]> rtime.felk.cvut.cz Git - mf6xx.git/blob - doc/rtlws_article/paper.tex
9f3a63ebd4844e99045c9e7bc22af58881f5335e
[mf6xx.git] / doc / rtlws_article / paper.tex
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%
3 %% paper.tex = template for Real Time Linux Workshop papers
4 %%
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6 \documentclass[10pt,a4paper]{article}
7 \usepackage[english]{babel}
8 \usepackage{multicol}
9
10 \setlength{\paperheight}{297mm}
11 \setlength{\paperwidth}{210mm}
12 \setlength{\voffset}{-12mm}
13 \setlength{\topmargin}{0mm}
14 \setlength{\headsep}{8mm}
15 \setlength{\headheight}{10mm}
16 \setlength{\textheight}{235mm}
17 \setlength{\hoffset}{-4mm}
18 \setlength{\textwidth}{166mm}
19 \setlength{\oddsidemargin}{0mm}
20 \setlength{\evensidemargin}{0mm}
21 \setlength{\marginparwidth}{0mm}
22 \setlength{\marginparpush}{0mm}
23 \setlength{\columnsep}{6mm}
24 \setlength{\parindent}{6mm}
25 \setlength{\parskip}{2mm}
26
27 %% insert eps pictures
28 %% use as \epsin{epsfile}{width_in_mm}{label}{caption}
29 \usepackage{epsfig}
30 \newcounter{figcounter}
31 \def\epsin #1#2#3#4{
32 \refstepcounter{figcounter} \label{#3}
33 \[
34 \mbox{
35   \epsfxsize=#2mm
36   \epsffile{#1.eps}
37 }
38 \]
39 %\vspace{0mm}
40 \begin{center}
41   \parbox{7cm}{{\bf FIGURE \arabic{figcounter}:}\quad {\it #4 } } \\
42 \end{center}
43 }
44
45 %% insert table
46 %% use as \tabin{size_in_mm}{label}{caption}{table_data}
47 \newcounter{tabcounter}
48 \def\tabin #1#2#3#4{
49 \refstepcounter{tabcounter} \label{#2}
50 \[ \makebox[#1mm][c]{#4} \]
51 %\vspace{0mm}
52 \begin{center}
53   \parbox{7cm}{{\bf TABLE \arabic{tabcounter}:}\quad {\it #3 } } \\
54 \end{center}
55 }
56
57 \title{\LARGE
58 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
59 %% TITLE OF PAPER (REQUIRED)
60 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
61 COMEDI and UIO drivers for PCI Multifunction Data Acquisition and Generic I/O Cards and Their QEMU Virtual Hardware Equivalents 
62 }
63
64 \author{\large
65 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
66 %% AUTHOR (REQUIRED)
67 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
68 {\bf Pavel P\'{i}\v{s}a }\\ 
69 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
70 %% AFFILIATION (REQUIRED)
71 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
72 Czech Technical University in Prague, Department of Control Engineering\\
73 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
74 %% STREET ADDRESS (REQUIRED)
75 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
76 Technick\'{a} 2, 166 27 Praha 6, Czech Republic FIXME\\
77 %Karlovo náměstí 13, 121 35 Praha 2
78 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
79 %% E-MAIL (REQUIRED)
80 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
81 \vspace{8mm}
82 pisa$@$cmp.felk.cvut.cz \\
83 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
84 %% AUTHOR (REQUIRED)
85 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
86 {\bf Rostislav Lisov\'{y}}\\ 
87 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
88 %% AFFILIATION (REQUIRED)
89 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
90 Czech Technical University in Prague, Faculty of Electrical Engineering\\
91 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
92 %% STREET ADDRESS (REQUIRED)
93 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
94 Technick\'{a} 2, 166 27 Praha 6, Czech Republic\\
95 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
96 %% E-MAIL (REQUIRED)
97 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
98 lisovy@gmail.com\\
99 }
100 \date{}
101
102
103 \begin{document}
104
105 \maketitle
106
107 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
108 %% ABSTRACT (REQUIRED)
109 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
110 \begin{abstract}
111 The article describes implementation of UIO and Comedi drivers for Humusoft MF624 and MF614 cards. Basic functions (D/A, A/D converters, digital inputs/outputs) of Humusoft MF624 card were implemented into the Qemu emulator as well which enables to experiment with drivers implementation without physical access to the cards and risk of data lost when drivers are developed and tested on same primary Linux kernel instance. %The article can help newcomers in the area to gain knowledge required to implement support for other similar cards and these cards hardware emulation. The matching real and virtual setup can be used in operating system courses for practical introduction to simple drivers implementation and helps with understanding internal computation world with real world computers interfacing.
112 \end{abstract}
113
114 \vspace{10mm}
115
116 \begin{multicols}{2}
117
118 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
119 %% SECTION (REQUIRED)
120 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
121 \section{Introduction}
122 When teaching development of Linux drivers one of the approaches is to explain kernel API and programming paradigms by creating driver which doesn't require some special hardware -- e.g. character driver which returns upper case ASCII text when receiving lower case. Although this approach can be useful, the issues associated with dealing with hardware should be practices as well.
123
124 The approach we took in this work eliminates the need of physical access to hardware whereas it provides full feature set of PCI device in form of virtual hardware. This was possible by implementing virtual PCI device into Qemu emulator.
125
126 Main reason of choosing DAQ cards for this project was ease of interfacing from programmers view and straightforward testing of proper function of the driver. This can be very helpful for beginners who are not familiar with hardware related topics. 
127
128 \section{Humusoft MF614, MF624}
129 Humusoft MF614 and MF624 are data acquisition (DAQ) cards. Both of this cards use PCI interface to connect to computer. The main features this cards provide are \textit{digital inputs}, \textit{digital outputs}, \textit{ADCs}, \textit{DACs}, \textit{timers}, \textit{encoder inputs}. Humusoft MF614 is predecessor of MF624 -- available functions are quite similar. There is main difference in driver programming -- MF614 has only 8-bit wide registers, whereas MF624 16- or 32-bit wide. 
130
131 MF624 is available for purchase on manufacturers web page. MF614 is no more sold.
132
133
134 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
135 \section{UIO driver}
136 Each UIO driver consists of two parts -- small kernel module (the need for it is mostly because of device-specific interrupt handling/disabling) and user-space driver logic (as shown in figure 1). This approaches main advantage is that the most of the development happens in user-space, thus during prototyping the driver (or when using bad one) it won't withdraw kernels integrity and stability.
137 \epsin{img/uio}{80}{fig1:uio}{UIO driver structure}
138
139 \subsection*{Implementing the kernel part}
140 In case of writing UIO driver for PCI device, initialization function of the module registers \texttt{struct pci\_driver} in standard way, where the probe function handles initialization of UIO-related structures. The main structure holding all data of UIO driver is \texttt{struct uio\_info}. Its simple initialization (including registration) is shown below:
141
142 \begin{verbatim}
143  1 | /* struct pci_dev *dev */
144  2 | struct uio_info *info;
145  3 | info = kzalloc(sizeof(struct uio_info), 
146  4 |   GFP_KERNEL);
147  5 | 
148  6 | info->name = "mf624";
149  7 | info->version = "0.0.1";
150  8 | 
151  9 | info->mem[0].name = "PCI chipset";
152 10 | info->mem[0].addr = 
153 11 |   pci_resource_start(dev, 0);
154 12 | info->mem[0].size = 
155 13 |   pci_resource_len(dev, 0);
156 14 | info->mem[0].memtype = UIO_MEM_PHYS;
157 15 | info->mem[0].internal_addr = 
158 16 |   pci_ioremap_bar(dev, 0);
159 17 | 
160 18 | info->port[0].name = 
161 19 |   "Board programming registers";
162 20 | info->port[0].porttype = UIO_PORT_X86;
163 21 | info->port[0].start = 
164 22 |   pci_resource_start(dev, 1);
165 23 | info->port[0].size = 
166 24 |   pci_resource_len(dev, 1);
167 25 | 
168 26 | uio_register_device(&dev->dev, info);
169 27 | pci_set_drvdata(dev, info);
170 \end{verbatim}
171 Structure \texttt{uio\_mem} is used for enabling memory-mapped I/O regions (MMIO), whereas structure \texttt{uio\_port} is used for port-mapped I/O (PMIO).
172
173 \subsection*{Driver \texttt{uio\_pci\_generic}}
174 When dealing with any device compliant to PCI 2.3, it is also possible to use \texttt{uio\_pci\_generic} driver in kernel instead of programming specific one. This driver makes all memory regions of the device available to user-space.
175
176 Binding to the device is done by writing Vendor and Device ID into \texttt{/sys/bus/pci/drivers/ uio\_pci\_generic/new\_id} file.
177
178 Interrupt handler uses Interrupt Disable bit in the PCI command register and Interrupt Status bit in the PCI status register. Because none (FIXME any?) of MF614 or MF624 are PCI 2.3 compliant it is not possible to use this driver for them.
179
180 \subsection*{Interface to user-space}
181 Communication with kernel part of the UIO driver is possible through \texttt{/dev/uioX} file (where X is number of instance of driver). There are several syscalls possible to use when interfacing with this file:
182 \begin{description}
183 \item[\texttt{open()}] opens the device, returns file descriptor used for another syscalls.
184 \item[\texttt{read()}] blocks until an interrupt occurs (the value read is number of interrupts seen by device).
185 \item[\texttt{mmap()}] is used to map devices memory to user-space. The offset value passed to \texttt{mmap()} de\-ter\-mines the memory area of a device to map -- for \textit{n-th} area offset should be \textit{n*\texttt{sysconf( \_SC\_PAGESIZE)}}.
186 \item[\texttt{irqcontrol()}] is used for enabling (called with parameter \texttt{(int) 1}) or disabling (parameter \texttt{(int) 0}) interrupts.
187 \end{description}
188 It is possible to define your own \texttt{mmap()}, \texttt{open()}, \texttt{release()} functions as an option. When there is need to use \texttt{irqcontrol()}, it is necessary to implement this function per device.
189
190 When using UIO and \texttt{mmap()} with MF624 card (which has 32 or 128 bytes long memory regions) there is an issue with the return value of this syscall -- the pointer to the memory seems to be page-size-aligned, so it was necessary to add low bits of physical address of each memory region to it. FIXME
191
192 Another way how to gain information from some UIO driver is by reading \texttt{/sys/class/uio/uioX}. Most of the files are read-only. The subdirectory \texttt{maps} contains information about MMIO regions mapped by the driver, subdirectory \texttt{portio} is for PMIO. 
193
194
195 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
196 \section{Comedi driver}
197 UIO driver is versatile solution available mainly for uncommon devices. In our case of using DAQ card a special subsystem in Linux kernel designated for DAQ cards drivers can be used. It is called Comedi (\textit{Linux control and measurement device interface}). It provides library functions for user- and kernel-space making development and usage of DAQ devices easier. It consists of:
198 \begin{description}
199 \item[Comedi] is part of Linux kernel. It consist of individual device drivers including Comedi driver providing basic set of functions used by device drivers.
200 \item[Comedilib] is user-space library providing unified interface for another user-space application to devices supported by Comedi.
201 \item[Kcomedilib] is also part of Linux kernel. It provides the same API as Comedili, whereas this is used for real-time applications.
202 \end{description}
203
204 \subsection*{Implementing the driver}
205 Each Comedi driver should register to the list of active Comedi drivers. This is done by invoking \texttt{comedi\_driver\_register()} function. The only parameter passed to this function is pointer to \texttt{struct comedi\_driver} structure. The most important fields of this structure are:
206 \begin{verbatim}
207 const char *driver_name; /* "my_driver" */
208 struct module *module;   /* THIS_MODULE */
209 int (*attach) (struct comedi_device *,
210   struct comedi_devconfig *);
211 int (*detach) (struct comedi_device *);
212 \end{verbatim}
213 Unlike the UIO or generic PCI driver, the main \textit{initialization function} is not \texttt{probe()} (of \texttt{struct pci\_driver}) but \texttt{attach()} (of \texttt{struct comedi\_driver}) which is invoked by Comedi subsystem.
214
215 The \texttt{attach()} function is responsible not only for common PCI device initialization but also for initialization of \texttt{struct comedi\_device} (which is accessible through a pointer passed to \texttt{attach()} function). Most important step is to allocate and initialize each \textit{subdevice} (in Comedis nomenclature \textit{subdevice} is one particular function of the device -- e.g. ADC, digital out, etc.) of the DAQ card. Allocation is done by Comedi function \texttt{alloc\_subdevices(struct comedi\_device *, unsigned int num\_subdev)}, each \texttt{struct comedi\_subdevice} is then accessible in array called \texttt{subdevices} which is part of \texttt{struct comedi\_device}. Example of initialization of subdevice representing ADC:
216 \begin{verbatim}
217  1 | s = dev->subdevices + 0;
218  2 | s->type = COMEDI_SUBD_AI;
219  3 | s->subdev_flags = SDF_READABLE |
220  4 |                   SDF_GROUND;
221  5 | s->n_chan = 8;
222  6 | s->maxdata = (1 << 14) - 1;
223  7 | s->range_table = &range_bipolar10;
224  8 | s->len_chanlist = 8;
225  9 | s->insn_read = mf624_ai_rinsn;
226 10 | s->insn_config = mf624_ai_cfg;
227 \end{verbatim}
228
229 \subsection*{Interface to user-space}
230 After successful compilation and loading of particular Comedi driver, there should be \texttt{/dev/comediX} (where X is number of instance of driver) file. For communication with this file Comedi library functions are used. For opening device -- \texttt{comedi\_open()}, for reading/writing ADCs/DACs -- \texttt{comedi\_data\_read()}, \texttt{comedi\_data\_write()} and for reading/writing digital inputs/outputs -- \texttt{comedi\_dio\_read()}, \texttt{comedi\_dio\_write()}.
231
232 There are already applications using Comedi API\footnote{For basic list of available applications see http://www.comedi.org/applications.html} -- in some cases there is no need for implementing user-space application from scratch.
233 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
234 \section{Qemu virtual hardware}
235 Qemu is open-source processor emulator. Unlike common virtualization solutions it is able of emulating x86, x86-64, ARM and other widespread processor architectures. For the purposes of this work it was used for implementing virtual Humusoft MF624 DAQ card. 
236
237 \subsection*{Usage}
238 When running any guest operating system in Qemu (with support for MF624 activated) the virtual MF624 device is available in the same way as if it was real hardware -- there are no issues with interfacing between guest operating system and virtual device. Interfacing between virtual hardware and \textit{real world} is handled by TCP/IP connection from MF624 module in Qemu to \textit{host} operating system. It is used for reading/setting output/input values (as shown in figure 2). The most fundamental way of communication through this channel is by using \texttt{telnet} application. Example of real communication:
239 \begin{verbatim}
240   $ telnet localhost 55555
241   Trying ::1...
242   Trying 127.0.0.1...
243   Connected to localhost.
244   Escape character is '^]'.
245   DA1=9.998779
246   DOUT=255.000000
247   DOUT=0.000000
248   DA1=5.000000
249   ^]
250   telnet> Connection closed.
251 \end{verbatim}
252
253 As a much more easier way of interfacing, there is also graphical application created just for purposes of communicating with virtual MF624 card (see figure 3). It was created using Qt4 graphical toolkit.
254
255 \epsin{img/qemu}{80}{fig2:qemu}{Qemu implementing virtual MF624 device}
256
257
258 \subsection*{Implementation of virtual MF624}
259 When creating new virtual device in Qemu, main hook into Qemu infrastructure is done by invoking \texttt{device\_init()} with parameter of pointer to initialization function with prototype of \texttt{static void (*)(void)}. For registering new PCI device, it is necessary to call \texttt{pci\_qdev\_register()} passing parameter of pointer to \texttt{PCIDeviceInfo}. The most important fields of this Qemu-specific data type are pointers to \textit{init} and \textit{exit} functions with prototype of \texttt{int (*)(PCIDevice *)}.
260
261 The PCI device specific initialization consists of:
262 \begin{itemize}
263 \item Initializing configuration space of PCI device -- e.g. setting Vendor and Device IDs, device class, interrupt pin.
264 \item Registration of I/O memory used by the device.
265 \item Initialization of physical memory and mapping it to particular \textit{BARs} (Base Address Registers) of PCI device.
266 \end{itemize}
267
268 The very basic (non-compilable) example:
269
270 \end{multicols}
271 \begin{verbatim}
272  1 | static CPUReadMemoryFunc * const mf624_BAR0_read[3] = { NULL, NULL, mf624_BAR0_read32 };
273  2 | static CPUWriteMemoryFunc * const mf624_BAR0_write[3] = { NULL, NULL, mf624_BAR0_write32 };
274  3 |    
275  4 | static void mf624_map(PCIDevice *pci_dev, int region, pcibus_t addr, pcibus_t sz, int tp)
276  5 | {
277  6 |   mf624_state_t *s = DO_UPCAST(mf624_state_t, dev, pci_dev);
278  7 |   cpu_register_physical_memory(addr + 0x0, BAR0_size, s->BAR0_mem_table_index);
279  8 | }
280  9 | 
281 10 | static int pci_mf624_init(PCIDevice *pci_dev)
282 11 | {
283 12 |   mf624_state_t *s = DO_UPCAST(mf624_state_t, dev, pci_dev); /* i.e. container_of() */
284 13 |   uint8_t *pci_conf;
285 14 | 
286 15 |   pci_conf = s->dev.config;
287 16 |   pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_HUMUSOFT);
288 17 |   /* ... */
289 18 |   pci_conf[PCI_INTERRUPT_PIN] = 0x1;
290 19 | 
291 20 |   s->BAR0_mem_table_index = cpu_register_io_memory(mf624_BAR0_read, mf624_BAR0_write, 
292 21 |                             s, DEVICE_NATIVE_ENDIAN); /* returns unsigned int */
293 22 |   pci_register_bar(&s->dev, 0, BAR0_size, PCI_BASE_ADDRESS_SPACE_MEMORY, mf624_map);
294 23 |   return 0;
295 24 | }
296 25 | 
297 26 | static PCIDeviceInfo mf624_info = {
298 27 |   .qdev.name = "mf624", .qdev.size = sizeof(mf624_state_t),
299 28 |   .init = mf624_init,   .exit = mf624_exit,
300 29 | };
301 30 | 
302 31 | static void reg_dev(void) { pci_qdev_register(&mf624_info); }
303 32 | device_init(reg_dev)
304 \end{verbatim}
305 \begin{multicols}{2}
306
307 \epsin{img/qt_gui}{70}{fig3:qemu2}{Graphical application used for interfacing between virtual MF624 and \textit{real world}}
308
309
310 \section{Conclusion}
311 The outcome of this work creates basic integrated tool for teaching PCI driver development under GNU/Linux operating system. Its main advantage is possibility to train driver development on \textit{real hardware} without the necessity of having expensive DAQ device. The other advantage is safe environment for driver prototyping -- where no mistake can damage host operating system.
312
313 All the information (including source code) related to topic covered in this article are publicly available on web page \texttt{rtime.felk.cvut.cz/ hw/index.php/Humusoft\_MF6xx}
314
315
316
317 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
318 %% REFERENCES (REQUIRED)
319 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
320 \begin{thebibliography}{9}%use this if you have <=9 bib refs
321 %\begin{thebibliography}{99}%use this if you have >9 bib refs
322 \bibitem {book1}{\it {Jonathan Corbet}, {Alessandro Rubini}, {Greg Kroah-Hartman}, {Linux Device Drivers, 3rd Edition}, {O'Reilly Media}, 2005}
323 \bibitem {paper1}{\it {Hans-J\"{u}rgen~Koch} http://www.kernel.org/doc/ htmldocs/uio-howto.html}
324 \bibitem {paper2}{\it {David Schleef}, {Frank Hess}, {Herman Bruyninckx} http://www.comedi.org/doc/}
325 \bibitem {paper3}{\it Fabrice Bellard et al. git://git.qemu.org/qemu.git}
326 \end{thebibliography}
327 \end{multicols}
328 \end{document}