
2649 #if EV_CHILD_ENABLE
2650   if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2651     {
2652       ev_ref (EV_A); /* child watcher */
2653       ev_signal_stop (EV_A_ &childev);
2654     }
2655 #endif
2656
2657   if (ev_is_active (&pipe_w))
2658     {
2659       /*ev_ref (EV_A);*/
2660       /*ev_io_stop (EV_A_ &pipe_w);*/
2661
2662       if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2663       if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2664     }
2665
2666 #if EV_USE_SIGNALFD
2667   if (ev_is_active (&sigfd_w))
2668     close (sigfd);
2669 #endif
2670
2671 #if EV_USE_INOTIFY
2672   if (fs_fd >= 0)
2673     close (fs_fd);
2674 #endif
2675
2676   if (backend_fd >= 0)
2677     close (backend_fd);
2678
2679 #if EV_USE_IOCP
2680   if (backend == EVBACKEND_IOCP  ) iocp_destroy   (EV_A);
2681 #endif
2682 #if EV_USE_PORT
2683   if (backend == EVBACKEND_PORT  ) port_destroy   (EV_A);
2684 #endif
2685 #if EV_USE_KQUEUE
2686   if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2687 #endif
2688 #if EV_USE_EPOLL
2689   if (backend == EVBACKEND_EPOLL ) epoll_destroy  (EV_A);
2690 #endif
2691 #if EV_USE_POLL
2692   if (backend == EVBACKEND_POLL  ) poll_destroy   (EV_A);
2693 #endif
2694 #if EV_USE_SELECT
2695   if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2696 #endif
2697
2698   for (i = NUMPRI; i--; )
2699     {
2700       array_free (pending, [i]);
2701 #if EV_IDLE_ENABLE
2702       array_free (idle, [i]);
2703 #endif
2704     }
2705
2706   ev_free (anfds); anfds = 0; anfdmax = 0;
2707
2708   /* have to use the microsoft-never-gets-it-right macro */
2709   array_free (rfeed, EMPTY);
2710   array_free (fdchange, EMPTY);
2711   array_free (timer, EMPTY);
2712 #if EV_PERIODIC_ENABLE
2713   array_free (periodic, EMPTY);
2714 #endif
2715 #if EV_FORK_ENABLE
2716   array_free (fork, EMPTY);
2717 #endif
2718 #if EV_CLEANUP_ENABLE
2719   array_free (cleanup, EMPTY);
2720 #endif
2721   array_free (prepare, EMPTY);
2722   array_free (check, EMPTY);
2723 #if EV_ASYNC_ENABLE
2724   array_free (async, EMPTY);
2725 #endif
2726
2727   backend = 0;
2728
2729 #if EV_MULTIPLICITY
2730   if (ev_is_default_loop (EV_A))
2731 #endif
2732     ev_default_loop_ptr = 0;
2733 #if EV_MULTIPLICITY
2734   else
2735     ev_free (EV_A);
2736 #endif
2737 }
2738
2739 #if EV_USE_INOTIFY
2740 inline_size void infy_fork (EV_P);
2741 #endif
2742
2743 inline_size void
2744 loop_fork (EV_P)
2745 {
2746 #if EV_USE_PORT
2747   if (backend == EVBACKEND_PORT  ) port_fork   (EV_A);
2748 #endif
2749 #if EV_USE_KQUEUE
2750   if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2751 #endif
2752 #if EV_USE_EPOLL
2753   if (backend == EVBACKEND_EPOLL ) epoll_fork  (EV_A);
2754 #endif
2755 #if EV_USE_INOTIFY
2756   infy_fork (EV_A);
2757 #endif
2758
2759 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2760   if (ev_is_active (&pipe_w))
2761     {
2762       /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2763
2764       ev_ref (EV_A);
2765       ev_io_stop (EV_A_ &pipe_w);
2766
2767       if (evpipe [0] >= 0)
2768         EV_WIN32_CLOSE_FD (evpipe [0]);
2769
2770       evpipe_init (EV_A);
2771       /* iterate over everything, in case we missed something before */
2772       ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2773     }
2774 #endif
2775
2776   postfork = 0;
2777 }
2778
2779 #if EV_MULTIPLICITY
2780
2781 struct ev_loop * ecb_cold
2782 ev_loop_new (unsigned int flags) EV_THROW
2783 {
2784   EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2785
2786   memset (EV_A, 0, sizeof (struct ev_loop));
2787   loop_init (EV_A_ flags);
2788
2789   if (ev_backend (EV_A))
2790     return EV_A;
2791
2792   ev_free (EV_A);
2793   return 0;
2794 }
2795
2796 #endif /* multiplicity */
2797
2798 #if EV_VERIFY
2799 static void noinline ecb_cold
2800 verify_watcher (EV_P_ W w)
2801 {
2802   assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2803
2804   if (w->pending)
2805     assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2806 }
2807
2808 static void noinline ecb_cold
2809 verify_heap (EV_P_ ANHE *heap, int N)
2810 {
2811   int i;
2812
2813   for (i = HEAP0; i < N + HEAP0; ++i)
2814     {
2815       assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2816       assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2817       assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2818
2819       verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2820     }
2821 }
2822
2823 static void noinline ecb_cold
2824 array_verify (EV_P_ W *ws, int cnt)
2825 {
2826   while (cnt--)
2827     {
2828       assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2829       verify_watcher (EV_A_ ws [cnt]);
2830     }
2831 }
2832 #endif
2833
2834 #if EV_FEATURE_API
2835 void ecb_cold
2836 ev_verify (EV_P) EV_THROW
2837 {
2838 #if EV_VERIFY
2839   int i;
2840   WL w, w2;
2841
2842   assert (activecnt >= -1);
2843
2844   assert (fdchangemax >= fdchangecnt);
2845   for (i = 0; i < fdchangecnt; ++i)
2846     assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2847
2848   assert (anfdmax >= 0);
2849   for (i = 0; i < anfdmax; ++i)
2850     {
2851       int j = 0;
2852
2853       for (w = w2 = anfds [i].head; w; w = w->next)
2854         {
2855           verify_watcher (EV_A_ (W)w);
2856
2857           if (j++ & 1)
2858             {
2859               assert (("libev: io watcher list contains a loop", w != w2));
2860               w2 = w2->next;
2861             }
2862
2863           assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2864           assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2865         }
2866     }
2867
2868   assert (timermax >= timercnt);
2869   verify_heap (EV_A_ timers, timercnt);
2870
2871 #if EV_PERIODIC_ENABLE
2872   assert (periodicmax >= periodiccnt);
2873   verify_heap (EV_A_ periodics, periodiccnt);
2874 #endif
2875
2876   for (i = NUMPRI; i--; )
2877     {
2878       assert (pendingmax [i] >= pendingcnt [i]);
2879 #if EV_IDLE_ENABLE
2880       assert (idleall >= 0);
2881       assert (idlemax [i] >= idlecnt [i]);
2882       array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2883 #endif
2884     }
2885
2886 #if EV_FORK_ENABLE
2887   assert (forkmax >= forkcnt);
2888   array_verify (EV_A_ (W *)forks, forkcnt);
2889 #endif
2890
2891 #if EV_CLEANUP_ENABLE
2892   assert (cleanupmax >= cleanupcnt);
2893   array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2894 #endif
2895
2896 #if EV_ASYNC_ENABLE
2897   assert (asyncmax >= asynccnt);
2898   array_verify (EV_A_ (W *)asyncs, asynccnt);
2899 #endif
2900
2901 #if EV_PREPARE_ENABLE
2902   assert (preparemax >= preparecnt);
2903   array_verify (EV_A_ (W *)prepares, preparecnt);
2904 #endif
2905
2906 #if EV_CHECK_ENABLE
2907   assert (checkmax >= checkcnt);
2908   array_verify (EV_A_ (W *)checks, checkcnt);
2909 #endif
2910
2911 # if 0
2912 #if EV_CHILD_ENABLE
2913   for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2914   for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2915 #endif
2916 # endif
2917 #endif
2918 }
2919 #endif
2920
2921 #if EV_MULTIPLICITY
2922 struct ev_loop * ecb_cold
2923 #else
2924 int
2925 #endif
2926 ev_default_loop (unsigned int flags) EV_THROW
2927 {
2928   if (!ev_default_loop_ptr)
2929     {
2930 #if EV_MULTIPLICITY
2931       EV_P = ev_default_loop_ptr = &default_loop_struct;
2932 #else
2933       ev_default_loop_ptr = 1;
2934 #endif
2935
2936       loop_init (EV_A_ flags);
2937
2938       if (ev_backend (EV_A))
2939         {
2940 #if EV_CHILD_ENABLE
2941           ev_signal_init (&childev, childcb, SIGCHLD);
2942           ev_set_priority (&childev, EV_MAXPRI);
2943           ev_signal_start (EV_A_ &childev);
2944           ev_unref (EV_A); /* child watcher should not keep loop alive */
2945 #endif
2946         }
2947       else
2948         ev_default_loop_ptr = 0;
2949     }
2950
2951   return ev_default_loop_ptr;
2952 }
2953
2954 void
2955 ev_loop_fork (EV_P) EV_THROW
2956 {
2957   postfork = 1;
2958 }
2959
2960 /*****************************************************************************/
2961
2962 void
2963 ev_invoke (EV_P_ void *w, int revents)
2964 {
2965   EV_CB_INVOKE ((W)w, revents);
2966 }
2967
2968 unsigned int
2969 ev_pending_count (EV_P) EV_THROW
2970 {
2971   int pri;
2972   unsigned int count = 0;
2973
2974   for (pri = NUMPRI; pri--; )
2975     count += pendingcnt [pri];
2976
2977   return count;
2978 }
2979
2980 void noinline
2981 ev_invoke_pending (EV_P)
2982 {
2983   pendingpri = NUMPRI;
2984
2985   while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2986     {
2987       --pendingpri;
2988
2989       while (pendingcnt [pendingpri])
2990         {
2991           ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2992
2993           p->w->pending = 0;
2994           EV_CB_INVOKE (p->w, p->events);
2995           EV_FREQUENT_CHECK;
2996         }
2997     }
2998 }
2999
3000 #if EV_IDLE_ENABLE
3001 /* make idle watchers pending. this handles the "call-idle */
3002 /* only when higher priorities are idle" logic */
3003 inline_size void
3004 idle_reify (EV_P)
3005 {
3006   if (expect_false (idleall))
3007     {
3008       int pri;
3009
3010       for (pri = NUMPRI; pri--; )
3011         {
3012           if (pendingcnt [pri])
3013             break;
3014
3015           if (idlecnt [pri])
3016             {
3017               queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
3018               break;
3019             }
3020         }
3021     }
3022 }
3023 #endif
3024
3025 /* make timers pending */
3026 inline_size void
3027 timers_reify (EV_P)
3028 {
3029   EV_FREQUENT_CHECK;
3030
3031   if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3032     {
3033       do
3034         {
3035           ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3036
3037           /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3038
3039           /* first reschedule or stop timer */
3040           if (w->repeat)
3041             {
3042               ev_at (w) += w->repeat;
3043               if (ev_at (w) < mn_now)
3044                 ev_at (w) = mn_now;
3045
3046               assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3047
3048               ANHE_at_cache (timers [HEAP0]);
3049               downheap (timers, timercnt, HEAP0);
3050             }
3051           else
3052             ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3053
3054           EV_FREQUENT_CHECK;
3055           feed_reverse (EV_A_ (W)w);
3056         }
3057       while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3058
3059       feed_reverse_done (EV_A_ EV_TIMER);
3060     }
3061 }
3062
3063 #if EV_PERIODIC_ENABLE
3064
3065 static void noinline
3066 periodic_recalc (EV_P_ ev_periodic *w)
3067 {
3068   ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3069   ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3070
3071   /* the above almost always errs on the low side */
3072   while (at <= ev_rt_now)
3073     {
3074       ev_tstamp nat = at + w->interval;
3075
3076       /* when resolution fails us, we use ev_rt_now */
3077       if (expect_false (nat == at))
3078         {
3079           at = ev_rt_now;
3080           break;
3081         }
3082
3083       at = nat;
3084     }
3085
3086   ev_at (w) = at;
3087 }
3088
3089 /* make periodics pending */
3090 inline_size void
3091 periodics_reify (EV_P)
3092 {
3093   EV_FREQUENT_CHECK;
3094
3095   while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3096     {
3097       do
3098         {
3099           ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3100
3101           /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3102
3103           /* first reschedule or stop timer */
3104           if (w->reschedule_cb)
3105             {
3106               ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3107
3108               assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3109
3110               ANHE_at_cache (periodics [HEAP0]);
3111               downheap (periodics, periodiccnt, HEAP0);
3112             }
3113           else if (w->interval)
3114             {
3115               periodic_recalc (EV_A_ w);
3116               ANHE_at_cache (periodics [HEAP0]);
3117               downheap (periodics, periodiccnt, HEAP0);
3118             }
3119           else
3120             ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3121
3122           EV_FREQUENT_CHECK;
3123           feed_reverse (EV_A_ (W)w);
3124         }
3125       while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3126
3127       feed_reverse_done (EV_A_ EV_PERIODIC);
3128     }
3129 }
3130
3131 /* simply recalculate all periodics */
3132 /* TODO: maybe ensure that at least one event happens when jumping forward? */
3133 static void noinline ecb_cold
3134 periodics_reschedule (EV_P)
3135 {
3136   int i;
3137
3138   /* adjust periodics after time jump */
3139   for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3140     {
3141       ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3142
3143       if (w->reschedule_cb)
3144         ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3145       else if (w->interval)
3146         periodic_recalc (EV_A_ w);
3147
3148       ANHE_at_cache (periodics [i]);
3149     }
3150
3151   reheap (periodics, periodiccnt);
3152 }
3153 #endif
3154
3155 /* adjust all timers by a given offset */
3156 static void noinline ecb_cold
3157 timers_reschedule (EV_P_ ev_tstamp adjust)
3158 {
3159   int i;
3160
3161   for (i = 0; i < timercnt; ++i)
3162     {
3163       ANHE *he = timers + i + HEAP0;
3164       ANHE_w (*he)->at += adjust;
3165       ANHE_at_cache (*he);
3166     }
3167 }
3168
3169 /* fetch new monotonic and realtime times from the kernel */
3170 /* also detect if there was a timejump, and act accordingly */
3171 inline_speed void
3172 time_update (EV_P_ ev_tstamp max_block)
3173 {
3174 #if EV_USE_MONOTONIC
3175   if (expect_true (have_monotonic))
3176     {
3177       int i;
3178       ev_tstamp odiff = rtmn_diff;
3179
3180       mn_now = get_clock ();
3181
3182       /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3183       /* interpolate in the meantime */
3184       if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
3185         {
3186           ev_rt_now = rtmn_diff + mn_now;
3187           return;
3188         }
3189
3190       now_floor = mn_now;
3191       ev_rt_now = ev_time ();
3192
3193       /* loop a few times, before making important decisions.
3194        * on the choice of "4": one iteration isn't enough,
3195        * in case we get preempted during the calls to
3196        * ev_time and get_clock. a second call is almost guaranteed
3197        * to succeed in that case, though. and looping a few more times
3198        * doesn't hurt either as we only do this on time-jumps or
3199        * in the unlikely event of having been preempted here.
3200        */
3201       for (i = 4; --i; )
3202         {
3203           ev_tstamp diff;
3204           rtmn_diff = ev_rt_now - mn_now;
3205
3206           diff = odiff - rtmn_diff;
3207
3208           if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
3209             return; /* all is well */
3210
3211           ev_rt_now = ev_time ();
3212           mn_now    = get_clock ();
3213           now_floor = mn_now;
3214         }
3215
3216       /* no timer adjustment, as the monotonic clock doesn't jump */
3217       /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3218 # if EV_PERIODIC_ENABLE
3219       periodics_reschedule (EV_A);
3220 # endif
3221     }
3222   else
3223 #endif
3224     {
3225       ev_rt_now = ev_time ();
3226
3227       if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3228         {
3229           /* adjust timers. this is easy, as the offset is the same for all of them */
3230           timers_reschedule (EV_A_ ev_rt_now - mn_now);
3231 #if EV_PERIODIC_ENABLE
3232           periodics_reschedule (EV_A);
3233 #endif
3234         }
3235
3236       mn_now = ev_rt_now;
3237     }
3238 }
3239
3240 int
3241 ev_run (EV_P_ int flags)
3242 {
3243 #if EV_FEATURE_API
3244   ++loop_depth;
3245 #endif
3246
3247   assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3248
3249   loop_done = EVBREAK_CANCEL;
3250
3251   EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
3252
3253   do
3254     {
3255 #if EV_VERIFY >= 2
3256       ev_verify (EV_A);
3257 #endif
3258
3259 #ifndef _WIN32
3260       if (expect_false (curpid)) /* penalise the forking check even more */
3261         if (expect_false (getpid () != curpid))
3262           {
3263             curpid = getpid ();
3264             postfork = 1;
3265           }
3266 #endif
3267
3268 #if EV_FORK_ENABLE
3269       /* we might have forked, so queue fork handlers */
3270       if (expect_false (postfork))
3271         if (forkcnt)
3272           {
3273             queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3274             EV_INVOKE_PENDING;
3275           }
3276 #endif
3277
3278 #if EV_PREPARE_ENABLE
3279       /* queue prepare watchers (and execute them) */
3280       if (expect_false (preparecnt))
3281         {
3282           queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
3283           EV_INVOKE_PENDING;
3284         }
3285 #endif
3286
3287       if (expect_false (loop_done))
3288         break;
3289
3290       /* we might have forked, so reify kernel state if necessary */
3291       if (expect_false (postfork))
3292         loop_fork (EV_A);
3293
3294       /* update fd-related kernel structures */
3295       fd_reify (EV_A);
3296
3297       /* calculate blocking time */
3298       {
3299         ev_tstamp waittime  = 0.;
3300         ev_tstamp sleeptime = 0.;
3301
3302         /* remember old timestamp for io_blocktime calculation */
3303         ev_tstamp prev_mn_now = mn_now;
3304
3305         /* update time to cancel out callback processing overhead */
3306         time_update (EV_A_ 1e100);
3307
3308         /* from now on, we want a pipe-wake-up */
3309         pipe_write_wanted = 1;
3310
3311         ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3312
3313         if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
3314           {
3315             waittime = MAX_BLOCKTIME;
3316
3317             if (timercnt)
3318               {
3319                 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
3320                 if (waittime > to) waittime = to;
3321               }
3322
3323 #if EV_PERIODIC_ENABLE
3324             if (periodiccnt)
3325               {
3326                 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
3327                 if (waittime > to) waittime = to;
3328               }
3329 #endif
3330
3331             /* don't let timeouts decrease the waittime below timeout_blocktime */
3332             if (expect_false (waittime < timeout_blocktime))
3333               waittime = timeout_blocktime;
3334
3335             /* at this point, we NEED to wait, so we have to ensure */
3336             /* to pass a minimum nonzero value to the backend */
3337             if (expect_false (waittime < backend_mintime))
3338               waittime = backend_mintime;
3339
3340             /* extra check because io_blocktime is commonly 0 */
3341             if (expect_false (io_blocktime))
3342               {
3343                 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3344
3345                 if (sleeptime > waittime - backend_mintime)
3346                   sleeptime = waittime - backend_mintime;
3347
3348                 if (expect_true (sleeptime > 0.))
3349                   {
3350                     ev_sleep (sleeptime);
3351                     waittime -= sleeptime;
3352                   }
3353               }
3354           }
3355
3356 #if EV_FEATURE_API
3357         ++loop_count;
3358 #endif
3359         assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3360         backend_poll (EV_A_ waittime);
3361         assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3362
3363         pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3364
3365         ECB_MEMORY_FENCE_ACQUIRE;
3366         if (pipe_write_skipped)
3367           {
3368             assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3369             ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3370           }
3371
3372
3373         /* update ev_rt_now, do magic */
3374         time_update (EV_A_ waittime + sleeptime);
3375       }
3376
3377       /* queue pending timers and reschedule them */
3378       timers_reify (EV_A); /* relative timers called last */
3379 #if EV_PERIODIC_ENABLE
3380       periodics_reify (EV_A); /* absolute timers called first */
3381 #endif
3382
3383 #if EV_IDLE_ENABLE
3384       /* queue idle watchers unless other events are pending */
3385       idle_reify (EV_A);
3386 #endif
3387
3388 #if EV_CHECK_ENABLE
3389       /* queue check watchers, to be executed first */
3390       if (expect_false (checkcnt))
3391         queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3392 #endif
3393
3394       EV_INVOKE_PENDING;
3395     }
3396   while (expect_true (
3397     activecnt
3398     && !loop_done
3399     && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3400   ));
3401
3402   if (loop_done == EVBREAK_ONE)
3403     loop_done = EVBREAK_CANCEL;
3404
3405 #if EV_FEATURE_API
3406   --loop_depth;
3407 #endif
3408
3409   return activecnt;
3410 }
3411
3412 void
3413 ev_break (EV_P_ int how) EV_THROW
3414 {
3415   loop_done = how;
3416 }
3417
3418 void
3419 ev_ref (EV_P) EV_THROW
3420 {
3421   ++activecnt;
3422 }
3423
3424 void
3425 ev_unref (EV_P) EV_THROW
3426 {
3427   --activecnt;
3428 }
3429
3430 void
3431 ev_now_update (EV_P) EV_THROW
3432 {
3433   time_update (EV_A_ 1e100);
3434 }
3435
3436 void
3437 ev_suspend (EV_P) EV_THROW
3438 {
3439   ev_now_update (EV_A);
3440 }
3441
3442 void
3443 ev_resume (EV_P) EV_THROW
3444 {
3445   ev_tstamp mn_prev = mn_now;
3446
3447   ev_now_update (EV_A);
3448   timers_reschedule (EV_A_ mn_now - mn_prev);
3449 #if EV_PERIODIC_ENABLE
3450   /* TODO: really do this? */
3451   periodics_reschedule (EV_A);
3452 #endif
3453 }
3454
3455 /*****************************************************************************/
3456 /* singly-linked list management, used when the expected list length is short */
3457
3458 inline_size void
3459 wlist_add (WL *head, WL elem)
3460 {
3461   elem->next = *head;
3462   *head = elem;
3463 }
3464
3465 inline_size void
3466 wlist_del (WL *head, WL elem)
3467 {
3468   while (*head)
3469     {
3470       if (expect_true (*head == elem))
3471         {
3472           *head = elem->next;
3473           break;
3474         }
3475
3476       head = &(*head)->next;
3477     }
3478 }
3479
3480 /* internal, faster, version of ev_clear_pending */
3481 inline_speed void
3482 clear_pending (EV_P_ W w)
3483 {
3484   if (w->pending)
3485     {
3486       pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3487       w->pending = 0;
3488     }
3489 }
3490
3491 int
3492 ev_clear_pending (EV_P_ void *w) EV_THROW
3493 {
3494   W w_ = (W)w;
3495   int pending = w_->pending;
3496
3497   if (expect_true (pending))
3498     {
3499       ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3500       p->w = (W)&pending_w;
3501       w_->pending = 0;
3502       return p->events;
3503     }
3504   else
3505     return 0;
3506 }
3507
3508 inline_size void
3509 pri_adjust (EV_P_ W w)
3510 {
3511   int pri = ev_priority (w);
3512   pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3513   pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3514   ev_set_priority (w, pri);
3515 }
3516
3517 inline_speed void
3518 ev_start (EV_P_ W w, int active)
3519 {
3520   pri_adjust (EV_A_ w);
3521   w->active = active;
3522   ev_ref (EV_A);
3523 }
3524
3525 inline_size void
3526 ev_stop (EV_P_ W w)
3527 {
3528   ev_unref (EV_A);
3529   w->active = 0;
3530 }
3531
3532 /*****************************************************************************/
3533
3534 void noinline
3535 ev_io_start (EV_P_ ev_io *w) EV_THROW
3536 {
3537   int fd = w->fd;
3538
3539   if (expect_false (ev_is_active (w)))
3540     return;
3541
3542   assert (("libev: ev_io_start called with negative fd", fd >= 0));
3543   assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3544
3545   EV_FREQUENT_CHECK;
3546
3547   ev_start (EV_A_ (W)w, 1);
3548   array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3549   wlist_add (&anfds[fd].head, (WL)w);
3550
3551   /* common bug, apparently */
3552   assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3553
3554   fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3555   w->events &= ~EV__IOFDSET;
3556
3557   EV_FREQUENT_CHECK;
3558 }
3559
3560 void noinline
3561 ev_io_stop (EV_P_ ev_io *w) EV_THROW
3562 {
3563   clear_pending (EV_A_ (W)w);
3564   if (expect_false (!ev_is_active (w)))
3565     return;
3566
3567   assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3568
3569   EV_FREQUENT_CHECK;
3570
3571   wlist_del (&anfds[w->fd].head, (WL)w);
3572   ev_stop (EV_A_ (W)w);
3573
3574   fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3575
3576   EV_FREQUENT_CHECK;
3577 }
3578
3579 void noinline
3580 ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3581 {
3582   if (expect_false (ev_is_active (w)))
3583     return;
3584
3585   ev_at (w) += mn_now;
3586
3587   assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3588
3589   EV_FREQUENT_CHECK;
3590
3591   ++timercnt;
3592   ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3593   array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3594   ANHE_w (timers [ev_active (w)]) = (WT)w;
3595   ANHE_at_cache (timers [ev_active (w)]);
3596   upheap (timers, ev_active (w));
3597
3598   EV_FREQUENT_CHECK;
3599
3600   /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3601 }
3602
3603 void noinline
3604 ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3605 {
3606   clear_pending (EV_A_ (W)w);
3607   if (expect_false (!ev_is_active (w)))
3608     return;
3609
3610   EV_FREQUENT_CHECK;
3611
3612   {
3613     int active = ev_active (w);
3614
3615     assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3616
3617     --timercnt;
3618
3619     if (expect_true (active < timercnt + HEAP0))
3620       {
3621         timers [active] = timers [timercnt + HEAP0];
3622         adjustheap (timers, timercnt, active);
3623       }
3624   }
3625
3626   ev_at (w) -= mn_now;
3627
3628   ev_stop (EV_A_ (W)w);
3629
3630   EV_FREQUENT_CHECK;
3631 }
3632
3633 void noinline
3634 ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3635 {
3636   EV_FREQUENT_CHECK;
3637
3638   clear_pending (EV_A_ (W)w);
3639
3640   if (ev_is_active (w))
3641     {
3642       if (w->repeat)
3643         {
3644           ev_at (w) = mn_now + w->repeat;
3645           ANHE_at_cache (timers [ev_active (w)]);
3646           adjustheap (timers, timercnt, ev_active (w));
3647         }
3648       else
3649         ev_timer_stop (EV_A_ w);
3650     }
3651   else if (w->repeat)
3652     {
3653       ev_at (w) = w->repeat;
3654       ev_timer_start (EV_A_ w);
3655     }
3656
3657   EV_FREQUENT_CHECK;
3658 }
3659
3660 ev_tstamp
3661 ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3662 {
3663   return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3664 }
3665
3666 #if EV_PERIODIC_ENABLE
3667 void noinline
3668 ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
3669 {
3670   if (expect_false (ev_is_active (w)))
3671     return;
3672
3673   if (w->reschedule_cb)
3674     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3675   else if (w->interval)
3676     {
3677       assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3678       periodic_recalc (EV_A_ w);
3679     }
3680   else
3681     ev_at (w) = w->offset;
3682
3683   EV_FREQUENT_CHECK;
3684
3685   ++periodiccnt;
3686   ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3687   array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3688   ANHE_w (periodics [ev_active (w)]) = (WT)w;
3689   ANHE_at_cache (periodics [ev_active (w)]);
3690   upheap (periodics, ev_active (w));
3691
3692   EV_FREQUENT_CHECK;
3693
3694   /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3695 }
3696
3697 void noinline
3698 ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
3699 {
3700   clear_pending (EV_A_ (W)w);
3701   if (expect_false (!ev_is_active (w)))
3702     return;
3703
3704   EV_FREQUENT_CHECK;
3705
3706   {
3707     int active = ev_active (w);
3708
3709     assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3710
3711     --periodiccnt;
3712
3713     if (expect_true (active < periodiccnt + HEAP0))
3714       {
3715         periodics [active] = periodics [periodiccnt + HEAP0];
3716         adjustheap (periodics, periodiccnt, active);
3717       }
3718   }
3719
3720   ev_stop (EV_A_ (W)w);
3721
3722   EV_FREQUENT_CHECK;
3723 }
3724
3725 void noinline
3726 ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
3727 {
3728   /* TODO: use adjustheap and recalculation */
3729   ev_periodic_stop (EV_A_ w);
3730   ev_periodic_start (EV_A_ w);
3731 }
3732 #endif
3733
3734 #ifndef SA_RESTART
3735 # define SA_RESTART 0
3736 #endif
3737
3738 #if EV_SIGNAL_ENABLE
3739
3740 void noinline
3741 ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3742 {
3743   if (expect_false (ev_is_active (w)))
3744     return;
3745
3746   assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3747
3748 #if EV_MULTIPLICITY
3749   assert (("libev: a signal must not be attached to two different loops",
3750            !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3751
3752   signals [w->signum - 1].loop = EV_A;
3753   ECB_MEMORY_FENCE_RELEASE;
3754 #endif
3755
3756   EV_FREQUENT_CHECK;
3757
3758 #if EV_USE_SIGNALFD
3759   if (sigfd == -2)
3760     {
3761       sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3762       if (sigfd < 0 && errno == EINVAL)
3763         sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3764
3765       if (sigfd >= 0)
3766         {
3767           fd_intern (sigfd); /* doing it twice will not hurt */
3768
3769           sigemptyset (&sigfd_set);
3770
3771           ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3772           ev_set_priority (&sigfd_w, EV_MAXPRI);
3773           ev_io_start (EV_A_ &sigfd_w);
3774           ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3775         }
3776     }
3777
3778   if (sigfd >= 0)
3779     {
3780       /* TODO: check .head */
3781       sigaddset (&sigfd_set, w->signum);
3782       sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3783
3784       signalfd (sigfd, &sigfd_set, 0);
3785     }
3786 #endif
3787
3788   ev_start (EV_A_ (W)w, 1);
3789   wlist_add (&signals [w->signum - 1].head, (WL)w);
3790
3791   if (!((WL)w)->next)
3792 # if EV_USE_SIGNALFD
3793     if (sigfd < 0) /*TODO*/
3794 # endif
3795       {
3796 # ifdef _WIN32
3797         evpipe_init (EV_A);
3798
3799         signal (w->signum, ev_sighandler);
3800 # else
3801         struct sigaction sa;
3802
3803         evpipe_init (EV_A);
3804
3805         sa.sa_handler = ev_sighandler;
3806         sigfillset (&sa.sa_mask);
3807         sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3808         sigaction (w->signum, &sa, 0);
3809
3810         if (origflags & EVFLAG_NOSIGMASK)
3811           {
3812             sigemptyset (&sa.sa_mask);
3813             sigaddset (&sa.sa_mask, w->signum);
3814             sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3815           }
3816 #endif
3817       }
3818
3819   EV_FREQUENT_CHECK;
3820 }
3821
3822 void noinline
3823 ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3824 {
3825   clear_pending (EV_A_ (W)w);
3826   if (expect_false (!ev_is_active (w)))
3827     return;
3828
3829   EV_FREQUENT_CHECK;
3830
3831   wlist_del (&signals [w->signum - 1].head, (WL)w);
3832   ev_stop (EV_A_ (W)w);
3833
3834   if (!signals [w->signum - 1].head)
3835     {
3836 #if EV_MULTIPLICITY
3837       signals [w->signum - 1].loop = 0; /* unattach from signal */
3838 #endif
3839 #if EV_USE_SIGNALFD
3840       if (sigfd >= 0)
3841         {
3842           sigset_t ss;
3843
3844           sigemptyset (&ss);
3845           sigaddset (&ss, w->signum);
3846           sigdelset (&sigfd_set, w->signum);
3847
3848           signalfd (sigfd, &sigfd_set, 0);
3849           sigprocmask (SIG_UNBLOCK, &ss, 0);
3850         }
3851       else
3852 #endif
3853         signal (w->signum, SIG_DFL);
3854     }
3855
3856   EV_FREQUENT_CHECK;
3857 }
3858
3859 #endif
3860
3861 #if EV_CHILD_ENABLE
3862
3863 void
3864 ev_child_start (EV_P_ ev_child *w) EV_THROW
3865 {
3866 #if EV_MULTIPLICITY
3867   assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3868 #endif
3869   if (expect_false (ev_is_active (w)))
3870     return;
3871
3872   EV_FREQUENT_CHECK;
3873
3874   ev_start (EV_A_ (W)w, 1);
3875   wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3876
3877   EV_FREQUENT_CHECK;
3878 }
3879
3880 void
3881 ev_child_stop (EV_P_ ev_child *w) EV_THROW
3882 {
3883   clear_pending (EV_A_ (W)w);
3884   if (expect_false (!ev_is_active (w)))
3885     return;
3886
3887   EV_FREQUENT_CHECK;
3888
3889   wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3890   ev_stop (EV_A_ (W)w);
3891
3892   EV_FREQUENT_CHECK;
3893 }
3894
3895 #endif
3896
3897 #if EV_STAT_ENABLE
3898
3899 # ifdef _WIN32
3900 #  undef lstat
3901 #  define lstat(a,b) _stati64 (a,b)
3902 # endif
3903
3904 #define DEF_STAT_INTERVAL  5.0074891
3905 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3906 #define MIN_STAT_INTERVAL  0.1074891
3907
3908 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3909
3910 #if EV_USE_INOTIFY
3911
3912 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3913 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3914
3915 static void noinline
3916 infy_add (EV_P_ ev_stat *w)
3917 {
3918   w->wd = inotify_add_watch (fs_fd, w->path,
3919                              IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3920                              | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3921                              | IN_DONT_FOLLOW | IN_MASK_ADD);
3922
3923   if (w->wd >= 0)
3924     {
3925       struct statfs sfs;
3926
3927       /* now local changes will be tracked by inotify, but remote changes won't */
3928       /* unless the filesystem is known to be local, we therefore still poll */
3929       /* also do poll on <2.6.25, but with normal frequency */
3930
3931       if (!fs_2625)
3932         w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3933       else if (!statfs (w->path, &sfs)
3934                && (sfs.f_type == 0x1373 /* devfs */
3935                    || sfs.f_type == 0x4006 /* fat */
3936                    || sfs.f_type == 0x4d44 /* msdos */
3937                    || sfs.f_type == 0xEF53 /* ext2/3 */
3938                    || sfs.f_type == 0x72b6 /* jffs2 */
3939                    || sfs.f_type == 0x858458f6 /* ramfs */
3940                    || sfs.f_type == 0x5346544e /* ntfs */
3941                    || sfs.f_type == 0x3153464a /* jfs */
3942                    || sfs.f_type == 0x9123683e /* btrfs */
3943                    || sfs.f_type == 0x52654973 /* reiser3 */
3944                    || sfs.f_type == 0x01021994 /* tmpfs */
3945                    || sfs.f_type == 0x58465342 /* xfs */))
3946         w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3947       else
3948         w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3949     }
3950   else
3951     {
3952       /* can't use inotify, continue to stat */
3953       w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3954
3955       /* if path is not there, monitor some parent directory for speedup hints */
3956       /* note that exceeding the hardcoded path limit is not a correctness issue, */
3957       /* but an efficiency issue only */
3958       if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3959         {
3960           char path [4096];
3961           strcpy (path, w->path);
3962
3963           do
3964             {
3965               int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3966                        | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3967
3968               char *pend = strrchr (path, '/');
3969
3970               if (!pend || pend == path)
3971                 break;
3972
3973               *pend = 0;
3974               w->wd = inotify_add_watch (fs_fd, path, mask);
3975             }
3976           while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3977         }
3978     }
3979
3980   if (w->wd >= 0)
3981     wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3982
3983   /* now re-arm timer, if required */
3984   if (ev_is_active (&w->timer)) ev_ref (EV_A);
3985   ev_timer_again (EV_A_ &w->timer);
3986   if (ev_is_active (&w->timer)) ev_unref (EV_A);
3987 }
3988
3989 static void noinline
3990 infy_del (EV_P_ ev_stat *w)
3991 {
3992   int slot;
3993   int wd = w->wd;
3994
3995   if (wd < 0)
3996     return;
3997
3998   w->wd = -2;
3999   slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
4000   wlist_del (&fs_hash [slot].head, (WL)w);
4001
4002   /* remove this watcher, if others are watching it, they will rearm */
4003   inotify_rm_watch (fs_fd, wd);
4004 }
4005
4006 static void noinline
4007 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
4008 {
4009   if (slot < 0)
4010     /* overflow, need to check for all hash slots */
4011     for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4012       infy_wd (EV_A_ slot, wd, ev);
4013   else
4014     {
4015       WL w_;
4016
4017       for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
4018         {
4019           ev_stat *w = (ev_stat *)w_;
4020           w_ = w_->next; /* lets us remove this watcher and all before it */
4021
4022           if (w->wd == wd || wd == -1)
4023             {
4024               if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
4025                 {
4026                   wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4027                   w->wd = -1;
4028                   infy_add (EV_A_ w); /* re-add, no matter what */
4029                 }
4030
4031               stat_timer_cb (EV_A_ &w->timer, 0);
4032             }
4033         }
4034     }
4035 }
4036
4037 static void
4038 infy_cb (EV_P_ ev_io *w, int revents)
4039 {
4040   char buf [EV_INOTIFY_BUFSIZE];
4041   int ofs;
4042   int len = read (fs_fd, buf, sizeof (buf));
4043
4044   for (ofs = 0; ofs < len; )
4045     {
4046       struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
4047       infy_wd (EV_A_ ev->wd, ev->wd, ev);
4048       ofs += sizeof (struct inotify_event) + ev->len;
4049     }
4050 }
4051
4052 inline_size void ecb_cold
4053 ev_check_2625 (EV_P)
4054 {
4055   /* kernels < 2.6.25 are borked
4056    * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4057    */
4058   if (ev_linux_version () < 0x020619)
4059     return;
4060
4061   fs_2625 = 1;
4062 }
4063
4064 inline_size int
4065 infy_newfd (void)
4066 {
4067 #if defined IN_CLOEXEC && defined IN_NONBLOCK
4068   int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4069   if (fd >= 0)
4070     return fd;
4071 #endif
4072   return inotify_init ();
4073 }
4074
4075 inline_size void
4076 infy_init (EV_P)
4077 {
4078   if (fs_fd != -2)
4079     return;
4080
4081   fs_fd = -1;
4082
4083   ev_check_2625 (EV_A);
4084
4085   fs_fd = infy_newfd ();
4086
4087   if (fs_fd >= 0)
4088     {
4089       fd_intern (fs_fd);
4090       ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
4091       ev_set_priority (&fs_w, EV_MAXPRI);
4092       ev_io_start (EV_A_ &fs_w);
4093       ev_unref (EV_A);
4094     }
4095 }
4096
4097 inline_size void
4098 infy_fork (EV_P)
4099 {
4100   int slot;
4101
4102   if (fs_fd < 0)
4103     return;
4104
4105   ev_ref (EV_A);
4106   ev_io_stop (EV_A_ &fs_w);
4107   close (fs_fd);
4108   fs_fd = infy_newfd ();
4109
4110   if (fs_fd >= 0)
4111     {
4112       fd_intern (fs_fd);
4113       ev_io_set (&fs_w, fs_fd, EV_READ);
4114       ev_io_start (EV_A_ &fs_w);
4115       ev_unref (EV_A);
4116     }
4117
4118   for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
4119     {
4120       WL w_ = fs_hash [slot].head;
4121       fs_hash [slot].head = 0;
4122
4123       while (w_)
4124         {
4125           ev_stat *w = (ev_stat *)w_;
4126           w_ = w_->next; /* lets us add this watcher */
4127
4128           w->wd = -1;
4129
4130           if (fs_fd >= 0)
4131             infy_add (EV_A_ w); /* re-add, no matter what */
4132           else
4133             {
4134               w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4135               if (ev_is_active (&w->timer)) ev_ref (EV_A);
4136               ev_timer_again (EV_A_ &w->timer);
4137               if (ev_is_active (&w->timer)) ev_unref (EV_A);
4138             }
4139         }
4140     }
4141 }
4142
4143 #endif
4144
4145 #ifdef _WIN32
4146 # define EV_LSTAT(p,b) _stati64 (p, b)
4147 #else
4148 # define EV_LSTAT(p,b) lstat (p, b)
4149 #endif
4150
4151 void
4152 ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
4153 {
4154   if (lstat (w->path, &w->attr) < 0)
4155     w->attr.st_nlink = 0;
4156   else if (!w->attr.st_nlink)
4157     w->attr.st_nlink = 1;
4158 }
4159
4160 static void noinline
4161 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
4162 {
4163   ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
4164
4165   ev_statdata prev = w->attr;
4166   ev_stat_stat (EV_A_ w);
4167
4168   /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
4169   if (
4170     prev.st_dev      != w->attr.st_dev
4171     || prev.st_ino   != w->attr.st_ino
4172     || prev.st_mode  != w->attr.st_mode
4173     || prev.st_nlink != w->attr.st_nlink
4174     || prev.st_uid   != w->attr.st_uid
4175     || prev.st_gid   != w->attr.st_gid
4176     || prev.st_rdev  != w->attr.st_rdev
4177     || prev.st_size  != w->attr.st_size
4178     || prev.st_atime != w->attr.st_atime
4179     || prev.st_mtime != w->attr.st_mtime
4180     || prev.st_ctime != w->attr.st_ctime
4181   ) {
4182       /* we only update w->prev on actual differences */
4183       /* in case we test more often than invoke the callback, */
4184       /* to ensure that prev is always different to attr */
4185       w->prev = prev;
4186
4187       #if EV_USE_INOTIFY
4188         if (fs_fd >= 0)
4189           {
4190             infy_del (EV_A_ w);
4191             infy_add (EV_A_ w);
4192             ev_stat_stat (EV_A_ w); /* avoid race... */
4193           }
4194       #endif
4195
4196       ev_feed_event (EV_A_ w, EV_STAT);
4197     }
4198 }
4199
4200 void
4201 ev_stat_start (EV_P_ ev_stat *w) EV_THROW
4202 {
4203   if (expect_false (ev_is_active (w)))
4204     return;
4205
4206   ev_stat_stat (EV_A_ w);
4207
4208   if (w->interval < MIN_STAT_INTERVAL && w->interval)
4209     w->interval = MIN_STAT_INTERVAL;
4210
4211   ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
4212   ev_set_priority (&w->timer, ev_priority (w));
4213
4214 #if EV_USE_INOTIFY
4215   infy_init (EV_A);
4216
4217   if (fs_fd >= 0)
4218     infy_add (EV_A_ w);
4219   else
4220 #endif
4221     {
4222       ev_timer_again (EV_A_ &w->timer);
4223       ev_unref (EV_A);
4224     }
4225
4226   ev_start (EV_A_ (W)w, 1);
4227
4228   EV_FREQUENT_CHECK;
4229 }
4230
4231 void
4232 ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4233 {
4234   clear_pending (EV_A_ (W)w);
4235   if (expect_false (!ev_is_active (w)))
4236     return;
4237
4238   EV_FREQUENT_CHECK;
4239
4240 #if EV_USE_INOTIFY
4241   infy_del (EV_A_ w);
4242 #endif
4243
4244   if (ev_is_active (&w->timer))
4245     {
4246       ev_ref (EV_A);
4247       ev_timer_stop (EV_A_ &w->timer);
4248     }
4249
4250   ev_stop (EV_A_ (W)w);
4251
4252   EV_FREQUENT_CHECK;
4253 }
4254 #endif
4255
4256 #if EV_IDLE_ENABLE
4257 void
4258 ev_idle_start (EV_P_ ev_idle *w) EV_THROW
4259 {
4260   if (expect_false (ev_is_active (w)))
4261     return;
4262
4263   pri_adjust (EV_A_ (W)w);
4264
4265   EV_FREQUENT_CHECK;
4266
4267   {
4268     int active = ++idlecnt [ABSPRI (w)];
4269
4270     ++idleall;
4271     ev_start (EV_A_ (W)w, active);
4272
4273     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4274     idles [ABSPRI (w)][active - 1] = w;
4275   }
4276
4277   EV_FREQUENT_CHECK;
4278 }
4279
4280 void
4281 ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4282 {
4283   clear_pending (EV_A_ (W)w);
4284   if (expect_false (!ev_is_active (w)))
4285     return;
4286
4287   EV_FREQUENT_CHECK;
4288
4289   {
4290     int active = ev_active (w);
4291
4292     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4293     ev_active (idles [ABSPRI (w)][active - 1]) = active;
4294
4295     ev_stop (EV_A_ (W)w);
4296     --idleall;
4297   }
4298
4299   EV_FREQUENT_CHECK;
4300 }
4301 #endif
4302
4303 #if EV_PREPARE_ENABLE
4304 void
4305 ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4306 {
4307   if (expect_false (ev_is_active (w)))
4308     return;
4309
4310   EV_FREQUENT_CHECK;
4311
4312   ev_start (EV_A_ (W)w, ++preparecnt);
4313   array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4314   prepares [preparecnt - 1] = w;
4315
4316   EV_FREQUENT_CHECK;
4317 }
4318
4319 void
4320 ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4321 {
4322   clear_pending (EV_A_ (W)w);
4323   if (expect_false (!ev_is_active (w)))
4324     return;
4325
4326   EV_FREQUENT_CHECK;
4327
4328   {
4329     int active = ev_active (w);
4330
4331     prepares [active - 1] = prepares [--preparecnt];
4332     ev_active (prepares [active - 1]) = active;
4333   }
4334
4335   ev_stop (EV_A_ (W)w);
4336
4337   EV_FREQUENT_CHECK;
4338 }
4339 #endif
4340
4341 #if EV_CHECK_ENABLE
4342 void
4343 ev_check_start (EV_P_ ev_check *w) EV_THROW
4344 {
4345   if (expect_false (ev_is_active (w)))
4346     return;
4347
4348   EV_FREQUENT_CHECK;
4349
4350   ev_start (EV_A_ (W)w, ++checkcnt);
4351   array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4352   checks [checkcnt - 1] = w;
4353
4354   EV_FREQUENT_CHECK;
4355 }
4356
4357 void
4358 ev_check_stop (EV_P_ ev_check *w) EV_THROW
4359 {
4360   clear_pending (EV_A_ (W)w);
4361   if (expect_false (!ev_is_active (w)))
4362     return;
4363
4364   EV_FREQUENT_CHECK;
4365
4366   {
4367     int active = ev_active (w);
4368
4369     checks [active - 1] = checks [--checkcnt];
4370     ev_active (checks [active - 1]) = active;
4371   }
4372
4373   ev_stop (EV_A_ (W)w);
4374
4375   EV_FREQUENT_CHECK;
4376 }
4377 #endif
4378
4379 #if EV_EMBED_ENABLE
4380 void noinline
4381 ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4382 {
4383   ev_run (w->other, EVRUN_NOWAIT);
4384 }
4385
4386 static void
4387 embed_io_cb (EV_P_ ev_io *io, int revents)
4388 {
4389   ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4390
4391   if (ev_cb (w))
4392     ev_feed_event (EV_A_ (W)w, EV_EMBED);
4393   else
4394     ev_run (w->other, EVRUN_NOWAIT);
4395 }
4396
4397 static void
4398 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4399 {
4400   ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4401
4402   {
4403     EV_P = w->other;
4404
4405     while (fdchangecnt)
4406       {
4407         fd_reify (EV_A);
4408         ev_run (EV_A_ EVRUN_NOWAIT);
4409       }
4410   }
4411 }
4412
4413 static void
4414 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4415 {
4416   ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4417
4418   ev_embed_stop (EV_A_ w);
4419
4420   {
4421     EV_P = w->other;
4422
4423     ev_loop_fork (EV_A);
4424     ev_run (EV_A_ EVRUN_NOWAIT);
4425   }
4426
4427   ev_embed_start (EV_A_ w);
4428 }
4429
4430 #if 0
4431 static void
4432 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4433 {
4434   ev_idle_stop (EV_A_ idle);
4435 }
4436 #endif
4437
4438 void
4439 ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4440 {
4441   if (expect_false (ev_is_active (w)))
4442     return;
4443
4444   {
4445     EV_P = w->other;
4446     assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4447     ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4448   }
4449
4450   EV_FREQUENT_CHECK;
4451
4452   ev_set_priority (&w->io, ev_priority (w));
4453   ev_io_start (EV_A_ &w->io);
4454
4455   ev_prepare_init (&w->prepare, embed_prepare_cb);
4456   ev_set_priority (&w->prepare, EV_MINPRI);
4457   ev_prepare_start (EV_A_ &w->prepare);
4458
4459   ev_fork_init (&w->fork, embed_fork_cb);
4460   ev_fork_start (EV_A_ &w->fork);
4461
4462   /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4463
4464   ev_start (EV_A_ (W)w, 1);
4465
4466   EV_FREQUENT_CHECK;
4467 }
4468
4469 void
4470 ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
4471 {
4472   clear_pending (EV_A_ (W)w);
4473   if (expect_false (!ev_is_active (w)))
4474     return;
4475
4476   EV_FREQUENT_CHECK;
4477
4478   ev_io_stop      (EV_A_ &w->io);
4479   ev_prepare_stop (EV_A_ &w->prepare);
4480   ev_fork_stop    (EV_A_ &w->fork);
4481
4482   ev_stop (EV_A_ (W)w);
4483
4484   EV_FREQUENT_CHECK;
4485 }
4486 #endif
4487
4488 #if EV_FORK_ENABLE
4489 void
4490 ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4491 {
4492   if (expect_false (ev_is_active (w)))
4493     return;
4494
4495   EV_FREQUENT_CHECK;
4496
4497   ev_start (EV_A_ (W)w, ++forkcnt);
4498   array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4499   forks [forkcnt - 1] = w;
4500
4501   EV_FREQUENT_CHECK;
4502 }
4503
4504 void
4505 ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4506 {
4507   clear_pending (EV_A_ (W)w);
4508   if (expect_false (!ev_is_active (w)))
4509     return;
4510
4511   EV_FREQUENT_CHECK;
4512
4513   {
4514     int active = ev_active (w);
4515
4516     forks [active - 1] = forks [--forkcnt];
4517     ev_active (forks [active - 1]) = active;
4518   }
4519
4520   ev_stop (EV_A_ (W)w);
4521
4522   EV_FREQUENT_CHECK;
4523 }
4524 #endif
4525
4526 #if EV_CLEANUP_ENABLE
4527 void
4528 ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4529 {
4530   if (expect_false (ev_is_active (w)))
4531     return;
4532
4533   EV_FREQUENT_CHECK;
4534
4535   ev_start (EV_A_ (W)w, ++cleanupcnt);
4536   array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4537   cleanups [cleanupcnt - 1] = w;
4538
4539   /* cleanup watchers should never keep a refcount on the loop */
4540   ev_unref (EV_A);
4541   EV_FREQUENT_CHECK;
4542 }
4543
4544 void
4545 ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4546 {
4547   clear_pending (EV_A_ (W)w);
4548   if (expect_false (!ev_is_active (w)))
4549     return;
4550
4551   EV_FREQUENT_CHECK;
4552   ev_ref (EV_A);
4553
4554   {
4555     int active = ev_active (w);
4556
4557     cleanups [active - 1] = cleanups [--cleanupcnt];
4558     ev_active (cleanups [active - 1]) = active;
4559   }
4560
4561   ev_stop (EV_A_ (W)w);
4562
4563   EV_FREQUENT_CHECK;
4564 }
4565 #endif
4566
4567 #if EV_ASYNC_ENABLE
4568 void
4569 ev_async_start (EV_P_ ev_async *w) EV_THROW
4570 {
4571   if (expect_false (ev_is_active (w)))
4572     return;
4573
4574   w->sent = 0;
4575
4576   evpipe_init (EV_A);
4577
4578   EV_FREQUENT_CHECK;
4579
4580   ev_start (EV_A_ (W)w, ++asynccnt);
4581   array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4582   asyncs [asynccnt - 1] = w;
4583
4584   EV_FREQUENT_CHECK;
4585 }
4586
4587 void
4588 ev_async_stop (EV_P_ ev_async *w) EV_THROW
4589 {
4590   clear_pending (EV_A_ (W)w);
4591   if (expect_false (!ev_is_active (w)))
4592     return;
4593
4594   EV_FREQUENT_CHECK;
4595
4596   {
4597     int active = ev_active (w);
4598
4599     asyncs [active - 1] = asyncs [--asynccnt];
4600     ev_active (asyncs [active - 1]) = active;
4601   }
4602
4603   ev_stop (EV_A_ (W)w);
4604
4605   EV_FREQUENT_CHECK;
4606 }
4607
4608 void
4609 ev_async_send (EV_P_ ev_async *w) EV_THROW
4610 {
4611   w->sent = 1;
4612   evpipe_write (EV_A_ &async_pending);
4613 }
4614 #endif
4615
4616 /*****************************************************************************/
4617
4618 struct ev_once
4619 {
4620   ev_io io;
4621   ev_timer to;
4622   void (*cb)(int revents, void *arg);
4623   void *arg;
4624 };
4625
4626 static void
4627 once_cb (EV_P_ struct ev_once *once, int revents)
4628 {
4629   void (*cb)(int revents, void *arg) = once->cb;
4630   void *arg = once->arg;
4631
4632   ev_io_stop    (EV_A_ &once->io);
4633   ev_timer_stop (EV_A_ &once->to);
4634   ev_free (once);
4635
4636   cb (revents, arg);
4637 }
4638
4639 static void
4640 once_cb_io (EV_P_ ev_io *w, int revents)
4641 {
4642   struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4643
4644   once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4645 }
4646
4647 static void
4648 once_cb_to (EV_P_ ev_timer *w, int revents)
4649 {
4650   struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4651
4652   once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4653 }
4654
4655 void
4656 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
4657 {
4658   struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4659
4660   if (expect_false (!once))
4661     {
4662       cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4663       return;
4664     }
4665
4666   once->cb  = cb;
4667   once->arg = arg;
4668
4669   ev_init (&once->io, once_cb_io);
4670   if (fd >= 0)
4671     {
4672       ev_io_set (&once->io, fd, events);
4673       ev_io_start (EV_A_ &once->io);
4674     }
4675
4676   ev_init (&once->to, once_cb_to);
4677   if (timeout >= 0.)
4678     {
4679       ev_timer_set (&once->to, timeout, 0.);
4680       ev_timer_start (EV_A_ &once->to);
4681     }
4682 }
4683
4684 /*****************************************************************************/
4685
4686 #if EV_WALK_ENABLE
4687 void ecb_cold
4688 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4689 {
4690   int i, j;
4691   ev_watcher_list *wl, *wn;
4692
4693   if (types & (EV_IO | EV_EMBED))
4694     for (i = 0; i < anfdmax; ++i)
4695       for (wl = anfds [i].head; wl; )
4696         {
4697           wn = wl->next;
4698
4699 #if EV_EMBED_ENABLE
4700           if (ev_cb ((ev_io *)wl) == embed_io_cb)
4701             {
4702               if (types & EV_EMBED)
4703                 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4704             }
4705           else
4706 #endif
4707 #if EV_USE_INOTIFY
4708           if (ev_cb ((ev_io *)wl) == infy_cb)
4709             ;
4710           else
4711 #endif
4712           if ((ev_io *)wl != &pipe_w)
4713             if (types & EV_IO)
4714               cb (EV_A_ EV_IO, wl);
4715
4716           wl = wn;
4717         }
4718
4719   if (types & (EV_TIMER | EV_STAT))
4720     for (i = timercnt + HEAP0; i-- > HEAP0; )
4721 #if EV_STAT_ENABLE
4722       /*TODO: timer is not always active*/
4723       if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4724         {
4725           if (types & EV_STAT)
4726             cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4727         }
4728       else
4729 #endif
4730       if (types & EV_TIMER)
4731         cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4732
4733 #if EV_PERIODIC_ENABLE
4734   if (types & EV_PERIODIC)
4735     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4736       cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4737 #endif
4738
4739 #if EV_IDLE_ENABLE
4740   if (types & EV_IDLE)
4741     for (j = NUMPRI; j--; )
4742       for (i = idlecnt [j]; i--; )
4743         cb (EV_A_ EV_IDLE, idles [j][i]);
4744 #endif
4745
4746 #if EV_FORK_ENABLE
4747   if (types & EV_FORK)
4748     for (i = forkcnt; i--; )
4749       if (ev_cb (forks [i]) != embed_fork_cb)
4750         cb (EV_A_ EV_FORK, forks [i]);
4751 #endif
4752
4753 #if EV_ASYNC_ENABLE
4754   if (types & EV_ASYNC)
4755     for (i = asynccnt; i--; )
4756       cb (EV_A_ EV_ASYNC, asyncs [i]);
4757 #endif
4758
4759 #if EV_PREPARE_ENABLE
4760   if (types & EV_PREPARE)
4761     for (i = preparecnt; i--; )
4762 # if EV_EMBED_ENABLE
4763       if (ev_cb (prepares [i]) != embed_prepare_cb)
4764 # endif
4765         cb (EV_A_ EV_PREPARE, prepares [i]);
4766 #endif
4767
4768 #if EV_CHECK_ENABLE
4769   if (types & EV_CHECK)
4770     for (i = checkcnt; i--; )
4771       cb (EV_A_ EV_CHECK, checks [i]);
4772 #endif
4773
4774 #if EV_SIGNAL_ENABLE
4775   if (types & EV_SIGNAL)
4776     for (i = 0; i < EV_NSIG - 1; ++i)
4777       for (wl = signals [i].head; wl; )
4778         {
4779           wn = wl->next;
4780           cb (EV_A_ EV_SIGNAL, wl);
4781           wl = wn;
4782         }
4783 #endif
4784
4785 #if EV_CHILD_ENABLE
4786   if (types & EV_CHILD)
4787     for (i = (EV_PID_HASHSIZE); i--; )
4788       for (wl = childs [i]; wl; )
4789         {
4790           wn = wl->next;
4791           cb (EV_A_ EV_CHILD, wl);
4792           wl = wn;
4793         }
4794 #endif
4795 /* EV_STAT     0x00001000 /* stat data changed */
4796 /* EV_EMBED    0x00010000 /* embedded event loop needs sweep */
4797 }
4798 #endif
4799
4800 #if EV_MULTIPLICITY
4801   #include "ev_wrap.h"
4802 #endif
4803