]> rtime.felk.cvut.cz Git - sojka/libev.git/blob - ev.c
*** empty log message ***
[sojka/libev.git] / ev.c
1 /*
2  * libev event processing core, watcher management
3  *
4  * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without modifica-
8  * tion, are permitted provided that the following conditions are met:
9  *
10  *   1.  Redistributions of source code must retain the above copyright notice,
11  *       this list of conditions and the following disclaimer.
12  *
13  *   2.  Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in the
15  *       documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19  * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO
20  * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21  * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25  * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26  * OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * Alternatively, the contents of this file may be used under the terms of
29  * the GNU General Public License ("GPL") version 2 or any later version,
30  * in which case the provisions of the GPL are applicable instead of
31  * the above. If you wish to allow the use of your version of this file
32  * only under the terms of the GPL and not to allow others to use your
33  * version of this file under the BSD license, indicate your decision
34  * by deleting the provisions above and replace them with the notice
35  * and other provisions required by the GPL. If you do not delete the
36  * provisions above, a recipient may use your version of this file under
37  * either the BSD or the GPL.
38  */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 #  include EV_CONFIG_H
44 # else
45 #  include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 #  define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 #  ifndef EV_USE_CLOCK_SYSCALL
56 #   define EV_USE_CLOCK_SYSCALL 1
57 #   ifndef EV_USE_REALTIME
58 #    define EV_USE_REALTIME  0
59 #   endif
60 #   ifndef EV_USE_MONOTONIC
61 #    define EV_USE_MONOTONIC 1
62 #   endif
63 #  endif
64 # elif !defined(EV_USE_CLOCK_SYSCALL)
65 #  define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 #  ifndef EV_USE_MONOTONIC
70 #   define EV_USE_MONOTONIC 1
71 #  endif
72 #  ifndef EV_USE_REALTIME
73 #   define EV_USE_REALTIME  0
74 #  endif
75 # else
76 #  ifndef EV_USE_MONOTONIC
77 #   define EV_USE_MONOTONIC 0
78 #  endif
79 #  ifndef EV_USE_REALTIME
80 #   define EV_USE_REALTIME  0
81 #  endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 #  ifndef EV_USE_NANOSLEEP
86 #    define EV_USE_NANOSLEEP EV_FEATURE_OS
87 #  endif
88 # else
89 #   undef EV_USE_NANOSLEEP
90 #   define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 #  ifndef EV_USE_SELECT
95 #   define EV_USE_SELECT EV_FEATURE_BACKENDS
96 #  endif
97 # else
98 #  undef EV_USE_SELECT
99 #  define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 #  ifndef EV_USE_POLL
104 #   define EV_USE_POLL EV_FEATURE_BACKENDS
105 #  endif
106 # else
107 #  undef EV_USE_POLL
108 #  define EV_USE_POLL 0
109 # endif
110    
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 #  ifndef EV_USE_EPOLL
113 #   define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 #  endif
115 # else
116 #  undef EV_USE_EPOLL
117 #  define EV_USE_EPOLL 0
118 # endif
119    
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 #  ifndef EV_USE_KQUEUE
122 #   define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 #  endif
124 # else
125 #  undef EV_USE_KQUEUE
126 #  define EV_USE_KQUEUE 0
127 # endif
128    
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 #  ifndef EV_USE_PORT
131 #   define EV_USE_PORT EV_FEATURE_BACKENDS
132 #  endif
133 # else
134 #  undef EV_USE_PORT
135 #  define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 #  ifndef EV_USE_INOTIFY
140 #   define EV_USE_INOTIFY EV_FEATURE_OS
141 #  endif
142 # else
143 #  undef EV_USE_INOTIFY
144 #  define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 #  ifndef EV_USE_SIGNALFD
149 #   define EV_USE_SIGNALFD EV_FEATURE_OS
150 #  endif
151 # else
152 #  undef EV_USE_SIGNALFD
153 #  define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 #  ifndef EV_USE_EVENTFD
158 #   define EV_USE_EVENTFD EV_FEATURE_OS
159 #  endif
160 # else
161 #  undef EV_USE_EVENTFD
162 #  define EV_USE_EVENTFD 0
163 # endif
164  
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 EV_CPP(extern "C" {)
189
190 #ifndef _WIN32
191 # include <sys/time.h>
192 # include <sys/wait.h>
193 # include <unistd.h>
194 #else
195 # include <io.h>
196 # define WIN32_LEAN_AND_MEAN
197 # include <windows.h>
198 # ifndef EV_SELECT_IS_WINSOCKET
199 #  define EV_SELECT_IS_WINSOCKET 1
200 # endif
201 # undef EV_AVOID_STDIO
202 #endif
203
204 /* OS X, in its infinite idiocy, actually HARDCODES
205  * a limit of 1024 into their select. Where people have brains,
206  * OS X engineers apparently have a vacuum. Or maybe they were
207  * ordered to have a vacuum, or they do anything for money.
208  * This might help. Or not.
209  */
210 #define _DARWIN_UNLIMITED_SELECT 1
211
212 /* this block tries to deduce configuration from header-defined symbols and defaults */
213
214 /* try to deduce the maximum number of signals on this platform */
215 #if defined (EV_NSIG)
216 /* use what's provided */
217 #elif defined (NSIG)
218 # define EV_NSIG (NSIG)
219 #elif defined(_NSIG)
220 # define EV_NSIG (_NSIG)
221 #elif defined (SIGMAX)
222 # define EV_NSIG (SIGMAX+1)
223 #elif defined (SIG_MAX)
224 # define EV_NSIG (SIG_MAX+1)
225 #elif defined (_SIG_MAX)
226 # define EV_NSIG (_SIG_MAX+1)
227 #elif defined (MAXSIG)
228 # define EV_NSIG (MAXSIG+1)
229 #elif defined (MAX_SIG)
230 # define EV_NSIG (MAX_SIG+1)
231 #elif defined (SIGARRAYSIZE)
232 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233 #elif defined (_sys_nsig)
234 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235 #else
236 # error "unable to find value for NSIG, please report"
237 /* to make it compile regardless, just remove the above line, */
238 /* but consider reporting it, too! :) */
239 # define EV_NSIG 65
240 #endif
241
242 #ifndef EV_USE_FLOOR
243 # define EV_USE_FLOOR 0
244 #endif
245
246 #ifndef EV_USE_CLOCK_SYSCALL
247 # if __linux && __GLIBC__ >= 2
248 #  define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249 # else
250 #  define EV_USE_CLOCK_SYSCALL 0
251 # endif
252 #endif
253
254 #ifndef EV_USE_MONOTONIC
255 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256 #  define EV_USE_MONOTONIC EV_FEATURE_OS
257 # else
258 #  define EV_USE_MONOTONIC 0
259 # endif
260 #endif
261
262 #ifndef EV_USE_REALTIME
263 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264 #endif
265
266 #ifndef EV_USE_NANOSLEEP
267 # if _POSIX_C_SOURCE >= 199309L
268 #  define EV_USE_NANOSLEEP EV_FEATURE_OS
269 # else
270 #  define EV_USE_NANOSLEEP 0
271 # endif
272 #endif
273
274 #ifndef EV_USE_SELECT
275 # define EV_USE_SELECT EV_FEATURE_BACKENDS
276 #endif
277
278 #ifndef EV_USE_POLL
279 # ifdef _WIN32
280 #  define EV_USE_POLL 0
281 # else
282 #  define EV_USE_POLL EV_FEATURE_BACKENDS
283 # endif
284 #endif
285
286 #ifndef EV_USE_EPOLL
287 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288 #  define EV_USE_EPOLL EV_FEATURE_BACKENDS
289 # else
290 #  define EV_USE_EPOLL 0
291 # endif
292 #endif
293
294 #ifndef EV_USE_KQUEUE
295 # define EV_USE_KQUEUE 0
296 #endif
297
298 #ifndef EV_USE_PORT
299 # define EV_USE_PORT 0
300 #endif
301
302 #ifndef EV_USE_INOTIFY
303 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304 #  define EV_USE_INOTIFY EV_FEATURE_OS
305 # else
306 #  define EV_USE_INOTIFY 0
307 # endif
308 #endif
309
310 #ifndef EV_PID_HASHSIZE
311 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312 #endif
313
314 #ifndef EV_INOTIFY_HASHSIZE
315 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316 #endif
317
318 #ifndef EV_USE_EVENTFD
319 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320 #  define EV_USE_EVENTFD EV_FEATURE_OS
321 # else
322 #  define EV_USE_EVENTFD 0
323 # endif
324 #endif
325
326 #ifndef EV_USE_SIGNALFD
327 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328 #  define EV_USE_SIGNALFD EV_FEATURE_OS
329 # else
330 #  define EV_USE_SIGNALFD 0
331 # endif
332 #endif
333
334 #if 0 /* debugging */
335 # define EV_VERIFY 3
336 # define EV_USE_4HEAP 1
337 # define EV_HEAP_CACHE_AT 1
338 #endif
339
340 #ifndef EV_VERIFY
341 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342 #endif
343
344 #ifndef EV_USE_4HEAP
345 # define EV_USE_4HEAP EV_FEATURE_DATA
346 #endif
347
348 #ifndef EV_HEAP_CACHE_AT
349 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350 #endif
351
352 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353 /* which makes programs even slower. might work on other unices, too. */
354 #if EV_USE_CLOCK_SYSCALL
355 # include <syscall.h>
356 # ifdef SYS_clock_gettime
357 #  define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358 #  undef EV_USE_MONOTONIC
359 #  define EV_USE_MONOTONIC 1
360 # else
361 #  undef EV_USE_CLOCK_SYSCALL
362 #  define EV_USE_CLOCK_SYSCALL 0
363 # endif
364 #endif
365
366 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368 #ifdef _AIX
369 /* AIX has a completely broken poll.h header */
370 # undef EV_USE_POLL
371 # define EV_USE_POLL 0
372 #endif
373
374 #ifndef CLOCK_MONOTONIC
375 # undef EV_USE_MONOTONIC
376 # define EV_USE_MONOTONIC 0
377 #endif
378
379 #ifndef CLOCK_REALTIME
380 # undef EV_USE_REALTIME
381 # define EV_USE_REALTIME 0
382 #endif
383
384 #if !EV_STAT_ENABLE
385 # undef EV_USE_INOTIFY
386 # define EV_USE_INOTIFY 0
387 #endif
388
389 #if !EV_USE_NANOSLEEP
390 /* hp-ux has it in sys/time.h, which we unconditionally include above */
391 # if !defined(_WIN32) && !defined(__hpux)
392 #  include <sys/select.h>
393 # endif
394 #endif
395
396 #if EV_USE_INOTIFY
397 # include <sys/statfs.h>
398 # include <sys/inotify.h>
399 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400 # ifndef IN_DONT_FOLLOW
401 #  undef EV_USE_INOTIFY
402 #  define EV_USE_INOTIFY 0
403 # endif
404 #endif
405
406 #if EV_SELECT_IS_WINSOCKET
407 # include <winsock.h>
408 #endif
409
410 #if EV_USE_EVENTFD
411 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412 # include <stdint.h>
413 # ifndef EFD_NONBLOCK
414 #  define EFD_NONBLOCK O_NONBLOCK
415 # endif
416 # ifndef EFD_CLOEXEC
417 #  ifdef O_CLOEXEC
418 #   define EFD_CLOEXEC O_CLOEXEC
419 #  else
420 #   define EFD_CLOEXEC 02000000
421 #  endif
422 # endif
423 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424 #endif
425
426 #if EV_USE_SIGNALFD
427 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428 # include <stdint.h>
429 # ifndef SFD_NONBLOCK
430 #  define SFD_NONBLOCK O_NONBLOCK
431 # endif
432 # ifndef SFD_CLOEXEC
433 #  ifdef O_CLOEXEC
434 #   define SFD_CLOEXEC O_CLOEXEC
435 #  else
436 #   define SFD_CLOEXEC 02000000
437 #  endif
438 # endif
439 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441 struct signalfd_siginfo
442 {
443   uint32_t ssi_signo;
444   char pad[128 - sizeof (uint32_t)];
445 };
446 #endif
447
448 /**/
449
450 #if EV_VERIFY >= 3
451 # define EV_FREQUENT_CHECK ev_verify (EV_A)
452 #else
453 # define EV_FREQUENT_CHECK do { } while (0)
454 #endif
455
456 /*
457  * This is used to work around floating point rounding problems.
458  * This value is good at least till the year 4000.
459  */
460 #define MIN_INTERVAL  0.0001220703125 /* 1/2**13, good till 4000 */
461 /*#define MIN_INTERVAL  0.00000095367431640625 /* 1/2**20, good till 2200 */
462
463 #define MIN_TIMEJUMP  1. /* minimum timejump that gets detected (if monotonic clock available) */
464 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
465
466 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
469 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
470 /* ECB.H BEGIN */
471 /*
472  * libecb - http://software.schmorp.de/pkg/libecb
473  *
474  * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de>
475  * Copyright (©) 2011 Emanuele Giaquinta
476  * All rights reserved.
477  *
478  * Redistribution and use in source and binary forms, with or without modifica-
479  * tion, are permitted provided that the following conditions are met:
480  *
481  *   1.  Redistributions of source code must retain the above copyright notice,
482  *       this list of conditions and the following disclaimer.
483  *
484  *   2.  Redistributions in binary form must reproduce the above copyright
485  *       notice, this list of conditions and the following disclaimer in the
486  *       documentation and/or other materials provided with the distribution.
487  *
488  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
489  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
490  * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO
491  * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
492  * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
493  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
494  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
495  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
496  * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
497  * OF THE POSSIBILITY OF SUCH DAMAGE.
498  */
499
500 #ifndef ECB_H
501 #define ECB_H
502
503 #ifdef _WIN32
504   typedef   signed char   int8_t;
505   typedef unsigned char  uint8_t;
506   typedef   signed short  int16_t;
507   typedef unsigned short uint16_t;
508   typedef   signed int    int32_t;
509   typedef unsigned int   uint32_t;
510   #if __GNUC__
511     typedef   signed long long int64_t;
512     typedef unsigned long long uint64_t;
513   #else /* _MSC_VER || __BORLANDC__ */
514     typedef   signed __int64   int64_t;
515     typedef unsigned __int64   uint64_t;
516   #endif
517 #else
518   #include <inttypes.h>
519 #endif
520
521 /* many compilers define _GNUC_ to some versions but then only implement
522  * what their idiot authors think are the "more important" extensions,
523  * causing enormous grief in return for some better fake benchmark numbers.
524  * or so.
525  * we try to detect these and simply assume they are not gcc - if they have
526  * an issue with that they should have done it right in the first place.
527  */
528 #ifndef ECB_GCC_VERSION
529   #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
530     #define ECB_GCC_VERSION(major,minor) 0
531   #else
532     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
533   #endif
534 #endif
535
536 /*****************************************************************************/
537
538 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
539 /* ECB_NO_SMP     - ecb might be used in multiple threads, but only on a single cpu */
540
541 #if ECB_NO_THREADS || ECB_NO_SMP
542   #define ECB_MEMORY_FENCE         do { } while (0)
543   #define ECB_MEMORY_FENCE_ACQUIRE do { } while (0)
544   #define ECB_MEMORY_FENCE_RELEASE do { } while (0)
545 #endif
546
547 #ifndef ECB_MEMORY_FENCE
548   #if ECB_GCC_VERSION(2,5)
549     #if __x86
550       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
551       #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
552       #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
553     #elif __amd64
554       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mfence" : : : "memory")
555       #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
556       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
557     #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
558       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("sync" : : : "memory")
559     #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
560        || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__) \
561        || defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
562        || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
563       #define ECB_MEMORY_FENCE \
564         do { \
565            int null = 0; \
566            __asm__ __volatile__ ("mcr p15,0,%0,c6,c10,5", : "=&r" (null) : : "memory"); \
567         while (0)
568     #endif
569   #endif
570 #endif
571
572 #ifndef ECB_MEMORY_FENCE
573   #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER)
574     #define ECB_MEMORY_FENCE         __sync_synchronize ()
575     /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
576     /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release      (&dummy   ); }) */
577   #elif _MSC_VER >= 1400 /* VC++ 2005 */
578     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
579     #define ECB_MEMORY_FENCE         _ReadWriteBarrier ()
580     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
581     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
582   #elif defined(_WIN32)
583     #include <WinNT.h>
584     #define ECB_MEMORY_FENCE         MemoryBarrier () /* actually just xchg on x86... scary */
585   #endif
586 #endif
587
588 #ifndef ECB_MEMORY_FENCE
589   #if !ECB_AVOID_PTHREADS
590     /*
591      * if you get undefined symbol references to pthread_mutex_lock,
592      * or failure to find pthread.h, then you should implement
593      * the ECB_MEMORY_FENCE operations for your cpu/compiler
594      * OR provide pthread.h and link against the posix thread library
595      * of your system.
596      */
597     #include <pthread.h>
598     #define ECB_NEEDS_PTHREADS 1
599     #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
600
601     static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
602     #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
603   #endif
604 #endif
605
606 #if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
607   #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
608 #endif
609
610 #if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
611   #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
612 #endif
613
614 /*****************************************************************************/
615
616 #define ECB_C99 (__STDC_VERSION__ >= 199901L)
617
618 #if __cplusplus
619   #define ecb_inline static inline
620 #elif ECB_GCC_VERSION(2,5)
621   #define ecb_inline static __inline__
622 #elif ECB_C99
623   #define ecb_inline static inline
624 #else
625   #define ecb_inline static
626 #endif
627
628 #if ECB_GCC_VERSION(3,3)
629   #define ecb_restrict __restrict__
630 #elif ECB_C99
631   #define ecb_restrict restrict
632 #else
633   #define ecb_restrict
634 #endif
635
636 typedef int ecb_bool;
637
638 #define ECB_CONCAT_(a, b) a ## b
639 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
640 #define ECB_STRINGIFY_(a) # a
641 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
642
643 #define ecb_function_ ecb_inline
644
645 #if ECB_GCC_VERSION(3,1)
646   #define ecb_attribute(attrlist)        __attribute__(attrlist)
647   #define ecb_is_constant(expr)          __builtin_constant_p (expr)
648   #define ecb_expect(expr,value)         __builtin_expect ((expr),(value))
649   #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
650 #else
651   #define ecb_attribute(attrlist)
652   #define ecb_is_constant(expr)          0
653   #define ecb_expect(expr,value)         (expr)
654   #define ecb_prefetch(addr,rw,locality)
655 #endif
656
657 /* no emulation for ecb_decltype */
658 #if ECB_GCC_VERSION(4,5)
659   #define ecb_decltype(x) __decltype(x)
660 #elif ECB_GCC_VERSION(3,0)
661   #define ecb_decltype(x) __typeof(x)
662 #endif
663
664 #define ecb_noinline   ecb_attribute ((__noinline__))
665 #define ecb_noreturn   ecb_attribute ((__noreturn__))
666 #define ecb_unused     ecb_attribute ((__unused__))
667 #define ecb_const      ecb_attribute ((__const__))
668 #define ecb_pure       ecb_attribute ((__pure__))
669
670 #if ECB_GCC_VERSION(4,3)
671   #define ecb_artificial ecb_attribute ((__artificial__))
672   #define ecb_hot        ecb_attribute ((__hot__))
673   #define ecb_cold       ecb_attribute ((__cold__))
674 #else
675   #define ecb_artificial
676   #define ecb_hot
677   #define ecb_cold
678 #endif
679
680 /* put around conditional expressions if you are very sure that the  */
681 /* expression is mostly true or mostly false. note that these return */
682 /* booleans, not the expression.                                     */
683 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
684 #define ecb_expect_true(expr)  ecb_expect (!!(expr), 1)
685 /* for compatibility to the rest of the world */
686 #define ecb_likely(expr)   ecb_expect_true  (expr)
687 #define ecb_unlikely(expr) ecb_expect_false (expr)
688
689 /* count trailing zero bits and count # of one bits */
690 #if ECB_GCC_VERSION(3,4)
691   /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
692   #define ecb_ld32(x)      (__builtin_clz      (x) ^ 31)
693   #define ecb_ld64(x)      (__builtin_clzll    (x) ^ 63)
694   #define ecb_ctz32(x)      __builtin_ctz      (x)
695   #define ecb_ctz64(x)      __builtin_ctzll    (x)
696   #define ecb_popcount32(x) __builtin_popcount (x)
697   /* no popcountll */
698 #else
699   ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
700   ecb_function_ int
701   ecb_ctz32 (uint32_t x)
702   {
703     int r = 0;
704
705     x &= ~x + 1; /* this isolates the lowest bit */
706
707 #if ECB_branchless_on_i386
708     r += !!(x & 0xaaaaaaaa) << 0;
709     r += !!(x & 0xcccccccc) << 1;
710     r += !!(x & 0xf0f0f0f0) << 2;
711     r += !!(x & 0xff00ff00) << 3;
712     r += !!(x & 0xffff0000) << 4;
713 #else
714     if (x & 0xaaaaaaaa) r +=  1;
715     if (x & 0xcccccccc) r +=  2;
716     if (x & 0xf0f0f0f0) r +=  4;
717     if (x & 0xff00ff00) r +=  8;
718     if (x & 0xffff0000) r += 16;
719 #endif
720
721     return r;
722   }
723
724   ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
725   ecb_function_ int
726   ecb_ctz64 (uint64_t x)
727   {
728     int shift = x & 0xffffffffU ? 0 : 32;
729     return ecb_ctz32 (x >> shift) + shift;
730   }
731
732   ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
733   ecb_function_ int
734   ecb_popcount32 (uint32_t x)
735   {
736     x -=  (x >> 1) & 0x55555555;
737     x  = ((x >> 2) & 0x33333333) + (x & 0x33333333);
738     x  = ((x >> 4) + x) & 0x0f0f0f0f;
739     x *= 0x01010101;
740
741     return x >> 24;
742   }
743
744   ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
745   ecb_function_ int ecb_ld32 (uint32_t x)
746   {
747     int r = 0;
748
749     if (x >> 16) { x >>= 16; r += 16; }
750     if (x >>  8) { x >>=  8; r +=  8; }
751     if (x >>  4) { x >>=  4; r +=  4; }
752     if (x >>  2) { x >>=  2; r +=  2; }
753     if (x >>  1) {           r +=  1; }
754
755     return r;
756   }
757
758   ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
759   ecb_function_ int ecb_ld64 (uint64_t x)
760   {
761     int r = 0;
762
763     if (x >> 32) { x >>= 32; r += 32; }
764
765     return r + ecb_ld32 (x);
766   }
767 #endif
768
769 /* popcount64 is only available on 64 bit cpus as gcc builtin */
770 /* so for this version we are lazy */
771 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
772 ecb_function_ int
773 ecb_popcount64 (uint64_t x)
774 {
775   return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
776 }
777
778 ecb_inline uint8_t  ecb_rotl8  (uint8_t  x, unsigned int count) ecb_const;
779 ecb_inline uint8_t  ecb_rotr8  (uint8_t  x, unsigned int count) ecb_const;
780 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
781 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
782 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
783 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
784 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
785 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
786
787 ecb_inline uint8_t  ecb_rotl8  (uint8_t  x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
788 ecb_inline uint8_t  ecb_rotr8  (uint8_t  x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
789 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
790 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
791 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
792 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
793 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
794 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
795
796 #if ECB_GCC_VERSION(4,3)
797   #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
798   #define ecb_bswap32(x)  __builtin_bswap32 (x)
799   #define ecb_bswap64(x)  __builtin_bswap64 (x)
800 #else
801   ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
802   ecb_function_ uint16_t
803   ecb_bswap16 (uint16_t x)
804   {
805     return ecb_rotl16 (x, 8);
806   }
807
808   ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
809   ecb_function_ uint32_t
810   ecb_bswap32 (uint32_t x)
811   {
812     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
813   }
814
815   ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
816   ecb_function_ uint64_t
817   ecb_bswap64 (uint64_t x)
818   {
819     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
820   }
821 #endif
822
823 #if ECB_GCC_VERSION(4,5)
824   #define ecb_unreachable() __builtin_unreachable ()
825 #else
826   /* this seems to work fine, but gcc always emits a warning for it :/ */
827   ecb_function_ void ecb_unreachable (void) ecb_noreturn;
828   ecb_function_ void ecb_unreachable (void) { }
829 #endif
830
831 /* try to tell the compiler that some condition is definitely true */
832 #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
833
834 ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
835 ecb_function_ unsigned char
836 ecb_byteorder_helper (void)
837 {
838   const uint32_t u = 0x11223344;
839   return *(unsigned char *)&u;
840 }
841
842 ecb_function_ ecb_bool ecb_big_endian    (void) ecb_const;
843 ecb_function_ ecb_bool ecb_big_endian    (void) { return ecb_byteorder_helper () == 0x11; }
844 ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
845 ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
846
847 #if ECB_GCC_VERSION(3,0) || ECB_C99
848   #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
849 #else
850   #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
851 #endif
852
853 #if ecb_cplusplus_does_not_suck
854   /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
855   template<typename T, int N>
856   static inline int ecb_array_length (const T (&arr)[N])
857   {
858     return N;
859   }
860 #else
861   #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
862 #endif
863
864 #endif
865
866 /* ECB.H END */
867
868 #if ECB_MEMORY_FENCE_NEEDS_PTHREADS
869 # undef ECB_MEMORY_FENCE
870 # undef ECB_MEMORY_FENCE_ACQUIRE
871 # undef ECB_MEMORY_FENCE_RELEASE
872 #endif
873
874 #define expect_false(cond) ecb_expect_false (cond)
875 #define expect_true(cond)  ecb_expect_true  (cond)
876 #define noinline           ecb_noinline
877
878 #define inline_size        ecb_inline
879
880 #if EV_FEATURE_CODE
881 # define inline_speed      ecb_inline
882 #else
883 # define inline_speed      static noinline
884 #endif
885
886 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
887
888 #if EV_MINPRI == EV_MAXPRI
889 # define ABSPRI(w) (((W)w), 0)
890 #else
891 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
892 #endif
893
894 #define EMPTY       /* required for microsofts broken pseudo-c compiler */
895 #define EMPTY2(a,b) /* used to suppress some warnings */
896
897 typedef ev_watcher *W;
898 typedef ev_watcher_list *WL;
899 typedef ev_watcher_time *WT;
900
901 #define ev_active(w) ((W)(w))->active
902 #define ev_at(w) ((WT)(w))->at
903
904 #if EV_USE_REALTIME
905 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
906 /* giving it a reasonably high chance of working on typical architectures */
907 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
908 #endif
909
910 #if EV_USE_MONOTONIC
911 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
912 #endif
913
914 #ifndef EV_FD_TO_WIN32_HANDLE
915 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
916 #endif
917 #ifndef EV_WIN32_HANDLE_TO_FD
918 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
919 #endif
920 #ifndef EV_WIN32_CLOSE_FD
921 # define EV_WIN32_CLOSE_FD(fd) close (fd)
922 #endif
923
924 #ifdef _WIN32
925 # include "ev_win32.c"
926 #endif
927
928 /*****************************************************************************/
929
930 /* define a suitable floor function (only used by periodics atm) */
931
932 #if EV_USE_FLOOR
933 # include <math.h>
934 # define ev_floor(v) floor (v)
935 #else
936
937 #include <float.h>
938
939 /* a floor() replacement function, should be independent of ev_tstamp type */
940 static ev_tstamp noinline
941 ev_floor (ev_tstamp v)
942 {
943   /* the choice of shift factor is not terribly important */
944 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
945   const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
946 #else
947   const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
948 #endif
949
950   /* argument too large for an unsigned long? */
951   if (expect_false (v >= shift))
952     {
953       ev_tstamp f;
954
955       if (v == v - 1.)
956         return v; /* very large number */
957
958       f = shift * ev_floor (v * (1. / shift));
959       return f + ev_floor (v - f);
960     }
961
962   /* special treatment for negative args? */
963   if (expect_false (v < 0.))
964     {
965       ev_tstamp f = -ev_floor (-v);
966
967       return f - (f == v ? 0 : 1);
968     }
969
970   /* fits into an unsigned long */
971   return (unsigned long)v;
972 }
973
974 #endif
975
976 /*****************************************************************************/
977
978 #ifdef __linux
979 # include <sys/utsname.h>
980 #endif
981
982 static unsigned int noinline ecb_cold
983 ev_linux_version (void)
984 {
985 #ifdef __linux
986   unsigned int v = 0;
987   struct utsname buf;
988   int i;
989   char *p = buf.release;
990
991   if (uname (&buf))
992     return 0;
993
994   for (i = 3+1; --i; )
995     {
996       unsigned int c = 0;
997
998       for (;;)
999         {
1000           if (*p >= '0' && *p <= '9')
1001             c = c * 10 + *p++ - '0';
1002           else
1003             {
1004               p += *p == '.';
1005               break;
1006             }
1007         }
1008
1009       v = (v << 8) | c;
1010     }
1011
1012   return v;
1013 #else
1014   return 0;
1015 #endif
1016 }
1017
1018 /*****************************************************************************/
1019
1020 #if EV_AVOID_STDIO
1021 static void noinline ecb_cold
1022 ev_printerr (const char *msg)
1023 {
1024   write (STDERR_FILENO, msg, strlen (msg));
1025 }
1026 #endif
1027
1028 static void (*syserr_cb)(const char *msg);
1029
1030 void ecb_cold
1031 ev_set_syserr_cb (void (*cb)(const char *msg))
1032 {
1033   syserr_cb = cb;
1034 }
1035
1036 static void noinline ecb_cold
1037 ev_syserr (const char *msg)
1038 {
1039   if (!msg)
1040     msg = "(libev) system error";
1041
1042   if (syserr_cb)
1043     syserr_cb (msg);
1044   else
1045     {
1046 #if EV_AVOID_STDIO
1047       ev_printerr (msg);
1048       ev_printerr (": ");
1049       ev_printerr (strerror (errno));
1050       ev_printerr ("\n");
1051 #else
1052       perror (msg);
1053 #endif
1054       abort ();
1055     }
1056 }
1057
1058 static void *
1059 ev_realloc_emul (void *ptr, long size)
1060 {
1061 #if __GLIBC__
1062   return realloc (ptr, size);
1063 #else
1064   /* some systems, notably openbsd and darwin, fail to properly
1065    * implement realloc (x, 0) (as required by both ansi c-89 and
1066    * the single unix specification, so work around them here.
1067    */
1068
1069   if (size)
1070     return realloc (ptr, size);
1071
1072   free (ptr);
1073   return 0;
1074 #endif
1075 }
1076
1077 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
1078
1079 void ecb_cold
1080 ev_set_allocator (void *(*cb)(void *ptr, long size))
1081 {
1082   alloc = cb;
1083 }
1084
1085 inline_speed void *
1086 ev_realloc (void *ptr, long size)
1087 {
1088   ptr = alloc (ptr, size);
1089
1090   if (!ptr && size)
1091     {
1092 #if EV_AVOID_STDIO
1093       ev_printerr ("(libev) memory allocation failed, aborting.\n");
1094 #else
1095       fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1096 #endif
1097       abort ();
1098     }
1099
1100   return ptr;
1101 }
1102
1103 #define ev_malloc(size) ev_realloc (0, (size))
1104 #define ev_free(ptr)    ev_realloc ((ptr), 0)
1105
1106 /*****************************************************************************/
1107
1108 /* set in reify when reification needed */
1109 #define EV_ANFD_REIFY 1
1110
1111 /* file descriptor info structure */
1112 typedef struct
1113 {
1114   WL head;
1115   unsigned char events; /* the events watched for */
1116   unsigned char reify;  /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1117   unsigned char emask;  /* the epoll backend stores the actual kernel mask in here */
1118   unsigned char unused;
1119 #if EV_USE_EPOLL
1120   unsigned int egen;    /* generation counter to counter epoll bugs */
1121 #endif
1122 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1123   SOCKET handle;
1124 #endif
1125 #if EV_USE_IOCP
1126   OVERLAPPED or, ow;
1127 #endif
1128 } ANFD;
1129
1130 /* stores the pending event set for a given watcher */
1131 typedef struct
1132 {
1133   W w;
1134   int events; /* the pending event set for the given watcher */
1135 } ANPENDING;
1136
1137 #if EV_USE_INOTIFY
1138 /* hash table entry per inotify-id */
1139 typedef struct
1140 {
1141   WL head;
1142 } ANFS;
1143 #endif
1144
1145 /* Heap Entry */
1146 #if EV_HEAP_CACHE_AT
1147   /* a heap element */
1148   typedef struct {
1149     ev_tstamp at;
1150     WT w;
1151   } ANHE;
1152
1153   #define ANHE_w(he)        (he).w     /* access watcher, read-write */
1154   #define ANHE_at(he)       (he).at    /* access cached at, read-only */
1155   #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1156 #else
1157   /* a heap element */
1158   typedef WT ANHE;
1159
1160   #define ANHE_w(he)        (he)
1161   #define ANHE_at(he)       (he)->at
1162   #define ANHE_at_cache(he)
1163 #endif
1164
1165 #if EV_MULTIPLICITY
1166
1167   struct ev_loop
1168   {
1169     ev_tstamp ev_rt_now;
1170     #define ev_rt_now ((loop)->ev_rt_now)
1171     #define VAR(name,decl) decl;
1172       #include "ev_vars.h"
1173     #undef VAR
1174   };
1175   #include "ev_wrap.h"
1176
1177   static struct ev_loop default_loop_struct;
1178   struct ev_loop *ev_default_loop_ptr;
1179
1180 #else
1181
1182   ev_tstamp ev_rt_now;
1183   #define VAR(name,decl) static decl;
1184     #include "ev_vars.h"
1185   #undef VAR
1186
1187   static int ev_default_loop_ptr;
1188
1189 #endif
1190
1191 #if EV_FEATURE_API
1192 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1193 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1194 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1195 #else
1196 # define EV_RELEASE_CB (void)0
1197 # define EV_ACQUIRE_CB (void)0
1198 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1199 #endif
1200
1201 #define EVBREAK_RECURSE 0x80
1202
1203 /*****************************************************************************/
1204
1205 #ifndef EV_HAVE_EV_TIME
1206 ev_tstamp
1207 ev_time (void)
1208 {
1209 #if EV_USE_REALTIME
1210   if (expect_true (have_realtime))
1211     {
1212       struct timespec ts;
1213       clock_gettime (CLOCK_REALTIME, &ts);
1214       return ts.tv_sec + ts.tv_nsec * 1e-9;
1215     }
1216 #endif
1217
1218   struct timeval tv;
1219   gettimeofday (&tv, 0);
1220   return tv.tv_sec + tv.tv_usec * 1e-6;
1221 }
1222 #endif
1223
1224 inline_size ev_tstamp
1225 get_clock (void)
1226 {
1227 #if EV_USE_MONOTONIC
1228   if (expect_true (have_monotonic))
1229     {
1230       struct timespec ts;
1231       clock_gettime (CLOCK_MONOTONIC, &ts);
1232       return ts.tv_sec + ts.tv_nsec * 1e-9;
1233     }
1234 #endif
1235
1236   return ev_time ();
1237 }
1238
1239 #if EV_MULTIPLICITY
1240 ev_tstamp
1241 ev_now (EV_P)
1242 {
1243   return ev_rt_now;
1244 }
1245 #endif
1246
1247 void
1248 ev_sleep (ev_tstamp delay)
1249 {
1250   if (delay > 0.)
1251     {
1252 #if EV_USE_NANOSLEEP
1253       struct timespec ts;
1254
1255       EV_TS_SET (ts, delay);
1256       nanosleep (&ts, 0);
1257 #elif defined(_WIN32)
1258       Sleep ((unsigned long)(delay * 1e3));
1259 #else
1260       struct timeval tv;
1261
1262       /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1263       /* something not guaranteed by newer posix versions, but guaranteed */
1264       /* by older ones */
1265       EV_TV_SET (tv, delay);
1266       select (0, 0, 0, 0, &tv);
1267 #endif
1268     }
1269 }
1270
1271 /*****************************************************************************/
1272
1273 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1274
1275 /* find a suitable new size for the given array, */
1276 /* hopefully by rounding to a nice-to-malloc size */
1277 inline_size int
1278 array_nextsize (int elem, int cur, int cnt)
1279 {
1280   int ncur = cur + 1;
1281
1282   do
1283     ncur <<= 1;
1284   while (cnt > ncur);
1285
1286   /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
1287   if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1288     {
1289       ncur *= elem;
1290       ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1291       ncur = ncur - sizeof (void *) * 4;
1292       ncur /= elem;
1293     }
1294
1295   return ncur;
1296 }
1297
1298 static void * noinline ecb_cold
1299 array_realloc (int elem, void *base, int *cur, int cnt)
1300 {
1301   *cur = array_nextsize (elem, *cur, cnt);
1302   return ev_realloc (base, elem * *cur);
1303 }
1304
1305 #define array_init_zero(base,count)     \
1306   memset ((void *)(base), 0, sizeof (*(base)) * (count))
1307
1308 #define array_needsize(type,base,cur,cnt,init)                  \
1309   if (expect_false ((cnt) > (cur)))                             \
1310     {                                                           \
1311       int ecb_unused ocur_ = (cur);                                     \
1312       (base) = (type *)array_realloc                            \
1313          (sizeof (type), (base), &(cur), (cnt));                \
1314       init ((base) + (ocur_), (cur) - ocur_);                   \
1315     }
1316
1317 #if 0
1318 #define array_slim(type,stem)                                   \
1319   if (stem ## max < array_roundsize (stem ## cnt >> 2))         \
1320     {                                                           \
1321       stem ## max = array_roundsize (stem ## cnt >> 1);         \
1322       base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1323       fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1324     }
1325 #endif
1326
1327 #define array_free(stem, idx) \
1328   ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1329
1330 /*****************************************************************************/
1331
1332 /* dummy callback for pending events */
1333 static void noinline
1334 pendingcb (EV_P_ ev_prepare *w, int revents)
1335 {
1336 }
1337
1338 void noinline
1339 ev_feed_event (EV_P_ void *w, int revents)
1340 {
1341   W w_ = (W)w;
1342   int pri = ABSPRI (w_);
1343
1344   if (expect_false (w_->pending))
1345     pendings [pri][w_->pending - 1].events |= revents;
1346   else
1347     {
1348       w_->pending = ++pendingcnt [pri];
1349       array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1350       pendings [pri][w_->pending - 1].w      = w_;
1351       pendings [pri][w_->pending - 1].events = revents;
1352     }
1353 }
1354
1355 inline_speed void
1356 feed_reverse (EV_P_ W w)
1357 {
1358   array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1359   rfeeds [rfeedcnt++] = w;
1360 }
1361
1362 inline_size void
1363 feed_reverse_done (EV_P_ int revents)
1364 {
1365   do
1366     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1367   while (rfeedcnt);
1368 }
1369
1370 inline_speed void
1371 queue_events (EV_P_ W *events, int eventcnt, int type)
1372 {
1373   int i;
1374
1375   for (i = 0; i < eventcnt; ++i)
1376     ev_feed_event (EV_A_ events [i], type);
1377 }
1378
1379 /*****************************************************************************/
1380
1381 inline_speed void
1382 fd_event_nocheck (EV_P_ int fd, int revents)
1383 {
1384   ANFD *anfd = anfds + fd;
1385   ev_io *w;
1386
1387   for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1388     {
1389       int ev = w->events & revents;
1390
1391       if (ev)
1392         ev_feed_event (EV_A_ (W)w, ev);
1393     }
1394 }
1395
1396 /* do not submit kernel events for fds that have reify set */
1397 /* because that means they changed while we were polling for new events */
1398 inline_speed void
1399 fd_event (EV_P_ int fd, int revents)
1400 {
1401   ANFD *anfd = anfds + fd;
1402
1403   if (expect_true (!anfd->reify))
1404     fd_event_nocheck (EV_A_ fd, revents);
1405 }
1406
1407 void
1408 ev_feed_fd_event (EV_P_ int fd, int revents)
1409 {
1410   if (fd >= 0 && fd < anfdmax)
1411     fd_event_nocheck (EV_A_ fd, revents);
1412 }
1413
1414 /* make sure the external fd watch events are in-sync */
1415 /* with the kernel/libev internal state */
1416 inline_size void
1417 fd_reify (EV_P)
1418 {
1419   int i;
1420
1421 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1422   for (i = 0; i < fdchangecnt; ++i)
1423     {
1424       int fd = fdchanges [i];
1425       ANFD *anfd = anfds + fd;
1426
1427       if (anfd->reify & EV__IOFDSET && anfd->head)
1428         {
1429           SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1430
1431           if (handle != anfd->handle)
1432             {
1433               unsigned long arg;
1434
1435               assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1436
1437               /* handle changed, but fd didn't - we need to do it in two steps */
1438               backend_modify (EV_A_ fd, anfd->events, 0);
1439               anfd->events = 0;
1440               anfd->handle = handle;
1441             }
1442         }
1443     }
1444 #endif
1445
1446   for (i = 0; i < fdchangecnt; ++i)
1447     {
1448       int fd = fdchanges [i];
1449       ANFD *anfd = anfds + fd;
1450       ev_io *w;
1451
1452       unsigned char o_events = anfd->events;
1453       unsigned char o_reify  = anfd->reify;
1454
1455       anfd->reify  = 0;
1456
1457       /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1458         {
1459           anfd->events = 0;
1460
1461           for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1462             anfd->events |= (unsigned char)w->events;
1463
1464           if (o_events != anfd->events)
1465             o_reify = EV__IOFDSET; /* actually |= */
1466         }
1467
1468       if (o_reify & EV__IOFDSET)
1469         backend_modify (EV_A_ fd, o_events, anfd->events);
1470     }
1471
1472   fdchangecnt = 0;
1473 }
1474
1475 /* something about the given fd changed */
1476 inline_size void
1477 fd_change (EV_P_ int fd, int flags)
1478 {
1479   unsigned char reify = anfds [fd].reify;
1480   anfds [fd].reify |= flags;
1481
1482   if (expect_true (!reify))
1483     {
1484       ++fdchangecnt;
1485       array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1486       fdchanges [fdchangecnt - 1] = fd;
1487     }
1488 }
1489
1490 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1491 inline_speed void ecb_cold
1492 fd_kill (EV_P_ int fd)
1493 {
1494   ev_io *w;
1495
1496   while ((w = (ev_io *)anfds [fd].head))
1497     {
1498       ev_io_stop (EV_A_ w);
1499       ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1500     }
1501 }
1502
1503 /* check whether the given fd is actually valid, for error recovery */
1504 inline_size int ecb_cold
1505 fd_valid (int fd)
1506 {
1507 #ifdef _WIN32
1508   return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1509 #else
1510   return fcntl (fd, F_GETFD) != -1;
1511 #endif
1512 }
1513
1514 /* called on EBADF to verify fds */
1515 static void noinline ecb_cold
1516 fd_ebadf (EV_P)
1517 {
1518   int fd;
1519
1520   for (fd = 0; fd < anfdmax; ++fd)
1521     if (anfds [fd].events)
1522       if (!fd_valid (fd) && errno == EBADF)
1523         fd_kill (EV_A_ fd);
1524 }
1525
1526 /* called on ENOMEM in select/poll to kill some fds and retry */
1527 static void noinline ecb_cold
1528 fd_enomem (EV_P)
1529 {
1530   int fd;
1531
1532   for (fd = anfdmax; fd--; )
1533     if (anfds [fd].events)
1534       {
1535         fd_kill (EV_A_ fd);
1536         break;
1537       }
1538 }
1539
1540 /* usually called after fork if backend needs to re-arm all fds from scratch */
1541 static void noinline
1542 fd_rearm_all (EV_P)
1543 {
1544   int fd;
1545
1546   for (fd = 0; fd < anfdmax; ++fd)
1547     if (anfds [fd].events)
1548       {
1549         anfds [fd].events = 0;
1550         anfds [fd].emask  = 0;
1551         fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1552       }
1553 }
1554
1555 /* used to prepare libev internal fd's */
1556 /* this is not fork-safe */
1557 inline_speed void
1558 fd_intern (int fd)
1559 {
1560 #ifdef _WIN32
1561   unsigned long arg = 1;
1562   ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1563 #else
1564   fcntl (fd, F_SETFD, FD_CLOEXEC);
1565   fcntl (fd, F_SETFL, O_NONBLOCK);
1566 #endif
1567 }
1568
1569 /*****************************************************************************/
1570
1571 /*
1572  * the heap functions want a real array index. array index 0 is guaranteed to not
1573  * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1574  * the branching factor of the d-tree.
1575  */
1576
1577 /*
1578  * at the moment we allow libev the luxury of two heaps,
1579  * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1580  * which is more cache-efficient.
1581  * the difference is about 5% with 50000+ watchers.
1582  */
1583 #if EV_USE_4HEAP
1584
1585 #define DHEAP 4
1586 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1587 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1588 #define UPHEAP_DONE(p,k) ((p) == (k))
1589
1590 /* away from the root */
1591 inline_speed void
1592 downheap (ANHE *heap, int N, int k)
1593 {
1594   ANHE he = heap [k];
1595   ANHE *E = heap + N + HEAP0;
1596
1597   for (;;)
1598     {
1599       ev_tstamp minat;
1600       ANHE *minpos;
1601       ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1602
1603       /* find minimum child */
1604       if (expect_true (pos + DHEAP - 1 < E))
1605         {
1606           /* fast path */                               (minpos = pos + 0), (minat = ANHE_at (*minpos));
1607           if (               ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1608           if (               ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1609           if (               ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1610         }
1611       else if (pos < E)
1612         {
1613           /* slow path */                               (minpos = pos + 0), (minat = ANHE_at (*minpos));
1614           if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1615           if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1616           if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1617         }
1618       else
1619         break;
1620
1621       if (ANHE_at (he) <= minat)
1622         break;
1623
1624       heap [k] = *minpos;
1625       ev_active (ANHE_w (*minpos)) = k;
1626
1627       k = minpos - heap;
1628     }
1629
1630   heap [k] = he;
1631   ev_active (ANHE_w (he)) = k;
1632 }
1633
1634 #else /* 4HEAP */
1635
1636 #define HEAP0 1
1637 #define HPARENT(k) ((k) >> 1)
1638 #define UPHEAP_DONE(p,k) (!(p))
1639
1640 /* away from the root */
1641 inline_speed void
1642 downheap (ANHE *heap, int N, int k)
1643 {
1644   ANHE he = heap [k];
1645
1646   for (;;)
1647     {
1648       int c = k << 1;
1649
1650       if (c >= N + HEAP0)
1651         break;
1652
1653       c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1654            ? 1 : 0;
1655
1656       if (ANHE_at (he) <= ANHE_at (heap [c]))
1657         break;
1658
1659       heap [k] = heap [c];
1660       ev_active (ANHE_w (heap [k])) = k;
1661       
1662       k = c;
1663     }
1664
1665   heap [k] = he;
1666   ev_active (ANHE_w (he)) = k;
1667 }
1668 #endif
1669
1670 /* towards the root */
1671 inline_speed void
1672 upheap (ANHE *heap, int k)
1673 {
1674   ANHE he = heap [k];
1675
1676   for (;;)
1677     {
1678       int p = HPARENT (k);
1679
1680       if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1681         break;
1682
1683       heap [k] = heap [p];
1684       ev_active (ANHE_w (heap [k])) = k;
1685       k = p;
1686     }
1687
1688   heap [k] = he;
1689   ev_active (ANHE_w (he)) = k;
1690 }
1691
1692 /* move an element suitably so it is in a correct place */
1693 inline_size void
1694 adjustheap (ANHE *heap, int N, int k)
1695 {
1696   if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1697     upheap (heap, k);
1698   else
1699     downheap (heap, N, k);
1700 }
1701
1702 /* rebuild the heap: this function is used only once and executed rarely */
1703 inline_size void
1704 reheap (ANHE *heap, int N)
1705 {
1706   int i;
1707
1708   /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1709   /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1710   for (i = 0; i < N; ++i)
1711     upheap (heap, i + HEAP0);
1712 }
1713
1714 /*****************************************************************************/
1715
1716 /* associate signal watchers to a signal signal */
1717 typedef struct
1718 {
1719   EV_ATOMIC_T pending;
1720 #if EV_MULTIPLICITY
1721   EV_P;
1722 #endif
1723   WL head;
1724 } ANSIG;
1725
1726 static ANSIG signals [EV_NSIG - 1];
1727
1728 /*****************************************************************************/
1729
1730 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1731
1732 static void noinline ecb_cold
1733 evpipe_init (EV_P)
1734 {
1735   if (!ev_is_active (&pipe_w))
1736     {
1737 # if EV_USE_EVENTFD
1738       evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1739       if (evfd < 0 && errno == EINVAL)
1740         evfd = eventfd (0, 0);
1741
1742       if (evfd >= 0)
1743         {
1744           evpipe [0] = -1;
1745           fd_intern (evfd); /* doing it twice doesn't hurt */
1746           ev_io_set (&pipe_w, evfd, EV_READ);
1747         }
1748       else
1749 # endif
1750         {
1751           while (pipe (evpipe))
1752             ev_syserr ("(libev) error creating signal/async pipe");
1753
1754           fd_intern (evpipe [0]);
1755           fd_intern (evpipe [1]);
1756           ev_io_set (&pipe_w, evpipe [0], EV_READ);
1757         }
1758
1759       ev_io_start (EV_A_ &pipe_w);
1760       ev_unref (EV_A); /* watcher should not keep loop alive */
1761     }
1762 }
1763
1764 inline_speed void
1765 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1766 {
1767   if (expect_true (*flag))
1768     return;
1769
1770   *flag = 1;
1771
1772   ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1773
1774   pipe_write_skipped = 1;
1775
1776   ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1777
1778   if (pipe_write_wanted)
1779     {
1780       int old_errno;
1781
1782       pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1783
1784       old_errno = errno; /* save errno because write will clobber it */
1785
1786 #if EV_USE_EVENTFD
1787       if (evfd >= 0)
1788         {
1789           uint64_t counter = 1;
1790           write (evfd, &counter, sizeof (uint64_t));
1791         }
1792       else
1793 #endif
1794         {
1795           /* win32 people keep sending patches that change this write() to send() */
1796           /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1797           /* so when you think this write should be a send instead, please find out */
1798           /* where your send() is from - it's definitely not the microsoft send, and */
1799           /* tell me. thank you. */
1800           write (evpipe [1], &(evpipe [1]), 1);
1801         }
1802
1803       errno = old_errno;
1804     }
1805 }
1806
1807 /* called whenever the libev signal pipe */
1808 /* got some events (signal, async) */
1809 static void
1810 pipecb (EV_P_ ev_io *iow, int revents)
1811 {
1812   int i;
1813
1814   if (revents & EV_READ)
1815     {
1816 #if EV_USE_EVENTFD
1817       if (evfd >= 0)
1818         {
1819           uint64_t counter;
1820           read (evfd, &counter, sizeof (uint64_t));
1821         }
1822       else
1823 #endif
1824         {
1825           char dummy;
1826           /* see discussion in evpipe_write when you think this read should be recv in win32 */
1827           read (evpipe [0], &dummy, 1);
1828         }
1829     }
1830
1831   pipe_write_skipped = 0;
1832
1833 #if EV_SIGNAL_ENABLE
1834   if (sig_pending)
1835     {
1836       sig_pending = 0;
1837
1838       for (i = EV_NSIG - 1; i--; )
1839         if (expect_false (signals [i].pending))
1840           ev_feed_signal_event (EV_A_ i + 1);
1841     }
1842 #endif
1843
1844 #if EV_ASYNC_ENABLE
1845   if (async_pending)
1846     {
1847       async_pending = 0;
1848
1849       for (i = asynccnt; i--; )
1850         if (asyncs [i]->sent)
1851           {
1852             asyncs [i]->sent = 0;
1853             ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1854           }
1855     }
1856 #endif
1857 }
1858
1859 /*****************************************************************************/
1860
1861 void
1862 ev_feed_signal (int signum)
1863 {
1864 #if EV_MULTIPLICITY
1865   EV_P = signals [signum - 1].loop;
1866
1867   if (!EV_A)
1868     return;
1869 #endif
1870
1871   if (!ev_active (&pipe_w))
1872     return;
1873
1874   signals [signum - 1].pending = 1;
1875   evpipe_write (EV_A_ &sig_pending);
1876 }
1877
1878 static void
1879 ev_sighandler (int signum)
1880 {
1881 #ifdef _WIN32
1882   signal (signum, ev_sighandler);
1883 #endif
1884
1885   ev_feed_signal (signum);
1886 }
1887
1888 void noinline
1889 ev_feed_signal_event (EV_P_ int signum)
1890 {
1891   WL w;
1892
1893   if (expect_false (signum <= 0 || signum > EV_NSIG))
1894     return;
1895
1896   --signum;
1897
1898 #if EV_MULTIPLICITY
1899   /* it is permissible to try to feed a signal to the wrong loop */
1900   /* or, likely more useful, feeding a signal nobody is waiting for */
1901
1902   if (expect_false (signals [signum].loop != EV_A))
1903     return;
1904 #endif
1905
1906   signals [signum].pending = 0;
1907
1908   for (w = signals [signum].head; w; w = w->next)
1909     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1910 }
1911
1912 #if EV_USE_SIGNALFD
1913 static void
1914 sigfdcb (EV_P_ ev_io *iow, int revents)
1915 {
1916   struct signalfd_siginfo si[2], *sip; /* these structs are big */
1917
1918   for (;;)
1919     {
1920       ssize_t res = read (sigfd, si, sizeof (si));
1921
1922       /* not ISO-C, as res might be -1, but works with SuS */
1923       for (sip = si; (char *)sip < (char *)si + res; ++sip)
1924         ev_feed_signal_event (EV_A_ sip->ssi_signo);
1925
1926       if (res < (ssize_t)sizeof (si))
1927         break;
1928     }
1929 }
1930 #endif
1931
1932 #endif
1933
1934 /*****************************************************************************/
1935
1936 #if EV_CHILD_ENABLE
1937 static WL childs [EV_PID_HASHSIZE];
1938
1939 static ev_signal childev;
1940
1941 #ifndef WIFCONTINUED
1942 # define WIFCONTINUED(status) 0
1943 #endif
1944
1945 /* handle a single child status event */
1946 inline_speed void
1947 child_reap (EV_P_ int chain, int pid, int status)
1948 {
1949   ev_child *w;
1950   int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1951
1952   for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1953     {
1954       if ((w->pid == pid || !w->pid)
1955           && (!traced || (w->flags & 1)))
1956         {
1957           ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1958           w->rpid    = pid;
1959           w->rstatus = status;
1960           ev_feed_event (EV_A_ (W)w, EV_CHILD);
1961         }
1962     }
1963 }
1964
1965 #ifndef WCONTINUED
1966 # define WCONTINUED 0
1967 #endif
1968
1969 /* called on sigchld etc., calls waitpid */
1970 static void
1971 childcb (EV_P_ ev_signal *sw, int revents)
1972 {
1973   int pid, status;
1974
1975   /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1976   if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1977     if (!WCONTINUED
1978         || errno != EINVAL
1979         || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1980       return;
1981
1982   /* make sure we are called again until all children have been reaped */
1983   /* we need to do it this way so that the callback gets called before we continue */
1984   ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1985
1986   child_reap (EV_A_ pid, pid, status);
1987   if ((EV_PID_HASHSIZE) > 1)
1988     child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1989 }
1990
1991 #endif
1992
1993 /*****************************************************************************/
1994
1995 #if EV_USE_IOCP
1996 # include "ev_iocp.c"
1997 #endif
1998 #if EV_USE_PORT
1999 # include "ev_port.c"
2000 #endif
2001 #if EV_USE_KQUEUE
2002 # include "ev_kqueue.c"
2003 #endif
2004 #if EV_USE_EPOLL
2005 # include "ev_epoll.c"
2006 #endif
2007 #if EV_USE_POLL
2008 # include "ev_poll.c"
2009 #endif
2010 #if EV_USE_SELECT
2011 # include "ev_select.c"
2012 #endif
2013
2014 int ecb_cold
2015 ev_version_major (void)
2016 {
2017   return EV_VERSION_MAJOR;
2018 }
2019
2020 int ecb_cold
2021 ev_version_minor (void)
2022 {
2023   return EV_VERSION_MINOR;
2024 }
2025
2026 /* return true if we are running with elevated privileges and should ignore env variables */
2027 int inline_size ecb_cold
2028 enable_secure (void)
2029 {
2030 #ifdef _WIN32
2031   return 0;
2032 #else
2033   return getuid () != geteuid ()
2034       || getgid () != getegid ();
2035 #endif
2036 }
2037
2038 unsigned int ecb_cold
2039 ev_supported_backends (void)
2040 {
2041   unsigned int flags = 0;
2042
2043   if (EV_USE_PORT  ) flags |= EVBACKEND_PORT;
2044   if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2045   if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2046   if (EV_USE_POLL  ) flags |= EVBACKEND_POLL;
2047   if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2048   
2049   return flags;
2050 }
2051
2052 unsigned int ecb_cold
2053 ev_recommended_backends (void)
2054 {
2055   unsigned int flags = ev_supported_backends ();
2056
2057 #ifndef __NetBSD__
2058   /* kqueue is borked on everything but netbsd apparently */
2059   /* it usually doesn't work correctly on anything but sockets and pipes */
2060   flags &= ~EVBACKEND_KQUEUE;
2061 #endif
2062 #ifdef __APPLE__
2063   /* only select works correctly on that "unix-certified" platform */
2064   flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2065   flags &= ~EVBACKEND_POLL;   /* poll is based on kqueue from 10.5 onwards */
2066 #endif
2067 #ifdef __FreeBSD__
2068   flags &= ~EVBACKEND_POLL;   /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2069 #endif
2070
2071   return flags;
2072 }
2073
2074 unsigned int ecb_cold
2075 ev_embeddable_backends (void)
2076 {
2077   int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2078
2079   /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2080   if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2081     flags &= ~EVBACKEND_EPOLL;
2082
2083   return flags;
2084 }
2085
2086 unsigned int
2087 ev_backend (EV_P)
2088 {
2089   return backend;
2090 }
2091
2092 #if EV_FEATURE_API
2093 unsigned int
2094 ev_iteration (EV_P)
2095 {
2096   return loop_count;
2097 }
2098
2099 unsigned int
2100 ev_depth (EV_P)
2101 {
2102   return loop_depth;
2103 }
2104
2105 void
2106 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2107 {
2108   io_blocktime = interval;
2109 }
2110
2111 void
2112 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2113 {
2114   timeout_blocktime = interval;
2115 }
2116
2117 void
2118 ev_set_userdata (EV_P_ void *data)
2119 {
2120   userdata = data;
2121 }
2122
2123 void *
2124 ev_userdata (EV_P)
2125 {
2126   return userdata;
2127 }
2128
2129 void
2130 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2131 {
2132   invoke_cb = invoke_pending_cb;
2133 }
2134
2135 void
2136 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2137 {
2138   release_cb = release;
2139   acquire_cb = acquire;
2140 }
2141 #endif
2142
2143 /* initialise a loop structure, must be zero-initialised */
2144 static void noinline ecb_cold
2145 loop_init (EV_P_ unsigned int flags)
2146 {
2147   if (!backend)
2148     {
2149       origflags = flags;
2150
2151 #if EV_USE_REALTIME
2152       if (!have_realtime)
2153         {
2154           struct timespec ts;
2155
2156           if (!clock_gettime (CLOCK_REALTIME, &ts))
2157             have_realtime = 1;
2158         }
2159 #endif
2160
2161 #if EV_USE_MONOTONIC
2162       if (!have_monotonic)
2163         {
2164           struct timespec ts;
2165
2166           if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2167             have_monotonic = 1;
2168         }
2169 #endif
2170
2171       /* pid check not overridable via env */
2172 #ifndef _WIN32
2173       if (flags & EVFLAG_FORKCHECK)
2174         curpid = getpid ();
2175 #endif
2176
2177       if (!(flags & EVFLAG_NOENV)
2178           && !enable_secure ()
2179           && getenv ("LIBEV_FLAGS"))
2180         flags = atoi (getenv ("LIBEV_FLAGS"));
2181
2182       ev_rt_now          = ev_time ();
2183       mn_now             = get_clock ();
2184       now_floor          = mn_now;
2185       rtmn_diff          = ev_rt_now - mn_now;
2186 #if EV_FEATURE_API
2187       invoke_cb          = ev_invoke_pending;
2188 #endif
2189
2190       io_blocktime       = 0.;
2191       timeout_blocktime  = 0.;
2192       backend            = 0;
2193       backend_fd         = -1;
2194       sig_pending        = 0;
2195 #if EV_ASYNC_ENABLE
2196       async_pending      = 0;
2197 #endif
2198       pipe_write_skipped = 0;
2199       pipe_write_wanted  = 0;
2200 #if EV_USE_INOTIFY
2201       fs_fd              = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2202 #endif
2203 #if EV_USE_SIGNALFD
2204       sigfd              = flags & EVFLAG_SIGNALFD  ? -2 : -1;
2205 #endif
2206
2207       if (!(flags & EVBACKEND_MASK))
2208         flags |= ev_recommended_backends ();
2209
2210 #if EV_USE_IOCP
2211       if (!backend && (flags & EVBACKEND_IOCP  )) backend = iocp_init   (EV_A_ flags);
2212 #endif
2213 #if EV_USE_PORT
2214       if (!backend && (flags & EVBACKEND_PORT  )) backend = port_init   (EV_A_ flags);
2215 #endif
2216 #if EV_USE_KQUEUE
2217       if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2218 #endif
2219 #if EV_USE_EPOLL
2220       if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init  (EV_A_ flags);
2221 #endif
2222 #if EV_USE_POLL
2223       if (!backend && (flags & EVBACKEND_POLL  )) backend = poll_init   (EV_A_ flags);
2224 #endif
2225 #if EV_USE_SELECT
2226       if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2227 #endif
2228
2229       ev_prepare_init (&pending_w, pendingcb);
2230
2231 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2232       ev_init (&pipe_w, pipecb);
2233       ev_set_priority (&pipe_w, EV_MAXPRI);
2234 #endif
2235     }
2236 }
2237
2238 /* free up a loop structure */
2239 void ecb_cold
2240 ev_loop_destroy (EV_P)
2241 {
2242   int i;
2243
2244 #if EV_MULTIPLICITY
2245   /* mimic free (0) */
2246   if (!EV_A)
2247     return;
2248 #endif
2249
2250 #if EV_CLEANUP_ENABLE
2251   /* queue cleanup watchers (and execute them) */
2252   if (expect_false (cleanupcnt))
2253     {
2254       queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2255       EV_INVOKE_PENDING;
2256     }
2257 #endif
2258
2259 #if EV_CHILD_ENABLE
2260   if (ev_is_active (&childev))
2261     {
2262       ev_ref (EV_A); /* child watcher */
2263       ev_signal_stop (EV_A_ &childev);
2264     }
2265 #endif
2266
2267   if (ev_is_active (&pipe_w))
2268     {
2269       /*ev_ref (EV_A);*/
2270       /*ev_io_stop (EV_A_ &pipe_w);*/
2271
2272 #if EV_USE_EVENTFD
2273       if (evfd >= 0)
2274         close (evfd);
2275 #endif
2276
2277       if (evpipe [0] >= 0)
2278         {
2279           EV_WIN32_CLOSE_FD (evpipe [0]);
2280           EV_WIN32_CLOSE_FD (evpipe [1]);
2281         }
2282     }
2283
2284 #if EV_USE_SIGNALFD
2285   if (ev_is_active (&sigfd_w))
2286     close (sigfd);
2287 #endif
2288
2289 #if EV_USE_INOTIFY
2290   if (fs_fd >= 0)
2291     close (fs_fd);
2292 #endif
2293
2294   if (backend_fd >= 0)
2295     close (backend_fd);
2296
2297 #if EV_USE_IOCP
2298   if (backend == EVBACKEND_IOCP  ) iocp_destroy   (EV_A);
2299 #endif
2300 #if EV_USE_PORT
2301   if (backend == EVBACKEND_PORT  ) port_destroy   (EV_A);
2302 #endif
2303 #if EV_USE_KQUEUE
2304   if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2305 #endif
2306 #if EV_USE_EPOLL
2307   if (backend == EVBACKEND_EPOLL ) epoll_destroy  (EV_A);
2308 #endif
2309 #if EV_USE_POLL
2310   if (backend == EVBACKEND_POLL  ) poll_destroy   (EV_A);
2311 #endif
2312 #if EV_USE_SELECT
2313   if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2314 #endif
2315
2316   for (i = NUMPRI; i--; )
2317     {
2318       array_free (pending, [i]);
2319 #if EV_IDLE_ENABLE
2320       array_free (idle, [i]);
2321 #endif
2322     }
2323
2324   ev_free (anfds); anfds = 0; anfdmax = 0;
2325
2326   /* have to use the microsoft-never-gets-it-right macro */
2327   array_free (rfeed, EMPTY);
2328   array_free (fdchange, EMPTY);
2329   array_free (timer, EMPTY);
2330 #if EV_PERIODIC_ENABLE
2331   array_free (periodic, EMPTY);
2332 #endif
2333 #if EV_FORK_ENABLE
2334   array_free (fork, EMPTY);
2335 #endif
2336 #if EV_CLEANUP_ENABLE
2337   array_free (cleanup, EMPTY);
2338 #endif
2339   array_free (prepare, EMPTY);
2340   array_free (check, EMPTY);
2341 #if EV_ASYNC_ENABLE
2342   array_free (async, EMPTY);
2343 #endif
2344
2345   backend = 0;
2346
2347 #if EV_MULTIPLICITY
2348   if (ev_is_default_loop (EV_A))
2349 #endif
2350     ev_default_loop_ptr = 0;
2351 #if EV_MULTIPLICITY
2352   else
2353     ev_free (EV_A);
2354 #endif
2355 }
2356
2357 #if EV_USE_INOTIFY
2358 inline_size void infy_fork (EV_P);
2359 #endif
2360
2361 inline_size void
2362 loop_fork (EV_P)
2363 {
2364 #if EV_USE_PORT
2365   if (backend == EVBACKEND_PORT  ) port_fork   (EV_A);
2366 #endif
2367 #if EV_USE_KQUEUE
2368   if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2369 #endif
2370 #if EV_USE_EPOLL
2371   if (backend == EVBACKEND_EPOLL ) epoll_fork  (EV_A);
2372 #endif
2373 #if EV_USE_INOTIFY
2374   infy_fork (EV_A);
2375 #endif
2376
2377   if (ev_is_active (&pipe_w))
2378     {
2379       /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2380
2381       ev_ref (EV_A);
2382       ev_io_stop (EV_A_ &pipe_w);
2383
2384 #if EV_USE_EVENTFD
2385       if (evfd >= 0)
2386         close (evfd);
2387 #endif
2388
2389       if (evpipe [0] >= 0)
2390         {
2391           EV_WIN32_CLOSE_FD (evpipe [0]);
2392           EV_WIN32_CLOSE_FD (evpipe [1]);
2393         }
2394
2395 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2396       evpipe_init (EV_A);
2397       /* now iterate over everything, in case we missed something */
2398       pipecb (EV_A_ &pipe_w, EV_READ);
2399 #endif
2400     }
2401
2402   postfork = 0;
2403 }
2404
2405 #if EV_MULTIPLICITY
2406
2407 struct ev_loop * ecb_cold
2408 ev_loop_new (unsigned int flags)
2409 {
2410   EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2411
2412   memset (EV_A, 0, sizeof (struct ev_loop));
2413   loop_init (EV_A_ flags);
2414
2415   if (ev_backend (EV_A))
2416     return EV_A;
2417
2418   ev_free (EV_A);
2419   return 0;
2420 }
2421
2422 #endif /* multiplicity */
2423
2424 #if EV_VERIFY
2425 static void noinline ecb_cold
2426 verify_watcher (EV_P_ W w)
2427 {
2428   assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2429
2430   if (w->pending)
2431     assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2432 }
2433
2434 static void noinline ecb_cold
2435 verify_heap (EV_P_ ANHE *heap, int N)
2436 {
2437   int i;
2438
2439   for (i = HEAP0; i < N + HEAP0; ++i)
2440     {
2441       assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2442       assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2443       assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2444
2445       verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2446     }
2447 }
2448
2449 static void noinline ecb_cold
2450 array_verify (EV_P_ W *ws, int cnt)
2451 {
2452   while (cnt--)
2453     {
2454       assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2455       verify_watcher (EV_A_ ws [cnt]);
2456     }
2457 }
2458 #endif
2459
2460 #if EV_FEATURE_API
2461 void ecb_cold
2462 ev_verify (EV_P)
2463 {
2464 #if EV_VERIFY
2465   int i;
2466   WL w;
2467
2468   assert (activecnt >= -1);
2469
2470   assert (fdchangemax >= fdchangecnt);
2471   for (i = 0; i < fdchangecnt; ++i)
2472     assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2473
2474   assert (anfdmax >= 0);
2475   for (i = 0; i < anfdmax; ++i)
2476     for (w = anfds [i].head; w; w = w->next)
2477       {
2478         verify_watcher (EV_A_ (W)w);
2479         assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2480         assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2481       }
2482
2483   assert (timermax >= timercnt);
2484   verify_heap (EV_A_ timers, timercnt);
2485
2486 #if EV_PERIODIC_ENABLE
2487   assert (periodicmax >= periodiccnt);
2488   verify_heap (EV_A_ periodics, periodiccnt);
2489 #endif
2490
2491   for (i = NUMPRI; i--; )
2492     {
2493       assert (pendingmax [i] >= pendingcnt [i]);
2494 #if EV_IDLE_ENABLE
2495       assert (idleall >= 0);
2496       assert (idlemax [i] >= idlecnt [i]);
2497       array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2498 #endif
2499     }
2500
2501 #if EV_FORK_ENABLE
2502   assert (forkmax >= forkcnt);
2503   array_verify (EV_A_ (W *)forks, forkcnt);
2504 #endif
2505
2506 #if EV_CLEANUP_ENABLE
2507   assert (cleanupmax >= cleanupcnt);
2508   array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2509 #endif
2510
2511 #if EV_ASYNC_ENABLE
2512   assert (asyncmax >= asynccnt);
2513   array_verify (EV_A_ (W *)asyncs, asynccnt);
2514 #endif
2515
2516 #if EV_PREPARE_ENABLE
2517   assert (preparemax >= preparecnt);
2518   array_verify (EV_A_ (W *)prepares, preparecnt);
2519 #endif
2520
2521 #if EV_CHECK_ENABLE
2522   assert (checkmax >= checkcnt);
2523   array_verify (EV_A_ (W *)checks, checkcnt);
2524 #endif
2525
2526 # if 0
2527 #if EV_CHILD_ENABLE
2528   for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2529   for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2530 #endif
2531 # endif
2532 #endif
2533 }
2534 #endif
2535
2536 #if EV_MULTIPLICITY
2537 struct ev_loop * ecb_cold
2538 #else
2539 int
2540 #endif
2541 ev_default_loop (unsigned int flags)
2542 {
2543   if (!ev_default_loop_ptr)
2544     {
2545 #if EV_MULTIPLICITY
2546       EV_P = ev_default_loop_ptr = &default_loop_struct;
2547 #else
2548       ev_default_loop_ptr = 1;
2549 #endif
2550
2551       loop_init (EV_A_ flags);
2552
2553       if (ev_backend (EV_A))
2554         {
2555 #if EV_CHILD_ENABLE
2556           ev_signal_init (&childev, childcb, SIGCHLD);
2557           ev_set_priority (&childev, EV_MAXPRI);
2558           ev_signal_start (EV_A_ &childev);
2559           ev_unref (EV_A); /* child watcher should not keep loop alive */
2560 #endif
2561         }
2562       else
2563         ev_default_loop_ptr = 0;
2564     }
2565
2566   return ev_default_loop_ptr;
2567 }
2568
2569 void
2570 ev_loop_fork (EV_P)
2571 {
2572   postfork = 1; /* must be in line with ev_default_fork */
2573 }
2574
2575 /*****************************************************************************/
2576
2577 void
2578 ev_invoke (EV_P_ void *w, int revents)
2579 {
2580   EV_CB_INVOKE ((W)w, revents);
2581 }
2582
2583 unsigned int
2584 ev_pending_count (EV_P)
2585 {
2586   int pri;
2587   unsigned int count = 0;
2588
2589   for (pri = NUMPRI; pri--; )
2590     count += pendingcnt [pri];
2591
2592   return count;
2593 }
2594
2595 void noinline
2596 ev_invoke_pending (EV_P)
2597 {
2598   int pri;
2599
2600   for (pri = NUMPRI; pri--; )
2601     while (pendingcnt [pri])
2602       {
2603         ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2604
2605         p->w->pending = 0;
2606         EV_CB_INVOKE (p->w, p->events);
2607         EV_FREQUENT_CHECK;
2608       }
2609 }
2610
2611 #if EV_IDLE_ENABLE
2612 /* make idle watchers pending. this handles the "call-idle */
2613 /* only when higher priorities are idle" logic */
2614 inline_size void
2615 idle_reify (EV_P)
2616 {
2617   if (expect_false (idleall))
2618     {
2619       int pri;
2620
2621       for (pri = NUMPRI; pri--; )
2622         {
2623           if (pendingcnt [pri])
2624             break;
2625
2626           if (idlecnt [pri])
2627             {
2628               queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2629               break;
2630             }
2631         }
2632     }
2633 }
2634 #endif
2635
2636 /* make timers pending */
2637 inline_size void
2638 timers_reify (EV_P)
2639 {
2640   EV_FREQUENT_CHECK;
2641
2642   if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2643     {
2644       do
2645         {
2646           ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2647
2648           /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2649
2650           /* first reschedule or stop timer */
2651           if (w->repeat)
2652             {
2653               ev_at (w) += w->repeat;
2654               if (ev_at (w) < mn_now)
2655                 ev_at (w) = mn_now;
2656
2657               assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2658
2659               ANHE_at_cache (timers [HEAP0]);
2660               downheap (timers, timercnt, HEAP0);
2661             }
2662           else
2663             ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2664
2665           EV_FREQUENT_CHECK;
2666           feed_reverse (EV_A_ (W)w);
2667         }
2668       while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2669
2670       feed_reverse_done (EV_A_ EV_TIMER);
2671     }
2672 }
2673
2674 #if EV_PERIODIC_ENABLE
2675
2676 static void noinline
2677 periodic_recalc (EV_P_ ev_periodic *w)
2678 {
2679   ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2680   ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2681
2682   /* the above almost always errs on the low side */
2683   while (at <= ev_rt_now)
2684     {
2685       ev_tstamp nat = at + w->interval;
2686
2687       /* when resolution fails us, we use ev_rt_now */
2688       if (expect_false (nat == at))
2689         {
2690           at = ev_rt_now;
2691           break;
2692         }
2693
2694       at = nat;
2695     }
2696
2697   ev_at (w) = at;
2698 }
2699
2700 /* make periodics pending */
2701 inline_size void
2702 periodics_reify (EV_P)
2703 {
2704   EV_FREQUENT_CHECK;
2705
2706   while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2707     {
2708       int feed_count = 0;
2709
2710       do
2711         {
2712           ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2713
2714           /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2715
2716           /* first reschedule or stop timer */
2717           if (w->reschedule_cb)
2718             {
2719               ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2720
2721               assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2722
2723               ANHE_at_cache (periodics [HEAP0]);
2724               downheap (periodics, periodiccnt, HEAP0);
2725             }
2726           else if (w->interval)
2727             {
2728               periodic_recalc (EV_A_ w);
2729               ANHE_at_cache (periodics [HEAP0]);
2730               downheap (periodics, periodiccnt, HEAP0);
2731             }
2732           else
2733             ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2734
2735           EV_FREQUENT_CHECK;
2736           feed_reverse (EV_A_ (W)w);
2737         }
2738       while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2739
2740       feed_reverse_done (EV_A_ EV_PERIODIC);
2741     }
2742 }
2743
2744 /* simply recalculate all periodics */
2745 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2746 static void noinline ecb_cold
2747 periodics_reschedule (EV_P)
2748 {
2749   int i;
2750
2751   /* adjust periodics after time jump */
2752   for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2753     {
2754       ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2755
2756       if (w->reschedule_cb)
2757         ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2758       else if (w->interval)
2759         periodic_recalc (EV_A_ w);
2760
2761       ANHE_at_cache (periodics [i]);
2762     }
2763
2764   reheap (periodics, periodiccnt);
2765 }
2766 #endif
2767
2768 /* adjust all timers by a given offset */
2769 static void noinline ecb_cold
2770 timers_reschedule (EV_P_ ev_tstamp adjust)
2771 {
2772   int i;
2773
2774   for (i = 0; i < timercnt; ++i)
2775     {
2776       ANHE *he = timers + i + HEAP0;
2777       ANHE_w (*he)->at += adjust;
2778       ANHE_at_cache (*he);
2779     }
2780 }
2781
2782 /* fetch new monotonic and realtime times from the kernel */
2783 /* also detect if there was a timejump, and act accordingly */
2784 inline_speed void
2785 time_update (EV_P_ ev_tstamp max_block)
2786 {
2787 #if EV_USE_MONOTONIC
2788   if (expect_true (have_monotonic))
2789     {
2790       int i;
2791       ev_tstamp odiff = rtmn_diff;
2792
2793       mn_now = get_clock ();
2794
2795       /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2796       /* interpolate in the meantime */
2797       if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2798         {
2799           ev_rt_now = rtmn_diff + mn_now;
2800           return;
2801         }
2802
2803       now_floor = mn_now;
2804       ev_rt_now = ev_time ();
2805
2806       /* loop a few times, before making important decisions.
2807        * on the choice of "4": one iteration isn't enough,
2808        * in case we get preempted during the calls to
2809        * ev_time and get_clock. a second call is almost guaranteed
2810        * to succeed in that case, though. and looping a few more times
2811        * doesn't hurt either as we only do this on time-jumps or
2812        * in the unlikely event of having been preempted here.
2813        */
2814       for (i = 4; --i; )
2815         {
2816           ev_tstamp diff;
2817           rtmn_diff = ev_rt_now - mn_now;
2818
2819           diff = odiff - rtmn_diff;
2820
2821           if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2822             return; /* all is well */
2823
2824           ev_rt_now = ev_time ();
2825           mn_now    = get_clock ();
2826           now_floor = mn_now;
2827         }
2828
2829       /* no timer adjustment, as the monotonic clock doesn't jump */
2830       /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2831 # if EV_PERIODIC_ENABLE
2832       periodics_reschedule (EV_A);
2833 # endif
2834     }
2835   else
2836 #endif
2837     {
2838       ev_rt_now = ev_time ();
2839
2840       if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2841         {
2842           /* adjust timers. this is easy, as the offset is the same for all of them */
2843           timers_reschedule (EV_A_ ev_rt_now - mn_now);
2844 #if EV_PERIODIC_ENABLE
2845           periodics_reschedule (EV_A);
2846 #endif
2847         }
2848
2849       mn_now = ev_rt_now;
2850     }
2851 }
2852
2853 void
2854 ev_run (EV_P_ int flags)
2855 {
2856 #if EV_FEATURE_API
2857   ++loop_depth;
2858 #endif
2859
2860   assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2861
2862   loop_done = EVBREAK_CANCEL;
2863
2864   EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2865
2866   do
2867     {
2868 #if EV_VERIFY >= 2
2869       ev_verify (EV_A);
2870 #endif
2871
2872 #ifndef _WIN32
2873       if (expect_false (curpid)) /* penalise the forking check even more */
2874         if (expect_false (getpid () != curpid))
2875           {
2876             curpid = getpid ();
2877             postfork = 1;
2878           }
2879 #endif
2880
2881 #if EV_FORK_ENABLE
2882       /* we might have forked, so queue fork handlers */
2883       if (expect_false (postfork))
2884         if (forkcnt)
2885           {
2886             queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2887             EV_INVOKE_PENDING;
2888           }
2889 #endif
2890
2891 #if EV_PREPARE_ENABLE
2892       /* queue prepare watchers (and execute them) */
2893       if (expect_false (preparecnt))
2894         {
2895           queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2896           EV_INVOKE_PENDING;
2897         }
2898 #endif
2899
2900       if (expect_false (loop_done))
2901         break;
2902
2903       /* we might have forked, so reify kernel state if necessary */
2904       if (expect_false (postfork))
2905         loop_fork (EV_A);
2906
2907       /* update fd-related kernel structures */
2908       fd_reify (EV_A);
2909
2910       /* calculate blocking time */
2911       {
2912         ev_tstamp waittime  = 0.;
2913         ev_tstamp sleeptime = 0.;
2914
2915         /* remember old timestamp for io_blocktime calculation */
2916         ev_tstamp prev_mn_now = mn_now;
2917
2918         /* update time to cancel out callback processing overhead */
2919         time_update (EV_A_ 1e100);
2920
2921         /* from now on, we want a pipe-wake-up */
2922         pipe_write_wanted = 1;
2923
2924         ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2925
2926         if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2927           {
2928             waittime = MAX_BLOCKTIME;
2929
2930             if (timercnt)
2931               {
2932                 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2933                 if (waittime > to) waittime = to;
2934               }
2935
2936 #if EV_PERIODIC_ENABLE
2937             if (periodiccnt)
2938               {
2939                 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2940                 if (waittime > to) waittime = to;
2941               }
2942 #endif
2943
2944             /* don't let timeouts decrease the waittime below timeout_blocktime */
2945             if (expect_false (waittime < timeout_blocktime))
2946               waittime = timeout_blocktime;
2947
2948             /* at this point, we NEED to wait, so we have to ensure */
2949             /* to pass a minimum nonzero value to the backend */
2950             if (expect_false (waittime < backend_mintime))
2951               waittime = backend_mintime;
2952
2953             /* extra check because io_blocktime is commonly 0 */
2954             if (expect_false (io_blocktime))
2955               {
2956                 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2957
2958                 if (sleeptime > waittime - backend_mintime)
2959                   sleeptime = waittime - backend_mintime;
2960
2961                 if (expect_true (sleeptime > 0.))
2962                   {
2963                     ev_sleep (sleeptime);
2964                     waittime -= sleeptime;
2965                   }
2966               }
2967           }
2968
2969 #if EV_FEATURE_API
2970         ++loop_count;
2971 #endif
2972         assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2973         backend_poll (EV_A_ waittime);
2974         assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2975
2976         pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2977
2978         if (pipe_write_skipped)
2979           {
2980             assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2981             ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2982           }
2983
2984
2985         /* update ev_rt_now, do magic */
2986         time_update (EV_A_ waittime + sleeptime);
2987       }
2988
2989       /* queue pending timers and reschedule them */
2990       timers_reify (EV_A); /* relative timers called last */
2991 #if EV_PERIODIC_ENABLE
2992       periodics_reify (EV_A); /* absolute timers called first */
2993 #endif
2994
2995 #if EV_IDLE_ENABLE
2996       /* queue idle watchers unless other events are pending */
2997       idle_reify (EV_A);
2998 #endif
2999
3000 #if EV_CHECK_ENABLE
3001       /* queue check watchers, to be executed first */
3002       if (expect_false (checkcnt))
3003         queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3004 #endif
3005
3006       EV_INVOKE_PENDING;
3007     }
3008   while (expect_true (
3009     activecnt
3010     && !loop_done
3011     && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3012   ));
3013
3014   if (loop_done == EVBREAK_ONE)
3015     loop_done = EVBREAK_CANCEL;
3016
3017 #if EV_FEATURE_API
3018   --loop_depth;
3019 #endif
3020 }
3021
3022 void
3023 ev_break (EV_P_ int how)
3024 {
3025   loop_done = how;
3026 }
3027
3028 void
3029 ev_ref (EV_P)
3030 {
3031   ++activecnt;
3032 }
3033
3034 void
3035 ev_unref (EV_P)
3036 {
3037   --activecnt;
3038 }
3039
3040 void
3041 ev_now_update (EV_P)
3042 {
3043   time_update (EV_A_ 1e100);
3044 }
3045
3046 void
3047 ev_suspend (EV_P)
3048 {
3049   ev_now_update (EV_A);
3050 }
3051
3052 void
3053 ev_resume (EV_P)
3054 {
3055   ev_tstamp mn_prev = mn_now;
3056
3057   ev_now_update (EV_A);
3058   timers_reschedule (EV_A_ mn_now - mn_prev);
3059 #if EV_PERIODIC_ENABLE
3060   /* TODO: really do this? */
3061   periodics_reschedule (EV_A);
3062 #endif
3063 }
3064
3065 /*****************************************************************************/
3066 /* singly-linked list management, used when the expected list length is short */
3067
3068 inline_size void
3069 wlist_add (WL *head, WL elem)
3070 {
3071   elem->next = *head;
3072   *head = elem;
3073 }
3074
3075 inline_size void
3076 wlist_del (WL *head, WL elem)
3077 {
3078   while (*head)
3079     {
3080       if (expect_true (*head == elem))
3081         {
3082           *head = elem->next;
3083           break;
3084         }
3085
3086       head = &(*head)->next;
3087     }
3088 }
3089
3090 /* internal, faster, version of ev_clear_pending */
3091 inline_speed void
3092 clear_pending (EV_P_ W w)
3093 {
3094   if (w->pending)
3095     {
3096       pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3097       w->pending = 0;
3098     }
3099 }
3100
3101 int
3102 ev_clear_pending (EV_P_ void *w)
3103 {
3104   W w_ = (W)w;
3105   int pending = w_->pending;
3106
3107   if (expect_true (pending))
3108     {
3109       ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3110       p->w = (W)&pending_w;
3111       w_->pending = 0;
3112       return p->events;
3113     }
3114   else
3115     return 0;
3116 }
3117
3118 inline_size void
3119 pri_adjust (EV_P_ W w)
3120 {
3121   int pri = ev_priority (w);
3122   pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3123   pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3124   ev_set_priority (w, pri);
3125 }
3126
3127 inline_speed void
3128 ev_start (EV_P_ W w, int active)
3129 {
3130   pri_adjust (EV_A_ w);
3131   w->active = active;
3132   ev_ref (EV_A);
3133 }
3134
3135 inline_size void
3136 ev_stop (EV_P_ W w)
3137 {
3138   ev_unref (EV_A);
3139   w->active = 0;
3140 }
3141
3142 /*****************************************************************************/
3143
3144 void noinline
3145 ev_io_start (EV_P_ ev_io *w)
3146 {
3147   int fd = w->fd;
3148
3149   if (expect_false (ev_is_active (w)))
3150     return;
3151
3152   assert (("libev: ev_io_start called with negative fd", fd >= 0));
3153   assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3154
3155   EV_FREQUENT_CHECK;
3156
3157   ev_start (EV_A_ (W)w, 1);
3158   array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3159   wlist_add (&anfds[fd].head, (WL)w);
3160
3161   fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3162   w->events &= ~EV__IOFDSET;
3163
3164   EV_FREQUENT_CHECK;
3165 }
3166
3167 void noinline
3168 ev_io_stop (EV_P_ ev_io *w)
3169 {
3170   clear_pending (EV_A_ (W)w);
3171   if (expect_false (!ev_is_active (w)))
3172     return;
3173
3174   assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3175
3176   EV_FREQUENT_CHECK;
3177
3178   wlist_del (&anfds[w->fd].head, (WL)w);
3179   ev_stop (EV_A_ (W)w);
3180
3181   fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3182
3183   EV_FREQUENT_CHECK;
3184 }
3185
3186 void noinline
3187 ev_timer_start (EV_P_ ev_timer *w)
3188 {
3189   if (expect_false (ev_is_active (w)))
3190     return;
3191
3192   ev_at (w) += mn_now;
3193
3194   assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3195
3196   EV_FREQUENT_CHECK;
3197
3198   ++timercnt;
3199   ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3200   array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3201   ANHE_w (timers [ev_active (w)]) = (WT)w;
3202   ANHE_at_cache (timers [ev_active (w)]);
3203   upheap (timers, ev_active (w));
3204
3205   EV_FREQUENT_CHECK;
3206
3207   /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3208 }
3209
3210 void noinline
3211 ev_timer_stop (EV_P_ ev_timer *w)
3212 {
3213   clear_pending (EV_A_ (W)w);
3214   if (expect_false (!ev_is_active (w)))
3215     return;
3216
3217   EV_FREQUENT_CHECK;
3218
3219   {
3220     int active = ev_active (w);
3221
3222     assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3223
3224     --timercnt;
3225
3226     if (expect_true (active < timercnt + HEAP0))
3227       {
3228         timers [active] = timers [timercnt + HEAP0];
3229         adjustheap (timers, timercnt, active);
3230       }
3231   }
3232
3233   ev_at (w) -= mn_now;
3234
3235   ev_stop (EV_A_ (W)w);
3236
3237   EV_FREQUENT_CHECK;
3238 }
3239
3240 void noinline
3241 ev_timer_again (EV_P_ ev_timer *w)
3242 {
3243   EV_FREQUENT_CHECK;
3244
3245   if (ev_is_active (w))
3246     {
3247       if (w->repeat)
3248         {
3249           ev_at (w) = mn_now + w->repeat;
3250           ANHE_at_cache (timers [ev_active (w)]);
3251           adjustheap (timers, timercnt, ev_active (w));
3252         }
3253       else
3254         ev_timer_stop (EV_A_ w);
3255     }
3256   else if (w->repeat)
3257     {
3258       ev_at (w) = w->repeat;
3259       ev_timer_start (EV_A_ w);
3260     }
3261
3262   EV_FREQUENT_CHECK;
3263 }
3264
3265 ev_tstamp
3266 ev_timer_remaining (EV_P_ ev_timer *w)
3267 {
3268   return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3269 }
3270
3271 #if EV_PERIODIC_ENABLE
3272 void noinline
3273 ev_periodic_start (EV_P_ ev_periodic *w)
3274 {
3275   if (expect_false (ev_is_active (w)))
3276     return;
3277
3278   if (w->reschedule_cb)
3279     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3280   else if (w->interval)
3281     {
3282       assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3283       periodic_recalc (EV_A_ w);
3284     }
3285   else
3286     ev_at (w) = w->offset;
3287
3288   EV_FREQUENT_CHECK;
3289
3290   ++periodiccnt;
3291   ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3292   array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3293   ANHE_w (periodics [ev_active (w)]) = (WT)w;
3294   ANHE_at_cache (periodics [ev_active (w)]);
3295   upheap (periodics, ev_active (w));
3296
3297   EV_FREQUENT_CHECK;
3298
3299   /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3300 }
3301
3302 void noinline
3303 ev_periodic_stop (EV_P_ ev_periodic *w)
3304 {
3305   clear_pending (EV_A_ (W)w);
3306   if (expect_false (!ev_is_active (w)))
3307     return;
3308
3309   EV_FREQUENT_CHECK;
3310
3311   {
3312     int active = ev_active (w);
3313
3314     assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3315
3316     --periodiccnt;
3317
3318     if (expect_true (active < periodiccnt + HEAP0))
3319       {
3320         periodics [active] = periodics [periodiccnt + HEAP0];
3321         adjustheap (periodics, periodiccnt, active);
3322       }
3323   }
3324
3325   ev_stop (EV_A_ (W)w);
3326
3327   EV_FREQUENT_CHECK;
3328 }
3329
3330 void noinline
3331 ev_periodic_again (EV_P_ ev_periodic *w)
3332 {
3333   /* TODO: use adjustheap and recalculation */
3334   ev_periodic_stop (EV_A_ w);
3335   ev_periodic_start (EV_A_ w);
3336 }
3337 #endif
3338
3339 #ifndef SA_RESTART
3340 # define SA_RESTART 0
3341 #endif
3342
3343 #if EV_SIGNAL_ENABLE
3344
3345 void noinline
3346 ev_signal_start (EV_P_ ev_signal *w)
3347 {
3348   if (expect_false (ev_is_active (w)))
3349     return;
3350
3351   assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3352
3353 #if EV_MULTIPLICITY
3354   assert (("libev: a signal must not be attached to two different loops",
3355            !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3356
3357   signals [w->signum - 1].loop = EV_A;
3358 #endif
3359
3360   EV_FREQUENT_CHECK;
3361
3362 #if EV_USE_SIGNALFD
3363   if (sigfd == -2)
3364     {
3365       sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3366       if (sigfd < 0 && errno == EINVAL)
3367         sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3368
3369       if (sigfd >= 0)
3370         {
3371           fd_intern (sigfd); /* doing it twice will not hurt */
3372
3373           sigemptyset (&sigfd_set);
3374
3375           ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3376           ev_set_priority (&sigfd_w, EV_MAXPRI);
3377           ev_io_start (EV_A_ &sigfd_w);
3378           ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3379         }
3380     }
3381
3382   if (sigfd >= 0)
3383     {
3384       /* TODO: check .head */
3385       sigaddset (&sigfd_set, w->signum);
3386       sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3387
3388       signalfd (sigfd, &sigfd_set, 0);
3389     }
3390 #endif
3391
3392   ev_start (EV_A_ (W)w, 1);
3393   wlist_add (&signals [w->signum - 1].head, (WL)w);
3394
3395   if (!((WL)w)->next)
3396 # if EV_USE_SIGNALFD
3397     if (sigfd < 0) /*TODO*/
3398 # endif
3399       {
3400 # ifdef _WIN32
3401         evpipe_init (EV_A);
3402
3403         signal (w->signum, ev_sighandler);
3404 # else
3405         struct sigaction sa;
3406
3407         evpipe_init (EV_A);
3408
3409         sa.sa_handler = ev_sighandler;
3410         sigfillset (&sa.sa_mask);
3411         sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3412         sigaction (w->signum, &sa, 0);
3413
3414         if (origflags & EVFLAG_NOSIGMASK)
3415           {
3416             sigemptyset (&sa.sa_mask);
3417             sigaddset (&sa.sa_mask, w->signum);
3418             sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3419           }
3420 #endif
3421       }
3422
3423   EV_FREQUENT_CHECK;
3424 }
3425
3426 void noinline
3427 ev_signal_stop (EV_P_ ev_signal *w)
3428 {
3429   clear_pending (EV_A_ (W)w);
3430   if (expect_false (!ev_is_active (w)))
3431     return;
3432
3433   EV_FREQUENT_CHECK;
3434
3435   wlist_del (&signals [w->signum - 1].head, (WL)w);
3436   ev_stop (EV_A_ (W)w);
3437
3438   if (!signals [w->signum - 1].head)
3439     {
3440 #if EV_MULTIPLICITY
3441       signals [w->signum - 1].loop = 0; /* unattach from signal */
3442 #endif
3443 #if EV_USE_SIGNALFD
3444       if (sigfd >= 0)
3445         {
3446           sigset_t ss;
3447
3448           sigemptyset (&ss);
3449           sigaddset (&ss, w->signum);
3450           sigdelset (&sigfd_set, w->signum);
3451
3452           signalfd (sigfd, &sigfd_set, 0);
3453           sigprocmask (SIG_UNBLOCK, &ss, 0);
3454         }
3455       else
3456 #endif
3457         signal (w->signum, SIG_DFL);
3458     }
3459
3460   EV_FREQUENT_CHECK;
3461 }
3462
3463 #endif
3464
3465 #if EV_CHILD_ENABLE
3466
3467 void
3468 ev_child_start (EV_P_ ev_child *w)
3469 {
3470 #if EV_MULTIPLICITY
3471   assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3472 #endif
3473   if (expect_false (ev_is_active (w)))
3474     return;
3475
3476   EV_FREQUENT_CHECK;
3477
3478   ev_start (EV_A_ (W)w, 1);
3479   wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3480
3481   EV_FREQUENT_CHECK;
3482 }
3483
3484 void
3485 ev_child_stop (EV_P_ ev_child *w)
3486 {
3487   clear_pending (EV_A_ (W)w);
3488   if (expect_false (!ev_is_active (w)))
3489     return;
3490
3491   EV_FREQUENT_CHECK;
3492
3493   wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3494   ev_stop (EV_A_ (W)w);
3495
3496   EV_FREQUENT_CHECK;
3497 }
3498
3499 #endif
3500
3501 #if EV_STAT_ENABLE
3502
3503 # ifdef _WIN32
3504 #  undef lstat
3505 #  define lstat(a,b) _stati64 (a,b)
3506 # endif
3507
3508 #define DEF_STAT_INTERVAL  5.0074891
3509 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3510 #define MIN_STAT_INTERVAL  0.1074891
3511
3512 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3513
3514 #if EV_USE_INOTIFY
3515
3516 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3517 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3518
3519 static void noinline
3520 infy_add (EV_P_ ev_stat *w)
3521 {
3522   w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3523
3524   if (w->wd >= 0)
3525     {
3526       struct statfs sfs;
3527
3528       /* now local changes will be tracked by inotify, but remote changes won't */
3529       /* unless the filesystem is known to be local, we therefore still poll */
3530       /* also do poll on <2.6.25, but with normal frequency */
3531
3532       if (!fs_2625)
3533         w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3534       else if (!statfs (w->path, &sfs)
3535                && (sfs.f_type == 0x1373 /* devfs */
3536                    || sfs.f_type == 0xEF53 /* ext2/3 */
3537                    || sfs.f_type == 0x3153464a /* jfs */
3538                    || sfs.f_type == 0x52654973 /* reiser3 */
3539                    || sfs.f_type == 0x01021994 /* tempfs */
3540                    || sfs.f_type == 0x58465342 /* xfs */))
3541         w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3542       else
3543         w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3544     }
3545   else
3546     {
3547       /* can't use inotify, continue to stat */
3548       w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3549
3550       /* if path is not there, monitor some parent directory for speedup hints */
3551       /* note that exceeding the hardcoded path limit is not a correctness issue, */
3552       /* but an efficiency issue only */
3553       if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3554         {
3555           char path [4096];
3556           strcpy (path, w->path);
3557
3558           do
3559             {
3560               int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3561                        | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3562
3563               char *pend = strrchr (path, '/');
3564
3565               if (!pend || pend == path)
3566                 break;
3567
3568               *pend = 0;
3569               w->wd = inotify_add_watch (fs_fd, path, mask);
3570             }
3571           while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3572         }
3573     }
3574
3575   if (w->wd >= 0)
3576     wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3577
3578   /* now re-arm timer, if required */
3579   if (ev_is_active (&w->timer)) ev_ref (EV_A);
3580   ev_timer_again (EV_A_ &w->timer);
3581   if (ev_is_active (&w->timer)) ev_unref (EV_A);
3582 }
3583
3584 static void noinline
3585 infy_del (EV_P_ ev_stat *w)
3586 {
3587   int slot;
3588   int wd = w->wd;
3589
3590   if (wd < 0)
3591     return;
3592
3593   w->wd = -2;
3594   slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3595   wlist_del (&fs_hash [slot].head, (WL)w);
3596
3597   /* remove this watcher, if others are watching it, they will rearm */
3598   inotify_rm_watch (fs_fd, wd);
3599 }
3600
3601 static void noinline
3602 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3603 {
3604   if (slot < 0)
3605     /* overflow, need to check for all hash slots */
3606     for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3607       infy_wd (EV_A_ slot, wd, ev);
3608   else
3609     {
3610       WL w_;
3611
3612       for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3613         {
3614           ev_stat *w = (ev_stat *)w_;
3615           w_ = w_->next; /* lets us remove this watcher and all before it */
3616
3617           if (w->wd == wd || wd == -1)
3618             {
3619               if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3620                 {
3621                   wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3622                   w->wd = -1;
3623                   infy_add (EV_A_ w); /* re-add, no matter what */
3624                 }
3625
3626               stat_timer_cb (EV_A_ &w->timer, 0);
3627             }
3628         }
3629     }
3630 }
3631
3632 static void
3633 infy_cb (EV_P_ ev_io *w, int revents)
3634 {
3635   char buf [EV_INOTIFY_BUFSIZE];
3636   int ofs;
3637   int len = read (fs_fd, buf, sizeof (buf));
3638
3639   for (ofs = 0; ofs < len; )
3640     {
3641       struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3642       infy_wd (EV_A_ ev->wd, ev->wd, ev);
3643       ofs += sizeof (struct inotify_event) + ev->len;
3644     }
3645 }
3646
3647 inline_size void ecb_cold
3648 ev_check_2625 (EV_P)
3649 {
3650   /* kernels < 2.6.25 are borked
3651    * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3652    */
3653   if (ev_linux_version () < 0x020619)
3654     return;
3655
3656   fs_2625 = 1;
3657 }
3658
3659 inline_size int
3660 infy_newfd (void)
3661 {
3662 #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3663   int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3664   if (fd >= 0)
3665     return fd;
3666 #endif
3667   return inotify_init ();
3668 }
3669
3670 inline_size void
3671 infy_init (EV_P)
3672 {
3673   if (fs_fd != -2)
3674     return;
3675
3676   fs_fd = -1;
3677
3678   ev_check_2625 (EV_A);
3679
3680   fs_fd = infy_newfd ();
3681
3682   if (fs_fd >= 0)
3683     {
3684       fd_intern (fs_fd);
3685       ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3686       ev_set_priority (&fs_w, EV_MAXPRI);
3687       ev_io_start (EV_A_ &fs_w);
3688       ev_unref (EV_A);
3689     }
3690 }
3691
3692 inline_size void
3693 infy_fork (EV_P)
3694 {
3695   int slot;
3696
3697   if (fs_fd < 0)
3698     return;
3699
3700   ev_ref (EV_A);
3701   ev_io_stop (EV_A_ &fs_w);
3702   close (fs_fd);
3703   fs_fd = infy_newfd ();
3704
3705   if (fs_fd >= 0)
3706     {
3707       fd_intern (fs_fd);
3708       ev_io_set (&fs_w, fs_fd, EV_READ);
3709       ev_io_start (EV_A_ &fs_w);
3710       ev_unref (EV_A);
3711     }
3712
3713   for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3714     {
3715       WL w_ = fs_hash [slot].head;
3716       fs_hash [slot].head = 0;
3717
3718       while (w_)
3719         {
3720           ev_stat *w = (ev_stat *)w_;
3721           w_ = w_->next; /* lets us add this watcher */
3722
3723           w->wd = -1;
3724
3725           if (fs_fd >= 0)
3726             infy_add (EV_A_ w); /* re-add, no matter what */
3727           else
3728             {
3729               w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3730               if (ev_is_active (&w->timer)) ev_ref (EV_A);
3731               ev_timer_again (EV_A_ &w->timer);
3732               if (ev_is_active (&w->timer)) ev_unref (EV_A);
3733             }
3734         }
3735     }
3736 }
3737
3738 #endif
3739
3740 #ifdef _WIN32
3741 # define EV_LSTAT(p,b) _stati64 (p, b)
3742 #else
3743 # define EV_LSTAT(p,b) lstat (p, b)
3744 #endif
3745
3746 void
3747 ev_stat_stat (EV_P_ ev_stat *w)
3748 {
3749   if (lstat (w->path, &w->attr) < 0)
3750     w->attr.st_nlink = 0;
3751   else if (!w->attr.st_nlink)
3752     w->attr.st_nlink = 1;
3753 }
3754
3755 static void noinline
3756 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3757 {
3758   ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3759
3760   ev_statdata prev = w->attr;
3761   ev_stat_stat (EV_A_ w);
3762
3763   /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3764   if (
3765     prev.st_dev      != w->attr.st_dev
3766     || prev.st_ino   != w->attr.st_ino
3767     || prev.st_mode  != w->attr.st_mode
3768     || prev.st_nlink != w->attr.st_nlink
3769     || prev.st_uid   != w->attr.st_uid
3770     || prev.st_gid   != w->attr.st_gid
3771     || prev.st_rdev  != w->attr.st_rdev
3772     || prev.st_size  != w->attr.st_size
3773     || prev.st_atime != w->attr.st_atime
3774     || prev.st_mtime != w->attr.st_mtime
3775     || prev.st_ctime != w->attr.st_ctime
3776   ) {
3777       /* we only update w->prev on actual differences */
3778       /* in case we test more often than invoke the callback, */
3779       /* to ensure that prev is always different to attr */
3780       w->prev = prev;
3781
3782       #if EV_USE_INOTIFY
3783         if (fs_fd >= 0)
3784           {
3785             infy_del (EV_A_ w);
3786             infy_add (EV_A_ w);
3787             ev_stat_stat (EV_A_ w); /* avoid race... */
3788           }
3789       #endif
3790
3791       ev_feed_event (EV_A_ w, EV_STAT);
3792     }
3793 }
3794
3795 void
3796 ev_stat_start (EV_P_ ev_stat *w)
3797 {
3798   if (expect_false (ev_is_active (w)))
3799     return;
3800
3801   ev_stat_stat (EV_A_ w);
3802
3803   if (w->interval < MIN_STAT_INTERVAL && w->interval)
3804     w->interval = MIN_STAT_INTERVAL;
3805
3806   ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3807   ev_set_priority (&w->timer, ev_priority (w));
3808
3809 #if EV_USE_INOTIFY
3810   infy_init (EV_A);
3811
3812   if (fs_fd >= 0)
3813     infy_add (EV_A_ w);
3814   else
3815 #endif
3816     {
3817       ev_timer_again (EV_A_ &w->timer);
3818       ev_unref (EV_A);
3819     }
3820
3821   ev_start (EV_A_ (W)w, 1);
3822
3823   EV_FREQUENT_CHECK;
3824 }
3825
3826 void
3827 ev_stat_stop (EV_P_ ev_stat *w)
3828 {
3829   clear_pending (EV_A_ (W)w);
3830   if (expect_false (!ev_is_active (w)))
3831     return;
3832
3833   EV_FREQUENT_CHECK;
3834
3835 #if EV_USE_INOTIFY
3836   infy_del (EV_A_ w);
3837 #endif
3838
3839   if (ev_is_active (&w->timer))
3840     {
3841       ev_ref (EV_A);
3842       ev_timer_stop (EV_A_ &w->timer);
3843     }
3844
3845   ev_stop (EV_A_ (W)w);
3846
3847   EV_FREQUENT_CHECK;
3848 }
3849 #endif
3850
3851 #if EV_IDLE_ENABLE
3852 void
3853 ev_idle_start (EV_P_ ev_idle *w)
3854 {
3855   if (expect_false (ev_is_active (w)))
3856     return;
3857
3858   pri_adjust (EV_A_ (W)w);
3859
3860   EV_FREQUENT_CHECK;
3861
3862   {
3863     int active = ++idlecnt [ABSPRI (w)];
3864
3865     ++idleall;
3866     ev_start (EV_A_ (W)w, active);
3867
3868     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3869     idles [ABSPRI (w)][active - 1] = w;
3870   }
3871
3872   EV_FREQUENT_CHECK;
3873 }
3874
3875 void
3876 ev_idle_stop (EV_P_ ev_idle *w)
3877 {
3878   clear_pending (EV_A_ (W)w);
3879   if (expect_false (!ev_is_active (w)))
3880     return;
3881
3882   EV_FREQUENT_CHECK;
3883
3884   {
3885     int active = ev_active (w);
3886
3887     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3888     ev_active (idles [ABSPRI (w)][active - 1]) = active;
3889
3890     ev_stop (EV_A_ (W)w);
3891     --idleall;
3892   }
3893
3894   EV_FREQUENT_CHECK;
3895 }
3896 #endif
3897
3898 #if EV_PREPARE_ENABLE
3899 void
3900 ev_prepare_start (EV_P_ ev_prepare *w)
3901 {
3902   if (expect_false (ev_is_active (w)))
3903     return;
3904
3905   EV_FREQUENT_CHECK;
3906
3907   ev_start (EV_A_ (W)w, ++preparecnt);
3908   array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3909   prepares [preparecnt - 1] = w;
3910
3911   EV_FREQUENT_CHECK;
3912 }
3913
3914 void
3915 ev_prepare_stop (EV_P_ ev_prepare *w)
3916 {
3917   clear_pending (EV_A_ (W)w);
3918   if (expect_false (!ev_is_active (w)))
3919     return;
3920
3921   EV_FREQUENT_CHECK;
3922
3923   {
3924     int active = ev_active (w);
3925
3926     prepares [active - 1] = prepares [--preparecnt];
3927     ev_active (prepares [active - 1]) = active;
3928   }
3929
3930   ev_stop (EV_A_ (W)w);
3931
3932   EV_FREQUENT_CHECK;
3933 }
3934 #endif
3935
3936 #if EV_CHECK_ENABLE
3937 void
3938 ev_check_start (EV_P_ ev_check *w)
3939 {
3940   if (expect_false (ev_is_active (w)))
3941     return;
3942
3943   EV_FREQUENT_CHECK;
3944
3945   ev_start (EV_A_ (W)w, ++checkcnt);
3946   array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3947   checks [checkcnt - 1] = w;
3948
3949   EV_FREQUENT_CHECK;
3950 }
3951
3952 void
3953 ev_check_stop (EV_P_ ev_check *w)
3954 {
3955   clear_pending (EV_A_ (W)w);
3956   if (expect_false (!ev_is_active (w)))
3957     return;
3958
3959   EV_FREQUENT_CHECK;
3960
3961   {
3962     int active = ev_active (w);
3963
3964     checks [active - 1] = checks [--checkcnt];
3965     ev_active (checks [active - 1]) = active;
3966   }
3967
3968   ev_stop (EV_A_ (W)w);
3969
3970   EV_FREQUENT_CHECK;
3971 }
3972 #endif
3973
3974 #if EV_EMBED_ENABLE
3975 void noinline
3976 ev_embed_sweep (EV_P_ ev_embed *w)
3977 {
3978   ev_run (w->other, EVRUN_NOWAIT);
3979 }
3980
3981 static void
3982 embed_io_cb (EV_P_ ev_io *io, int revents)
3983 {
3984   ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3985
3986   if (ev_cb (w))
3987     ev_feed_event (EV_A_ (W)w, EV_EMBED);
3988   else
3989     ev_run (w->other, EVRUN_NOWAIT);
3990 }
3991
3992 static void
3993 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3994 {
3995   ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3996
3997   {
3998     EV_P = w->other;
3999
4000     while (fdchangecnt)
4001       {
4002         fd_reify (EV_A);
4003         ev_run (EV_A_ EVRUN_NOWAIT);
4004       }
4005   }
4006 }
4007
4008 static void
4009 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4010 {
4011   ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4012
4013   ev_embed_stop (EV_A_ w);
4014
4015   {
4016     EV_P = w->other;
4017
4018     ev_loop_fork (EV_A);
4019     ev_run (EV_A_ EVRUN_NOWAIT);
4020   }
4021
4022   ev_embed_start (EV_A_ w);
4023 }
4024
4025 #if 0
4026 static void
4027 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4028 {
4029   ev_idle_stop (EV_A_ idle);
4030 }
4031 #endif
4032
4033 void
4034 ev_embed_start (EV_P_ ev_embed *w)
4035 {
4036   if (expect_false (ev_is_active (w)))
4037     return;
4038
4039   {
4040     EV_P = w->other;
4041     assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4042     ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4043   }
4044
4045   EV_FREQUENT_CHECK;
4046
4047   ev_set_priority (&w->io, ev_priority (w));
4048   ev_io_start (EV_A_ &w->io);
4049
4050   ev_prepare_init (&w->prepare, embed_prepare_cb);
4051   ev_set_priority (&w->prepare, EV_MINPRI);
4052   ev_prepare_start (EV_A_ &w->prepare);
4053
4054   ev_fork_init (&w->fork, embed_fork_cb);
4055   ev_fork_start (EV_A_ &w->fork);
4056
4057   /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4058
4059   ev_start (EV_A_ (W)w, 1);
4060
4061   EV_FREQUENT_CHECK;
4062 }
4063
4064 void
4065 ev_embed_stop (EV_P_ ev_embed *w)
4066 {
4067   clear_pending (EV_A_ (W)w);
4068   if (expect_false (!ev_is_active (w)))
4069     return;
4070
4071   EV_FREQUENT_CHECK;
4072
4073   ev_io_stop      (EV_A_ &w->io);
4074   ev_prepare_stop (EV_A_ &w->prepare);
4075   ev_fork_stop    (EV_A_ &w->fork);
4076
4077   ev_stop (EV_A_ (W)w);
4078
4079   EV_FREQUENT_CHECK;
4080 }
4081 #endif
4082
4083 #if EV_FORK_ENABLE
4084 void
4085 ev_fork_start (EV_P_ ev_fork *w)
4086 {
4087   if (expect_false (ev_is_active (w)))
4088     return;
4089
4090   EV_FREQUENT_CHECK;
4091
4092   ev_start (EV_A_ (W)w, ++forkcnt);
4093   array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4094   forks [forkcnt - 1] = w;
4095
4096   EV_FREQUENT_CHECK;
4097 }
4098
4099 void
4100 ev_fork_stop (EV_P_ ev_fork *w)
4101 {
4102   clear_pending (EV_A_ (W)w);
4103   if (expect_false (!ev_is_active (w)))
4104     return;
4105
4106   EV_FREQUENT_CHECK;
4107
4108   {
4109     int active = ev_active (w);
4110
4111     forks [active - 1] = forks [--forkcnt];
4112     ev_active (forks [active - 1]) = active;
4113   }
4114
4115   ev_stop (EV_A_ (W)w);
4116
4117   EV_FREQUENT_CHECK;
4118 }
4119 #endif
4120
4121 #if EV_CLEANUP_ENABLE
4122 void
4123 ev_cleanup_start (EV_P_ ev_cleanup *w)
4124 {
4125   if (expect_false (ev_is_active (w)))
4126     return;
4127
4128   EV_FREQUENT_CHECK;
4129
4130   ev_start (EV_A_ (W)w, ++cleanupcnt);
4131   array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4132   cleanups [cleanupcnt - 1] = w;
4133
4134   /* cleanup watchers should never keep a refcount on the loop */
4135   ev_unref (EV_A);
4136   EV_FREQUENT_CHECK;
4137 }
4138
4139 void
4140 ev_cleanup_stop (EV_P_ ev_cleanup *w)
4141 {
4142   clear_pending (EV_A_ (W)w);
4143   if (expect_false (!ev_is_active (w)))
4144     return;
4145
4146   EV_FREQUENT_CHECK;
4147   ev_ref (EV_A);
4148
4149   {
4150     int active = ev_active (w);
4151
4152     cleanups [active - 1] = cleanups [--cleanupcnt];
4153     ev_active (cleanups [active - 1]) = active;
4154   }
4155
4156   ev_stop (EV_A_ (W)w);
4157
4158   EV_FREQUENT_CHECK;
4159 }
4160 #endif
4161
4162 #if EV_ASYNC_ENABLE
4163 void
4164 ev_async_start (EV_P_ ev_async *w)
4165 {
4166   if (expect_false (ev_is_active (w)))
4167     return;
4168
4169   w->sent = 0;
4170
4171   evpipe_init (EV_A);
4172
4173   EV_FREQUENT_CHECK;
4174
4175   ev_start (EV_A_ (W)w, ++asynccnt);
4176   array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4177   asyncs [asynccnt - 1] = w;
4178
4179   EV_FREQUENT_CHECK;
4180 }
4181
4182 void
4183 ev_async_stop (EV_P_ ev_async *w)
4184 {
4185   clear_pending (EV_A_ (W)w);
4186   if (expect_false (!ev_is_active (w)))
4187     return;
4188
4189   EV_FREQUENT_CHECK;
4190
4191   {
4192     int active = ev_active (w);
4193
4194     asyncs [active - 1] = asyncs [--asynccnt];
4195     ev_active (asyncs [active - 1]) = active;
4196   }
4197
4198   ev_stop (EV_A_ (W)w);
4199
4200   EV_FREQUENT_CHECK;
4201 }
4202
4203 void
4204 ev_async_send (EV_P_ ev_async *w)
4205 {
4206   w->sent = 1;
4207   evpipe_write (EV_A_ &async_pending);
4208 }
4209 #endif
4210
4211 /*****************************************************************************/
4212
4213 struct ev_once
4214 {
4215   ev_io io;
4216   ev_timer to;
4217   void (*cb)(int revents, void *arg);
4218   void *arg;
4219 };
4220
4221 static void
4222 once_cb (EV_P_ struct ev_once *once, int revents)
4223 {
4224   void (*cb)(int revents, void *arg) = once->cb;
4225   void *arg = once->arg;
4226
4227   ev_io_stop    (EV_A_ &once->io);
4228   ev_timer_stop (EV_A_ &once->to);
4229   ev_free (once);
4230
4231   cb (revents, arg);
4232 }
4233
4234 static void
4235 once_cb_io (EV_P_ ev_io *w, int revents)
4236 {
4237   struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4238
4239   once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4240 }
4241
4242 static void
4243 once_cb_to (EV_P_ ev_timer *w, int revents)
4244 {
4245   struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4246
4247   once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4248 }
4249
4250 void
4251 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
4252 {
4253   struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4254
4255   if (expect_false (!once))
4256     {
4257       cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4258       return;
4259     }
4260
4261   once->cb  = cb;
4262   once->arg = arg;
4263
4264   ev_init (&once->io, once_cb_io);
4265   if (fd >= 0)
4266     {
4267       ev_io_set (&once->io, fd, events);
4268       ev_io_start (EV_A_ &once->io);
4269     }
4270
4271   ev_init (&once->to, once_cb_to);
4272   if (timeout >= 0.)
4273     {
4274       ev_timer_set (&once->to, timeout, 0.);
4275       ev_timer_start (EV_A_ &once->to);
4276     }
4277 }
4278
4279 /*****************************************************************************/
4280
4281 #if EV_WALK_ENABLE
4282 void ecb_cold
4283 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4284 {
4285   int i, j;
4286   ev_watcher_list *wl, *wn;
4287
4288   if (types & (EV_IO | EV_EMBED))
4289     for (i = 0; i < anfdmax; ++i)
4290       for (wl = anfds [i].head; wl; )
4291         {
4292           wn = wl->next;
4293
4294 #if EV_EMBED_ENABLE
4295           if (ev_cb ((ev_io *)wl) == embed_io_cb)
4296             {
4297               if (types & EV_EMBED)
4298                 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4299             }
4300           else
4301 #endif
4302 #if EV_USE_INOTIFY
4303           if (ev_cb ((ev_io *)wl) == infy_cb)
4304             ;
4305           else
4306 #endif
4307           if ((ev_io *)wl != &pipe_w)
4308             if (types & EV_IO)
4309               cb (EV_A_ EV_IO, wl);
4310
4311           wl = wn;
4312         }
4313
4314   if (types & (EV_TIMER | EV_STAT))
4315     for (i = timercnt + HEAP0; i-- > HEAP0; )
4316 #if EV_STAT_ENABLE
4317       /*TODO: timer is not always active*/
4318       if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4319         {
4320           if (types & EV_STAT)
4321             cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4322         }
4323       else
4324 #endif
4325       if (types & EV_TIMER)
4326         cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4327
4328 #if EV_PERIODIC_ENABLE
4329   if (types & EV_PERIODIC)
4330     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4331       cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4332 #endif
4333
4334 #if EV_IDLE_ENABLE
4335   if (types & EV_IDLE)
4336     for (j = NUMPRI; j--; )
4337       for (i = idlecnt [j]; i--; )
4338         cb (EV_A_ EV_IDLE, idles [j][i]);
4339 #endif
4340
4341 #if EV_FORK_ENABLE
4342   if (types & EV_FORK)
4343     for (i = forkcnt; i--; )
4344       if (ev_cb (forks [i]) != embed_fork_cb)
4345         cb (EV_A_ EV_FORK, forks [i]);
4346 #endif
4347
4348 #if EV_ASYNC_ENABLE
4349   if (types & EV_ASYNC)
4350     for (i = asynccnt; i--; )
4351       cb (EV_A_ EV_ASYNC, asyncs [i]);
4352 #endif
4353
4354 #if EV_PREPARE_ENABLE
4355   if (types & EV_PREPARE)
4356     for (i = preparecnt; i--; )
4357 # if EV_EMBED_ENABLE
4358       if (ev_cb (prepares [i]) != embed_prepare_cb)
4359 # endif
4360         cb (EV_A_ EV_PREPARE, prepares [i]);
4361 #endif
4362
4363 #if EV_CHECK_ENABLE
4364   if (types & EV_CHECK)
4365     for (i = checkcnt; i--; )
4366       cb (EV_A_ EV_CHECK, checks [i]);
4367 #endif
4368
4369 #if EV_SIGNAL_ENABLE
4370   if (types & EV_SIGNAL)
4371     for (i = 0; i < EV_NSIG - 1; ++i)
4372       for (wl = signals [i].head; wl; )
4373         {
4374           wn = wl->next;
4375           cb (EV_A_ EV_SIGNAL, wl);
4376           wl = wn;
4377         }
4378 #endif
4379
4380 #if EV_CHILD_ENABLE
4381   if (types & EV_CHILD)
4382     for (i = (EV_PID_HASHSIZE); i--; )
4383       for (wl = childs [i]; wl; )
4384         {
4385           wn = wl->next;
4386           cb (EV_A_ EV_CHILD, wl);
4387           wl = wn;
4388         }
4389 #endif
4390 /* EV_STAT     0x00001000 /* stat data changed */
4391 /* EV_EMBED    0x00010000 /* embedded event loop needs sweep */
4392 }
4393 #endif
4394
4395 #if EV_MULTIPLICITY
4396   #include "ev_wrap.h"
4397 #endif
4398
4399 EV_CPP(})
4400