]> rtime.felk.cvut.cz Git - sojka/libev.git/blob - ev.c
*** empty log message ***
[sojka/libev.git] / ev.c
1 /*
2  * libev event processing core, watcher management
3  *
4  * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without modifica-
8  * tion, are permitted provided that the following conditions are met:
9  *
10  *   1.  Redistributions of source code must retain the above copyright notice,
11  *       this list of conditions and the following disclaimer.
12  *
13  *   2.  Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in the
15  *       documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19  * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO
20  * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21  * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25  * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26  * OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * Alternatively, the contents of this file may be used under the terms of
29  * the GNU General Public License ("GPL") version 2 or any later version,
30  * in which case the provisions of the GPL are applicable instead of
31  * the above. If you wish to allow the use of your version of this file
32  * only under the terms of the GPL and not to allow others to use your
33  * version of this file under the BSD license, indicate your decision
34  * by deleting the provisions above and replace them with the notice
35  * and other provisions required by the GPL. If you do not delete the
36  * provisions above, a recipient may use your version of this file under
37  * either the BSD or the GPL.
38  */
39
40 /* this big block deduces configuration from config.h */
41 #ifndef EV_STANDALONE
42 # ifdef EV_CONFIG_H
43 #  include EV_CONFIG_H
44 # else
45 #  include "config.h"
46 # endif
47
48 #if HAVE_FLOOR
49 # ifndef EV_USE_FLOOR
50 #  define EV_USE_FLOOR 1
51 # endif
52 #endif
53
54 # if HAVE_CLOCK_SYSCALL
55 #  ifndef EV_USE_CLOCK_SYSCALL
56 #   define EV_USE_CLOCK_SYSCALL 1
57 #   ifndef EV_USE_REALTIME
58 #    define EV_USE_REALTIME  0
59 #   endif
60 #   ifndef EV_USE_MONOTONIC
61 #    define EV_USE_MONOTONIC 1
62 #   endif
63 #  endif
64 # elif !defined(EV_USE_CLOCK_SYSCALL)
65 #  define EV_USE_CLOCK_SYSCALL 0
66 # endif
67
68 # if HAVE_CLOCK_GETTIME
69 #  ifndef EV_USE_MONOTONIC
70 #   define EV_USE_MONOTONIC 1
71 #  endif
72 #  ifndef EV_USE_REALTIME
73 #   define EV_USE_REALTIME  0
74 #  endif
75 # else
76 #  ifndef EV_USE_MONOTONIC
77 #   define EV_USE_MONOTONIC 0
78 #  endif
79 #  ifndef EV_USE_REALTIME
80 #   define EV_USE_REALTIME  0
81 #  endif
82 # endif
83
84 # if HAVE_NANOSLEEP
85 #  ifndef EV_USE_NANOSLEEP
86 #    define EV_USE_NANOSLEEP EV_FEATURE_OS
87 #  endif
88 # else
89 #   undef EV_USE_NANOSLEEP
90 #   define EV_USE_NANOSLEEP 0
91 # endif
92
93 # if HAVE_SELECT && HAVE_SYS_SELECT_H
94 #  ifndef EV_USE_SELECT
95 #   define EV_USE_SELECT EV_FEATURE_BACKENDS
96 #  endif
97 # else
98 #  undef EV_USE_SELECT
99 #  define EV_USE_SELECT 0
100 # endif
101
102 # if HAVE_POLL && HAVE_POLL_H
103 #  ifndef EV_USE_POLL
104 #   define EV_USE_POLL EV_FEATURE_BACKENDS
105 #  endif
106 # else
107 #  undef EV_USE_POLL
108 #  define EV_USE_POLL 0
109 # endif
110    
111 # if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112 #  ifndef EV_USE_EPOLL
113 #   define EV_USE_EPOLL EV_FEATURE_BACKENDS
114 #  endif
115 # else
116 #  undef EV_USE_EPOLL
117 #  define EV_USE_EPOLL 0
118 # endif
119    
120 # if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121 #  ifndef EV_USE_KQUEUE
122 #   define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123 #  endif
124 # else
125 #  undef EV_USE_KQUEUE
126 #  define EV_USE_KQUEUE 0
127 # endif
128    
129 # if HAVE_PORT_H && HAVE_PORT_CREATE
130 #  ifndef EV_USE_PORT
131 #   define EV_USE_PORT EV_FEATURE_BACKENDS
132 #  endif
133 # else
134 #  undef EV_USE_PORT
135 #  define EV_USE_PORT 0
136 # endif
137
138 # if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139 #  ifndef EV_USE_INOTIFY
140 #   define EV_USE_INOTIFY EV_FEATURE_OS
141 #  endif
142 # else
143 #  undef EV_USE_INOTIFY
144 #  define EV_USE_INOTIFY 0
145 # endif
146
147 # if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148 #  ifndef EV_USE_SIGNALFD
149 #   define EV_USE_SIGNALFD EV_FEATURE_OS
150 #  endif
151 # else
152 #  undef EV_USE_SIGNALFD
153 #  define EV_USE_SIGNALFD 0
154 # endif
155
156 # if HAVE_EVENTFD
157 #  ifndef EV_USE_EVENTFD
158 #   define EV_USE_EVENTFD EV_FEATURE_OS
159 #  endif
160 # else
161 #  undef EV_USE_EVENTFD
162 #  define EV_USE_EVENTFD 0
163 # endif
164  
165 #endif
166
167 #include <stdlib.h>
168 #include <string.h>
169 #include <fcntl.h>
170 #include <stddef.h>
171
172 #include <stdio.h>
173
174 #include <assert.h>
175 #include <errno.h>
176 #include <sys/types.h>
177 #include <time.h>
178 #include <limits.h>
179
180 #include <signal.h>
181
182 #ifdef EV_H
183 # include EV_H
184 #else
185 # include "ev.h"
186 #endif
187
188 EV_CPP(extern "C" {)
189
190 #ifndef _WIN32
191 # include <sys/time.h>
192 # include <sys/wait.h>
193 # include <unistd.h>
194 #else
195 # include <io.h>
196 # define WIN32_LEAN_AND_MEAN
197 # include <windows.h>
198 # ifndef EV_SELECT_IS_WINSOCKET
199 #  define EV_SELECT_IS_WINSOCKET 1
200 # endif
201 # undef EV_AVOID_STDIO
202 #endif
203
204 /* OS X, in its infinite idiocy, actually HARDCODES
205  * a limit of 1024 into their select. Where people have brains,
206  * OS X engineers apparently have a vacuum. Or maybe they were
207  * ordered to have a vacuum, or they do anything for money.
208  * This might help. Or not.
209  */
210 #define _DARWIN_UNLIMITED_SELECT 1
211
212 /* this block tries to deduce configuration from header-defined symbols and defaults */
213
214 /* try to deduce the maximum number of signals on this platform */
215 #if defined (EV_NSIG)
216 /* use what's provided */
217 #elif defined (NSIG)
218 # define EV_NSIG (NSIG)
219 #elif defined(_NSIG)
220 # define EV_NSIG (_NSIG)
221 #elif defined (SIGMAX)
222 # define EV_NSIG (SIGMAX+1)
223 #elif defined (SIG_MAX)
224 # define EV_NSIG (SIG_MAX+1)
225 #elif defined (_SIG_MAX)
226 # define EV_NSIG (_SIG_MAX+1)
227 #elif defined (MAXSIG)
228 # define EV_NSIG (MAXSIG+1)
229 #elif defined (MAX_SIG)
230 # define EV_NSIG (MAX_SIG+1)
231 #elif defined (SIGARRAYSIZE)
232 # define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233 #elif defined (_sys_nsig)
234 # define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235 #else
236 # error "unable to find value for NSIG, please report"
237 /* to make it compile regardless, just remove the above line, */
238 /* but consider reporting it, too! :) */
239 # define EV_NSIG 65
240 #endif
241
242 #ifndef EV_USE_FLOOR
243 # define EV_USE_FLOOR 0
244 #endif
245
246 #ifndef EV_USE_CLOCK_SYSCALL
247 # if __linux && __GLIBC__ >= 2
248 #  define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249 # else
250 #  define EV_USE_CLOCK_SYSCALL 0
251 # endif
252 #endif
253
254 #ifndef EV_USE_MONOTONIC
255 # if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256 #  define EV_USE_MONOTONIC EV_FEATURE_OS
257 # else
258 #  define EV_USE_MONOTONIC 0
259 # endif
260 #endif
261
262 #ifndef EV_USE_REALTIME
263 # define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264 #endif
265
266 #ifndef EV_USE_NANOSLEEP
267 # if _POSIX_C_SOURCE >= 199309L
268 #  define EV_USE_NANOSLEEP EV_FEATURE_OS
269 # else
270 #  define EV_USE_NANOSLEEP 0
271 # endif
272 #endif
273
274 #ifndef EV_USE_SELECT
275 # define EV_USE_SELECT EV_FEATURE_BACKENDS
276 #endif
277
278 #ifndef EV_USE_POLL
279 # ifdef _WIN32
280 #  define EV_USE_POLL 0
281 # else
282 #  define EV_USE_POLL EV_FEATURE_BACKENDS
283 # endif
284 #endif
285
286 #ifndef EV_USE_EPOLL
287 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288 #  define EV_USE_EPOLL EV_FEATURE_BACKENDS
289 # else
290 #  define EV_USE_EPOLL 0
291 # endif
292 #endif
293
294 #ifndef EV_USE_KQUEUE
295 # define EV_USE_KQUEUE 0
296 #endif
297
298 #ifndef EV_USE_PORT
299 # define EV_USE_PORT 0
300 #endif
301
302 #ifndef EV_USE_INOTIFY
303 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304 #  define EV_USE_INOTIFY EV_FEATURE_OS
305 # else
306 #  define EV_USE_INOTIFY 0
307 # endif
308 #endif
309
310 #ifndef EV_PID_HASHSIZE
311 # define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312 #endif
313
314 #ifndef EV_INOTIFY_HASHSIZE
315 # define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316 #endif
317
318 #ifndef EV_USE_EVENTFD
319 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320 #  define EV_USE_EVENTFD EV_FEATURE_OS
321 # else
322 #  define EV_USE_EVENTFD 0
323 # endif
324 #endif
325
326 #ifndef EV_USE_SIGNALFD
327 # if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328 #  define EV_USE_SIGNALFD EV_FEATURE_OS
329 # else
330 #  define EV_USE_SIGNALFD 0
331 # endif
332 #endif
333
334 #if 0 /* debugging */
335 # define EV_VERIFY 3
336 # define EV_USE_4HEAP 1
337 # define EV_HEAP_CACHE_AT 1
338 #endif
339
340 #ifndef EV_VERIFY
341 # define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342 #endif
343
344 #ifndef EV_USE_4HEAP
345 # define EV_USE_4HEAP EV_FEATURE_DATA
346 #endif
347
348 #ifndef EV_HEAP_CACHE_AT
349 # define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350 #endif
351
352 /* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353 /* which makes programs even slower. might work on other unices, too. */
354 #if EV_USE_CLOCK_SYSCALL
355 # include <syscall.h>
356 # ifdef SYS_clock_gettime
357 #  define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358 #  undef EV_USE_MONOTONIC
359 #  define EV_USE_MONOTONIC 1
360 # else
361 #  undef EV_USE_CLOCK_SYSCALL
362 #  define EV_USE_CLOCK_SYSCALL 0
363 # endif
364 #endif
365
366 /* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368 #ifdef _AIX
369 /* AIX has a completely broken poll.h header */
370 # undef EV_USE_POLL
371 # define EV_USE_POLL 0
372 #endif
373
374 #ifndef CLOCK_MONOTONIC
375 # undef EV_USE_MONOTONIC
376 # define EV_USE_MONOTONIC 0
377 #endif
378
379 #ifndef CLOCK_REALTIME
380 # undef EV_USE_REALTIME
381 # define EV_USE_REALTIME 0
382 #endif
383
384 #if !EV_STAT_ENABLE
385 # undef EV_USE_INOTIFY
386 # define EV_USE_INOTIFY 0
387 #endif
388
389 #if !EV_USE_NANOSLEEP
390 /* hp-ux has it in sys/time.h, which we unconditionally include above */
391 # if !defined(_WIN32) && !defined(__hpux)
392 #  include <sys/select.h>
393 # endif
394 #endif
395
396 #if EV_USE_INOTIFY
397 # include <sys/statfs.h>
398 # include <sys/inotify.h>
399 /* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400 # ifndef IN_DONT_FOLLOW
401 #  undef EV_USE_INOTIFY
402 #  define EV_USE_INOTIFY 0
403 # endif
404 #endif
405
406 #if EV_SELECT_IS_WINSOCKET
407 # include <winsock.h>
408 #endif
409
410 #if EV_USE_EVENTFD
411 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412 # include <stdint.h>
413 # ifndef EFD_NONBLOCK
414 #  define EFD_NONBLOCK O_NONBLOCK
415 # endif
416 # ifndef EFD_CLOEXEC
417 #  ifdef O_CLOEXEC
418 #   define EFD_CLOEXEC O_CLOEXEC
419 #  else
420 #   define EFD_CLOEXEC 02000000
421 #  endif
422 # endif
423 EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424 #endif
425
426 #if EV_USE_SIGNALFD
427 /* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428 # include <stdint.h>
429 # ifndef SFD_NONBLOCK
430 #  define SFD_NONBLOCK O_NONBLOCK
431 # endif
432 # ifndef SFD_CLOEXEC
433 #  ifdef O_CLOEXEC
434 #   define SFD_CLOEXEC O_CLOEXEC
435 #  else
436 #   define SFD_CLOEXEC 02000000
437 #  endif
438 # endif
439 EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441 struct signalfd_siginfo
442 {
443   uint32_t ssi_signo;
444   char pad[128 - sizeof (uint32_t)];
445 };
446 #endif
447
448 /**/
449
450 #if EV_VERIFY >= 3
451 # define EV_FREQUENT_CHECK ev_verify (EV_A)
452 #else
453 # define EV_FREQUENT_CHECK do { } while (0)
454 #endif
455
456 /*
457  * This is used to work around floating point rounding problems.
458  * This value is good at least till the year 4000.
459  */
460 #define MIN_INTERVAL  0.0001220703125 /* 1/2**13, good till 4000 */
461 /*#define MIN_INTERVAL  0.00000095367431640625 /* 1/2**20, good till 2200 */
462
463 #define MIN_TIMEJUMP  1. /* minimum timejump that gets detected (if monotonic clock available) */
464 #define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
465
466 #define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467 #define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
469 /* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
470 /* ECB.H BEGIN */
471 /*
472  * libecb - http://software.schmorp.de/pkg/libecb
473  *
474  * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de>
475  * Copyright (©) 2011 Emanuele Giaquinta
476  * All rights reserved.
477  *
478  * Redistribution and use in source and binary forms, with or without modifica-
479  * tion, are permitted provided that the following conditions are met:
480  *
481  *   1.  Redistributions of source code must retain the above copyright notice,
482  *       this list of conditions and the following disclaimer.
483  *
484  *   2.  Redistributions in binary form must reproduce the above copyright
485  *       notice, this list of conditions and the following disclaimer in the
486  *       documentation and/or other materials provided with the distribution.
487  *
488  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
489  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
490  * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO
491  * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
492  * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
493  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
494  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
495  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
496  * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
497  * OF THE POSSIBILITY OF SUCH DAMAGE.
498  */
499
500 #ifndef ECB_H
501 #define ECB_H
502
503 #ifdef _WIN32
504   typedef   signed char   int8_t;
505   typedef unsigned char  uint8_t;
506   typedef   signed short  int16_t;
507   typedef unsigned short uint16_t;
508   typedef   signed int    int32_t;
509   typedef unsigned int   uint32_t;
510   #if __GNUC__
511     typedef   signed long long int64_t;
512     typedef unsigned long long uint64_t;
513   #else /* _MSC_VER || __BORLANDC__ */
514     typedef   signed __int64   int64_t;
515     typedef unsigned __int64   uint64_t;
516   #endif
517 #else
518   #include <inttypes.h>
519 #endif
520
521 /* many compilers define _GNUC_ to some versions but then only implement
522  * what their idiot authors think are the "more important" extensions,
523  * causing enormous grief in return for some better fake benchmark numbers.
524  * or so.
525  * we try to detect these and simply assume they are not gcc - if they have
526  * an issue with that they should have done it right in the first place.
527  */
528 #ifndef ECB_GCC_VERSION
529   #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
530     #define ECB_GCC_VERSION(major,minor) 0
531   #else
532     #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
533   #endif
534 #endif
535
536 /*****************************************************************************/
537
538 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
539 /* ECB_NO_SMP     - ecb might be used in multiple threads, but only on a single cpu */
540
541 #if ECB_NO_THREADS || ECB_NO_SMP
542   #define ECB_MEMORY_FENCE         do { } while (0)
543   #define ECB_MEMORY_FENCE_ACQUIRE do { } while (0)
544   #define ECB_MEMORY_FENCE_RELEASE do { } while (0)
545 #endif
546
547 #ifndef ECB_MEMORY_FENCE
548   #if ECB_GCC_VERSION(2,5)
549     #if __x86
550       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
551       #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
552       #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
553     #elif __amd64
554       #define ECB_MEMORY_FENCE         __asm__ __volatile__ ("mfence" : : : "memory")
555       #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
556       #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
557     #endif
558   #endif
559 #endif
560
561 #ifndef ECB_MEMORY_FENCE
562   #if ECB_GCC_VERSION(4,4)
563     #define ECB_MEMORY_FENCE         __sync_synchronize ()
564     #define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); })
565     #define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release      (&dummy   ); })
566   #elif _MSC_VER >= 1400 /* VC++ 2005 */
567     #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
568     #define ECB_MEMORY_FENCE         _ReadWriteBarrier ()
569     #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
570     #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
571   #elif defined(_WIN32)
572     #include <WinNT.h>
573     #define ECB_MEMORY_FENCE         MemoryBarrier () /* actually just xchg on x86... scary */
574     #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
575     #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
576   #endif
577 #endif
578
579 #ifndef ECB_MEMORY_FENCE
580   /*
581    * if you get undefined symbol references to pthread_mutex_lock,
582    * or failure to find pthread.h, then you should implement
583    * the ECB_MEMORY_FENCE operations for your cpu/compiler
584    * OR provide pthread.h and link against the posix thread library
585    * of your system.
586    */
587   #include <pthread.h>
588   #define ECB_NEEDS_PTHREADS 1
589   #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
590
591   static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
592   #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
593   #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
594   #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
595 #endif
596
597 /*****************************************************************************/
598
599 #define ECB_C99 (__STDC_VERSION__ >= 199901L)
600
601 #if __cplusplus
602   #define ecb_inline static inline
603 #elif ECB_GCC_VERSION(2,5)
604   #define ecb_inline static __inline__
605 #elif ECB_C99
606   #define ecb_inline static inline
607 #else
608   #define ecb_inline static
609 #endif
610
611 #if ECB_GCC_VERSION(3,3)
612   #define ecb_restrict __restrict__
613 #elif ECB_C99
614   #define ecb_restrict restrict
615 #else
616   #define ecb_restrict
617 #endif
618
619 typedef int ecb_bool;
620
621 #define ECB_CONCAT_(a, b) a ## b
622 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
623 #define ECB_STRINGIFY_(a) # a
624 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
625
626 #define ecb_function_ ecb_inline
627
628 #if ECB_GCC_VERSION(3,1)
629   #define ecb_attribute(attrlist)        __attribute__(attrlist)
630   #define ecb_is_constant(expr)          __builtin_constant_p (expr)
631   #define ecb_expect(expr,value)         __builtin_expect ((expr),(value))
632   #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
633 #else
634   #define ecb_attribute(attrlist)
635   #define ecb_is_constant(expr)          0
636   #define ecb_expect(expr,value)         (expr)
637   #define ecb_prefetch(addr,rw,locality)
638 #endif
639
640 /* no emulation for ecb_decltype */
641 #if ECB_GCC_VERSION(4,5)
642   #define ecb_decltype(x) __decltype(x)
643 #elif ECB_GCC_VERSION(3,0)
644   #define ecb_decltype(x) __typeof(x)
645 #endif
646
647 #define ecb_noinline   ecb_attribute ((__noinline__))
648 #define ecb_noreturn   ecb_attribute ((__noreturn__))
649 #define ecb_unused     ecb_attribute ((__unused__))
650 #define ecb_const      ecb_attribute ((__const__))
651 #define ecb_pure       ecb_attribute ((__pure__))
652
653 #if ECB_GCC_VERSION(4,3)
654   #define ecb_artificial ecb_attribute ((__artificial__))
655   #define ecb_hot        ecb_attribute ((__hot__))
656   #define ecb_cold       ecb_attribute ((__cold__))
657 #else
658   #define ecb_artificial
659   #define ecb_hot
660   #define ecb_cold
661 #endif
662
663 /* put around conditional expressions if you are very sure that the  */
664 /* expression is mostly true or mostly false. note that these return */
665 /* booleans, not the expression.                                     */
666 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
667 #define ecb_expect_true(expr)  ecb_expect (!!(expr), 1)
668 /* for compatibility to the rest of the world */
669 #define ecb_likely(expr)   ecb_expect_true  (expr)
670 #define ecb_unlikely(expr) ecb_expect_false (expr)
671
672 /* count trailing zero bits and count # of one bits */
673 #if ECB_GCC_VERSION(3,4)
674   /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
675   #define ecb_ld32(x)      (__builtin_clz      (x) ^ 31)
676   #define ecb_ld64(x)      (__builtin_clzll    (x) ^ 63)
677   #define ecb_ctz32(x)      __builtin_ctz      (x)
678   #define ecb_ctz64(x)      __builtin_ctzll    (x)
679   #define ecb_popcount32(x) __builtin_popcount (x)
680   /* no popcountll */
681 #else
682   ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
683   ecb_function_ int
684   ecb_ctz32 (uint32_t x)
685   {
686     int r = 0;
687
688     x &= ~x + 1; /* this isolates the lowest bit */
689
690 #if ECB_branchless_on_i386
691     r += !!(x & 0xaaaaaaaa) << 0;
692     r += !!(x & 0xcccccccc) << 1;
693     r += !!(x & 0xf0f0f0f0) << 2;
694     r += !!(x & 0xff00ff00) << 3;
695     r += !!(x & 0xffff0000) << 4;
696 #else
697     if (x & 0xaaaaaaaa) r +=  1;
698     if (x & 0xcccccccc) r +=  2;
699     if (x & 0xf0f0f0f0) r +=  4;
700     if (x & 0xff00ff00) r +=  8;
701     if (x & 0xffff0000) r += 16;
702 #endif
703
704     return r;
705   }
706
707   ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
708   ecb_function_ int
709   ecb_ctz64 (uint64_t x)
710   {
711     int shift = x & 0xffffffffU ? 0 : 32;
712     return ecb_ctz32 (x >> shift) + shift;
713   }
714
715   ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
716   ecb_function_ int
717   ecb_popcount32 (uint32_t x)
718   {
719     x -=  (x >> 1) & 0x55555555;
720     x  = ((x >> 2) & 0x33333333) + (x & 0x33333333);
721     x  = ((x >> 4) + x) & 0x0f0f0f0f;
722     x *= 0x01010101;
723
724     return x >> 24;
725   }
726
727   ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
728   ecb_function_ int ecb_ld32 (uint32_t x)
729   {
730     int r = 0;
731
732     if (x >> 16) { x >>= 16; r += 16; }
733     if (x >>  8) { x >>=  8; r +=  8; }
734     if (x >>  4) { x >>=  4; r +=  4; }
735     if (x >>  2) { x >>=  2; r +=  2; }
736     if (x >>  1) {           r +=  1; }
737
738     return r;
739   }
740
741   ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
742   ecb_function_ int ecb_ld64 (uint64_t x)
743   {
744     int r = 0;
745
746     if (x >> 32) { x >>= 32; r += 32; }
747
748     return r + ecb_ld32 (x);
749   }
750 #endif
751
752 /* popcount64 is only available on 64 bit cpus as gcc builtin */
753 /* so for this version we are lazy */
754 ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
755 ecb_function_ int
756 ecb_popcount64 (uint64_t x)
757 {
758   return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
759 }
760
761 ecb_inline uint8_t  ecb_rotl8  (uint8_t  x, unsigned int count) ecb_const;
762 ecb_inline uint8_t  ecb_rotr8  (uint8_t  x, unsigned int count) ecb_const;
763 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
764 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
765 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
766 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
767 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
768 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
769
770 ecb_inline uint8_t  ecb_rotl8  (uint8_t  x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
771 ecb_inline uint8_t  ecb_rotr8  (uint8_t  x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
772 ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
773 ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
774 ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
775 ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
776 ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
777 ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
778
779 #if ECB_GCC_VERSION(4,3)
780   #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
781   #define ecb_bswap32(x)  __builtin_bswap32 (x)
782   #define ecb_bswap64(x)  __builtin_bswap64 (x)
783 #else
784   ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
785   ecb_function_ uint16_t
786   ecb_bswap16 (uint16_t x)
787   {
788     return ecb_rotl16 (x, 8);
789   }
790
791   ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
792   ecb_function_ uint32_t
793   ecb_bswap32 (uint32_t x)
794   {
795     return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
796   }
797
798   ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
799   ecb_function_ uint64_t
800   ecb_bswap64 (uint64_t x)
801   {
802     return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
803   }
804 #endif
805
806 #if ECB_GCC_VERSION(4,5)
807   #define ecb_unreachable() __builtin_unreachable ()
808 #else
809   /* this seems to work fine, but gcc always emits a warning for it :/ */
810   ecb_function_ void ecb_unreachable (void) ecb_noreturn;
811   ecb_function_ void ecb_unreachable (void) { }
812 #endif
813
814 /* try to tell the compiler that some condition is definitely true */
815 #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
816
817 ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
818 ecb_function_ unsigned char
819 ecb_byteorder_helper (void)
820 {
821   const uint32_t u = 0x11223344;
822   return *(unsigned char *)&u;
823 }
824
825 ecb_function_ ecb_bool ecb_big_endian    (void) ecb_const;
826 ecb_function_ ecb_bool ecb_big_endian    (void) { return ecb_byteorder_helper () == 0x11; }
827 ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
828 ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
829
830 #if ECB_GCC_VERSION(3,0) || ECB_C99
831   #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
832 #else
833   #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
834 #endif
835
836 #if ecb_cplusplus_does_not_suck
837   /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
838   template<typename T, int N>
839   static inline int ecb_array_length (const T (&arr)[N])
840   {
841     return N;
842   }
843 #else
844   #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
845 #endif
846
847 #endif
848
849 /* ECB.H END */
850
851 #define expect_false(cond) ecb_expect_false (cond)
852 #define expect_true(cond)  ecb_expect_true  (cond)
853 #define noinline           ecb_noinline
854
855 #define inline_size        ecb_inline
856
857 #if EV_FEATURE_CODE
858 # define inline_speed      ecb_inline
859 #else
860 # define inline_speed      static noinline
861 #endif
862
863 #define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
864
865 #if EV_MINPRI == EV_MAXPRI
866 # define ABSPRI(w) (((W)w), 0)
867 #else
868 # define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
869 #endif
870
871 #define EMPTY       /* required for microsofts broken pseudo-c compiler */
872 #define EMPTY2(a,b) /* used to suppress some warnings */
873
874 typedef ev_watcher *W;
875 typedef ev_watcher_list *WL;
876 typedef ev_watcher_time *WT;
877
878 #define ev_active(w) ((W)(w))->active
879 #define ev_at(w) ((WT)(w))->at
880
881 #if EV_USE_REALTIME
882 /* sig_atomic_t is used to avoid per-thread variables or locking but still */
883 /* giving it a reasonably high chance of working on typical architectures */
884 static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
885 #endif
886
887 #if EV_USE_MONOTONIC
888 static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
889 #endif
890
891 #ifndef EV_FD_TO_WIN32_HANDLE
892 # define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
893 #endif
894 #ifndef EV_WIN32_HANDLE_TO_FD
895 # define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
896 #endif
897 #ifndef EV_WIN32_CLOSE_FD
898 # define EV_WIN32_CLOSE_FD(fd) close (fd)
899 #endif
900
901 #ifdef _WIN32
902 # include "ev_win32.c"
903 #endif
904
905 /*****************************************************************************/
906
907 /* define a suitable floor function (only used by periodics atm) */
908
909 #if EV_USE_FLOOR
910 # include <math.h>
911 # define ev_floor(v) floor (v)
912 #else
913
914 #include <float.h>
915
916 /* a floor() replacement function, should be independent of ev_tstamp type */
917 static ev_tstamp noinline
918 ev_floor (ev_tstamp v)
919 {
920   /* the choice of shift factor is not terribly important */
921 #if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
922   const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
923 #else
924   const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
925 #endif
926
927   /* argument too large for an unsigned long? */
928   if (expect_false (v >= shift))
929     {
930       ev_tstamp f;
931
932       if (v == v - 1.)
933         return v; /* very large number */
934
935       f = shift * ev_floor (v * (1. / shift));
936       return f + ev_floor (v - f);
937     }
938
939   /* special treatment for negative args? */
940   if (expect_false (v < 0.))
941     {
942       ev_tstamp f = -ev_floor (-v);
943
944       return f - (f == v ? 0 : 1);
945     }
946
947   /* fits into an unsigned long */
948   return (unsigned long)v;
949 }
950
951 #endif
952
953 /*****************************************************************************/
954
955 #ifdef __linux
956 # include <sys/utsname.h>
957 #endif
958
959 static unsigned int noinline ecb_cold
960 ev_linux_version (void)
961 {
962 #ifdef __linux
963   unsigned int v = 0;
964   struct utsname buf;
965   int i;
966   char *p = buf.release;
967
968   if (uname (&buf))
969     return 0;
970
971   for (i = 3+1; --i; )
972     {
973       unsigned int c = 0;
974
975       for (;;)
976         {
977           if (*p >= '0' && *p <= '9')
978             c = c * 10 + *p++ - '0';
979           else
980             {
981               p += *p == '.';
982               break;
983             }
984         }
985
986       v = (v << 8) | c;
987     }
988
989   return v;
990 #else
991   return 0;
992 #endif
993 }
994
995 /*****************************************************************************/
996
997 #if EV_AVOID_STDIO
998 static void noinline ecb_cold
999 ev_printerr (const char *msg)
1000 {
1001   write (STDERR_FILENO, msg, strlen (msg));
1002 }
1003 #endif
1004
1005 static void (*syserr_cb)(const char *msg);
1006
1007 void ecb_cold
1008 ev_set_syserr_cb (void (*cb)(const char *msg))
1009 {
1010   syserr_cb = cb;
1011 }
1012
1013 static void noinline ecb_cold
1014 ev_syserr (const char *msg)
1015 {
1016   if (!msg)
1017     msg = "(libev) system error";
1018
1019   if (syserr_cb)
1020     syserr_cb (msg);
1021   else
1022     {
1023 #if EV_AVOID_STDIO
1024       ev_printerr (msg);
1025       ev_printerr (": ");
1026       ev_printerr (strerror (errno));
1027       ev_printerr ("\n");
1028 #else
1029       perror (msg);
1030 #endif
1031       abort ();
1032     }
1033 }
1034
1035 static void *
1036 ev_realloc_emul (void *ptr, long size)
1037 {
1038 #if __GLIBC__
1039   return realloc (ptr, size);
1040 #else
1041   /* some systems, notably openbsd and darwin, fail to properly
1042    * implement realloc (x, 0) (as required by both ansi c-89 and
1043    * the single unix specification, so work around them here.
1044    */
1045
1046   if (size)
1047     return realloc (ptr, size);
1048
1049   free (ptr);
1050   return 0;
1051 #endif
1052 }
1053
1054 static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
1055
1056 void ecb_cold
1057 ev_set_allocator (void *(*cb)(void *ptr, long size))
1058 {
1059   alloc = cb;
1060 }
1061
1062 inline_speed void *
1063 ev_realloc (void *ptr, long size)
1064 {
1065   ptr = alloc (ptr, size);
1066
1067   if (!ptr && size)
1068     {
1069 #if EV_AVOID_STDIO
1070       ev_printerr ("(libev) memory allocation failed, aborting.\n");
1071 #else
1072       fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1073 #endif
1074       abort ();
1075     }
1076
1077   return ptr;
1078 }
1079
1080 #define ev_malloc(size) ev_realloc (0, (size))
1081 #define ev_free(ptr)    ev_realloc ((ptr), 0)
1082
1083 /*****************************************************************************/
1084
1085 /* set in reify when reification needed */
1086 #define EV_ANFD_REIFY 1
1087
1088 /* file descriptor info structure */
1089 typedef struct
1090 {
1091   WL head;
1092   unsigned char events; /* the events watched for */
1093   unsigned char reify;  /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1094   unsigned char emask;  /* the epoll backend stores the actual kernel mask in here */
1095   unsigned char unused;
1096 #if EV_USE_EPOLL
1097   unsigned int egen;    /* generation counter to counter epoll bugs */
1098 #endif
1099 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1100   SOCKET handle;
1101 #endif
1102 #if EV_USE_IOCP
1103   OVERLAPPED or, ow;
1104 #endif
1105 } ANFD;
1106
1107 /* stores the pending event set for a given watcher */
1108 typedef struct
1109 {
1110   W w;
1111   int events; /* the pending event set for the given watcher */
1112 } ANPENDING;
1113
1114 #if EV_USE_INOTIFY
1115 /* hash table entry per inotify-id */
1116 typedef struct
1117 {
1118   WL head;
1119 } ANFS;
1120 #endif
1121
1122 /* Heap Entry */
1123 #if EV_HEAP_CACHE_AT
1124   /* a heap element */
1125   typedef struct {
1126     ev_tstamp at;
1127     WT w;
1128   } ANHE;
1129
1130   #define ANHE_w(he)        (he).w     /* access watcher, read-write */
1131   #define ANHE_at(he)       (he).at    /* access cached at, read-only */
1132   #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1133 #else
1134   /* a heap element */
1135   typedef WT ANHE;
1136
1137   #define ANHE_w(he)        (he)
1138   #define ANHE_at(he)       (he)->at
1139   #define ANHE_at_cache(he)
1140 #endif
1141
1142 #if EV_MULTIPLICITY
1143
1144   struct ev_loop
1145   {
1146     ev_tstamp ev_rt_now;
1147     #define ev_rt_now ((loop)->ev_rt_now)
1148     #define VAR(name,decl) decl;
1149       #include "ev_vars.h"
1150     #undef VAR
1151   };
1152   #include "ev_wrap.h"
1153
1154   static struct ev_loop default_loop_struct;
1155   struct ev_loop *ev_default_loop_ptr;
1156
1157 #else
1158
1159   ev_tstamp ev_rt_now;
1160   #define VAR(name,decl) static decl;
1161     #include "ev_vars.h"
1162   #undef VAR
1163
1164   static int ev_default_loop_ptr;
1165
1166 #endif
1167
1168 #if EV_FEATURE_API
1169 # define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1170 # define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1171 # define EV_INVOKE_PENDING invoke_cb (EV_A)
1172 #else
1173 # define EV_RELEASE_CB (void)0
1174 # define EV_ACQUIRE_CB (void)0
1175 # define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1176 #endif
1177
1178 #define EVBREAK_RECURSE 0x80
1179
1180 /*****************************************************************************/
1181
1182 #ifndef EV_HAVE_EV_TIME
1183 ev_tstamp
1184 ev_time (void)
1185 {
1186 #if EV_USE_REALTIME
1187   if (expect_true (have_realtime))
1188     {
1189       struct timespec ts;
1190       clock_gettime (CLOCK_REALTIME, &ts);
1191       return ts.tv_sec + ts.tv_nsec * 1e-9;
1192     }
1193 #endif
1194
1195   struct timeval tv;
1196   gettimeofday (&tv, 0);
1197   return tv.tv_sec + tv.tv_usec * 1e-6;
1198 }
1199 #endif
1200
1201 inline_size ev_tstamp
1202 get_clock (void)
1203 {
1204 #if EV_USE_MONOTONIC
1205   if (expect_true (have_monotonic))
1206     {
1207       struct timespec ts;
1208       clock_gettime (CLOCK_MONOTONIC, &ts);
1209       return ts.tv_sec + ts.tv_nsec * 1e-9;
1210     }
1211 #endif
1212
1213   return ev_time ();
1214 }
1215
1216 #if EV_MULTIPLICITY
1217 ev_tstamp
1218 ev_now (EV_P)
1219 {
1220   return ev_rt_now;
1221 }
1222 #endif
1223
1224 void
1225 ev_sleep (ev_tstamp delay)
1226 {
1227   if (delay > 0.)
1228     {
1229 #if EV_USE_NANOSLEEP
1230       struct timespec ts;
1231
1232       EV_TS_SET (ts, delay);
1233       nanosleep (&ts, 0);
1234 #elif defined(_WIN32)
1235       Sleep ((unsigned long)(delay * 1e3));
1236 #else
1237       struct timeval tv;
1238
1239       /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1240       /* something not guaranteed by newer posix versions, but guaranteed */
1241       /* by older ones */
1242       EV_TV_SET (tv, delay);
1243       select (0, 0, 0, 0, &tv);
1244 #endif
1245     }
1246 }
1247
1248 /*****************************************************************************/
1249
1250 #define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1251
1252 /* find a suitable new size for the given array, */
1253 /* hopefully by rounding to a nice-to-malloc size */
1254 inline_size int
1255 array_nextsize (int elem, int cur, int cnt)
1256 {
1257   int ncur = cur + 1;
1258
1259   do
1260     ncur <<= 1;
1261   while (cnt > ncur);
1262
1263   /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
1264   if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1265     {
1266       ncur *= elem;
1267       ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1268       ncur = ncur - sizeof (void *) * 4;
1269       ncur /= elem;
1270     }
1271
1272   return ncur;
1273 }
1274
1275 static void * noinline ecb_cold
1276 array_realloc (int elem, void *base, int *cur, int cnt)
1277 {
1278   *cur = array_nextsize (elem, *cur, cnt);
1279   return ev_realloc (base, elem * *cur);
1280 }
1281
1282 #define array_init_zero(base,count)     \
1283   memset ((void *)(base), 0, sizeof (*(base)) * (count))
1284
1285 #define array_needsize(type,base,cur,cnt,init)                  \
1286   if (expect_false ((cnt) > (cur)))                             \
1287     {                                                           \
1288       int ecb_unused ocur_ = (cur);                                     \
1289       (base) = (type *)array_realloc                            \
1290          (sizeof (type), (base), &(cur), (cnt));                \
1291       init ((base) + (ocur_), (cur) - ocur_);                   \
1292     }
1293
1294 #if 0
1295 #define array_slim(type,stem)                                   \
1296   if (stem ## max < array_roundsize (stem ## cnt >> 2))         \
1297     {                                                           \
1298       stem ## max = array_roundsize (stem ## cnt >> 1);         \
1299       base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
1300       fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
1301     }
1302 #endif
1303
1304 #define array_free(stem, idx) \
1305   ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
1306
1307 /*****************************************************************************/
1308
1309 /* dummy callback for pending events */
1310 static void noinline
1311 pendingcb (EV_P_ ev_prepare *w, int revents)
1312 {
1313 }
1314
1315 void noinline
1316 ev_feed_event (EV_P_ void *w, int revents)
1317 {
1318   W w_ = (W)w;
1319   int pri = ABSPRI (w_);
1320
1321   if (expect_false (w_->pending))
1322     pendings [pri][w_->pending - 1].events |= revents;
1323   else
1324     {
1325       w_->pending = ++pendingcnt [pri];
1326       array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1327       pendings [pri][w_->pending - 1].w      = w_;
1328       pendings [pri][w_->pending - 1].events = revents;
1329     }
1330 }
1331
1332 inline_speed void
1333 feed_reverse (EV_P_ W w)
1334 {
1335   array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1336   rfeeds [rfeedcnt++] = w;
1337 }
1338
1339 inline_size void
1340 feed_reverse_done (EV_P_ int revents)
1341 {
1342   do
1343     ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1344   while (rfeedcnt);
1345 }
1346
1347 inline_speed void
1348 queue_events (EV_P_ W *events, int eventcnt, int type)
1349 {
1350   int i;
1351
1352   for (i = 0; i < eventcnt; ++i)
1353     ev_feed_event (EV_A_ events [i], type);
1354 }
1355
1356 /*****************************************************************************/
1357
1358 inline_speed void
1359 fd_event_nocheck (EV_P_ int fd, int revents)
1360 {
1361   ANFD *anfd = anfds + fd;
1362   ev_io *w;
1363
1364   for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1365     {
1366       int ev = w->events & revents;
1367
1368       if (ev)
1369         ev_feed_event (EV_A_ (W)w, ev);
1370     }
1371 }
1372
1373 /* do not submit kernel events for fds that have reify set */
1374 /* because that means they changed while we were polling for new events */
1375 inline_speed void
1376 fd_event (EV_P_ int fd, int revents)
1377 {
1378   ANFD *anfd = anfds + fd;
1379
1380   if (expect_true (!anfd->reify))
1381     fd_event_nocheck (EV_A_ fd, revents);
1382 }
1383
1384 void
1385 ev_feed_fd_event (EV_P_ int fd, int revents)
1386 {
1387   if (fd >= 0 && fd < anfdmax)
1388     fd_event_nocheck (EV_A_ fd, revents);
1389 }
1390
1391 /* make sure the external fd watch events are in-sync */
1392 /* with the kernel/libev internal state */
1393 inline_size void
1394 fd_reify (EV_P)
1395 {
1396   int i;
1397
1398 #if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1399   for (i = 0; i < fdchangecnt; ++i)
1400     {
1401       int fd = fdchanges [i];
1402       ANFD *anfd = anfds + fd;
1403
1404       if (anfd->reify & EV__IOFDSET && anfd->head)
1405         {
1406           SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1407
1408           if (handle != anfd->handle)
1409             {
1410               unsigned long arg;
1411
1412               assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1413
1414               /* handle changed, but fd didn't - we need to do it in two steps */
1415               backend_modify (EV_A_ fd, anfd->events, 0);
1416               anfd->events = 0;
1417               anfd->handle = handle;
1418             }
1419         }
1420     }
1421 #endif
1422
1423   for (i = 0; i < fdchangecnt; ++i)
1424     {
1425       int fd = fdchanges [i];
1426       ANFD *anfd = anfds + fd;
1427       ev_io *w;
1428
1429       unsigned char o_events = anfd->events;
1430       unsigned char o_reify  = anfd->reify;
1431
1432       anfd->reify  = 0;
1433
1434       /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1435         {
1436           anfd->events = 0;
1437
1438           for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1439             anfd->events |= (unsigned char)w->events;
1440
1441           if (o_events != anfd->events)
1442             o_reify = EV__IOFDSET; /* actually |= */
1443         }
1444
1445       if (o_reify & EV__IOFDSET)
1446         backend_modify (EV_A_ fd, o_events, anfd->events);
1447     }
1448
1449   fdchangecnt = 0;
1450 }
1451
1452 /* something about the given fd changed */
1453 inline_size void
1454 fd_change (EV_P_ int fd, int flags)
1455 {
1456   unsigned char reify = anfds [fd].reify;
1457   anfds [fd].reify |= flags;
1458
1459   if (expect_true (!reify))
1460     {
1461       ++fdchangecnt;
1462       array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
1463       fdchanges [fdchangecnt - 1] = fd;
1464     }
1465 }
1466
1467 /* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1468 inline_speed void ecb_cold
1469 fd_kill (EV_P_ int fd)
1470 {
1471   ev_io *w;
1472
1473   while ((w = (ev_io *)anfds [fd].head))
1474     {
1475       ev_io_stop (EV_A_ w);
1476       ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
1477     }
1478 }
1479
1480 /* check whether the given fd is actually valid, for error recovery */
1481 inline_size int ecb_cold
1482 fd_valid (int fd)
1483 {
1484 #ifdef _WIN32
1485   return EV_FD_TO_WIN32_HANDLE (fd) != -1;
1486 #else
1487   return fcntl (fd, F_GETFD) != -1;
1488 #endif
1489 }
1490
1491 /* called on EBADF to verify fds */
1492 static void noinline ecb_cold
1493 fd_ebadf (EV_P)
1494 {
1495   int fd;
1496
1497   for (fd = 0; fd < anfdmax; ++fd)
1498     if (anfds [fd].events)
1499       if (!fd_valid (fd) && errno == EBADF)
1500         fd_kill (EV_A_ fd);
1501 }
1502
1503 /* called on ENOMEM in select/poll to kill some fds and retry */
1504 static void noinline ecb_cold
1505 fd_enomem (EV_P)
1506 {
1507   int fd;
1508
1509   for (fd = anfdmax; fd--; )
1510     if (anfds [fd].events)
1511       {
1512         fd_kill (EV_A_ fd);
1513         break;
1514       }
1515 }
1516
1517 /* usually called after fork if backend needs to re-arm all fds from scratch */
1518 static void noinline
1519 fd_rearm_all (EV_P)
1520 {
1521   int fd;
1522
1523   for (fd = 0; fd < anfdmax; ++fd)
1524     if (anfds [fd].events)
1525       {
1526         anfds [fd].events = 0;
1527         anfds [fd].emask  = 0;
1528         fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1529       }
1530 }
1531
1532 /* used to prepare libev internal fd's */
1533 /* this is not fork-safe */
1534 inline_speed void
1535 fd_intern (int fd)
1536 {
1537 #ifdef _WIN32
1538   unsigned long arg = 1;
1539   ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1540 #else
1541   fcntl (fd, F_SETFD, FD_CLOEXEC);
1542   fcntl (fd, F_SETFL, O_NONBLOCK);
1543 #endif
1544 }
1545
1546 /*****************************************************************************/
1547
1548 /*
1549  * the heap functions want a real array index. array index 0 is guaranteed to not
1550  * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1551  * the branching factor of the d-tree.
1552  */
1553
1554 /*
1555  * at the moment we allow libev the luxury of two heaps,
1556  * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1557  * which is more cache-efficient.
1558  * the difference is about 5% with 50000+ watchers.
1559  */
1560 #if EV_USE_4HEAP
1561
1562 #define DHEAP 4
1563 #define HEAP0 (DHEAP - 1) /* index of first element in heap */
1564 #define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1565 #define UPHEAP_DONE(p,k) ((p) == (k))
1566
1567 /* away from the root */
1568 inline_speed void
1569 downheap (ANHE *heap, int N, int k)
1570 {
1571   ANHE he = heap [k];
1572   ANHE *E = heap + N + HEAP0;
1573
1574   for (;;)
1575     {
1576       ev_tstamp minat;
1577       ANHE *minpos;
1578       ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1579
1580       /* find minimum child */
1581       if (expect_true (pos + DHEAP - 1 < E))
1582         {
1583           /* fast path */                               (minpos = pos + 0), (minat = ANHE_at (*minpos));
1584           if (               ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1585           if (               ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1586           if (               ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1587         }
1588       else if (pos < E)
1589         {
1590           /* slow path */                               (minpos = pos + 0), (minat = ANHE_at (*minpos));
1591           if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1592           if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1593           if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1594         }
1595       else
1596         break;
1597
1598       if (ANHE_at (he) <= minat)
1599         break;
1600
1601       heap [k] = *minpos;
1602       ev_active (ANHE_w (*minpos)) = k;
1603
1604       k = minpos - heap;
1605     }
1606
1607   heap [k] = he;
1608   ev_active (ANHE_w (he)) = k;
1609 }
1610
1611 #else /* 4HEAP */
1612
1613 #define HEAP0 1
1614 #define HPARENT(k) ((k) >> 1)
1615 #define UPHEAP_DONE(p,k) (!(p))
1616
1617 /* away from the root */
1618 inline_speed void
1619 downheap (ANHE *heap, int N, int k)
1620 {
1621   ANHE he = heap [k];
1622
1623   for (;;)
1624     {
1625       int c = k << 1;
1626
1627       if (c >= N + HEAP0)
1628         break;
1629
1630       c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1631            ? 1 : 0;
1632
1633       if (ANHE_at (he) <= ANHE_at (heap [c]))
1634         break;
1635
1636       heap [k] = heap [c];
1637       ev_active (ANHE_w (heap [k])) = k;
1638       
1639       k = c;
1640     }
1641
1642   heap [k] = he;
1643   ev_active (ANHE_w (he)) = k;
1644 }
1645 #endif
1646
1647 /* towards the root */
1648 inline_speed void
1649 upheap (ANHE *heap, int k)
1650 {
1651   ANHE he = heap [k];
1652
1653   for (;;)
1654     {
1655       int p = HPARENT (k);
1656
1657       if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1658         break;
1659
1660       heap [k] = heap [p];
1661       ev_active (ANHE_w (heap [k])) = k;
1662       k = p;
1663     }
1664
1665   heap [k] = he;
1666   ev_active (ANHE_w (he)) = k;
1667 }
1668
1669 /* move an element suitably so it is in a correct place */
1670 inline_size void
1671 adjustheap (ANHE *heap, int N, int k)
1672 {
1673   if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1674     upheap (heap, k);
1675   else
1676     downheap (heap, N, k);
1677 }
1678
1679 /* rebuild the heap: this function is used only once and executed rarely */
1680 inline_size void
1681 reheap (ANHE *heap, int N)
1682 {
1683   int i;
1684
1685   /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1686   /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1687   for (i = 0; i < N; ++i)
1688     upheap (heap, i + HEAP0);
1689 }
1690
1691 /*****************************************************************************/
1692
1693 /* associate signal watchers to a signal signal */
1694 typedef struct
1695 {
1696   EV_ATOMIC_T pending;
1697 #if EV_MULTIPLICITY
1698   EV_P;
1699 #endif
1700   WL head;
1701 } ANSIG;
1702
1703 static ANSIG signals [EV_NSIG - 1];
1704
1705 /*****************************************************************************/
1706
1707 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1708
1709 static void noinline ecb_cold
1710 evpipe_init (EV_P)
1711 {
1712   if (!ev_is_active (&pipe_w))
1713     {
1714 # if EV_USE_EVENTFD
1715       evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1716       if (evfd < 0 && errno == EINVAL)
1717         evfd = eventfd (0, 0);
1718
1719       if (evfd >= 0)
1720         {
1721           evpipe [0] = -1;
1722           fd_intern (evfd); /* doing it twice doesn't hurt */
1723           ev_io_set (&pipe_w, evfd, EV_READ);
1724         }
1725       else
1726 # endif
1727         {
1728           while (pipe (evpipe))
1729             ev_syserr ("(libev) error creating signal/async pipe");
1730
1731           fd_intern (evpipe [0]);
1732           fd_intern (evpipe [1]);
1733           ev_io_set (&pipe_w, evpipe [0], EV_READ);
1734         }
1735
1736       ev_io_start (EV_A_ &pipe_w);
1737       ev_unref (EV_A); /* watcher should not keep loop alive */
1738     }
1739 }
1740
1741 inline_speed void
1742 evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1743 {
1744   if (expect_true (*flag))
1745     return;
1746
1747   *flag = 1;
1748
1749   ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1750
1751   pipe_write_skipped = 1;
1752
1753   ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1754
1755   if (pipe_write_wanted)
1756     {
1757       int old_errno;
1758
1759       pipe_write_skipped = 0; /* just an optimsiation, no fence needed */
1760
1761       old_errno = errno; /* save errno because write will clobber it */
1762
1763 #if EV_USE_EVENTFD
1764       if (evfd >= 0)
1765         {
1766           uint64_t counter = 1;
1767           write (evfd, &counter, sizeof (uint64_t));
1768         }
1769       else
1770 #endif
1771         {
1772           /* win32 people keep sending patches that change this write() to send() */
1773           /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1774           /* so when you think this write should be a send instead, please find out */
1775           /* where your send() is from - it's definitely not the microsoft send, and */
1776           /* tell me. thank you. */
1777           write (evpipe [1], &(evpipe [1]), 1);
1778         }
1779
1780       errno = old_errno;
1781     }
1782 }
1783
1784 /* called whenever the libev signal pipe */
1785 /* got some events (signal, async) */
1786 static void
1787 pipecb (EV_P_ ev_io *iow, int revents)
1788 {
1789   int i;
1790
1791   if (revents & EV_READ)
1792     {
1793 #if EV_USE_EVENTFD
1794       if (evfd >= 0)
1795         {
1796           uint64_t counter;
1797           read (evfd, &counter, sizeof (uint64_t));
1798         }
1799       else
1800 #endif
1801         {
1802           char dummy;
1803           /* see discussion in evpipe_write when you think this read should be recv in win32 */
1804           read (evpipe [0], &dummy, 1);
1805         }
1806     }
1807
1808   pipe_write_skipped = 0;
1809
1810 #if EV_SIGNAL_ENABLE
1811   if (sig_pending)
1812     {
1813       sig_pending = 0;
1814
1815       for (i = EV_NSIG - 1; i--; )
1816         if (expect_false (signals [i].pending))
1817           ev_feed_signal_event (EV_A_ i + 1);
1818     }
1819 #endif
1820
1821 #if EV_ASYNC_ENABLE
1822   if (async_pending)
1823     {
1824       async_pending = 0;
1825
1826       for (i = asynccnt; i--; )
1827         if (asyncs [i]->sent)
1828           {
1829             asyncs [i]->sent = 0;
1830             ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1831           }
1832     }
1833 #endif
1834 }
1835
1836 /*****************************************************************************/
1837
1838 void
1839 ev_feed_signal (int signum)
1840 {
1841 #if EV_MULTIPLICITY
1842   EV_P = signals [signum - 1].loop;
1843
1844   if (!EV_A)
1845     return;
1846 #endif
1847
1848   if (!ev_active (&pipe_w))
1849     return;
1850
1851   signals [signum - 1].pending = 1;
1852   evpipe_write (EV_A_ &sig_pending);
1853 }
1854
1855 static void
1856 ev_sighandler (int signum)
1857 {
1858 #ifdef _WIN32
1859   signal (signum, ev_sighandler);
1860 #endif
1861
1862   ev_feed_signal (signum);
1863 }
1864
1865 void noinline
1866 ev_feed_signal_event (EV_P_ int signum)
1867 {
1868   WL w;
1869
1870   if (expect_false (signum <= 0 || signum > EV_NSIG))
1871     return;
1872
1873   --signum;
1874
1875 #if EV_MULTIPLICITY
1876   /* it is permissible to try to feed a signal to the wrong loop */
1877   /* or, likely more useful, feeding a signal nobody is waiting for */
1878
1879   if (expect_false (signals [signum].loop != EV_A))
1880     return;
1881 #endif
1882
1883   signals [signum].pending = 0;
1884
1885   for (w = signals [signum].head; w; w = w->next)
1886     ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1887 }
1888
1889 #if EV_USE_SIGNALFD
1890 static void
1891 sigfdcb (EV_P_ ev_io *iow, int revents)
1892 {
1893   struct signalfd_siginfo si[2], *sip; /* these structs are big */
1894
1895   for (;;)
1896     {
1897       ssize_t res = read (sigfd, si, sizeof (si));
1898
1899       /* not ISO-C, as res might be -1, but works with SuS */
1900       for (sip = si; (char *)sip < (char *)si + res; ++sip)
1901         ev_feed_signal_event (EV_A_ sip->ssi_signo);
1902
1903       if (res < (ssize_t)sizeof (si))
1904         break;
1905     }
1906 }
1907 #endif
1908
1909 #endif
1910
1911 /*****************************************************************************/
1912
1913 #if EV_CHILD_ENABLE
1914 static WL childs [EV_PID_HASHSIZE];
1915
1916 static ev_signal childev;
1917
1918 #ifndef WIFCONTINUED
1919 # define WIFCONTINUED(status) 0
1920 #endif
1921
1922 /* handle a single child status event */
1923 inline_speed void
1924 child_reap (EV_P_ int chain, int pid, int status)
1925 {
1926   ev_child *w;
1927   int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1928
1929   for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1930     {
1931       if ((w->pid == pid || !w->pid)
1932           && (!traced || (w->flags & 1)))
1933         {
1934           ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1935           w->rpid    = pid;
1936           w->rstatus = status;
1937           ev_feed_event (EV_A_ (W)w, EV_CHILD);
1938         }
1939     }
1940 }
1941
1942 #ifndef WCONTINUED
1943 # define WCONTINUED 0
1944 #endif
1945
1946 /* called on sigchld etc., calls waitpid */
1947 static void
1948 childcb (EV_P_ ev_signal *sw, int revents)
1949 {
1950   int pid, status;
1951
1952   /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1953   if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1954     if (!WCONTINUED
1955         || errno != EINVAL
1956         || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1957       return;
1958
1959   /* make sure we are called again until all children have been reaped */
1960   /* we need to do it this way so that the callback gets called before we continue */
1961   ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1962
1963   child_reap (EV_A_ pid, pid, status);
1964   if ((EV_PID_HASHSIZE) > 1)
1965     child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1966 }
1967
1968 #endif
1969
1970 /*****************************************************************************/
1971
1972 #if EV_USE_IOCP
1973 # include "ev_iocp.c"
1974 #endif
1975 #if EV_USE_PORT
1976 # include "ev_port.c"
1977 #endif
1978 #if EV_USE_KQUEUE
1979 # include "ev_kqueue.c"
1980 #endif
1981 #if EV_USE_EPOLL
1982 # include "ev_epoll.c"
1983 #endif
1984 #if EV_USE_POLL
1985 # include "ev_poll.c"
1986 #endif
1987 #if EV_USE_SELECT
1988 # include "ev_select.c"
1989 #endif
1990
1991 int ecb_cold
1992 ev_version_major (void)
1993 {
1994   return EV_VERSION_MAJOR;
1995 }
1996
1997 int ecb_cold
1998 ev_version_minor (void)
1999 {
2000   return EV_VERSION_MINOR;
2001 }
2002
2003 /* return true if we are running with elevated privileges and should ignore env variables */
2004 int inline_size ecb_cold
2005 enable_secure (void)
2006 {
2007 #ifdef _WIN32
2008   return 0;
2009 #else
2010   return getuid () != geteuid ()
2011       || getgid () != getegid ();
2012 #endif
2013 }
2014
2015 unsigned int ecb_cold
2016 ev_supported_backends (void)
2017 {
2018   unsigned int flags = 0;
2019
2020   if (EV_USE_PORT  ) flags |= EVBACKEND_PORT;
2021   if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2022   if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2023   if (EV_USE_POLL  ) flags |= EVBACKEND_POLL;
2024   if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2025   
2026   return flags;
2027 }
2028
2029 unsigned int ecb_cold
2030 ev_recommended_backends (void)
2031 {
2032   unsigned int flags = ev_supported_backends ();
2033
2034 #ifndef __NetBSD__
2035   /* kqueue is borked on everything but netbsd apparently */
2036   /* it usually doesn't work correctly on anything but sockets and pipes */
2037   flags &= ~EVBACKEND_KQUEUE;
2038 #endif
2039 #ifdef __APPLE__
2040   /* only select works correctly on that "unix-certified" platform */
2041   flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2042   flags &= ~EVBACKEND_POLL;   /* poll is based on kqueue from 10.5 onwards */
2043 #endif
2044 #ifdef __FreeBSD__
2045   flags &= ~EVBACKEND_POLL;   /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2046 #endif
2047
2048   return flags;
2049 }
2050
2051 unsigned int ecb_cold
2052 ev_embeddable_backends (void)
2053 {
2054   int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2055
2056   /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2057   if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2058     flags &= ~EVBACKEND_EPOLL;
2059
2060   return flags;
2061 }
2062
2063 unsigned int
2064 ev_backend (EV_P)
2065 {
2066   return backend;
2067 }
2068
2069 #if EV_FEATURE_API
2070 unsigned int
2071 ev_iteration (EV_P)
2072 {
2073   return loop_count;
2074 }
2075
2076 unsigned int
2077 ev_depth (EV_P)
2078 {
2079   return loop_depth;
2080 }
2081
2082 void
2083 ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2084 {
2085   io_blocktime = interval;
2086 }
2087
2088 void
2089 ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2090 {
2091   timeout_blocktime = interval;
2092 }
2093
2094 void
2095 ev_set_userdata (EV_P_ void *data)
2096 {
2097   userdata = data;
2098 }
2099
2100 void *
2101 ev_userdata (EV_P)
2102 {
2103   return userdata;
2104 }
2105
2106 void
2107 ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2108 {
2109   invoke_cb = invoke_pending_cb;
2110 }
2111
2112 void
2113 ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2114 {
2115   release_cb = release;
2116   acquire_cb = acquire;
2117 }
2118 #endif
2119
2120 /* initialise a loop structure, must be zero-initialised */
2121 static void noinline ecb_cold
2122 loop_init (EV_P_ unsigned int flags)
2123 {
2124   if (!backend)
2125     {
2126       origflags = flags;
2127
2128 #if EV_USE_REALTIME
2129       if (!have_realtime)
2130         {
2131           struct timespec ts;
2132
2133           if (!clock_gettime (CLOCK_REALTIME, &ts))
2134             have_realtime = 1;
2135         }
2136 #endif
2137
2138 #if EV_USE_MONOTONIC
2139       if (!have_monotonic)
2140         {
2141           struct timespec ts;
2142
2143           if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2144             have_monotonic = 1;
2145         }
2146 #endif
2147
2148       /* pid check not overridable via env */
2149 #ifndef _WIN32
2150       if (flags & EVFLAG_FORKCHECK)
2151         curpid = getpid ();
2152 #endif
2153
2154       if (!(flags & EVFLAG_NOENV)
2155           && !enable_secure ()
2156           && getenv ("LIBEV_FLAGS"))
2157         flags = atoi (getenv ("LIBEV_FLAGS"));
2158
2159       ev_rt_now          = ev_time ();
2160       mn_now             = get_clock ();
2161       now_floor          = mn_now;
2162       rtmn_diff          = ev_rt_now - mn_now;
2163 #if EV_FEATURE_API
2164       invoke_cb          = ev_invoke_pending;
2165 #endif
2166
2167       io_blocktime       = 0.;
2168       timeout_blocktime  = 0.;
2169       backend            = 0;
2170       backend_fd         = -1;
2171       sig_pending        = 0;
2172 #if EV_ASYNC_ENABLE
2173       async_pending      = 0;
2174 #endif
2175       pipe_write_skipped = 0;
2176       pipe_write_wanted  = 0;
2177 #if EV_USE_INOTIFY
2178       fs_fd              = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2179 #endif
2180 #if EV_USE_SIGNALFD
2181       sigfd              = flags & EVFLAG_SIGNALFD  ? -2 : -1;
2182 #endif
2183
2184       if (!(flags & EVBACKEND_MASK))
2185         flags |= ev_recommended_backends ();
2186
2187 #if EV_USE_IOCP
2188       if (!backend && (flags & EVBACKEND_IOCP  )) backend = iocp_init   (EV_A_ flags);
2189 #endif
2190 #if EV_USE_PORT
2191       if (!backend && (flags & EVBACKEND_PORT  )) backend = port_init   (EV_A_ flags);
2192 #endif
2193 #if EV_USE_KQUEUE
2194       if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2195 #endif
2196 #if EV_USE_EPOLL
2197       if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init  (EV_A_ flags);
2198 #endif
2199 #if EV_USE_POLL
2200       if (!backend && (flags & EVBACKEND_POLL  )) backend = poll_init   (EV_A_ flags);
2201 #endif
2202 #if EV_USE_SELECT
2203       if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2204 #endif
2205
2206       ev_prepare_init (&pending_w, pendingcb);
2207
2208 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2209       ev_init (&pipe_w, pipecb);
2210       ev_set_priority (&pipe_w, EV_MAXPRI);
2211 #endif
2212     }
2213 }
2214
2215 /* free up a loop structure */
2216 void ecb_cold
2217 ev_loop_destroy (EV_P)
2218 {
2219   int i;
2220
2221 #if EV_MULTIPLICITY
2222   /* mimic free (0) */
2223   if (!EV_A)
2224     return;
2225 #endif
2226
2227 #if EV_CLEANUP_ENABLE
2228   /* queue cleanup watchers (and execute them) */
2229   if (expect_false (cleanupcnt))
2230     {
2231       queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2232       EV_INVOKE_PENDING;
2233     }
2234 #endif
2235
2236 #if EV_CHILD_ENABLE
2237   if (ev_is_active (&childev))
2238     {
2239       ev_ref (EV_A); /* child watcher */
2240       ev_signal_stop (EV_A_ &childev);
2241     }
2242 #endif
2243
2244   if (ev_is_active (&pipe_w))
2245     {
2246       /*ev_ref (EV_A);*/
2247       /*ev_io_stop (EV_A_ &pipe_w);*/
2248
2249 #if EV_USE_EVENTFD
2250       if (evfd >= 0)
2251         close (evfd);
2252 #endif
2253
2254       if (evpipe [0] >= 0)
2255         {
2256           EV_WIN32_CLOSE_FD (evpipe [0]);
2257           EV_WIN32_CLOSE_FD (evpipe [1]);
2258         }
2259     }
2260
2261 #if EV_USE_SIGNALFD
2262   if (ev_is_active (&sigfd_w))
2263     close (sigfd);
2264 #endif
2265
2266 #if EV_USE_INOTIFY
2267   if (fs_fd >= 0)
2268     close (fs_fd);
2269 #endif
2270
2271   if (backend_fd >= 0)
2272     close (backend_fd);
2273
2274 #if EV_USE_IOCP
2275   if (backend == EVBACKEND_IOCP  ) iocp_destroy   (EV_A);
2276 #endif
2277 #if EV_USE_PORT
2278   if (backend == EVBACKEND_PORT  ) port_destroy   (EV_A);
2279 #endif
2280 #if EV_USE_KQUEUE
2281   if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2282 #endif
2283 #if EV_USE_EPOLL
2284   if (backend == EVBACKEND_EPOLL ) epoll_destroy  (EV_A);
2285 #endif
2286 #if EV_USE_POLL
2287   if (backend == EVBACKEND_POLL  ) poll_destroy   (EV_A);
2288 #endif
2289 #if EV_USE_SELECT
2290   if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2291 #endif
2292
2293   for (i = NUMPRI; i--; )
2294     {
2295       array_free (pending, [i]);
2296 #if EV_IDLE_ENABLE
2297       array_free (idle, [i]);
2298 #endif
2299     }
2300
2301   ev_free (anfds); anfds = 0; anfdmax = 0;
2302
2303   /* have to use the microsoft-never-gets-it-right macro */
2304   array_free (rfeed, EMPTY);
2305   array_free (fdchange, EMPTY);
2306   array_free (timer, EMPTY);
2307 #if EV_PERIODIC_ENABLE
2308   array_free (periodic, EMPTY);
2309 #endif
2310 #if EV_FORK_ENABLE
2311   array_free (fork, EMPTY);
2312 #endif
2313 #if EV_CLEANUP_ENABLE
2314   array_free (cleanup, EMPTY);
2315 #endif
2316   array_free (prepare, EMPTY);
2317   array_free (check, EMPTY);
2318 #if EV_ASYNC_ENABLE
2319   array_free (async, EMPTY);
2320 #endif
2321
2322   backend = 0;
2323
2324 #if EV_MULTIPLICITY
2325   if (ev_is_default_loop (EV_A))
2326 #endif
2327     ev_default_loop_ptr = 0;
2328 #if EV_MULTIPLICITY
2329   else
2330     ev_free (EV_A);
2331 #endif
2332 }
2333
2334 #if EV_USE_INOTIFY
2335 inline_size void infy_fork (EV_P);
2336 #endif
2337
2338 inline_size void
2339 loop_fork (EV_P)
2340 {
2341 #if EV_USE_PORT
2342   if (backend == EVBACKEND_PORT  ) port_fork   (EV_A);
2343 #endif
2344 #if EV_USE_KQUEUE
2345   if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2346 #endif
2347 #if EV_USE_EPOLL
2348   if (backend == EVBACKEND_EPOLL ) epoll_fork  (EV_A);
2349 #endif
2350 #if EV_USE_INOTIFY
2351   infy_fork (EV_A);
2352 #endif
2353
2354   if (ev_is_active (&pipe_w))
2355     {
2356       /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2357
2358       ev_ref (EV_A);
2359       ev_io_stop (EV_A_ &pipe_w);
2360
2361 #if EV_USE_EVENTFD
2362       if (evfd >= 0)
2363         close (evfd);
2364 #endif
2365
2366       if (evpipe [0] >= 0)
2367         {
2368           EV_WIN32_CLOSE_FD (evpipe [0]);
2369           EV_WIN32_CLOSE_FD (evpipe [1]);
2370         }
2371
2372 #if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2373       evpipe_init (EV_A);
2374       /* now iterate over everything, in case we missed something */
2375       pipecb (EV_A_ &pipe_w, EV_READ);
2376 #endif
2377     }
2378
2379   postfork = 0;
2380 }
2381
2382 #if EV_MULTIPLICITY
2383
2384 struct ev_loop * ecb_cold
2385 ev_loop_new (unsigned int flags)
2386 {
2387   EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2388
2389   memset (EV_A, 0, sizeof (struct ev_loop));
2390   loop_init (EV_A_ flags);
2391
2392   if (ev_backend (EV_A))
2393     return EV_A;
2394
2395   ev_free (EV_A);
2396   return 0;
2397 }
2398
2399 #endif /* multiplicity */
2400
2401 #if EV_VERIFY
2402 static void noinline ecb_cold
2403 verify_watcher (EV_P_ W w)
2404 {
2405   assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2406
2407   if (w->pending)
2408     assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2409 }
2410
2411 static void noinline ecb_cold
2412 verify_heap (EV_P_ ANHE *heap, int N)
2413 {
2414   int i;
2415
2416   for (i = HEAP0; i < N + HEAP0; ++i)
2417     {
2418       assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2419       assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2420       assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2421
2422       verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2423     }
2424 }
2425
2426 static void noinline ecb_cold
2427 array_verify (EV_P_ W *ws, int cnt)
2428 {
2429   while (cnt--)
2430     {
2431       assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2432       verify_watcher (EV_A_ ws [cnt]);
2433     }
2434 }
2435 #endif
2436
2437 #if EV_FEATURE_API
2438 void ecb_cold
2439 ev_verify (EV_P)
2440 {
2441 #if EV_VERIFY
2442   int i;
2443   WL w;
2444
2445   assert (activecnt >= -1);
2446
2447   assert (fdchangemax >= fdchangecnt);
2448   for (i = 0; i < fdchangecnt; ++i)
2449     assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2450
2451   assert (anfdmax >= 0);
2452   for (i = 0; i < anfdmax; ++i)
2453     for (w = anfds [i].head; w; w = w->next)
2454       {
2455         verify_watcher (EV_A_ (W)w);
2456         assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2457         assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2458       }
2459
2460   assert (timermax >= timercnt);
2461   verify_heap (EV_A_ timers, timercnt);
2462
2463 #if EV_PERIODIC_ENABLE
2464   assert (periodicmax >= periodiccnt);
2465   verify_heap (EV_A_ periodics, periodiccnt);
2466 #endif
2467
2468   for (i = NUMPRI; i--; )
2469     {
2470       assert (pendingmax [i] >= pendingcnt [i]);
2471 #if EV_IDLE_ENABLE
2472       assert (idleall >= 0);
2473       assert (idlemax [i] >= idlecnt [i]);
2474       array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2475 #endif
2476     }
2477
2478 #if EV_FORK_ENABLE
2479   assert (forkmax >= forkcnt);
2480   array_verify (EV_A_ (W *)forks, forkcnt);
2481 #endif
2482
2483 #if EV_CLEANUP_ENABLE
2484   assert (cleanupmax >= cleanupcnt);
2485   array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2486 #endif
2487
2488 #if EV_ASYNC_ENABLE
2489   assert (asyncmax >= asynccnt);
2490   array_verify (EV_A_ (W *)asyncs, asynccnt);
2491 #endif
2492
2493 #if EV_PREPARE_ENABLE
2494   assert (preparemax >= preparecnt);
2495   array_verify (EV_A_ (W *)prepares, preparecnt);
2496 #endif
2497
2498 #if EV_CHECK_ENABLE
2499   assert (checkmax >= checkcnt);
2500   array_verify (EV_A_ (W *)checks, checkcnt);
2501 #endif
2502
2503 # if 0
2504 #if EV_CHILD_ENABLE
2505   for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2506   for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2507 #endif
2508 # endif
2509 #endif
2510 }
2511 #endif
2512
2513 #if EV_MULTIPLICITY
2514 struct ev_loop * ecb_cold
2515 #else
2516 int
2517 #endif
2518 ev_default_loop (unsigned int flags)
2519 {
2520   if (!ev_default_loop_ptr)
2521     {
2522 #if EV_MULTIPLICITY
2523       EV_P = ev_default_loop_ptr = &default_loop_struct;
2524 #else
2525       ev_default_loop_ptr = 1;
2526 #endif
2527
2528       loop_init (EV_A_ flags);
2529
2530       if (ev_backend (EV_A))
2531         {
2532 #if EV_CHILD_ENABLE
2533           ev_signal_init (&childev, childcb, SIGCHLD);
2534           ev_set_priority (&childev, EV_MAXPRI);
2535           ev_signal_start (EV_A_ &childev);
2536           ev_unref (EV_A); /* child watcher should not keep loop alive */
2537 #endif
2538         }
2539       else
2540         ev_default_loop_ptr = 0;
2541     }
2542
2543   return ev_default_loop_ptr;
2544 }
2545
2546 void
2547 ev_loop_fork (EV_P)
2548 {
2549   postfork = 1; /* must be in line with ev_default_fork */
2550 }
2551
2552 /*****************************************************************************/
2553
2554 void
2555 ev_invoke (EV_P_ void *w, int revents)
2556 {
2557   EV_CB_INVOKE ((W)w, revents);
2558 }
2559
2560 unsigned int
2561 ev_pending_count (EV_P)
2562 {
2563   int pri;
2564   unsigned int count = 0;
2565
2566   for (pri = NUMPRI; pri--; )
2567     count += pendingcnt [pri];
2568
2569   return count;
2570 }
2571
2572 void noinline
2573 ev_invoke_pending (EV_P)
2574 {
2575   int pri;
2576
2577   for (pri = NUMPRI; pri--; )
2578     while (pendingcnt [pri])
2579       {
2580         ANPENDING *p = pendings [pri] + --pendingcnt [pri];
2581
2582         p->w->pending = 0;
2583         EV_CB_INVOKE (p->w, p->events);
2584         EV_FREQUENT_CHECK;
2585       }
2586 }
2587
2588 #if EV_IDLE_ENABLE
2589 /* make idle watchers pending. this handles the "call-idle */
2590 /* only when higher priorities are idle" logic */
2591 inline_size void
2592 idle_reify (EV_P)
2593 {
2594   if (expect_false (idleall))
2595     {
2596       int pri;
2597
2598       for (pri = NUMPRI; pri--; )
2599         {
2600           if (pendingcnt [pri])
2601             break;
2602
2603           if (idlecnt [pri])
2604             {
2605               queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2606               break;
2607             }
2608         }
2609     }
2610 }
2611 #endif
2612
2613 /* make timers pending */
2614 inline_size void
2615 timers_reify (EV_P)
2616 {
2617   EV_FREQUENT_CHECK;
2618
2619   if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2620     {
2621       do
2622         {
2623           ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2624
2625           /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2626
2627           /* first reschedule or stop timer */
2628           if (w->repeat)
2629             {
2630               ev_at (w) += w->repeat;
2631               if (ev_at (w) < mn_now)
2632                 ev_at (w) = mn_now;
2633
2634               assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2635
2636               ANHE_at_cache (timers [HEAP0]);
2637               downheap (timers, timercnt, HEAP0);
2638             }
2639           else
2640             ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2641
2642           EV_FREQUENT_CHECK;
2643           feed_reverse (EV_A_ (W)w);
2644         }
2645       while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2646
2647       feed_reverse_done (EV_A_ EV_TIMER);
2648     }
2649 }
2650
2651 #if EV_PERIODIC_ENABLE
2652
2653 static void noinline
2654 periodic_recalc (EV_P_ ev_periodic *w)
2655 {
2656   ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2657   ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2658
2659   /* the above almost always errs on the low side */
2660   while (at <= ev_rt_now)
2661     {
2662       ev_tstamp nat = at + w->interval;
2663
2664       /* when resolution fails us, we use ev_rt_now */
2665       if (expect_false (nat == at))
2666         {
2667           at = ev_rt_now;
2668           break;
2669         }
2670
2671       at = nat;
2672     }
2673
2674   ev_at (w) = at;
2675 }
2676
2677 /* make periodics pending */
2678 inline_size void
2679 periodics_reify (EV_P)
2680 {
2681   EV_FREQUENT_CHECK;
2682
2683   while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2684     {
2685       int feed_count = 0;
2686
2687       do
2688         {
2689           ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2690
2691           /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2692
2693           /* first reschedule or stop timer */
2694           if (w->reschedule_cb)
2695             {
2696               ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2697
2698               assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2699
2700               ANHE_at_cache (periodics [HEAP0]);
2701               downheap (periodics, periodiccnt, HEAP0);
2702             }
2703           else if (w->interval)
2704             {
2705               periodic_recalc (EV_A_ w);
2706               ANHE_at_cache (periodics [HEAP0]);
2707               downheap (periodics, periodiccnt, HEAP0);
2708             }
2709           else
2710             ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2711
2712           EV_FREQUENT_CHECK;
2713           feed_reverse (EV_A_ (W)w);
2714         }
2715       while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2716
2717       feed_reverse_done (EV_A_ EV_PERIODIC);
2718     }
2719 }
2720
2721 /* simply recalculate all periodics */
2722 /* TODO: maybe ensure that at least one event happens when jumping forward? */
2723 static void noinline ecb_cold
2724 periodics_reschedule (EV_P)
2725 {
2726   int i;
2727
2728   /* adjust periodics after time jump */
2729   for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2730     {
2731       ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2732
2733       if (w->reschedule_cb)
2734         ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2735       else if (w->interval)
2736         periodic_recalc (EV_A_ w);
2737
2738       ANHE_at_cache (periodics [i]);
2739     }
2740
2741   reheap (periodics, periodiccnt);
2742 }
2743 #endif
2744
2745 /* adjust all timers by a given offset */
2746 static void noinline ecb_cold
2747 timers_reschedule (EV_P_ ev_tstamp adjust)
2748 {
2749   int i;
2750
2751   for (i = 0; i < timercnt; ++i)
2752     {
2753       ANHE *he = timers + i + HEAP0;
2754       ANHE_w (*he)->at += adjust;
2755       ANHE_at_cache (*he);
2756     }
2757 }
2758
2759 /* fetch new monotonic and realtime times from the kernel */
2760 /* also detect if there was a timejump, and act accordingly */
2761 inline_speed void
2762 time_update (EV_P_ ev_tstamp max_block)
2763 {
2764 #if EV_USE_MONOTONIC
2765   if (expect_true (have_monotonic))
2766     {
2767       int i;
2768       ev_tstamp odiff = rtmn_diff;
2769
2770       mn_now = get_clock ();
2771
2772       /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2773       /* interpolate in the meantime */
2774       if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2775         {
2776           ev_rt_now = rtmn_diff + mn_now;
2777           return;
2778         }
2779
2780       now_floor = mn_now;
2781       ev_rt_now = ev_time ();
2782
2783       /* loop a few times, before making important decisions.
2784        * on the choice of "4": one iteration isn't enough,
2785        * in case we get preempted during the calls to
2786        * ev_time and get_clock. a second call is almost guaranteed
2787        * to succeed in that case, though. and looping a few more times
2788        * doesn't hurt either as we only do this on time-jumps or
2789        * in the unlikely event of having been preempted here.
2790        */
2791       for (i = 4; --i; )
2792         {
2793           ev_tstamp diff;
2794           rtmn_diff = ev_rt_now - mn_now;
2795
2796           diff = odiff - rtmn_diff;
2797
2798           if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2799             return; /* all is well */
2800
2801           ev_rt_now = ev_time ();
2802           mn_now    = get_clock ();
2803           now_floor = mn_now;
2804         }
2805
2806       /* no timer adjustment, as the monotonic clock doesn't jump */
2807       /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2808 # if EV_PERIODIC_ENABLE
2809       periodics_reschedule (EV_A);
2810 # endif
2811     }
2812   else
2813 #endif
2814     {
2815       ev_rt_now = ev_time ();
2816
2817       if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2818         {
2819           /* adjust timers. this is easy, as the offset is the same for all of them */
2820           timers_reschedule (EV_A_ ev_rt_now - mn_now);
2821 #if EV_PERIODIC_ENABLE
2822           periodics_reschedule (EV_A);
2823 #endif
2824         }
2825
2826       mn_now = ev_rt_now;
2827     }
2828 }
2829
2830 void
2831 ev_run (EV_P_ int flags)
2832 {
2833 #if EV_FEATURE_API
2834   ++loop_depth;
2835 #endif
2836
2837   assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2838
2839   loop_done = EVBREAK_CANCEL;
2840
2841   EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2842
2843   do
2844     {
2845 #if EV_VERIFY >= 2
2846       ev_verify (EV_A);
2847 #endif
2848
2849 #ifndef _WIN32
2850       if (expect_false (curpid)) /* penalise the forking check even more */
2851         if (expect_false (getpid () != curpid))
2852           {
2853             curpid = getpid ();
2854             postfork = 1;
2855           }
2856 #endif
2857
2858 #if EV_FORK_ENABLE
2859       /* we might have forked, so queue fork handlers */
2860       if (expect_false (postfork))
2861         if (forkcnt)
2862           {
2863             queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2864             EV_INVOKE_PENDING;
2865           }
2866 #endif
2867
2868 #if EV_PREPARE_ENABLE
2869       /* queue prepare watchers (and execute them) */
2870       if (expect_false (preparecnt))
2871         {
2872           queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2873           EV_INVOKE_PENDING;
2874         }
2875 #endif
2876
2877       if (expect_false (loop_done))
2878         break;
2879
2880       /* we might have forked, so reify kernel state if necessary */
2881       if (expect_false (postfork))
2882         loop_fork (EV_A);
2883
2884       /* update fd-related kernel structures */
2885       fd_reify (EV_A);
2886
2887       /* calculate blocking time */
2888       {
2889         ev_tstamp waittime  = 0.;
2890         ev_tstamp sleeptime = 0.;
2891
2892         /* remember old timestamp for io_blocktime calculation */
2893         ev_tstamp prev_mn_now = mn_now;
2894
2895         /* update time to cancel out callback processing overhead */
2896         time_update (EV_A_ 1e100);
2897
2898         /* from now on, we want a pipe-wake-up */
2899         pipe_write_wanted = 1;
2900
2901         ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2902
2903         if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2904           {
2905             waittime = MAX_BLOCKTIME;
2906
2907             if (timercnt)
2908               {
2909                 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2910                 if (waittime > to) waittime = to;
2911               }
2912
2913 #if EV_PERIODIC_ENABLE
2914             if (periodiccnt)
2915               {
2916                 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2917                 if (waittime > to) waittime = to;
2918               }
2919 #endif
2920
2921             /* don't let timeouts decrease the waittime below timeout_blocktime */
2922             if (expect_false (waittime < timeout_blocktime))
2923               waittime = timeout_blocktime;
2924
2925             /* at this point, we NEED to wait, so we have to ensure */
2926             /* to pass a minimum nonzero value to the backend */
2927             if (expect_false (waittime < backend_mintime))
2928               waittime = backend_mintime;
2929
2930             /* extra check because io_blocktime is commonly 0 */
2931             if (expect_false (io_blocktime))
2932               {
2933                 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2934
2935                 if (sleeptime > waittime - backend_mintime)
2936                   sleeptime = waittime - backend_mintime;
2937
2938                 if (expect_true (sleeptime > 0.))
2939                   {
2940                     ev_sleep (sleeptime);
2941                     waittime -= sleeptime;
2942                   }
2943               }
2944           }
2945
2946 #if EV_FEATURE_API
2947         ++loop_count;
2948 #endif
2949         assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2950         backend_poll (EV_A_ waittime);
2951         assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2952
2953         pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2954
2955         if (pipe_write_skipped)
2956           {
2957             assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2958             ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2959           }
2960
2961
2962         /* update ev_rt_now, do magic */
2963         time_update (EV_A_ waittime + sleeptime);
2964       }
2965
2966       /* queue pending timers and reschedule them */
2967       timers_reify (EV_A); /* relative timers called last */
2968 #if EV_PERIODIC_ENABLE
2969       periodics_reify (EV_A); /* absolute timers called first */
2970 #endif
2971
2972 #if EV_IDLE_ENABLE
2973       /* queue idle watchers unless other events are pending */
2974       idle_reify (EV_A);
2975 #endif
2976
2977 #if EV_CHECK_ENABLE
2978       /* queue check watchers, to be executed first */
2979       if (expect_false (checkcnt))
2980         queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2981 #endif
2982
2983       EV_INVOKE_PENDING;
2984     }
2985   while (expect_true (
2986     activecnt
2987     && !loop_done
2988     && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2989   ));
2990
2991   if (loop_done == EVBREAK_ONE)
2992     loop_done = EVBREAK_CANCEL;
2993
2994 #if EV_FEATURE_API
2995   --loop_depth;
2996 #endif
2997 }
2998
2999 void
3000 ev_break (EV_P_ int how)
3001 {
3002   loop_done = how;
3003 }
3004
3005 void
3006 ev_ref (EV_P)
3007 {
3008   ++activecnt;
3009 }
3010
3011 void
3012 ev_unref (EV_P)
3013 {
3014   --activecnt;
3015 }
3016
3017 void
3018 ev_now_update (EV_P)
3019 {
3020   time_update (EV_A_ 1e100);
3021 }
3022
3023 void
3024 ev_suspend (EV_P)
3025 {
3026   ev_now_update (EV_A);
3027 }
3028
3029 void
3030 ev_resume (EV_P)
3031 {
3032   ev_tstamp mn_prev = mn_now;
3033
3034   ev_now_update (EV_A);
3035   timers_reschedule (EV_A_ mn_now - mn_prev);
3036 #if EV_PERIODIC_ENABLE
3037   /* TODO: really do this? */
3038   periodics_reschedule (EV_A);
3039 #endif
3040 }
3041
3042 /*****************************************************************************/
3043 /* singly-linked list management, used when the expected list length is short */
3044
3045 inline_size void
3046 wlist_add (WL *head, WL elem)
3047 {
3048   elem->next = *head;
3049   *head = elem;
3050 }
3051
3052 inline_size void
3053 wlist_del (WL *head, WL elem)
3054 {
3055   while (*head)
3056     {
3057       if (expect_true (*head == elem))
3058         {
3059           *head = elem->next;
3060           break;
3061         }
3062
3063       head = &(*head)->next;
3064     }
3065 }
3066
3067 /* internal, faster, version of ev_clear_pending */
3068 inline_speed void
3069 clear_pending (EV_P_ W w)
3070 {
3071   if (w->pending)
3072     {
3073       pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
3074       w->pending = 0;
3075     }
3076 }
3077
3078 int
3079 ev_clear_pending (EV_P_ void *w)
3080 {
3081   W w_ = (W)w;
3082   int pending = w_->pending;
3083
3084   if (expect_true (pending))
3085     {
3086       ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3087       p->w = (W)&pending_w;
3088       w_->pending = 0;
3089       return p->events;
3090     }
3091   else
3092     return 0;
3093 }
3094
3095 inline_size void
3096 pri_adjust (EV_P_ W w)
3097 {
3098   int pri = ev_priority (w);
3099   pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3100   pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3101   ev_set_priority (w, pri);
3102 }
3103
3104 inline_speed void
3105 ev_start (EV_P_ W w, int active)
3106 {
3107   pri_adjust (EV_A_ w);
3108   w->active = active;
3109   ev_ref (EV_A);
3110 }
3111
3112 inline_size void
3113 ev_stop (EV_P_ W w)
3114 {
3115   ev_unref (EV_A);
3116   w->active = 0;
3117 }
3118
3119 /*****************************************************************************/
3120
3121 void noinline
3122 ev_io_start (EV_P_ ev_io *w)
3123 {
3124   int fd = w->fd;
3125
3126   if (expect_false (ev_is_active (w)))
3127     return;
3128
3129   assert (("libev: ev_io_start called with negative fd", fd >= 0));
3130   assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3131
3132   EV_FREQUENT_CHECK;
3133
3134   ev_start (EV_A_ (W)w, 1);
3135   array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3136   wlist_add (&anfds[fd].head, (WL)w);
3137
3138   fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3139   w->events &= ~EV__IOFDSET;
3140
3141   EV_FREQUENT_CHECK;
3142 }
3143
3144 void noinline
3145 ev_io_stop (EV_P_ ev_io *w)
3146 {
3147   clear_pending (EV_A_ (W)w);
3148   if (expect_false (!ev_is_active (w)))
3149     return;
3150
3151   assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3152
3153   EV_FREQUENT_CHECK;
3154
3155   wlist_del (&anfds[w->fd].head, (WL)w);
3156   ev_stop (EV_A_ (W)w);
3157
3158   fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3159
3160   EV_FREQUENT_CHECK;
3161 }
3162
3163 void noinline
3164 ev_timer_start (EV_P_ ev_timer *w)
3165 {
3166   if (expect_false (ev_is_active (w)))
3167     return;
3168
3169   ev_at (w) += mn_now;
3170
3171   assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3172
3173   EV_FREQUENT_CHECK;
3174
3175   ++timercnt;
3176   ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3177   array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3178   ANHE_w (timers [ev_active (w)]) = (WT)w;
3179   ANHE_at_cache (timers [ev_active (w)]);
3180   upheap (timers, ev_active (w));
3181
3182   EV_FREQUENT_CHECK;
3183
3184   /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3185 }
3186
3187 void noinline
3188 ev_timer_stop (EV_P_ ev_timer *w)
3189 {
3190   clear_pending (EV_A_ (W)w);
3191   if (expect_false (!ev_is_active (w)))
3192     return;
3193
3194   EV_FREQUENT_CHECK;
3195
3196   {
3197     int active = ev_active (w);
3198
3199     assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3200
3201     --timercnt;
3202
3203     if (expect_true (active < timercnt + HEAP0))
3204       {
3205         timers [active] = timers [timercnt + HEAP0];
3206         adjustheap (timers, timercnt, active);
3207       }
3208   }
3209
3210   ev_at (w) -= mn_now;
3211
3212   ev_stop (EV_A_ (W)w);
3213
3214   EV_FREQUENT_CHECK;
3215 }
3216
3217 void noinline
3218 ev_timer_again (EV_P_ ev_timer *w)
3219 {
3220   EV_FREQUENT_CHECK;
3221
3222   if (ev_is_active (w))
3223     {
3224       if (w->repeat)
3225         {
3226           ev_at (w) = mn_now + w->repeat;
3227           ANHE_at_cache (timers [ev_active (w)]);
3228           adjustheap (timers, timercnt, ev_active (w));
3229         }
3230       else
3231         ev_timer_stop (EV_A_ w);
3232     }
3233   else if (w->repeat)
3234     {
3235       ev_at (w) = w->repeat;
3236       ev_timer_start (EV_A_ w);
3237     }
3238
3239   EV_FREQUENT_CHECK;
3240 }
3241
3242 ev_tstamp
3243 ev_timer_remaining (EV_P_ ev_timer *w)
3244 {
3245   return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3246 }
3247
3248 #if EV_PERIODIC_ENABLE
3249 void noinline
3250 ev_periodic_start (EV_P_ ev_periodic *w)
3251 {
3252   if (expect_false (ev_is_active (w)))
3253     return;
3254
3255   if (w->reschedule_cb)
3256     ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3257   else if (w->interval)
3258     {
3259       assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
3260       periodic_recalc (EV_A_ w);
3261     }
3262   else
3263     ev_at (w) = w->offset;
3264
3265   EV_FREQUENT_CHECK;
3266
3267   ++periodiccnt;
3268   ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
3269   array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
3270   ANHE_w (periodics [ev_active (w)]) = (WT)w;
3271   ANHE_at_cache (periodics [ev_active (w)]);
3272   upheap (periodics, ev_active (w));
3273
3274   EV_FREQUENT_CHECK;
3275
3276   /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
3277 }
3278
3279 void noinline
3280 ev_periodic_stop (EV_P_ ev_periodic *w)
3281 {
3282   clear_pending (EV_A_ (W)w);
3283   if (expect_false (!ev_is_active (w)))
3284     return;
3285
3286   EV_FREQUENT_CHECK;
3287
3288   {
3289     int active = ev_active (w);
3290
3291     assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3292
3293     --periodiccnt;
3294
3295     if (expect_true (active < periodiccnt + HEAP0))
3296       {
3297         periodics [active] = periodics [periodiccnt + HEAP0];
3298         adjustheap (periodics, periodiccnt, active);
3299       }
3300   }
3301
3302   ev_stop (EV_A_ (W)w);
3303
3304   EV_FREQUENT_CHECK;
3305 }
3306
3307 void noinline
3308 ev_periodic_again (EV_P_ ev_periodic *w)
3309 {
3310   /* TODO: use adjustheap and recalculation */
3311   ev_periodic_stop (EV_A_ w);
3312   ev_periodic_start (EV_A_ w);
3313 }
3314 #endif
3315
3316 #ifndef SA_RESTART
3317 # define SA_RESTART 0
3318 #endif
3319
3320 #if EV_SIGNAL_ENABLE
3321
3322 void noinline
3323 ev_signal_start (EV_P_ ev_signal *w)
3324 {
3325   if (expect_false (ev_is_active (w)))
3326     return;
3327
3328   assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3329
3330 #if EV_MULTIPLICITY
3331   assert (("libev: a signal must not be attached to two different loops",
3332            !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3333
3334   signals [w->signum - 1].loop = EV_A;
3335 #endif
3336
3337   EV_FREQUENT_CHECK;
3338
3339 #if EV_USE_SIGNALFD
3340   if (sigfd == -2)
3341     {
3342       sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3343       if (sigfd < 0 && errno == EINVAL)
3344         sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3345
3346       if (sigfd >= 0)
3347         {
3348           fd_intern (sigfd); /* doing it twice will not hurt */
3349
3350           sigemptyset (&sigfd_set);
3351
3352           ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3353           ev_set_priority (&sigfd_w, EV_MAXPRI);
3354           ev_io_start (EV_A_ &sigfd_w);
3355           ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3356         }
3357     }
3358
3359   if (sigfd >= 0)
3360     {
3361       /* TODO: check .head */
3362       sigaddset (&sigfd_set, w->signum);
3363       sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3364
3365       signalfd (sigfd, &sigfd_set, 0);
3366     }
3367 #endif
3368
3369   ev_start (EV_A_ (W)w, 1);
3370   wlist_add (&signals [w->signum - 1].head, (WL)w);
3371
3372   if (!((WL)w)->next)
3373 # if EV_USE_SIGNALFD
3374     if (sigfd < 0) /*TODO*/
3375 # endif
3376       {
3377 # ifdef _WIN32
3378         evpipe_init (EV_A);
3379
3380         signal (w->signum, ev_sighandler);
3381 # else
3382         struct sigaction sa;
3383
3384         evpipe_init (EV_A);
3385
3386         sa.sa_handler = ev_sighandler;
3387         sigfillset (&sa.sa_mask);
3388         sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3389         sigaction (w->signum, &sa, 0);
3390
3391         if (origflags & EVFLAG_NOSIGMASK)
3392           {
3393             sigemptyset (&sa.sa_mask);
3394             sigaddset (&sa.sa_mask, w->signum);
3395             sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3396           }
3397 #endif
3398       }
3399
3400   EV_FREQUENT_CHECK;
3401 }
3402
3403 void noinline
3404 ev_signal_stop (EV_P_ ev_signal *w)
3405 {
3406   clear_pending (EV_A_ (W)w);
3407   if (expect_false (!ev_is_active (w)))
3408     return;
3409
3410   EV_FREQUENT_CHECK;
3411
3412   wlist_del (&signals [w->signum - 1].head, (WL)w);
3413   ev_stop (EV_A_ (W)w);
3414
3415   if (!signals [w->signum - 1].head)
3416     {
3417 #if EV_MULTIPLICITY
3418       signals [w->signum - 1].loop = 0; /* unattach from signal */
3419 #endif
3420 #if EV_USE_SIGNALFD
3421       if (sigfd >= 0)
3422         {
3423           sigset_t ss;
3424
3425           sigemptyset (&ss);
3426           sigaddset (&ss, w->signum);
3427           sigdelset (&sigfd_set, w->signum);
3428
3429           signalfd (sigfd, &sigfd_set, 0);
3430           sigprocmask (SIG_UNBLOCK, &ss, 0);
3431         }
3432       else
3433 #endif
3434         signal (w->signum, SIG_DFL);
3435     }
3436
3437   EV_FREQUENT_CHECK;
3438 }
3439
3440 #endif
3441
3442 #if EV_CHILD_ENABLE
3443
3444 void
3445 ev_child_start (EV_P_ ev_child *w)
3446 {
3447 #if EV_MULTIPLICITY
3448   assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3449 #endif
3450   if (expect_false (ev_is_active (w)))
3451     return;
3452
3453   EV_FREQUENT_CHECK;
3454
3455   ev_start (EV_A_ (W)w, 1);
3456   wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3457
3458   EV_FREQUENT_CHECK;
3459 }
3460
3461 void
3462 ev_child_stop (EV_P_ ev_child *w)
3463 {
3464   clear_pending (EV_A_ (W)w);
3465   if (expect_false (!ev_is_active (w)))
3466     return;
3467
3468   EV_FREQUENT_CHECK;
3469
3470   wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3471   ev_stop (EV_A_ (W)w);
3472
3473   EV_FREQUENT_CHECK;
3474 }
3475
3476 #endif
3477
3478 #if EV_STAT_ENABLE
3479
3480 # ifdef _WIN32
3481 #  undef lstat
3482 #  define lstat(a,b) _stati64 (a,b)
3483 # endif
3484
3485 #define DEF_STAT_INTERVAL  5.0074891
3486 #define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3487 #define MIN_STAT_INTERVAL  0.1074891
3488
3489 static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3490
3491 #if EV_USE_INOTIFY
3492
3493 /* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3494 # define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3495
3496 static void noinline
3497 infy_add (EV_P_ ev_stat *w)
3498 {
3499   w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3500
3501   if (w->wd >= 0)
3502     {
3503       struct statfs sfs;
3504
3505       /* now local changes will be tracked by inotify, but remote changes won't */
3506       /* unless the filesystem is known to be local, we therefore still poll */
3507       /* also do poll on <2.6.25, but with normal frequency */
3508
3509       if (!fs_2625)
3510         w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3511       else if (!statfs (w->path, &sfs)
3512                && (sfs.f_type == 0x1373 /* devfs */
3513                    || sfs.f_type == 0xEF53 /* ext2/3 */
3514                    || sfs.f_type == 0x3153464a /* jfs */
3515                    || sfs.f_type == 0x52654973 /* reiser3 */
3516                    || sfs.f_type == 0x01021994 /* tempfs */
3517                    || sfs.f_type == 0x58465342 /* xfs */))
3518         w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3519       else
3520         w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
3521     }
3522   else
3523     {
3524       /* can't use inotify, continue to stat */
3525       w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3526
3527       /* if path is not there, monitor some parent directory for speedup hints */
3528       /* note that exceeding the hardcoded path limit is not a correctness issue, */
3529       /* but an efficiency issue only */
3530       if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3531         {
3532           char path [4096];
3533           strcpy (path, w->path);
3534
3535           do
3536             {
3537               int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3538                        | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3539
3540               char *pend = strrchr (path, '/');
3541
3542               if (!pend || pend == path)
3543                 break;
3544
3545               *pend = 0;
3546               w->wd = inotify_add_watch (fs_fd, path, mask);
3547             }
3548           while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3549         }
3550     }
3551
3552   if (w->wd >= 0)
3553     wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3554
3555   /* now re-arm timer, if required */
3556   if (ev_is_active (&w->timer)) ev_ref (EV_A);
3557   ev_timer_again (EV_A_ &w->timer);
3558   if (ev_is_active (&w->timer)) ev_unref (EV_A);
3559 }
3560
3561 static void noinline
3562 infy_del (EV_P_ ev_stat *w)
3563 {
3564   int slot;
3565   int wd = w->wd;
3566
3567   if (wd < 0)
3568     return;
3569
3570   w->wd = -2;
3571   slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3572   wlist_del (&fs_hash [slot].head, (WL)w);
3573
3574   /* remove this watcher, if others are watching it, they will rearm */
3575   inotify_rm_watch (fs_fd, wd);
3576 }
3577
3578 static void noinline
3579 infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3580 {
3581   if (slot < 0)
3582     /* overflow, need to check for all hash slots */
3583     for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3584       infy_wd (EV_A_ slot, wd, ev);
3585   else
3586     {
3587       WL w_;
3588
3589       for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3590         {
3591           ev_stat *w = (ev_stat *)w_;
3592           w_ = w_->next; /* lets us remove this watcher and all before it */
3593
3594           if (w->wd == wd || wd == -1)
3595             {
3596               if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3597                 {
3598                   wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3599                   w->wd = -1;
3600                   infy_add (EV_A_ w); /* re-add, no matter what */
3601                 }
3602
3603               stat_timer_cb (EV_A_ &w->timer, 0);
3604             }
3605         }
3606     }
3607 }
3608
3609 static void
3610 infy_cb (EV_P_ ev_io *w, int revents)
3611 {
3612   char buf [EV_INOTIFY_BUFSIZE];
3613   int ofs;
3614   int len = read (fs_fd, buf, sizeof (buf));
3615
3616   for (ofs = 0; ofs < len; )
3617     {
3618       struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3619       infy_wd (EV_A_ ev->wd, ev->wd, ev);
3620       ofs += sizeof (struct inotify_event) + ev->len;
3621     }
3622 }
3623
3624 inline_size void ecb_cold
3625 ev_check_2625 (EV_P)
3626 {
3627   /* kernels < 2.6.25 are borked
3628    * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3629    */
3630   if (ev_linux_version () < 0x020619)
3631     return;
3632
3633   fs_2625 = 1;
3634 }
3635
3636 inline_size int
3637 infy_newfd (void)
3638 {
3639 #if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3640   int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3641   if (fd >= 0)
3642     return fd;
3643 #endif
3644   return inotify_init ();
3645 }
3646
3647 inline_size void
3648 infy_init (EV_P)
3649 {
3650   if (fs_fd != -2)
3651     return;
3652
3653   fs_fd = -1;
3654
3655   ev_check_2625 (EV_A);
3656
3657   fs_fd = infy_newfd ();
3658
3659   if (fs_fd >= 0)
3660     {
3661       fd_intern (fs_fd);
3662       ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3663       ev_set_priority (&fs_w, EV_MAXPRI);
3664       ev_io_start (EV_A_ &fs_w);
3665       ev_unref (EV_A);
3666     }
3667 }
3668
3669 inline_size void
3670 infy_fork (EV_P)
3671 {
3672   int slot;
3673
3674   if (fs_fd < 0)
3675     return;
3676
3677   ev_ref (EV_A);
3678   ev_io_stop (EV_A_ &fs_w);
3679   close (fs_fd);
3680   fs_fd = infy_newfd ();
3681
3682   if (fs_fd >= 0)
3683     {
3684       fd_intern (fs_fd);
3685       ev_io_set (&fs_w, fs_fd, EV_READ);
3686       ev_io_start (EV_A_ &fs_w);
3687       ev_unref (EV_A);
3688     }
3689
3690   for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3691     {
3692       WL w_ = fs_hash [slot].head;
3693       fs_hash [slot].head = 0;
3694
3695       while (w_)
3696         {
3697           ev_stat *w = (ev_stat *)w_;
3698           w_ = w_->next; /* lets us add this watcher */
3699
3700           w->wd = -1;
3701
3702           if (fs_fd >= 0)
3703             infy_add (EV_A_ w); /* re-add, no matter what */
3704           else
3705             {
3706               w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3707               if (ev_is_active (&w->timer)) ev_ref (EV_A);
3708               ev_timer_again (EV_A_ &w->timer);
3709               if (ev_is_active (&w->timer)) ev_unref (EV_A);
3710             }
3711         }
3712     }
3713 }
3714
3715 #endif
3716
3717 #ifdef _WIN32
3718 # define EV_LSTAT(p,b) _stati64 (p, b)
3719 #else
3720 # define EV_LSTAT(p,b) lstat (p, b)
3721 #endif
3722
3723 void
3724 ev_stat_stat (EV_P_ ev_stat *w)
3725 {
3726   if (lstat (w->path, &w->attr) < 0)
3727     w->attr.st_nlink = 0;
3728   else if (!w->attr.st_nlink)
3729     w->attr.st_nlink = 1;
3730 }
3731
3732 static void noinline
3733 stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3734 {
3735   ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3736
3737   ev_statdata prev = w->attr;
3738   ev_stat_stat (EV_A_ w);
3739
3740   /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3741   if (
3742     prev.st_dev      != w->attr.st_dev
3743     || prev.st_ino   != w->attr.st_ino
3744     || prev.st_mode  != w->attr.st_mode
3745     || prev.st_nlink != w->attr.st_nlink
3746     || prev.st_uid   != w->attr.st_uid
3747     || prev.st_gid   != w->attr.st_gid
3748     || prev.st_rdev  != w->attr.st_rdev
3749     || prev.st_size  != w->attr.st_size
3750     || prev.st_atime != w->attr.st_atime
3751     || prev.st_mtime != w->attr.st_mtime
3752     || prev.st_ctime != w->attr.st_ctime
3753   ) {
3754       /* we only update w->prev on actual differences */
3755       /* in case we test more often than invoke the callback, */
3756       /* to ensure that prev is always different to attr */
3757       w->prev = prev;
3758
3759       #if EV_USE_INOTIFY
3760         if (fs_fd >= 0)
3761           {
3762             infy_del (EV_A_ w);
3763             infy_add (EV_A_ w);
3764             ev_stat_stat (EV_A_ w); /* avoid race... */
3765           }
3766       #endif
3767
3768       ev_feed_event (EV_A_ w, EV_STAT);
3769     }
3770 }
3771
3772 void
3773 ev_stat_start (EV_P_ ev_stat *w)
3774 {
3775   if (expect_false (ev_is_active (w)))
3776     return;
3777
3778   ev_stat_stat (EV_A_ w);
3779
3780   if (w->interval < MIN_STAT_INTERVAL && w->interval)
3781     w->interval = MIN_STAT_INTERVAL;
3782
3783   ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3784   ev_set_priority (&w->timer, ev_priority (w));
3785
3786 #if EV_USE_INOTIFY
3787   infy_init (EV_A);
3788
3789   if (fs_fd >= 0)
3790     infy_add (EV_A_ w);
3791   else
3792 #endif
3793     {
3794       ev_timer_again (EV_A_ &w->timer);
3795       ev_unref (EV_A);
3796     }
3797
3798   ev_start (EV_A_ (W)w, 1);
3799
3800   EV_FREQUENT_CHECK;
3801 }
3802
3803 void
3804 ev_stat_stop (EV_P_ ev_stat *w)
3805 {
3806   clear_pending (EV_A_ (W)w);
3807   if (expect_false (!ev_is_active (w)))
3808     return;
3809
3810   EV_FREQUENT_CHECK;
3811
3812 #if EV_USE_INOTIFY
3813   infy_del (EV_A_ w);
3814 #endif
3815
3816   if (ev_is_active (&w->timer))
3817     {
3818       ev_ref (EV_A);
3819       ev_timer_stop (EV_A_ &w->timer);
3820     }
3821
3822   ev_stop (EV_A_ (W)w);
3823
3824   EV_FREQUENT_CHECK;
3825 }
3826 #endif
3827
3828 #if EV_IDLE_ENABLE
3829 void
3830 ev_idle_start (EV_P_ ev_idle *w)
3831 {
3832   if (expect_false (ev_is_active (w)))
3833     return;
3834
3835   pri_adjust (EV_A_ (W)w);
3836
3837   EV_FREQUENT_CHECK;
3838
3839   {
3840     int active = ++idlecnt [ABSPRI (w)];
3841
3842     ++idleall;
3843     ev_start (EV_A_ (W)w, active);
3844
3845     array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3846     idles [ABSPRI (w)][active - 1] = w;
3847   }
3848
3849   EV_FREQUENT_CHECK;
3850 }
3851
3852 void
3853 ev_idle_stop (EV_P_ ev_idle *w)
3854 {
3855   clear_pending (EV_A_ (W)w);
3856   if (expect_false (!ev_is_active (w)))
3857     return;
3858
3859   EV_FREQUENT_CHECK;
3860
3861   {
3862     int active = ev_active (w);
3863
3864     idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3865     ev_active (idles [ABSPRI (w)][active - 1]) = active;
3866
3867     ev_stop (EV_A_ (W)w);
3868     --idleall;
3869   }
3870
3871   EV_FREQUENT_CHECK;
3872 }
3873 #endif
3874
3875 #if EV_PREPARE_ENABLE
3876 void
3877 ev_prepare_start (EV_P_ ev_prepare *w)
3878 {
3879   if (expect_false (ev_is_active (w)))
3880     return;
3881
3882   EV_FREQUENT_CHECK;
3883
3884   ev_start (EV_A_ (W)w, ++preparecnt);
3885   array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3886   prepares [preparecnt - 1] = w;
3887
3888   EV_FREQUENT_CHECK;
3889 }
3890
3891 void
3892 ev_prepare_stop (EV_P_ ev_prepare *w)
3893 {
3894   clear_pending (EV_A_ (W)w);
3895   if (expect_false (!ev_is_active (w)))
3896     return;
3897
3898   EV_FREQUENT_CHECK;
3899
3900   {
3901     int active = ev_active (w);
3902
3903     prepares [active - 1] = prepares [--preparecnt];
3904     ev_active (prepares [active - 1]) = active;
3905   }
3906
3907   ev_stop (EV_A_ (W)w);
3908
3909   EV_FREQUENT_CHECK;
3910 }
3911 #endif
3912
3913 #if EV_CHECK_ENABLE
3914 void
3915 ev_check_start (EV_P_ ev_check *w)
3916 {
3917   if (expect_false (ev_is_active (w)))
3918     return;
3919
3920   EV_FREQUENT_CHECK;
3921
3922   ev_start (EV_A_ (W)w, ++checkcnt);
3923   array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3924   checks [checkcnt - 1] = w;
3925
3926   EV_FREQUENT_CHECK;
3927 }
3928
3929 void
3930 ev_check_stop (EV_P_ ev_check *w)
3931 {
3932   clear_pending (EV_A_ (W)w);
3933   if (expect_false (!ev_is_active (w)))
3934     return;
3935
3936   EV_FREQUENT_CHECK;
3937
3938   {
3939     int active = ev_active (w);
3940
3941     checks [active - 1] = checks [--checkcnt];
3942     ev_active (checks [active - 1]) = active;
3943   }
3944
3945   ev_stop (EV_A_ (W)w);
3946
3947   EV_FREQUENT_CHECK;
3948 }
3949 #endif
3950
3951 #if EV_EMBED_ENABLE
3952 void noinline
3953 ev_embed_sweep (EV_P_ ev_embed *w)
3954 {
3955   ev_run (w->other, EVRUN_NOWAIT);
3956 }
3957
3958 static void
3959 embed_io_cb (EV_P_ ev_io *io, int revents)
3960 {
3961   ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3962
3963   if (ev_cb (w))
3964     ev_feed_event (EV_A_ (W)w, EV_EMBED);
3965   else
3966     ev_run (w->other, EVRUN_NOWAIT);
3967 }
3968
3969 static void
3970 embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3971 {
3972   ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3973
3974   {
3975     EV_P = w->other;
3976
3977     while (fdchangecnt)
3978       {
3979         fd_reify (EV_A);
3980         ev_run (EV_A_ EVRUN_NOWAIT);
3981       }
3982   }
3983 }
3984
3985 static void
3986 embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3987 {
3988   ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3989
3990   ev_embed_stop (EV_A_ w);
3991
3992   {
3993     EV_P = w->other;
3994
3995     ev_loop_fork (EV_A);
3996     ev_run (EV_A_ EVRUN_NOWAIT);
3997   }
3998
3999   ev_embed_start (EV_A_ w);
4000 }
4001
4002 #if 0
4003 static void
4004 embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4005 {
4006   ev_idle_stop (EV_A_ idle);
4007 }
4008 #endif
4009
4010 void
4011 ev_embed_start (EV_P_ ev_embed *w)
4012 {
4013   if (expect_false (ev_is_active (w)))
4014     return;
4015
4016   {
4017     EV_P = w->other;
4018     assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4019     ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4020   }
4021
4022   EV_FREQUENT_CHECK;
4023
4024   ev_set_priority (&w->io, ev_priority (w));
4025   ev_io_start (EV_A_ &w->io);
4026
4027   ev_prepare_init (&w->prepare, embed_prepare_cb);
4028   ev_set_priority (&w->prepare, EV_MINPRI);
4029   ev_prepare_start (EV_A_ &w->prepare);
4030
4031   ev_fork_init (&w->fork, embed_fork_cb);
4032   ev_fork_start (EV_A_ &w->fork);
4033
4034   /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4035
4036   ev_start (EV_A_ (W)w, 1);
4037
4038   EV_FREQUENT_CHECK;
4039 }
4040
4041 void
4042 ev_embed_stop (EV_P_ ev_embed *w)
4043 {
4044   clear_pending (EV_A_ (W)w);
4045   if (expect_false (!ev_is_active (w)))
4046     return;
4047
4048   EV_FREQUENT_CHECK;
4049
4050   ev_io_stop      (EV_A_ &w->io);
4051   ev_prepare_stop (EV_A_ &w->prepare);
4052   ev_fork_stop    (EV_A_ &w->fork);
4053
4054   ev_stop (EV_A_ (W)w);
4055
4056   EV_FREQUENT_CHECK;
4057 }
4058 #endif
4059
4060 #if EV_FORK_ENABLE
4061 void
4062 ev_fork_start (EV_P_ ev_fork *w)
4063 {
4064   if (expect_false (ev_is_active (w)))
4065     return;
4066
4067   EV_FREQUENT_CHECK;
4068
4069   ev_start (EV_A_ (W)w, ++forkcnt);
4070   array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4071   forks [forkcnt - 1] = w;
4072
4073   EV_FREQUENT_CHECK;
4074 }
4075
4076 void
4077 ev_fork_stop (EV_P_ ev_fork *w)
4078 {
4079   clear_pending (EV_A_ (W)w);
4080   if (expect_false (!ev_is_active (w)))
4081     return;
4082
4083   EV_FREQUENT_CHECK;
4084
4085   {
4086     int active = ev_active (w);
4087
4088     forks [active - 1] = forks [--forkcnt];
4089     ev_active (forks [active - 1]) = active;
4090   }
4091
4092   ev_stop (EV_A_ (W)w);
4093
4094   EV_FREQUENT_CHECK;
4095 }
4096 #endif
4097
4098 #if EV_CLEANUP_ENABLE
4099 void
4100 ev_cleanup_start (EV_P_ ev_cleanup *w)
4101 {
4102   if (expect_false (ev_is_active (w)))
4103     return;
4104
4105   EV_FREQUENT_CHECK;
4106
4107   ev_start (EV_A_ (W)w, ++cleanupcnt);
4108   array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4109   cleanups [cleanupcnt - 1] = w;
4110
4111   /* cleanup watchers should never keep a refcount on the loop */
4112   ev_unref (EV_A);
4113   EV_FREQUENT_CHECK;
4114 }
4115
4116 void
4117 ev_cleanup_stop (EV_P_ ev_cleanup *w)
4118 {
4119   clear_pending (EV_A_ (W)w);
4120   if (expect_false (!ev_is_active (w)))
4121     return;
4122
4123   EV_FREQUENT_CHECK;
4124   ev_ref (EV_A);
4125
4126   {
4127     int active = ev_active (w);
4128
4129     cleanups [active - 1] = cleanups [--cleanupcnt];
4130     ev_active (cleanups [active - 1]) = active;
4131   }
4132
4133   ev_stop (EV_A_ (W)w);
4134
4135   EV_FREQUENT_CHECK;
4136 }
4137 #endif
4138
4139 #if EV_ASYNC_ENABLE
4140 void
4141 ev_async_start (EV_P_ ev_async *w)
4142 {
4143   if (expect_false (ev_is_active (w)))
4144     return;
4145
4146   w->sent = 0;
4147
4148   evpipe_init (EV_A);
4149
4150   EV_FREQUENT_CHECK;
4151
4152   ev_start (EV_A_ (W)w, ++asynccnt);
4153   array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4154   asyncs [asynccnt - 1] = w;
4155
4156   EV_FREQUENT_CHECK;
4157 }
4158
4159 void
4160 ev_async_stop (EV_P_ ev_async *w)
4161 {
4162   clear_pending (EV_A_ (W)w);
4163   if (expect_false (!ev_is_active (w)))
4164     return;
4165
4166   EV_FREQUENT_CHECK;
4167
4168   {
4169     int active = ev_active (w);
4170
4171     asyncs [active - 1] = asyncs [--asynccnt];
4172     ev_active (asyncs [active - 1]) = active;
4173   }
4174
4175   ev_stop (EV_A_ (W)w);
4176
4177   EV_FREQUENT_CHECK;
4178 }
4179
4180 void
4181 ev_async_send (EV_P_ ev_async *w)
4182 {
4183   w->sent = 1;
4184   evpipe_write (EV_A_ &async_pending);
4185 }
4186 #endif
4187
4188 /*****************************************************************************/
4189
4190 struct ev_once
4191 {
4192   ev_io io;
4193   ev_timer to;
4194   void (*cb)(int revents, void *arg);
4195   void *arg;
4196 };
4197
4198 static void
4199 once_cb (EV_P_ struct ev_once *once, int revents)
4200 {
4201   void (*cb)(int revents, void *arg) = once->cb;
4202   void *arg = once->arg;
4203
4204   ev_io_stop    (EV_A_ &once->io);
4205   ev_timer_stop (EV_A_ &once->to);
4206   ev_free (once);
4207
4208   cb (revents, arg);
4209 }
4210
4211 static void
4212 once_cb_io (EV_P_ ev_io *w, int revents)
4213 {
4214   struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4215
4216   once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
4217 }
4218
4219 static void
4220 once_cb_to (EV_P_ ev_timer *w, int revents)
4221 {
4222   struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4223
4224   once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
4225 }
4226
4227 void
4228 ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
4229 {
4230   struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
4231
4232   if (expect_false (!once))
4233     {
4234       cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
4235       return;
4236     }
4237
4238   once->cb  = cb;
4239   once->arg = arg;
4240
4241   ev_init (&once->io, once_cb_io);
4242   if (fd >= 0)
4243     {
4244       ev_io_set (&once->io, fd, events);
4245       ev_io_start (EV_A_ &once->io);
4246     }
4247
4248   ev_init (&once->to, once_cb_to);
4249   if (timeout >= 0.)
4250     {
4251       ev_timer_set (&once->to, timeout, 0.);
4252       ev_timer_start (EV_A_ &once->to);
4253     }
4254 }
4255
4256 /*****************************************************************************/
4257
4258 #if EV_WALK_ENABLE
4259 void ecb_cold
4260 ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4261 {
4262   int i, j;
4263   ev_watcher_list *wl, *wn;
4264
4265   if (types & (EV_IO | EV_EMBED))
4266     for (i = 0; i < anfdmax; ++i)
4267       for (wl = anfds [i].head; wl; )
4268         {
4269           wn = wl->next;
4270
4271 #if EV_EMBED_ENABLE
4272           if (ev_cb ((ev_io *)wl) == embed_io_cb)
4273             {
4274               if (types & EV_EMBED)
4275                 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4276             }
4277           else
4278 #endif
4279 #if EV_USE_INOTIFY
4280           if (ev_cb ((ev_io *)wl) == infy_cb)
4281             ;
4282           else
4283 #endif
4284           if ((ev_io *)wl != &pipe_w)
4285             if (types & EV_IO)
4286               cb (EV_A_ EV_IO, wl);
4287
4288           wl = wn;
4289         }
4290
4291   if (types & (EV_TIMER | EV_STAT))
4292     for (i = timercnt + HEAP0; i-- > HEAP0; )
4293 #if EV_STAT_ENABLE
4294       /*TODO: timer is not always active*/
4295       if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4296         {
4297           if (types & EV_STAT)
4298             cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4299         }
4300       else
4301 #endif
4302       if (types & EV_TIMER)
4303         cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4304
4305 #if EV_PERIODIC_ENABLE
4306   if (types & EV_PERIODIC)
4307     for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4308       cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4309 #endif
4310
4311 #if EV_IDLE_ENABLE
4312   if (types & EV_IDLE)
4313     for (j = NUMPRI; j--; )
4314       for (i = idlecnt [j]; i--; )
4315         cb (EV_A_ EV_IDLE, idles [j][i]);
4316 #endif
4317
4318 #if EV_FORK_ENABLE
4319   if (types & EV_FORK)
4320     for (i = forkcnt; i--; )
4321       if (ev_cb (forks [i]) != embed_fork_cb)
4322         cb (EV_A_ EV_FORK, forks [i]);
4323 #endif
4324
4325 #if EV_ASYNC_ENABLE
4326   if (types & EV_ASYNC)
4327     for (i = asynccnt; i--; )
4328       cb (EV_A_ EV_ASYNC, asyncs [i]);
4329 #endif
4330
4331 #if EV_PREPARE_ENABLE
4332   if (types & EV_PREPARE)
4333     for (i = preparecnt; i--; )
4334 # if EV_EMBED_ENABLE
4335       if (ev_cb (prepares [i]) != embed_prepare_cb)
4336 # endif
4337         cb (EV_A_ EV_PREPARE, prepares [i]);
4338 #endif
4339
4340 #if EV_CHECK_ENABLE
4341   if (types & EV_CHECK)
4342     for (i = checkcnt; i--; )
4343       cb (EV_A_ EV_CHECK, checks [i]);
4344 #endif
4345
4346 #if EV_SIGNAL_ENABLE
4347   if (types & EV_SIGNAL)
4348     for (i = 0; i < EV_NSIG - 1; ++i)
4349       for (wl = signals [i].head; wl; )
4350         {
4351           wn = wl->next;
4352           cb (EV_A_ EV_SIGNAL, wl);
4353           wl = wn;
4354         }
4355 #endif
4356
4357 #if EV_CHILD_ENABLE
4358   if (types & EV_CHILD)
4359     for (i = (EV_PID_HASHSIZE); i--; )
4360       for (wl = childs [i]; wl; )
4361         {
4362           wn = wl->next;
4363           cb (EV_A_ EV_CHILD, wl);
4364           wl = wn;
4365         }
4366 #endif
4367 /* EV_STAT     0x00001000 /* stat data changed */
4368 /* EV_EMBED    0x00010000 /* embedded event loop needs sweep */
4369 }
4370 #endif
4371
4372 #if EV_MULTIPLICITY
4373   #include "ev_wrap.h"
4374 #endif
4375
4376 EV_CPP(})
4377