]> rtime.felk.cvut.cz Git - mcf548x/linux.git/blob - arch/s390/kernel/kprobes.c
Initial 2.6.37
[mcf548x/linux.git] / arch / s390 / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2006
19  *
20  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21  */
22
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <linux/uaccess.h>
29 #include <asm/cacheflush.h>
30 #include <asm/sections.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33 #include <linux/hardirq.h>
34
35 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
36 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
37
38 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
39
40 int __kprobes arch_prepare_kprobe(struct kprobe *p)
41 {
42         /* Make sure the probe isn't going on a difficult instruction */
43         if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
44                 return -EINVAL;
45
46         if ((unsigned long)p->addr & 0x01)
47                 return -EINVAL;
48
49         /* Use the get_insn_slot() facility for correctness */
50         if (!(p->ainsn.insn = get_insn_slot()))
51                 return -ENOMEM;
52
53         memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
54
55         get_instruction_type(&p->ainsn);
56         p->opcode = *p->addr;
57         return 0;
58 }
59
60 int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
61 {
62         switch (*(__u8 *) instruction) {
63         case 0x0c:      /* bassm */
64         case 0x0b:      /* bsm   */
65         case 0x83:      /* diag  */
66         case 0x44:      /* ex    */
67         case 0xac:      /* stnsm */
68         case 0xad:      /* stosm */
69                 return -EINVAL;
70         }
71         switch (*(__u16 *) instruction) {
72         case 0x0101:    /* pr    */
73         case 0xb25a:    /* bsa   */
74         case 0xb240:    /* bakr  */
75         case 0xb258:    /* bsg   */
76         case 0xb218:    /* pc    */
77         case 0xb228:    /* pt    */
78         case 0xb98d:    /* epsw  */
79                 return -EINVAL;
80         }
81         return 0;
82 }
83
84 void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
85 {
86         /* default fixup method */
87         ainsn->fixup = FIXUP_PSW_NORMAL;
88
89         /* save r1 operand */
90         ainsn->reg = (*ainsn->insn & 0xf0) >> 4;
91
92         /* save the instruction length (pop 5-5) in bytes */
93         switch (*(__u8 *) (ainsn->insn) >> 6) {
94         case 0:
95                 ainsn->ilen = 2;
96                 break;
97         case 1:
98         case 2:
99                 ainsn->ilen = 4;
100                 break;
101         case 3:
102                 ainsn->ilen = 6;
103                 break;
104         }
105
106         switch (*(__u8 *) ainsn->insn) {
107         case 0x05:      /* balr */
108         case 0x0d:      /* basr */
109                 ainsn->fixup = FIXUP_RETURN_REGISTER;
110                 /* if r2 = 0, no branch will be taken */
111                 if ((*ainsn->insn & 0x0f) == 0)
112                         ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
113                 break;
114         case 0x06:      /* bctr */
115         case 0x07:      /* bcr  */
116                 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
117                 break;
118         case 0x45:      /* bal  */
119         case 0x4d:      /* bas  */
120                 ainsn->fixup = FIXUP_RETURN_REGISTER;
121                 break;
122         case 0x47:      /* bc   */
123         case 0x46:      /* bct  */
124         case 0x86:      /* bxh  */
125         case 0x87:      /* bxle */
126                 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
127                 break;
128         case 0x82:      /* lpsw */
129                 ainsn->fixup = FIXUP_NOT_REQUIRED;
130                 break;
131         case 0xb2:      /* lpswe */
132                 if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
133                         ainsn->fixup = FIXUP_NOT_REQUIRED;
134                 }
135                 break;
136         case 0xa7:      /* bras */
137                 if ((*ainsn->insn & 0x0f) == 0x05) {
138                         ainsn->fixup |= FIXUP_RETURN_REGISTER;
139                 }
140                 break;
141         case 0xc0:
142                 if ((*ainsn->insn & 0x0f) == 0x00  /* larl  */
143                         || (*ainsn->insn & 0x0f) == 0x05) /* brasl */
144                 ainsn->fixup |= FIXUP_RETURN_REGISTER;
145                 break;
146         case 0xeb:
147                 if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 ||   /* bxhg  */
148                         *(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
149                         ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
150                 }
151                 break;
152         case 0xe3:      /* bctg */
153                 if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
154                         ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
155                 }
156                 break;
157         }
158 }
159
160 static int __kprobes swap_instruction(void *aref)
161 {
162         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
163         unsigned long status = kcb->kprobe_status;
164         struct ins_replace_args *args = aref;
165         int rc;
166
167         kcb->kprobe_status = KPROBE_SWAP_INST;
168         rc = probe_kernel_write(args->ptr, &args->new, sizeof(args->new));
169         kcb->kprobe_status = status;
170         return rc;
171 }
172
173 void __kprobes arch_arm_kprobe(struct kprobe *p)
174 {
175         struct ins_replace_args args;
176
177         args.ptr = p->addr;
178         args.old = p->opcode;
179         args.new = BREAKPOINT_INSTRUCTION;
180         stop_machine(swap_instruction, &args, NULL);
181 }
182
183 void __kprobes arch_disarm_kprobe(struct kprobe *p)
184 {
185         struct ins_replace_args args;
186
187         args.ptr = p->addr;
188         args.old = BREAKPOINT_INSTRUCTION;
189         args.new = p->opcode;
190         stop_machine(swap_instruction, &args, NULL);
191 }
192
193 void __kprobes arch_remove_kprobe(struct kprobe *p)
194 {
195         if (p->ainsn.insn) {
196                 free_insn_slot(p->ainsn.insn, 0);
197                 p->ainsn.insn = NULL;
198         }
199 }
200
201 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
202 {
203         per_cr_bits kprobe_per_regs[1];
204
205         memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
206         regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;
207
208         /* Set up the per control reg info, will pass to lctl */
209         kprobe_per_regs[0].em_instruction_fetch = 1;
210         kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
211         kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;
212
213         /* Set the PER control regs, turns on single step for this address */
214         __ctl_load(kprobe_per_regs, 9, 11);
215         regs->psw.mask |= PSW_MASK_PER;
216         regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
217 }
218
219 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
220 {
221         kcb->prev_kprobe.kp = kprobe_running();
222         kcb->prev_kprobe.status = kcb->kprobe_status;
223         kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
224         memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
225                                         sizeof(kcb->kprobe_saved_ctl));
226 }
227
228 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
229 {
230         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
231         kcb->kprobe_status = kcb->prev_kprobe.status;
232         kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
233         memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
234                                         sizeof(kcb->kprobe_saved_ctl));
235 }
236
237 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
238                                                 struct kprobe_ctlblk *kcb)
239 {
240         __get_cpu_var(current_kprobe) = p;
241         /* Save the interrupt and per flags */
242         kcb->kprobe_saved_imask = regs->psw.mask &
243                 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
244         /* Save the control regs that govern PER */
245         __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
246 }
247
248 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
249                                         struct pt_regs *regs)
250 {
251         ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
252
253         /* Replace the return addr with trampoline addr */
254         regs->gprs[14] = (unsigned long)&kretprobe_trampoline;
255 }
256
257 static int __kprobes kprobe_handler(struct pt_regs *regs)
258 {
259         struct kprobe *p;
260         int ret = 0;
261         unsigned long *addr = (unsigned long *)
262                 ((regs->psw.addr & PSW_ADDR_INSN) - 2);
263         struct kprobe_ctlblk *kcb;
264
265         /*
266          * We don't want to be preempted for the entire
267          * duration of kprobe processing
268          */
269         preempt_disable();
270         kcb = get_kprobe_ctlblk();
271
272         /* Check we're not actually recursing */
273         if (kprobe_running()) {
274                 p = get_kprobe(addr);
275                 if (p) {
276                         if (kcb->kprobe_status == KPROBE_HIT_SS &&
277                             *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
278                                 regs->psw.mask &= ~PSW_MASK_PER;
279                                 regs->psw.mask |= kcb->kprobe_saved_imask;
280                                 goto no_kprobe;
281                         }
282                         /* We have reentered the kprobe_handler(), since
283                          * another probe was hit while within the handler.
284                          * We here save the original kprobes variables and
285                          * just single step on the instruction of the new probe
286                          * without calling any user handlers.
287                          */
288                         save_previous_kprobe(kcb);
289                         set_current_kprobe(p, regs, kcb);
290                         kprobes_inc_nmissed_count(p);
291                         prepare_singlestep(p, regs);
292                         kcb->kprobe_status = KPROBE_REENTER;
293                         return 1;
294                 } else {
295                         p = __get_cpu_var(current_kprobe);
296                         if (p->break_handler && p->break_handler(p, regs)) {
297                                 goto ss_probe;
298                         }
299                 }
300                 goto no_kprobe;
301         }
302
303         p = get_kprobe(addr);
304         if (!p)
305                 /*
306                  * No kprobe at this address. The fault has not been
307                  * caused by a kprobe breakpoint. The race of breakpoint
308                  * vs. kprobe remove does not exist because on s390 we
309                  * use stop_machine to arm/disarm the breakpoints.
310                  */
311                 goto no_kprobe;
312
313         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
314         set_current_kprobe(p, regs, kcb);
315         if (p->pre_handler && p->pre_handler(p, regs))
316                 /* handler has already set things up, so skip ss setup */
317                 return 1;
318
319 ss_probe:
320         prepare_singlestep(p, regs);
321         kcb->kprobe_status = KPROBE_HIT_SS;
322         return 1;
323
324 no_kprobe:
325         preempt_enable_no_resched();
326         return ret;
327 }
328
329 /*
330  * Function return probe trampoline:
331  *      - init_kprobes() establishes a probepoint here
332  *      - When the probed function returns, this probe
333  *              causes the handlers to fire
334  */
335 static void __used kretprobe_trampoline_holder(void)
336 {
337         asm volatile(".global kretprobe_trampoline\n"
338                      "kretprobe_trampoline: bcr 0,0\n");
339 }
340
341 /*
342  * Called when the probe at kretprobe trampoline is hit
343  */
344 static int __kprobes trampoline_probe_handler(struct kprobe *p,
345                                               struct pt_regs *regs)
346 {
347         struct kretprobe_instance *ri = NULL;
348         struct hlist_head *head, empty_rp;
349         struct hlist_node *node, *tmp;
350         unsigned long flags, orig_ret_address = 0;
351         unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
352         kprobe_opcode_t *correct_ret_addr = NULL;
353
354         INIT_HLIST_HEAD(&empty_rp);
355         kretprobe_hash_lock(current, &head, &flags);
356
357         /*
358          * It is possible to have multiple instances associated with a given
359          * task either because an multiple functions in the call path
360          * have a return probe installed on them, and/or more than one return
361          * return probe was registered for a target function.
362          *
363          * We can handle this because:
364          *     - instances are always inserted at the head of the list
365          *     - when multiple return probes are registered for the same
366          *       function, the first instance's ret_addr will point to the
367          *       real return address, and all the rest will point to
368          *       kretprobe_trampoline
369          */
370         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
371                 if (ri->task != current)
372                         /* another task is sharing our hash bucket */
373                         continue;
374
375                 orig_ret_address = (unsigned long)ri->ret_addr;
376
377                 if (orig_ret_address != trampoline_address)
378                         /*
379                          * This is the real return address. Any other
380                          * instances associated with this task are for
381                          * other calls deeper on the call stack
382                          */
383                         break;
384         }
385
386         kretprobe_assert(ri, orig_ret_address, trampoline_address);
387
388         correct_ret_addr = ri->ret_addr;
389         hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
390                 if (ri->task != current)
391                         /* another task is sharing our hash bucket */
392                         continue;
393
394                 orig_ret_address = (unsigned long)ri->ret_addr;
395
396                 if (ri->rp && ri->rp->handler) {
397                         ri->ret_addr = correct_ret_addr;
398                         ri->rp->handler(ri, regs);
399                 }
400
401                 recycle_rp_inst(ri, &empty_rp);
402
403                 if (orig_ret_address != trampoline_address) {
404                         /*
405                          * This is the real return address. Any other
406                          * instances associated with this task are for
407                          * other calls deeper on the call stack
408                          */
409                         break;
410                 }
411         }
412
413         regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
414
415         reset_current_kprobe();
416         kretprobe_hash_unlock(current, &flags);
417         preempt_enable_no_resched();
418
419         hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
420                 hlist_del(&ri->hlist);
421                 kfree(ri);
422         }
423         /*
424          * By returning a non-zero value, we are telling
425          * kprobe_handler() that we don't want the post_handler
426          * to run (and have re-enabled preemption)
427          */
428         return 1;
429 }
430
431 /*
432  * Called after single-stepping.  p->addr is the address of the
433  * instruction whose first byte has been replaced by the "breakpoint"
434  * instruction.  To avoid the SMP problems that can occur when we
435  * temporarily put back the original opcode to single-step, we
436  * single-stepped a copy of the instruction.  The address of this
437  * copy is p->ainsn.insn.
438  */
439 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
440 {
441         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
442
443         regs->psw.addr &= PSW_ADDR_INSN;
444
445         if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
446                 regs->psw.addr = (unsigned long)p->addr +
447                                 ((unsigned long)regs->psw.addr -
448                                  (unsigned long)p->ainsn.insn);
449
450         if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
451                 if ((unsigned long)regs->psw.addr -
452                     (unsigned long)p->ainsn.insn == p->ainsn.ilen)
453                         regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;
454
455         if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
456                 regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
457                                                 (regs->gprs[p->ainsn.reg] -
458                                                 (unsigned long)p->ainsn.insn))
459                                                 | PSW_ADDR_AMODE;
460
461         regs->psw.addr |= PSW_ADDR_AMODE;
462         /* turn off PER mode */
463         regs->psw.mask &= ~PSW_MASK_PER;
464         /* Restore the original per control regs */
465         __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
466         regs->psw.mask |= kcb->kprobe_saved_imask;
467 }
468
469 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
470 {
471         struct kprobe *cur = kprobe_running();
472         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
473
474         if (!cur)
475                 return 0;
476
477         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
478                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
479                 cur->post_handler(cur, regs, 0);
480         }
481
482         resume_execution(cur, regs);
483
484         /*Restore back the original saved kprobes variables and continue. */
485         if (kcb->kprobe_status == KPROBE_REENTER) {
486                 restore_previous_kprobe(kcb);
487                 goto out;
488         }
489         reset_current_kprobe();
490 out:
491         preempt_enable_no_resched();
492
493         /*
494          * if somebody else is singlestepping across a probe point, psw mask
495          * will have PER set, in which case, continue the remaining processing
496          * of do_single_step, as if this is not a probe hit.
497          */
498         if (regs->psw.mask & PSW_MASK_PER) {
499                 return 0;
500         }
501
502         return 1;
503 }
504
505 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, int trapnr)
506 {
507         struct kprobe *cur = kprobe_running();
508         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
509         const struct exception_table_entry *entry;
510
511         switch(kcb->kprobe_status) {
512         case KPROBE_SWAP_INST:
513                 /* We are here because the instruction replacement failed */
514                 return 0;
515         case KPROBE_HIT_SS:
516         case KPROBE_REENTER:
517                 /*
518                  * We are here because the instruction being single
519                  * stepped caused a page fault. We reset the current
520                  * kprobe and the nip points back to the probe address
521                  * and allow the page fault handler to continue as a
522                  * normal page fault.
523                  */
524                 regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
525                 regs->psw.mask &= ~PSW_MASK_PER;
526                 regs->psw.mask |= kcb->kprobe_saved_imask;
527                 if (kcb->kprobe_status == KPROBE_REENTER)
528                         restore_previous_kprobe(kcb);
529                 else {
530                         reset_current_kprobe();
531                 }
532                 preempt_enable_no_resched();
533                 break;
534         case KPROBE_HIT_ACTIVE:
535         case KPROBE_HIT_SSDONE:
536                 /*
537                  * We increment the nmissed count for accounting,
538                  * we can also use npre/npostfault count for accouting
539                  * these specific fault cases.
540                  */
541                 kprobes_inc_nmissed_count(cur);
542
543                 /*
544                  * We come here because instructions in the pre/post
545                  * handler caused the page_fault, this could happen
546                  * if handler tries to access user space by
547                  * copy_from_user(), get_user() etc. Let the
548                  * user-specified handler try to fix it first.
549                  */
550                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
551                         return 1;
552
553                 /*
554                  * In case the user-specified fault handler returned
555                  * zero, try to fix up.
556                  */
557                 entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
558                 if (entry) {
559                         regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
560                         return 1;
561                 }
562
563                 /*
564                  * fixup_exception() could not handle it,
565                  * Let do_page_fault() fix it.
566                  */
567                 break;
568         default:
569                 break;
570         }
571         return 0;
572 }
573
574 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
575 {
576         int ret;
577
578         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
579                 local_irq_disable();
580         ret = kprobe_trap_handler(regs, trapnr);
581         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
582                 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
583         return ret;
584 }
585
586 /*
587  * Wrapper routine to for handling exceptions.
588  */
589 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
590                                        unsigned long val, void *data)
591 {
592         struct die_args *args = (struct die_args *)data;
593         struct pt_regs *regs = args->regs;
594         int ret = NOTIFY_DONE;
595
596         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
597                 local_irq_disable();
598
599         switch (val) {
600         case DIE_BPT:
601                 if (kprobe_handler(args->regs))
602                         ret = NOTIFY_STOP;
603                 break;
604         case DIE_SSTEP:
605                 if (post_kprobe_handler(args->regs))
606                         ret = NOTIFY_STOP;
607                 break;
608         case DIE_TRAP:
609                 if (!preemptible() && kprobe_running() &&
610                     kprobe_trap_handler(args->regs, args->trapnr))
611                         ret = NOTIFY_STOP;
612                 break;
613         default:
614                 break;
615         }
616
617         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
618                 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
619
620         return ret;
621 }
622
623 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
624 {
625         struct jprobe *jp = container_of(p, struct jprobe, kp);
626         unsigned long addr;
627         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
628
629         memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
630
631         /* setup return addr to the jprobe handler routine */
632         regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;
633         regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
634
635         /* r14 is the function return address */
636         kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
637         /* r15 is the stack pointer */
638         kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
639         addr = (unsigned long)kcb->jprobe_saved_r15;
640
641         memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
642                MIN_STACK_SIZE(addr));
643         return 1;
644 }
645
646 void __kprobes jprobe_return(void)
647 {
648         asm volatile(".word 0x0002");
649 }
650
651 void __kprobes jprobe_return_end(void)
652 {
653         asm volatile("bcr 0,0");
654 }
655
656 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
657 {
658         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
659         unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);
660
661         /* Put the regs back */
662         memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
663         /* put the stack back */
664         memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
665                MIN_STACK_SIZE(stack_addr));
666         preempt_enable_no_resched();
667         return 1;
668 }
669
670 static struct kprobe trampoline_p = {
671         .addr = (kprobe_opcode_t *) & kretprobe_trampoline,
672         .pre_handler = trampoline_probe_handler
673 };
674
675 int __init arch_init_kprobes(void)
676 {
677         return register_kprobe(&trampoline_p);
678 }
679
680 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
681 {
682         if (p->addr == (kprobe_opcode_t *) & kretprobe_trampoline)
683                 return 1;
684         return 0;
685 }