]> rtime.felk.cvut.cz Git - lisovros/qemu_apohw.git/blob - migration-rdma.c
apohw: port A0B36APO labs matrix keyboard hardware emulation to QEMU 2.1.
[lisovros/qemu_apohw.git] / migration-rdma.c
1 /*
2  * RDMA protocol and interfaces
3  *
4  * Copyright IBM, Corp. 2010-2013
5  *
6  * Authors:
7  *  Michael R. Hines <mrhines@us.ibm.com>
8  *  Jiuxing Liu <jl@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or
11  * later.  See the COPYING file in the top-level directory.
12  *
13  */
14 #include "qemu-common.h"
15 #include "migration/migration.h"
16 #include "migration/qemu-file.h"
17 #include "exec/cpu-common.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/sockets.h"
20 #include "qemu/bitmap.h"
21 #include "block/coroutine.h"
22 #include <stdio.h>
23 #include <sys/types.h>
24 #include <sys/socket.h>
25 #include <netdb.h>
26 #include <arpa/inet.h>
27 #include <string.h>
28 #include <rdma/rdma_cma.h>
29
30 //#define DEBUG_RDMA
31 //#define DEBUG_RDMA_VERBOSE
32 //#define DEBUG_RDMA_REALLY_VERBOSE
33
34 #ifdef DEBUG_RDMA
35 #define DPRINTF(fmt, ...) \
36     do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF(fmt, ...) \
39     do { } while (0)
40 #endif
41
42 #ifdef DEBUG_RDMA_VERBOSE
43 #define DDPRINTF(fmt, ...) \
44     do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
45 #else
46 #define DDPRINTF(fmt, ...) \
47     do { } while (0)
48 #endif
49
50 #ifdef DEBUG_RDMA_REALLY_VERBOSE
51 #define DDDPRINTF(fmt, ...) \
52     do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
53 #else
54 #define DDDPRINTF(fmt, ...) \
55     do { } while (0)
56 #endif
57
58 /*
59  * Print and error on both the Monitor and the Log file.
60  */
61 #define ERROR(errp, fmt, ...) \
62     do { \
63         fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
64         if (errp && (*(errp) == NULL)) { \
65             error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
66         } \
67     } while (0)
68
69 #define RDMA_RESOLVE_TIMEOUT_MS 10000
70
71 /* Do not merge data if larger than this. */
72 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
73 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
74
75 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
76
77 /*
78  * This is only for non-live state being migrated.
79  * Instead of RDMA_WRITE messages, we use RDMA_SEND
80  * messages for that state, which requires a different
81  * delivery design than main memory.
82  */
83 #define RDMA_SEND_INCREMENT 32768
84
85 /*
86  * Maximum size infiniband SEND message
87  */
88 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
89 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
90
91 #define RDMA_CONTROL_VERSION_CURRENT 1
92 /*
93  * Capabilities for negotiation.
94  */
95 #define RDMA_CAPABILITY_PIN_ALL 0x01
96
97 /*
98  * Add the other flags above to this list of known capabilities
99  * as they are introduced.
100  */
101 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
102
103 #define CHECK_ERROR_STATE() \
104     do { \
105         if (rdma->error_state) { \
106             if (!rdma->error_reported) { \
107                 fprintf(stderr, "RDMA is in an error state waiting migration" \
108                                 " to abort!\n"); \
109                 rdma->error_reported = 1; \
110             } \
111             return rdma->error_state; \
112         } \
113     } while (0);
114
115 /*
116  * A work request ID is 64-bits and we split up these bits
117  * into 3 parts:
118  *
119  * bits 0-15 : type of control message, 2^16
120  * bits 16-29: ram block index, 2^14
121  * bits 30-63: ram block chunk number, 2^34
122  *
123  * The last two bit ranges are only used for RDMA writes,
124  * in order to track their completion and potentially
125  * also track unregistration status of the message.
126  */
127 #define RDMA_WRID_TYPE_SHIFT  0UL
128 #define RDMA_WRID_BLOCK_SHIFT 16UL
129 #define RDMA_WRID_CHUNK_SHIFT 30UL
130
131 #define RDMA_WRID_TYPE_MASK \
132     ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
133
134 #define RDMA_WRID_BLOCK_MASK \
135     (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
136
137 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
138
139 /*
140  * RDMA migration protocol:
141  * 1. RDMA Writes (data messages, i.e. RAM)
142  * 2. IB Send/Recv (control channel messages)
143  */
144 enum {
145     RDMA_WRID_NONE = 0,
146     RDMA_WRID_RDMA_WRITE = 1,
147     RDMA_WRID_SEND_CONTROL = 2000,
148     RDMA_WRID_RECV_CONTROL = 4000,
149 };
150
151 const char *wrid_desc[] = {
152     [RDMA_WRID_NONE] = "NONE",
153     [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
154     [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
155     [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
156 };
157
158 /*
159  * Work request IDs for IB SEND messages only (not RDMA writes).
160  * This is used by the migration protocol to transmit
161  * control messages (such as device state and registration commands)
162  *
163  * We could use more WRs, but we have enough for now.
164  */
165 enum {
166     RDMA_WRID_READY = 0,
167     RDMA_WRID_DATA,
168     RDMA_WRID_CONTROL,
169     RDMA_WRID_MAX,
170 };
171
172 /*
173  * SEND/RECV IB Control Messages.
174  */
175 enum {
176     RDMA_CONTROL_NONE = 0,
177     RDMA_CONTROL_ERROR,
178     RDMA_CONTROL_READY,               /* ready to receive */
179     RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
180     RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
181     RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
182     RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
183     RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
184     RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
185     RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
186     RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
187     RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
188 };
189
190 const char *control_desc[] = {
191     [RDMA_CONTROL_NONE] = "NONE",
192     [RDMA_CONTROL_ERROR] = "ERROR",
193     [RDMA_CONTROL_READY] = "READY",
194     [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
195     [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
196     [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
197     [RDMA_CONTROL_COMPRESS] = "COMPRESS",
198     [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
199     [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
200     [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
201     [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
202     [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
203 };
204
205 /*
206  * Memory and MR structures used to represent an IB Send/Recv work request.
207  * This is *not* used for RDMA writes, only IB Send/Recv.
208  */
209 typedef struct {
210     uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
211     struct   ibv_mr *control_mr;               /* registration metadata */
212     size_t   control_len;                      /* length of the message */
213     uint8_t *control_curr;                     /* start of unconsumed bytes */
214 } RDMAWorkRequestData;
215
216 /*
217  * Negotiate RDMA capabilities during connection-setup time.
218  */
219 typedef struct {
220     uint32_t version;
221     uint32_t flags;
222 } RDMACapabilities;
223
224 static void caps_to_network(RDMACapabilities *cap)
225 {
226     cap->version = htonl(cap->version);
227     cap->flags = htonl(cap->flags);
228 }
229
230 static void network_to_caps(RDMACapabilities *cap)
231 {
232     cap->version = ntohl(cap->version);
233     cap->flags = ntohl(cap->flags);
234 }
235
236 /*
237  * Representation of a RAMBlock from an RDMA perspective.
238  * This is not transmitted, only local.
239  * This and subsequent structures cannot be linked lists
240  * because we're using a single IB message to transmit
241  * the information. It's small anyway, so a list is overkill.
242  */
243 typedef struct RDMALocalBlock {
244     uint8_t  *local_host_addr; /* local virtual address */
245     uint64_t remote_host_addr; /* remote virtual address */
246     uint64_t offset;
247     uint64_t length;
248     struct   ibv_mr **pmr;     /* MRs for chunk-level registration */
249     struct   ibv_mr *mr;       /* MR for non-chunk-level registration */
250     uint32_t *remote_keys;     /* rkeys for chunk-level registration */
251     uint32_t remote_rkey;      /* rkeys for non-chunk-level registration */
252     int      index;            /* which block are we */
253     bool     is_ram_block;
254     int      nb_chunks;
255     unsigned long *transit_bitmap;
256     unsigned long *unregister_bitmap;
257 } RDMALocalBlock;
258
259 /*
260  * Also represents a RAMblock, but only on the dest.
261  * This gets transmitted by the dest during connection-time
262  * to the source VM and then is used to populate the
263  * corresponding RDMALocalBlock with
264  * the information needed to perform the actual RDMA.
265  */
266 typedef struct QEMU_PACKED RDMARemoteBlock {
267     uint64_t remote_host_addr;
268     uint64_t offset;
269     uint64_t length;
270     uint32_t remote_rkey;
271     uint32_t padding;
272 } RDMARemoteBlock;
273
274 static uint64_t htonll(uint64_t v)
275 {
276     union { uint32_t lv[2]; uint64_t llv; } u;
277     u.lv[0] = htonl(v >> 32);
278     u.lv[1] = htonl(v & 0xFFFFFFFFULL);
279     return u.llv;
280 }
281
282 static uint64_t ntohll(uint64_t v) {
283     union { uint32_t lv[2]; uint64_t llv; } u;
284     u.llv = v;
285     return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
286 }
287
288 static void remote_block_to_network(RDMARemoteBlock *rb)
289 {
290     rb->remote_host_addr = htonll(rb->remote_host_addr);
291     rb->offset = htonll(rb->offset);
292     rb->length = htonll(rb->length);
293     rb->remote_rkey = htonl(rb->remote_rkey);
294 }
295
296 static void network_to_remote_block(RDMARemoteBlock *rb)
297 {
298     rb->remote_host_addr = ntohll(rb->remote_host_addr);
299     rb->offset = ntohll(rb->offset);
300     rb->length = ntohll(rb->length);
301     rb->remote_rkey = ntohl(rb->remote_rkey);
302 }
303
304 /*
305  * Virtual address of the above structures used for transmitting
306  * the RAMBlock descriptions at connection-time.
307  * This structure is *not* transmitted.
308  */
309 typedef struct RDMALocalBlocks {
310     int nb_blocks;
311     bool     init;             /* main memory init complete */
312     RDMALocalBlock *block;
313 } RDMALocalBlocks;
314
315 /*
316  * Main data structure for RDMA state.
317  * While there is only one copy of this structure being allocated right now,
318  * this is the place where one would start if you wanted to consider
319  * having more than one RDMA connection open at the same time.
320  */
321 typedef struct RDMAContext {
322     char *host;
323     int port;
324
325     RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
326
327     /*
328      * This is used by *_exchange_send() to figure out whether or not
329      * the initial "READY" message has already been received or not.
330      * This is because other functions may potentially poll() and detect
331      * the READY message before send() does, in which case we need to
332      * know if it completed.
333      */
334     int control_ready_expected;
335
336     /* number of outstanding writes */
337     int nb_sent;
338
339     /* store info about current buffer so that we can
340        merge it with future sends */
341     uint64_t current_addr;
342     uint64_t current_length;
343     /* index of ram block the current buffer belongs to */
344     int current_index;
345     /* index of the chunk in the current ram block */
346     int current_chunk;
347
348     bool pin_all;
349
350     /*
351      * infiniband-specific variables for opening the device
352      * and maintaining connection state and so forth.
353      *
354      * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
355      * cm_id->verbs, cm_id->channel, and cm_id->qp.
356      */
357     struct rdma_cm_id *cm_id;               /* connection manager ID */
358     struct rdma_cm_id *listen_id;
359     bool connected;
360
361     struct ibv_context          *verbs;
362     struct rdma_event_channel   *channel;
363     struct ibv_qp *qp;                      /* queue pair */
364     struct ibv_comp_channel *comp_channel;  /* completion channel */
365     struct ibv_pd *pd;                      /* protection domain */
366     struct ibv_cq *cq;                      /* completion queue */
367
368     /*
369      * If a previous write failed (perhaps because of a failed
370      * memory registration, then do not attempt any future work
371      * and remember the error state.
372      */
373     int error_state;
374     int error_reported;
375
376     /*
377      * Description of ram blocks used throughout the code.
378      */
379     RDMALocalBlocks local_ram_blocks;
380     RDMARemoteBlock *block;
381
382     /*
383      * Migration on *destination* started.
384      * Then use coroutine yield function.
385      * Source runs in a thread, so we don't care.
386      */
387     int migration_started_on_destination;
388
389     int total_registrations;
390     int total_writes;
391
392     int unregister_current, unregister_next;
393     uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
394
395     GHashTable *blockmap;
396 } RDMAContext;
397
398 /*
399  * Interface to the rest of the migration call stack.
400  */
401 typedef struct QEMUFileRDMA {
402     RDMAContext *rdma;
403     size_t len;
404     void *file;
405 } QEMUFileRDMA;
406
407 /*
408  * Main structure for IB Send/Recv control messages.
409  * This gets prepended at the beginning of every Send/Recv.
410  */
411 typedef struct QEMU_PACKED {
412     uint32_t len;     /* Total length of data portion */
413     uint32_t type;    /* which control command to perform */
414     uint32_t repeat;  /* number of commands in data portion of same type */
415     uint32_t padding;
416 } RDMAControlHeader;
417
418 static void control_to_network(RDMAControlHeader *control)
419 {
420     control->type = htonl(control->type);
421     control->len = htonl(control->len);
422     control->repeat = htonl(control->repeat);
423 }
424
425 static void network_to_control(RDMAControlHeader *control)
426 {
427     control->type = ntohl(control->type);
428     control->len = ntohl(control->len);
429     control->repeat = ntohl(control->repeat);
430 }
431
432 /*
433  * Register a single Chunk.
434  * Information sent by the source VM to inform the dest
435  * to register an single chunk of memory before we can perform
436  * the actual RDMA operation.
437  */
438 typedef struct QEMU_PACKED {
439     union QEMU_PACKED {
440         uint64_t current_addr;  /* offset into the ramblock of the chunk */
441         uint64_t chunk;         /* chunk to lookup if unregistering */
442     } key;
443     uint32_t current_index; /* which ramblock the chunk belongs to */
444     uint32_t padding;
445     uint64_t chunks;            /* how many sequential chunks to register */
446 } RDMARegister;
447
448 static void register_to_network(RDMARegister *reg)
449 {
450     reg->key.current_addr = htonll(reg->key.current_addr);
451     reg->current_index = htonl(reg->current_index);
452     reg->chunks = htonll(reg->chunks);
453 }
454
455 static void network_to_register(RDMARegister *reg)
456 {
457     reg->key.current_addr = ntohll(reg->key.current_addr);
458     reg->current_index = ntohl(reg->current_index);
459     reg->chunks = ntohll(reg->chunks);
460 }
461
462 typedef struct QEMU_PACKED {
463     uint32_t value;     /* if zero, we will madvise() */
464     uint32_t block_idx; /* which ram block index */
465     uint64_t offset;    /* where in the remote ramblock this chunk */
466     uint64_t length;    /* length of the chunk */
467 } RDMACompress;
468
469 static void compress_to_network(RDMACompress *comp)
470 {
471     comp->value = htonl(comp->value);
472     comp->block_idx = htonl(comp->block_idx);
473     comp->offset = htonll(comp->offset);
474     comp->length = htonll(comp->length);
475 }
476
477 static void network_to_compress(RDMACompress *comp)
478 {
479     comp->value = ntohl(comp->value);
480     comp->block_idx = ntohl(comp->block_idx);
481     comp->offset = ntohll(comp->offset);
482     comp->length = ntohll(comp->length);
483 }
484
485 /*
486  * The result of the dest's memory registration produces an "rkey"
487  * which the source VM must reference in order to perform
488  * the RDMA operation.
489  */
490 typedef struct QEMU_PACKED {
491     uint32_t rkey;
492     uint32_t padding;
493     uint64_t host_addr;
494 } RDMARegisterResult;
495
496 static void result_to_network(RDMARegisterResult *result)
497 {
498     result->rkey = htonl(result->rkey);
499     result->host_addr = htonll(result->host_addr);
500 };
501
502 static void network_to_result(RDMARegisterResult *result)
503 {
504     result->rkey = ntohl(result->rkey);
505     result->host_addr = ntohll(result->host_addr);
506 };
507
508 const char *print_wrid(int wrid);
509 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
510                                    uint8_t *data, RDMAControlHeader *resp,
511                                    int *resp_idx,
512                                    int (*callback)(RDMAContext *rdma));
513
514 static inline uint64_t ram_chunk_index(const uint8_t *start,
515                                        const uint8_t *host)
516 {
517     return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
518 }
519
520 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
521                                        uint64_t i)
522 {
523     return (uint8_t *) (((uintptr_t) rdma_ram_block->local_host_addr)
524                                     + (i << RDMA_REG_CHUNK_SHIFT));
525 }
526
527 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
528                                      uint64_t i)
529 {
530     uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
531                                          (1UL << RDMA_REG_CHUNK_SHIFT);
532
533     if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
534         result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
535     }
536
537     return result;
538 }
539
540 static int __qemu_rdma_add_block(RDMAContext *rdma, void *host_addr,
541                          ram_addr_t block_offset, uint64_t length)
542 {
543     RDMALocalBlocks *local = &rdma->local_ram_blocks;
544     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
545         (void *) block_offset);
546     RDMALocalBlock *old = local->block;
547
548     assert(block == NULL);
549
550     local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1));
551
552     if (local->nb_blocks) {
553         int x;
554
555         for (x = 0; x < local->nb_blocks; x++) {
556             g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
557             g_hash_table_insert(rdma->blockmap, (void *)old[x].offset,
558                                                 &local->block[x]);
559         }
560         memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
561         g_free(old);
562     }
563
564     block = &local->block[local->nb_blocks];
565
566     block->local_host_addr = host_addr;
567     block->offset = block_offset;
568     block->length = length;
569     block->index = local->nb_blocks;
570     block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
571     block->transit_bitmap = bitmap_new(block->nb_chunks);
572     bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
573     block->unregister_bitmap = bitmap_new(block->nb_chunks);
574     bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
575     block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t));
576
577     block->is_ram_block = local->init ? false : true;
578
579     g_hash_table_insert(rdma->blockmap, (void *) block_offset, block);
580
581     DDPRINTF("Added Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
582            " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
583             local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
584             block->length, (uint64_t) (block->local_host_addr + block->length),
585                 BITS_TO_LONGS(block->nb_chunks) *
586                     sizeof(unsigned long) * 8, block->nb_chunks);
587
588     local->nb_blocks++;
589
590     return 0;
591 }
592
593 /*
594  * Memory regions need to be registered with the device and queue pairs setup
595  * in advanced before the migration starts. This tells us where the RAM blocks
596  * are so that we can register them individually.
597  */
598 static void qemu_rdma_init_one_block(void *host_addr,
599     ram_addr_t block_offset, ram_addr_t length, void *opaque)
600 {
601     __qemu_rdma_add_block(opaque, host_addr, block_offset, length);
602 }
603
604 /*
605  * Identify the RAMBlocks and their quantity. They will be references to
606  * identify chunk boundaries inside each RAMBlock and also be referenced
607  * during dynamic page registration.
608  */
609 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
610 {
611     RDMALocalBlocks *local = &rdma->local_ram_blocks;
612
613     assert(rdma->blockmap == NULL);
614     rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
615     memset(local, 0, sizeof *local);
616     qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
617     DPRINTF("Allocated %d local ram block structures\n", local->nb_blocks);
618     rdma->block = (RDMARemoteBlock *) g_malloc0(sizeof(RDMARemoteBlock) *
619                         rdma->local_ram_blocks.nb_blocks);
620     local->init = true;
621     return 0;
622 }
623
624 static int __qemu_rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset)
625 {
626     RDMALocalBlocks *local = &rdma->local_ram_blocks;
627     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
628         (void *) block_offset);
629     RDMALocalBlock *old = local->block;
630     int x;
631
632     assert(block);
633
634     if (block->pmr) {
635         int j;
636
637         for (j = 0; j < block->nb_chunks; j++) {
638             if (!block->pmr[j]) {
639                 continue;
640             }
641             ibv_dereg_mr(block->pmr[j]);
642             rdma->total_registrations--;
643         }
644         g_free(block->pmr);
645         block->pmr = NULL;
646     }
647
648     if (block->mr) {
649         ibv_dereg_mr(block->mr);
650         rdma->total_registrations--;
651         block->mr = NULL;
652     }
653
654     g_free(block->transit_bitmap);
655     block->transit_bitmap = NULL;
656
657     g_free(block->unregister_bitmap);
658     block->unregister_bitmap = NULL;
659
660     g_free(block->remote_keys);
661     block->remote_keys = NULL;
662
663     for (x = 0; x < local->nb_blocks; x++) {
664         g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
665     }
666
667     if (local->nb_blocks > 1) {
668
669         local->block = g_malloc0(sizeof(RDMALocalBlock) *
670                                     (local->nb_blocks - 1));
671
672         if (block->index) {
673             memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
674         }
675
676         if (block->index < (local->nb_blocks - 1)) {
677             memcpy(local->block + block->index, old + (block->index + 1),
678                 sizeof(RDMALocalBlock) *
679                     (local->nb_blocks - (block->index + 1)));
680         }
681     } else {
682         assert(block == local->block);
683         local->block = NULL;
684     }
685
686     DDPRINTF("Deleted Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
687            " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
688             local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
689             block->length, (uint64_t) (block->local_host_addr + block->length),
690                 BITS_TO_LONGS(block->nb_chunks) *
691                     sizeof(unsigned long) * 8, block->nb_chunks);
692
693     g_free(old);
694
695     local->nb_blocks--;
696
697     if (local->nb_blocks) {
698         for (x = 0; x < local->nb_blocks; x++) {
699             g_hash_table_insert(rdma->blockmap, (void *)local->block[x].offset,
700                                                 &local->block[x]);
701         }
702     }
703
704     return 0;
705 }
706
707 /*
708  * Put in the log file which RDMA device was opened and the details
709  * associated with that device.
710  */
711 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
712 {
713     struct ibv_port_attr port;
714
715     if (ibv_query_port(verbs, 1, &port)) {
716         fprintf(stderr, "FAILED TO QUERY PORT INFORMATION!\n");
717         return;
718     }
719
720     printf("%s RDMA Device opened: kernel name %s "
721            "uverbs device name %s, "
722            "infiniband_verbs class device path %s, "
723            "infiniband class device path %s, "
724            "transport: (%d) %s\n",
725                 who,
726                 verbs->device->name,
727                 verbs->device->dev_name,
728                 verbs->device->dev_path,
729                 verbs->device->ibdev_path,
730                 port.link_layer,
731                 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
732                  ((port.link_layer == IBV_LINK_LAYER_ETHERNET) 
733                     ? "Ethernet" : "Unknown"));
734 }
735
736 /*
737  * Put in the log file the RDMA gid addressing information,
738  * useful for folks who have trouble understanding the
739  * RDMA device hierarchy in the kernel.
740  */
741 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
742 {
743     char sgid[33];
744     char dgid[33];
745     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
746     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
747     DPRINTF("%s Source GID: %s, Dest GID: %s\n", who, sgid, dgid);
748 }
749
750 /*
751  * As of now, IPv6 over RoCE / iWARP is not supported by linux.
752  * We will try the next addrinfo struct, and fail if there are
753  * no other valid addresses to bind against.
754  *
755  * If user is listening on '[::]', then we will not have a opened a device
756  * yet and have no way of verifying if the device is RoCE or not.
757  *
758  * In this case, the source VM will throw an error for ALL types of
759  * connections (both IPv4 and IPv6) if the destination machine does not have
760  * a regular infiniband network available for use.
761  *
762  * The only way to guarantee that an error is thrown for broken kernels is
763  * for the management software to choose a *specific* interface at bind time
764  * and validate what time of hardware it is.
765  *
766  * Unfortunately, this puts the user in a fix:
767  * 
768  *  If the source VM connects with an IPv4 address without knowing that the
769  *  destination has bound to '[::]' the migration will unconditionally fail
770  *  unless the management software is explicitly listening on the the IPv4
771  *  address while using a RoCE-based device.
772  *
773  *  If the source VM connects with an IPv6 address, then we're OK because we can
774  *  throw an error on the source (and similarly on the destination).
775  * 
776  *  But in mixed environments, this will be broken for a while until it is fixed
777  *  inside linux.
778  *
779  * We do provide a *tiny* bit of help in this function: We can list all of the
780  * devices in the system and check to see if all the devices are RoCE or
781  * Infiniband. 
782  *
783  * If we detect that we have a *pure* RoCE environment, then we can safely
784  * thrown an error even if the management software has specified '[::]' as the
785  * bind address.
786  *
787  * However, if there is are multiple hetergeneous devices, then we cannot make
788  * this assumption and the user just has to be sure they know what they are
789  * doing.
790  *
791  * Patches are being reviewed on linux-rdma.
792  */
793 static int qemu_rdma_broken_ipv6_kernel(Error **errp, struct ibv_context *verbs)
794 {
795     struct ibv_port_attr port_attr;
796
797     /* This bug only exists in linux, to our knowledge. */
798 #ifdef CONFIG_LINUX
799
800     /* 
801      * Verbs are only NULL if management has bound to '[::]'.
802      * 
803      * Let's iterate through all the devices and see if there any pure IB
804      * devices (non-ethernet).
805      * 
806      * If not, then we can safely proceed with the migration.
807      * Otherwise, there are no guarantees until the bug is fixed in linux.
808      */
809     if (!verbs) {
810             int num_devices, x;
811         struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
812         bool roce_found = false;
813         bool ib_found = false;
814
815         for (x = 0; x < num_devices; x++) {
816             verbs = ibv_open_device(dev_list[x]);
817
818             if (ibv_query_port(verbs, 1, &port_attr)) {
819                 ibv_close_device(verbs);
820                 ERROR(errp, "Could not query initial IB port");
821                 return -EINVAL;
822             }
823
824             if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
825                 ib_found = true;
826             } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
827                 roce_found = true;
828             }
829
830             ibv_close_device(verbs);
831
832         }
833
834         if (roce_found) {
835             if (ib_found) {
836                 fprintf(stderr, "WARN: migrations may fail:"
837                                 " IPv6 over RoCE / iWARP in linux"
838                                 " is broken. But since you appear to have a"
839                                 " mixed RoCE / IB environment, be sure to only"
840                                 " migrate over the IB fabric until the kernel "
841                                 " fixes the bug.\n");
842             } else {
843                 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
844                             " and your management software has specified '[::]'"
845                             ", but IPv6 over RoCE / iWARP is not supported in Linux.");
846                 return -ENONET;
847             }
848         }
849
850         return 0;
851     }
852
853     /*
854      * If we have a verbs context, that means that some other than '[::]' was
855      * used by the management software for binding. In which case we can actually 
856      * warn the user about a potential broken kernel;
857      */
858
859     /* IB ports start with 1, not 0 */
860     if (ibv_query_port(verbs, 1, &port_attr)) {
861         ERROR(errp, "Could not query initial IB port");
862         return -EINVAL;
863     }
864
865     if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
866         ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
867                     "(but patches on linux-rdma in progress)");
868         return -ENONET;
869     }
870
871 #endif
872
873     return 0;
874 }
875
876 /*
877  * Figure out which RDMA device corresponds to the requested IP hostname
878  * Also create the initial connection manager identifiers for opening
879  * the connection.
880  */
881 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
882 {
883     int ret;
884     struct rdma_addrinfo *res;
885     char port_str[16];
886     struct rdma_cm_event *cm_event;
887     char ip[40] = "unknown";
888     struct rdma_addrinfo *e;
889
890     if (rdma->host == NULL || !strcmp(rdma->host, "")) {
891         ERROR(errp, "RDMA hostname has not been set");
892         return -EINVAL;
893     }
894
895     /* create CM channel */
896     rdma->channel = rdma_create_event_channel();
897     if (!rdma->channel) {
898         ERROR(errp, "could not create CM channel");
899         return -EINVAL;
900     }
901
902     /* create CM id */
903     ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
904     if (ret) {
905         ERROR(errp, "could not create channel id");
906         goto err_resolve_create_id;
907     }
908
909     snprintf(port_str, 16, "%d", rdma->port);
910     port_str[15] = '\0';
911
912     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
913     if (ret < 0) {
914         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
915         goto err_resolve_get_addr;
916     }
917
918     for (e = res; e != NULL; e = e->ai_next) {
919         inet_ntop(e->ai_family,
920             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
921         DPRINTF("Trying %s => %s\n", rdma->host, ip);
922
923         ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
924                 RDMA_RESOLVE_TIMEOUT_MS);
925         if (!ret) {
926             if (e->ai_family == AF_INET6) {
927                 ret = qemu_rdma_broken_ipv6_kernel(errp, rdma->cm_id->verbs);
928                 if (ret) {
929                     continue;
930                 }
931             }
932             goto route;
933         }
934     }
935
936     ERROR(errp, "could not resolve address %s", rdma->host);
937     goto err_resolve_get_addr;
938
939 route:
940     qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
941
942     ret = rdma_get_cm_event(rdma->channel, &cm_event);
943     if (ret) {
944         ERROR(errp, "could not perform event_addr_resolved");
945         goto err_resolve_get_addr;
946     }
947
948     if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
949         ERROR(errp, "result not equal to event_addr_resolved %s",
950                 rdma_event_str(cm_event->event));
951         perror("rdma_resolve_addr");
952         rdma_ack_cm_event(cm_event);
953         ret = -EINVAL;
954         goto err_resolve_get_addr;
955     }
956     rdma_ack_cm_event(cm_event);
957
958     /* resolve route */
959     ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
960     if (ret) {
961         ERROR(errp, "could not resolve rdma route");
962         goto err_resolve_get_addr;
963     }
964
965     ret = rdma_get_cm_event(rdma->channel, &cm_event);
966     if (ret) {
967         ERROR(errp, "could not perform event_route_resolved");
968         goto err_resolve_get_addr;
969     }
970     if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
971         ERROR(errp, "result not equal to event_route_resolved: %s",
972                         rdma_event_str(cm_event->event));
973         rdma_ack_cm_event(cm_event);
974         ret = -EINVAL;
975         goto err_resolve_get_addr;
976     }
977     rdma_ack_cm_event(cm_event);
978     rdma->verbs = rdma->cm_id->verbs;
979     qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
980     qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
981     return 0;
982
983 err_resolve_get_addr:
984     rdma_destroy_id(rdma->cm_id);
985     rdma->cm_id = NULL;
986 err_resolve_create_id:
987     rdma_destroy_event_channel(rdma->channel);
988     rdma->channel = NULL;
989     return ret;
990 }
991
992 /*
993  * Create protection domain and completion queues
994  */
995 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
996 {
997     /* allocate pd */
998     rdma->pd = ibv_alloc_pd(rdma->verbs);
999     if (!rdma->pd) {
1000         fprintf(stderr, "failed to allocate protection domain\n");
1001         return -1;
1002     }
1003
1004     /* create completion channel */
1005     rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1006     if (!rdma->comp_channel) {
1007         fprintf(stderr, "failed to allocate completion channel\n");
1008         goto err_alloc_pd_cq;
1009     }
1010
1011     /*
1012      * Completion queue can be filled by both read and write work requests,
1013      * so must reflect the sum of both possible queue sizes.
1014      */
1015     rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1016             NULL, rdma->comp_channel, 0);
1017     if (!rdma->cq) {
1018         fprintf(stderr, "failed to allocate completion queue\n");
1019         goto err_alloc_pd_cq;
1020     }
1021
1022     return 0;
1023
1024 err_alloc_pd_cq:
1025     if (rdma->pd) {
1026         ibv_dealloc_pd(rdma->pd);
1027     }
1028     if (rdma->comp_channel) {
1029         ibv_destroy_comp_channel(rdma->comp_channel);
1030     }
1031     rdma->pd = NULL;
1032     rdma->comp_channel = NULL;
1033     return -1;
1034
1035 }
1036
1037 /*
1038  * Create queue pairs.
1039  */
1040 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1041 {
1042     struct ibv_qp_init_attr attr = { 0 };
1043     int ret;
1044
1045     attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1046     attr.cap.max_recv_wr = 3;
1047     attr.cap.max_send_sge = 1;
1048     attr.cap.max_recv_sge = 1;
1049     attr.send_cq = rdma->cq;
1050     attr.recv_cq = rdma->cq;
1051     attr.qp_type = IBV_QPT_RC;
1052
1053     ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1054     if (ret) {
1055         return -1;
1056     }
1057
1058     rdma->qp = rdma->cm_id->qp;
1059     return 0;
1060 }
1061
1062 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1063 {
1064     int i;
1065     RDMALocalBlocks *local = &rdma->local_ram_blocks;
1066
1067     for (i = 0; i < local->nb_blocks; i++) {
1068         local->block[i].mr =
1069             ibv_reg_mr(rdma->pd,
1070                     local->block[i].local_host_addr,
1071                     local->block[i].length,
1072                     IBV_ACCESS_LOCAL_WRITE |
1073                     IBV_ACCESS_REMOTE_WRITE
1074                     );
1075         if (!local->block[i].mr) {
1076             perror("Failed to register local dest ram block!\n");
1077             break;
1078         }
1079         rdma->total_registrations++;
1080     }
1081
1082     if (i >= local->nb_blocks) {
1083         return 0;
1084     }
1085
1086     for (i--; i >= 0; i--) {
1087         ibv_dereg_mr(local->block[i].mr);
1088         rdma->total_registrations--;
1089     }
1090
1091     return -1;
1092
1093 }
1094
1095 /*
1096  * Find the ram block that corresponds to the page requested to be
1097  * transmitted by QEMU.
1098  *
1099  * Once the block is found, also identify which 'chunk' within that
1100  * block that the page belongs to.
1101  *
1102  * This search cannot fail or the migration will fail.
1103  */
1104 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1105                                       uint64_t block_offset,
1106                                       uint64_t offset,
1107                                       uint64_t length,
1108                                       uint64_t *block_index,
1109                                       uint64_t *chunk_index)
1110 {
1111     uint64_t current_addr = block_offset + offset;
1112     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1113                                                 (void *) block_offset);
1114     assert(block);
1115     assert(current_addr >= block->offset);
1116     assert((current_addr + length) <= (block->offset + block->length));
1117
1118     *block_index = block->index;
1119     *chunk_index = ram_chunk_index(block->local_host_addr,
1120                 block->local_host_addr + (current_addr - block->offset));
1121
1122     return 0;
1123 }
1124
1125 /*
1126  * Register a chunk with IB. If the chunk was already registered
1127  * previously, then skip.
1128  *
1129  * Also return the keys associated with the registration needed
1130  * to perform the actual RDMA operation.
1131  */
1132 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1133         RDMALocalBlock *block, uint8_t *host_addr,
1134         uint32_t *lkey, uint32_t *rkey, int chunk,
1135         uint8_t *chunk_start, uint8_t *chunk_end)
1136 {
1137     if (block->mr) {
1138         if (lkey) {
1139             *lkey = block->mr->lkey;
1140         }
1141         if (rkey) {
1142             *rkey = block->mr->rkey;
1143         }
1144         return 0;
1145     }
1146
1147     /* allocate memory to store chunk MRs */
1148     if (!block->pmr) {
1149         block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *));
1150         if (!block->pmr) {
1151             return -1;
1152         }
1153     }
1154
1155     /*
1156      * If 'rkey', then we're the destination, so grant access to the source.
1157      *
1158      * If 'lkey', then we're the source VM, so grant access only to ourselves.
1159      */
1160     if (!block->pmr[chunk]) {
1161         uint64_t len = chunk_end - chunk_start;
1162
1163         DDPRINTF("Registering %" PRIu64 " bytes @ %p\n",
1164                  len, chunk_start);
1165
1166         block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1167                 chunk_start, len,
1168                 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1169                         IBV_ACCESS_REMOTE_WRITE) : 0));
1170
1171         if (!block->pmr[chunk]) {
1172             perror("Failed to register chunk!");
1173             fprintf(stderr, "Chunk details: block: %d chunk index %d"
1174                             " start %" PRIu64 " end %" PRIu64 " host %" PRIu64
1175                             " local %" PRIu64 " registrations: %d\n",
1176                             block->index, chunk, (uint64_t) chunk_start,
1177                             (uint64_t) chunk_end, (uint64_t) host_addr,
1178                             (uint64_t) block->local_host_addr,
1179                             rdma->total_registrations);
1180             return -1;
1181         }
1182         rdma->total_registrations++;
1183     }
1184
1185     if (lkey) {
1186         *lkey = block->pmr[chunk]->lkey;
1187     }
1188     if (rkey) {
1189         *rkey = block->pmr[chunk]->rkey;
1190     }
1191     return 0;
1192 }
1193
1194 /*
1195  * Register (at connection time) the memory used for control
1196  * channel messages.
1197  */
1198 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1199 {
1200     rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1201             rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1202             IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1203     if (rdma->wr_data[idx].control_mr) {
1204         rdma->total_registrations++;
1205         return 0;
1206     }
1207     fprintf(stderr, "qemu_rdma_reg_control failed!\n");
1208     return -1;
1209 }
1210
1211 const char *print_wrid(int wrid)
1212 {
1213     if (wrid >= RDMA_WRID_RECV_CONTROL) {
1214         return wrid_desc[RDMA_WRID_RECV_CONTROL];
1215     }
1216     return wrid_desc[wrid];
1217 }
1218
1219 /*
1220  * RDMA requires memory registration (mlock/pinning), but this is not good for
1221  * overcommitment.
1222  *
1223  * In preparation for the future where LRU information or workload-specific
1224  * writable writable working set memory access behavior is available to QEMU
1225  * it would be nice to have in place the ability to UN-register/UN-pin
1226  * particular memory regions from the RDMA hardware when it is determine that
1227  * those regions of memory will likely not be accessed again in the near future.
1228  *
1229  * While we do not yet have such information right now, the following
1230  * compile-time option allows us to perform a non-optimized version of this
1231  * behavior.
1232  *
1233  * By uncommenting this option, you will cause *all* RDMA transfers to be
1234  * unregistered immediately after the transfer completes on both sides of the
1235  * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1236  *
1237  * This will have a terrible impact on migration performance, so until future
1238  * workload information or LRU information is available, do not attempt to use
1239  * this feature except for basic testing.
1240  */
1241 //#define RDMA_UNREGISTRATION_EXAMPLE
1242
1243 /*
1244  * Perform a non-optimized memory unregistration after every transfer
1245  * for demonsration purposes, only if pin-all is not requested.
1246  *
1247  * Potential optimizations:
1248  * 1. Start a new thread to run this function continuously
1249         - for bit clearing
1250         - and for receipt of unregister messages
1251  * 2. Use an LRU.
1252  * 3. Use workload hints.
1253  */
1254 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1255 {
1256     while (rdma->unregistrations[rdma->unregister_current]) {
1257         int ret;
1258         uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1259         uint64_t chunk =
1260             (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1261         uint64_t index =
1262             (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1263         RDMALocalBlock *block =
1264             &(rdma->local_ram_blocks.block[index]);
1265         RDMARegister reg = { .current_index = index };
1266         RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1267                                  };
1268         RDMAControlHeader head = { .len = sizeof(RDMARegister),
1269                                    .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1270                                    .repeat = 1,
1271                                  };
1272
1273         DDPRINTF("Processing unregister for chunk: %" PRIu64
1274                  " at position %d\n", chunk, rdma->unregister_current);
1275
1276         rdma->unregistrations[rdma->unregister_current] = 0;
1277         rdma->unregister_current++;
1278
1279         if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1280             rdma->unregister_current = 0;
1281         }
1282
1283
1284         /*
1285          * Unregistration is speculative (because migration is single-threaded
1286          * and we cannot break the protocol's inifinband message ordering).
1287          * Thus, if the memory is currently being used for transmission,
1288          * then abort the attempt to unregister and try again
1289          * later the next time a completion is received for this memory.
1290          */
1291         clear_bit(chunk, block->unregister_bitmap);
1292
1293         if (test_bit(chunk, block->transit_bitmap)) {
1294             DDPRINTF("Cannot unregister inflight chunk: %" PRIu64 "\n", chunk);
1295             continue;
1296         }
1297
1298         DDPRINTF("Sending unregister for chunk: %" PRIu64 "\n", chunk);
1299
1300         ret = ibv_dereg_mr(block->pmr[chunk]);
1301         block->pmr[chunk] = NULL;
1302         block->remote_keys[chunk] = 0;
1303
1304         if (ret != 0) {
1305             perror("unregistration chunk failed");
1306             return -ret;
1307         }
1308         rdma->total_registrations--;
1309
1310         reg.key.chunk = chunk;
1311         register_to_network(&reg);
1312         ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1313                                 &resp, NULL, NULL);
1314         if (ret < 0) {
1315             return ret;
1316         }
1317
1318         DDPRINTF("Unregister for chunk: %" PRIu64 " complete.\n", chunk);
1319     }
1320
1321     return 0;
1322 }
1323
1324 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1325                                          uint64_t chunk)
1326 {
1327     uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1328
1329     result |= (index << RDMA_WRID_BLOCK_SHIFT);
1330     result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1331
1332     return result;
1333 }
1334
1335 /*
1336  * Set bit for unregistration in the next iteration.
1337  * We cannot transmit right here, but will unpin later.
1338  */
1339 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1340                                         uint64_t chunk, uint64_t wr_id)
1341 {
1342     if (rdma->unregistrations[rdma->unregister_next] != 0) {
1343         fprintf(stderr, "rdma migration: queue is full!\n");
1344     } else {
1345         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1346
1347         if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1348             DDPRINTF("Appending unregister chunk %" PRIu64
1349                     " at position %d\n", chunk, rdma->unregister_next);
1350
1351             rdma->unregistrations[rdma->unregister_next++] =
1352                     qemu_rdma_make_wrid(wr_id, index, chunk);
1353
1354             if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1355                 rdma->unregister_next = 0;
1356             }
1357         } else {
1358             DDPRINTF("Unregister chunk %" PRIu64 " already in queue.\n",
1359                     chunk);
1360         }
1361     }
1362 }
1363
1364 /*
1365  * Consult the connection manager to see a work request
1366  * (of any kind) has completed.
1367  * Return the work request ID that completed.
1368  */
1369 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1370                                uint32_t *byte_len)
1371 {
1372     int ret;
1373     struct ibv_wc wc;
1374     uint64_t wr_id;
1375
1376     ret = ibv_poll_cq(rdma->cq, 1, &wc);
1377
1378     if (!ret) {
1379         *wr_id_out = RDMA_WRID_NONE;
1380         return 0;
1381     }
1382
1383     if (ret < 0) {
1384         fprintf(stderr, "ibv_poll_cq return %d!\n", ret);
1385         return ret;
1386     }
1387
1388     wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1389
1390     if (wc.status != IBV_WC_SUCCESS) {
1391         fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1392                         wc.status, ibv_wc_status_str(wc.status));
1393         fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1394
1395         return -1;
1396     }
1397
1398     if (rdma->control_ready_expected &&
1399         (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1400         DDDPRINTF("completion %s #%" PRId64 " received (%" PRId64 ")"
1401                   " left %d\n", wrid_desc[RDMA_WRID_RECV_CONTROL],
1402                   wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1403         rdma->control_ready_expected = 0;
1404     }
1405
1406     if (wr_id == RDMA_WRID_RDMA_WRITE) {
1407         uint64_t chunk =
1408             (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1409         uint64_t index =
1410             (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1411         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1412
1413         DDDPRINTF("completions %s (%" PRId64 ") left %d, "
1414                  "block %" PRIu64 ", chunk: %" PRIu64 " %p %p\n",
1415                  print_wrid(wr_id), wr_id, rdma->nb_sent, index, chunk,
1416                  block->local_host_addr, (void *)block->remote_host_addr);
1417
1418         clear_bit(chunk, block->transit_bitmap);
1419
1420         if (rdma->nb_sent > 0) {
1421             rdma->nb_sent--;
1422         }
1423
1424         if (!rdma->pin_all) {
1425             /*
1426              * FYI: If one wanted to signal a specific chunk to be unregistered
1427              * using LRU or workload-specific information, this is the function
1428              * you would call to do so. That chunk would then get asynchronously
1429              * unregistered later.
1430              */
1431 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1432             qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1433 #endif
1434         }
1435     } else {
1436         DDDPRINTF("other completion %s (%" PRId64 ") received left %d\n",
1437             print_wrid(wr_id), wr_id, rdma->nb_sent);
1438     }
1439
1440     *wr_id_out = wc.wr_id;
1441     if (byte_len) {
1442         *byte_len = wc.byte_len;
1443     }
1444
1445     return  0;
1446 }
1447
1448 /*
1449  * Block until the next work request has completed.
1450  *
1451  * First poll to see if a work request has already completed,
1452  * otherwise block.
1453  *
1454  * If we encounter completed work requests for IDs other than
1455  * the one we're interested in, then that's generally an error.
1456  *
1457  * The only exception is actual RDMA Write completions. These
1458  * completions only need to be recorded, but do not actually
1459  * need further processing.
1460  */
1461 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1462                                     uint32_t *byte_len)
1463 {
1464     int num_cq_events = 0, ret = 0;
1465     struct ibv_cq *cq;
1466     void *cq_ctx;
1467     uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1468
1469     if (ibv_req_notify_cq(rdma->cq, 0)) {
1470         return -1;
1471     }
1472     /* poll cq first */
1473     while (wr_id != wrid_requested) {
1474         ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1475         if (ret < 0) {
1476             return ret;
1477         }
1478
1479         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1480
1481         if (wr_id == RDMA_WRID_NONE) {
1482             break;
1483         }
1484         if (wr_id != wrid_requested) {
1485             DDDPRINTF("A Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1486                 print_wrid(wrid_requested),
1487                 wrid_requested, print_wrid(wr_id), wr_id);
1488         }
1489     }
1490
1491     if (wr_id == wrid_requested) {
1492         return 0;
1493     }
1494
1495     while (1) {
1496         /*
1497          * Coroutine doesn't start until process_incoming_migration()
1498          * so don't yield unless we know we're running inside of a coroutine.
1499          */
1500         if (rdma->migration_started_on_destination) {
1501             yield_until_fd_readable(rdma->comp_channel->fd);
1502         }
1503
1504         if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
1505             perror("ibv_get_cq_event");
1506             goto err_block_for_wrid;
1507         }
1508
1509         num_cq_events++;
1510
1511         if (ibv_req_notify_cq(cq, 0)) {
1512             goto err_block_for_wrid;
1513         }
1514
1515         while (wr_id != wrid_requested) {
1516             ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1517             if (ret < 0) {
1518                 goto err_block_for_wrid;
1519             }
1520
1521             wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1522
1523             if (wr_id == RDMA_WRID_NONE) {
1524                 break;
1525             }
1526             if (wr_id != wrid_requested) {
1527                 DDDPRINTF("B Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1528                     print_wrid(wrid_requested), wrid_requested,
1529                     print_wrid(wr_id), wr_id);
1530             }
1531         }
1532
1533         if (wr_id == wrid_requested) {
1534             goto success_block_for_wrid;
1535         }
1536     }
1537
1538 success_block_for_wrid:
1539     if (num_cq_events) {
1540         ibv_ack_cq_events(cq, num_cq_events);
1541     }
1542     return 0;
1543
1544 err_block_for_wrid:
1545     if (num_cq_events) {
1546         ibv_ack_cq_events(cq, num_cq_events);
1547     }
1548     return ret;
1549 }
1550
1551 /*
1552  * Post a SEND message work request for the control channel
1553  * containing some data and block until the post completes.
1554  */
1555 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1556                                        RDMAControlHeader *head)
1557 {
1558     int ret = 0;
1559     RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1560     struct ibv_send_wr *bad_wr;
1561     struct ibv_sge sge = {
1562                            .addr = (uint64_t)(wr->control),
1563                            .length = head->len + sizeof(RDMAControlHeader),
1564                            .lkey = wr->control_mr->lkey,
1565                          };
1566     struct ibv_send_wr send_wr = {
1567                                    .wr_id = RDMA_WRID_SEND_CONTROL,
1568                                    .opcode = IBV_WR_SEND,
1569                                    .send_flags = IBV_SEND_SIGNALED,
1570                                    .sg_list = &sge,
1571                                    .num_sge = 1,
1572                                 };
1573
1574     DDDPRINTF("CONTROL: sending %s..\n", control_desc[head->type]);
1575
1576     /*
1577      * We don't actually need to do a memcpy() in here if we used
1578      * the "sge" properly, but since we're only sending control messages
1579      * (not RAM in a performance-critical path), then its OK for now.
1580      *
1581      * The copy makes the RDMAControlHeader simpler to manipulate
1582      * for the time being.
1583      */
1584     assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1585     memcpy(wr->control, head, sizeof(RDMAControlHeader));
1586     control_to_network((void *) wr->control);
1587
1588     if (buf) {
1589         memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1590     }
1591
1592
1593     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1594
1595     if (ret > 0) {
1596         fprintf(stderr, "Failed to use post IB SEND for control!\n");
1597         return -ret;
1598     }
1599
1600     ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1601     if (ret < 0) {
1602         fprintf(stderr, "rdma migration: send polling control error!\n");
1603     }
1604
1605     return ret;
1606 }
1607
1608 /*
1609  * Post a RECV work request in anticipation of some future receipt
1610  * of data on the control channel.
1611  */
1612 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1613 {
1614     struct ibv_recv_wr *bad_wr;
1615     struct ibv_sge sge = {
1616                             .addr = (uint64_t)(rdma->wr_data[idx].control),
1617                             .length = RDMA_CONTROL_MAX_BUFFER,
1618                             .lkey = rdma->wr_data[idx].control_mr->lkey,
1619                          };
1620
1621     struct ibv_recv_wr recv_wr = {
1622                                     .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1623                                     .sg_list = &sge,
1624                                     .num_sge = 1,
1625                                  };
1626
1627
1628     if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1629         return -1;
1630     }
1631
1632     return 0;
1633 }
1634
1635 /*
1636  * Block and wait for a RECV control channel message to arrive.
1637  */
1638 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1639                 RDMAControlHeader *head, int expecting, int idx)
1640 {
1641     uint32_t byte_len;
1642     int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1643                                        &byte_len);
1644
1645     if (ret < 0) {
1646         fprintf(stderr, "rdma migration: recv polling control error!\n");
1647         return ret;
1648     }
1649
1650     network_to_control((void *) rdma->wr_data[idx].control);
1651     memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1652
1653     DDDPRINTF("CONTROL: %s receiving...\n", control_desc[expecting]);
1654
1655     if (expecting == RDMA_CONTROL_NONE) {
1656         DDDPRINTF("Surprise: got %s (%d)\n",
1657                   control_desc[head->type], head->type);
1658     } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1659         fprintf(stderr, "Was expecting a %s (%d) control message"
1660                 ", but got: %s (%d), length: %d\n",
1661                 control_desc[expecting], expecting,
1662                 control_desc[head->type], head->type, head->len);
1663         return -EIO;
1664     }
1665     if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1666         fprintf(stderr, "too long length: %d\n", head->len);
1667         return -EINVAL;
1668     }
1669     if (sizeof(*head) + head->len != byte_len) {
1670         fprintf(stderr, "Malformed length: %d byte_len %d\n",
1671                 head->len, byte_len);
1672         return -EINVAL;
1673     }
1674
1675     return 0;
1676 }
1677
1678 /*
1679  * When a RECV work request has completed, the work request's
1680  * buffer is pointed at the header.
1681  *
1682  * This will advance the pointer to the data portion
1683  * of the control message of the work request's buffer that
1684  * was populated after the work request finished.
1685  */
1686 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1687                                   RDMAControlHeader *head)
1688 {
1689     rdma->wr_data[idx].control_len = head->len;
1690     rdma->wr_data[idx].control_curr =
1691         rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1692 }
1693
1694 /*
1695  * This is an 'atomic' high-level operation to deliver a single, unified
1696  * control-channel message.
1697  *
1698  * Additionally, if the user is expecting some kind of reply to this message,
1699  * they can request a 'resp' response message be filled in by posting an
1700  * additional work request on behalf of the user and waiting for an additional
1701  * completion.
1702  *
1703  * The extra (optional) response is used during registration to us from having
1704  * to perform an *additional* exchange of message just to provide a response by
1705  * instead piggy-backing on the acknowledgement.
1706  */
1707 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1708                                    uint8_t *data, RDMAControlHeader *resp,
1709                                    int *resp_idx,
1710                                    int (*callback)(RDMAContext *rdma))
1711 {
1712     int ret = 0;
1713
1714     /*
1715      * Wait until the dest is ready before attempting to deliver the message
1716      * by waiting for a READY message.
1717      */
1718     if (rdma->control_ready_expected) {
1719         RDMAControlHeader resp;
1720         ret = qemu_rdma_exchange_get_response(rdma,
1721                                     &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1722         if (ret < 0) {
1723             return ret;
1724         }
1725     }
1726
1727     /*
1728      * If the user is expecting a response, post a WR in anticipation of it.
1729      */
1730     if (resp) {
1731         ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1732         if (ret) {
1733             fprintf(stderr, "rdma migration: error posting"
1734                     " extra control recv for anticipated result!");
1735             return ret;
1736         }
1737     }
1738
1739     /*
1740      * Post a WR to replace the one we just consumed for the READY message.
1741      */
1742     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1743     if (ret) {
1744         fprintf(stderr, "rdma migration: error posting first control recv!");
1745         return ret;
1746     }
1747
1748     /*
1749      * Deliver the control message that was requested.
1750      */
1751     ret = qemu_rdma_post_send_control(rdma, data, head);
1752
1753     if (ret < 0) {
1754         fprintf(stderr, "Failed to send control buffer!\n");
1755         return ret;
1756     }
1757
1758     /*
1759      * If we're expecting a response, block and wait for it.
1760      */
1761     if (resp) {
1762         if (callback) {
1763             DDPRINTF("Issuing callback before receiving response...\n");
1764             ret = callback(rdma);
1765             if (ret < 0) {
1766                 return ret;
1767             }
1768         }
1769
1770         DDPRINTF("Waiting for response %s\n", control_desc[resp->type]);
1771         ret = qemu_rdma_exchange_get_response(rdma, resp,
1772                                               resp->type, RDMA_WRID_DATA);
1773
1774         if (ret < 0) {
1775             return ret;
1776         }
1777
1778         qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1779         if (resp_idx) {
1780             *resp_idx = RDMA_WRID_DATA;
1781         }
1782         DDPRINTF("Response %s received.\n", control_desc[resp->type]);
1783     }
1784
1785     rdma->control_ready_expected = 1;
1786
1787     return 0;
1788 }
1789
1790 /*
1791  * This is an 'atomic' high-level operation to receive a single, unified
1792  * control-channel message.
1793  */
1794 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1795                                 int expecting)
1796 {
1797     RDMAControlHeader ready = {
1798                                 .len = 0,
1799                                 .type = RDMA_CONTROL_READY,
1800                                 .repeat = 1,
1801                               };
1802     int ret;
1803
1804     /*
1805      * Inform the source that we're ready to receive a message.
1806      */
1807     ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1808
1809     if (ret < 0) {
1810         fprintf(stderr, "Failed to send control buffer!\n");
1811         return ret;
1812     }
1813
1814     /*
1815      * Block and wait for the message.
1816      */
1817     ret = qemu_rdma_exchange_get_response(rdma, head,
1818                                           expecting, RDMA_WRID_READY);
1819
1820     if (ret < 0) {
1821         return ret;
1822     }
1823
1824     qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1825
1826     /*
1827      * Post a new RECV work request to replace the one we just consumed.
1828      */
1829     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1830     if (ret) {
1831         fprintf(stderr, "rdma migration: error posting second control recv!");
1832         return ret;
1833     }
1834
1835     return 0;
1836 }
1837
1838 /*
1839  * Write an actual chunk of memory using RDMA.
1840  *
1841  * If we're using dynamic registration on the dest-side, we have to
1842  * send a registration command first.
1843  */
1844 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1845                                int current_index, uint64_t current_addr,
1846                                uint64_t length)
1847 {
1848     struct ibv_sge sge;
1849     struct ibv_send_wr send_wr = { 0 };
1850     struct ibv_send_wr *bad_wr;
1851     int reg_result_idx, ret, count = 0;
1852     uint64_t chunk, chunks;
1853     uint8_t *chunk_start, *chunk_end;
1854     RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1855     RDMARegister reg;
1856     RDMARegisterResult *reg_result;
1857     RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1858     RDMAControlHeader head = { .len = sizeof(RDMARegister),
1859                                .type = RDMA_CONTROL_REGISTER_REQUEST,
1860                                .repeat = 1,
1861                              };
1862
1863 retry:
1864     sge.addr = (uint64_t)(block->local_host_addr +
1865                             (current_addr - block->offset));
1866     sge.length = length;
1867
1868     chunk = ram_chunk_index(block->local_host_addr, (uint8_t *) sge.addr);
1869     chunk_start = ram_chunk_start(block, chunk);
1870
1871     if (block->is_ram_block) {
1872         chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1873
1874         if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1875             chunks--;
1876         }
1877     } else {
1878         chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1879
1880         if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1881             chunks--;
1882         }
1883     }
1884
1885     DDPRINTF("Writing %" PRIu64 " chunks, (%" PRIu64 " MB)\n",
1886         chunks + 1, (chunks + 1) * (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1887
1888     chunk_end = ram_chunk_end(block, chunk + chunks);
1889
1890     if (!rdma->pin_all) {
1891 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1892         qemu_rdma_unregister_waiting(rdma);
1893 #endif
1894     }
1895
1896     while (test_bit(chunk, block->transit_bitmap)) {
1897         (void)count;
1898         DDPRINTF("(%d) Not clobbering: block: %d chunk %" PRIu64
1899                 " current %" PRIu64 " len %" PRIu64 " %d %d\n",
1900                 count++, current_index, chunk,
1901                 sge.addr, length, rdma->nb_sent, block->nb_chunks);
1902
1903         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
1904
1905         if (ret < 0) {
1906             fprintf(stderr, "Failed to Wait for previous write to complete "
1907                     "block %d chunk %" PRIu64
1908                     " current %" PRIu64 " len %" PRIu64 " %d\n",
1909                     current_index, chunk, sge.addr, length, rdma->nb_sent);
1910             return ret;
1911         }
1912     }
1913
1914     if (!rdma->pin_all || !block->is_ram_block) {
1915         if (!block->remote_keys[chunk]) {
1916             /*
1917              * This chunk has not yet been registered, so first check to see
1918              * if the entire chunk is zero. If so, tell the other size to
1919              * memset() + madvise() the entire chunk without RDMA.
1920              */
1921
1922             if (can_use_buffer_find_nonzero_offset((void *)sge.addr, length)
1923                    && buffer_find_nonzero_offset((void *)sge.addr,
1924                                                     length) == length) {
1925                 RDMACompress comp = {
1926                                         .offset = current_addr,
1927                                         .value = 0,
1928                                         .block_idx = current_index,
1929                                         .length = length,
1930                                     };
1931
1932                 head.len = sizeof(comp);
1933                 head.type = RDMA_CONTROL_COMPRESS;
1934
1935                 DDPRINTF("Entire chunk is zero, sending compress: %"
1936                     PRIu64 " for %d "
1937                     "bytes, index: %d, offset: %" PRId64 "...\n",
1938                     chunk, sge.length, current_index, current_addr);
1939
1940                 compress_to_network(&comp);
1941                 ret = qemu_rdma_exchange_send(rdma, &head,
1942                                 (uint8_t *) &comp, NULL, NULL, NULL);
1943
1944                 if (ret < 0) {
1945                     return -EIO;
1946                 }
1947
1948                 acct_update_position(f, sge.length, true);
1949
1950                 return 1;
1951             }
1952
1953             /*
1954              * Otherwise, tell other side to register.
1955              */
1956             reg.current_index = current_index;
1957             if (block->is_ram_block) {
1958                 reg.key.current_addr = current_addr;
1959             } else {
1960                 reg.key.chunk = chunk;
1961             }
1962             reg.chunks = chunks;
1963
1964             DDPRINTF("Sending registration request chunk %" PRIu64 " for %d "
1965                     "bytes, index: %d, offset: %" PRId64 "...\n",
1966                     chunk, sge.length, current_index, current_addr);
1967
1968             register_to_network(&reg);
1969             ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1970                                     &resp, &reg_result_idx, NULL);
1971             if (ret < 0) {
1972                 return ret;
1973             }
1974
1975             /* try to overlap this single registration with the one we sent. */
1976             if (qemu_rdma_register_and_get_keys(rdma, block,
1977                                                 (uint8_t *) sge.addr,
1978                                                 &sge.lkey, NULL, chunk,
1979                                                 chunk_start, chunk_end)) {
1980                 fprintf(stderr, "cannot get lkey!\n");
1981                 return -EINVAL;
1982             }
1983
1984             reg_result = (RDMARegisterResult *)
1985                     rdma->wr_data[reg_result_idx].control_curr;
1986
1987             network_to_result(reg_result);
1988
1989             DDPRINTF("Received registration result:"
1990                     " my key: %x their key %x, chunk %" PRIu64 "\n",
1991                     block->remote_keys[chunk], reg_result->rkey, chunk);
1992
1993             block->remote_keys[chunk] = reg_result->rkey;
1994             block->remote_host_addr = reg_result->host_addr;
1995         } else {
1996             /* already registered before */
1997             if (qemu_rdma_register_and_get_keys(rdma, block,
1998                                                 (uint8_t *)sge.addr,
1999                                                 &sge.lkey, NULL, chunk,
2000                                                 chunk_start, chunk_end)) {
2001                 fprintf(stderr, "cannot get lkey!\n");
2002                 return -EINVAL;
2003             }
2004         }
2005
2006         send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2007     } else {
2008         send_wr.wr.rdma.rkey = block->remote_rkey;
2009
2010         if (qemu_rdma_register_and_get_keys(rdma, block, (uint8_t *)sge.addr,
2011                                                      &sge.lkey, NULL, chunk,
2012                                                      chunk_start, chunk_end)) {
2013             fprintf(stderr, "cannot get lkey!\n");
2014             return -EINVAL;
2015         }
2016     }
2017
2018     /*
2019      * Encode the ram block index and chunk within this wrid.
2020      * We will use this information at the time of completion
2021      * to figure out which bitmap to check against and then which
2022      * chunk in the bitmap to look for.
2023      */
2024     send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2025                                         current_index, chunk);
2026
2027     send_wr.opcode = IBV_WR_RDMA_WRITE;
2028     send_wr.send_flags = IBV_SEND_SIGNALED;
2029     send_wr.sg_list = &sge;
2030     send_wr.num_sge = 1;
2031     send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2032                                 (current_addr - block->offset);
2033
2034     DDDPRINTF("Posting chunk: %" PRIu64 ", addr: %lx"
2035               " remote: %lx, bytes %" PRIu32 "\n",
2036               chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2037               sge.length);
2038
2039     /*
2040      * ibv_post_send() does not return negative error numbers,
2041      * per the specification they are positive - no idea why.
2042      */
2043     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2044
2045     if (ret == ENOMEM) {
2046         DDPRINTF("send queue is full. wait a little....\n");
2047         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2048         if (ret < 0) {
2049             fprintf(stderr, "rdma migration: failed to make "
2050                             "room in full send queue! %d\n", ret);
2051             return ret;
2052         }
2053
2054         goto retry;
2055
2056     } else if (ret > 0) {
2057         perror("rdma migration: post rdma write failed");
2058         return -ret;
2059     }
2060
2061     set_bit(chunk, block->transit_bitmap);
2062     acct_update_position(f, sge.length, false);
2063     rdma->total_writes++;
2064
2065     return 0;
2066 }
2067
2068 /*
2069  * Push out any unwritten RDMA operations.
2070  *
2071  * We support sending out multiple chunks at the same time.
2072  * Not all of them need to get signaled in the completion queue.
2073  */
2074 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2075 {
2076     int ret;
2077
2078     if (!rdma->current_length) {
2079         return 0;
2080     }
2081
2082     ret = qemu_rdma_write_one(f, rdma,
2083             rdma->current_index, rdma->current_addr, rdma->current_length);
2084
2085     if (ret < 0) {
2086         return ret;
2087     }
2088
2089     if (ret == 0) {
2090         rdma->nb_sent++;
2091         DDDPRINTF("sent total: %d\n", rdma->nb_sent);
2092     }
2093
2094     rdma->current_length = 0;
2095     rdma->current_addr = 0;
2096
2097     return 0;
2098 }
2099
2100 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2101                     uint64_t offset, uint64_t len)
2102 {
2103     RDMALocalBlock *block;
2104     uint8_t *host_addr;
2105     uint8_t *chunk_end;
2106
2107     if (rdma->current_index < 0) {
2108         return 0;
2109     }
2110
2111     if (rdma->current_chunk < 0) {
2112         return 0;
2113     }
2114
2115     block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2116     host_addr = block->local_host_addr + (offset - block->offset);
2117     chunk_end = ram_chunk_end(block, rdma->current_chunk);
2118
2119     if (rdma->current_length == 0) {
2120         return 0;
2121     }
2122
2123     /*
2124      * Only merge into chunk sequentially.
2125      */
2126     if (offset != (rdma->current_addr + rdma->current_length)) {
2127         return 0;
2128     }
2129
2130     if (offset < block->offset) {
2131         return 0;
2132     }
2133
2134     if ((offset + len) > (block->offset + block->length)) {
2135         return 0;
2136     }
2137
2138     if ((host_addr + len) > chunk_end) {
2139         return 0;
2140     }
2141
2142     return 1;
2143 }
2144
2145 /*
2146  * We're not actually writing here, but doing three things:
2147  *
2148  * 1. Identify the chunk the buffer belongs to.
2149  * 2. If the chunk is full or the buffer doesn't belong to the current
2150  *    chunk, then start a new chunk and flush() the old chunk.
2151  * 3. To keep the hardware busy, we also group chunks into batches
2152  *    and only require that a batch gets acknowledged in the completion
2153  *    qeueue instead of each individual chunk.
2154  */
2155 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2156                            uint64_t block_offset, uint64_t offset,
2157                            uint64_t len)
2158 {
2159     uint64_t current_addr = block_offset + offset;
2160     uint64_t index = rdma->current_index;
2161     uint64_t chunk = rdma->current_chunk;
2162     int ret;
2163
2164     /* If we cannot merge it, we flush the current buffer first. */
2165     if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2166         ret = qemu_rdma_write_flush(f, rdma);
2167         if (ret) {
2168             return ret;
2169         }
2170         rdma->current_length = 0;
2171         rdma->current_addr = current_addr;
2172
2173         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2174                                          offset, len, &index, &chunk);
2175         if (ret) {
2176             fprintf(stderr, "ram block search failed\n");
2177             return ret;
2178         }
2179         rdma->current_index = index;
2180         rdma->current_chunk = chunk;
2181     }
2182
2183     /* merge it */
2184     rdma->current_length += len;
2185
2186     /* flush it if buffer is too large */
2187     if (rdma->current_length >= RDMA_MERGE_MAX) {
2188         return qemu_rdma_write_flush(f, rdma);
2189     }
2190
2191     return 0;
2192 }
2193
2194 static void qemu_rdma_cleanup(RDMAContext *rdma)
2195 {
2196     struct rdma_cm_event *cm_event;
2197     int ret, idx;
2198
2199     if (rdma->cm_id && rdma->connected) {
2200         if (rdma->error_state) {
2201             RDMAControlHeader head = { .len = 0,
2202                                        .type = RDMA_CONTROL_ERROR,
2203                                        .repeat = 1,
2204                                      };
2205             fprintf(stderr, "Early error. Sending error.\n");
2206             qemu_rdma_post_send_control(rdma, NULL, &head);
2207         }
2208
2209         ret = rdma_disconnect(rdma->cm_id);
2210         if (!ret) {
2211             DDPRINTF("waiting for disconnect\n");
2212             ret = rdma_get_cm_event(rdma->channel, &cm_event);
2213             if (!ret) {
2214                 rdma_ack_cm_event(cm_event);
2215             }
2216         }
2217         DDPRINTF("Disconnected.\n");
2218         rdma->connected = false;
2219     }
2220
2221     g_free(rdma->block);
2222     rdma->block = NULL;
2223
2224     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2225         if (rdma->wr_data[idx].control_mr) {
2226             rdma->total_registrations--;
2227             ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2228         }
2229         rdma->wr_data[idx].control_mr = NULL;
2230     }
2231
2232     if (rdma->local_ram_blocks.block) {
2233         while (rdma->local_ram_blocks.nb_blocks) {
2234             __qemu_rdma_delete_block(rdma,
2235                     rdma->local_ram_blocks.block->offset);
2236         }
2237     }
2238
2239     if (rdma->cq) {
2240         ibv_destroy_cq(rdma->cq);
2241         rdma->cq = NULL;
2242     }
2243     if (rdma->comp_channel) {
2244         ibv_destroy_comp_channel(rdma->comp_channel);
2245         rdma->comp_channel = NULL;
2246     }
2247     if (rdma->pd) {
2248         ibv_dealloc_pd(rdma->pd);
2249         rdma->pd = NULL;
2250     }
2251     if (rdma->listen_id) {
2252         rdma_destroy_id(rdma->listen_id);
2253         rdma->listen_id = NULL;
2254     }
2255     if (rdma->cm_id) {
2256         if (rdma->qp) {
2257             rdma_destroy_qp(rdma->cm_id);
2258             rdma->qp = NULL;
2259         }
2260         rdma_destroy_id(rdma->cm_id);
2261         rdma->cm_id = NULL;
2262     }
2263     if (rdma->channel) {
2264         rdma_destroy_event_channel(rdma->channel);
2265         rdma->channel = NULL;
2266     }
2267     g_free(rdma->host);
2268     rdma->host = NULL;
2269 }
2270
2271
2272 static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
2273 {
2274     int ret, idx;
2275     Error *local_err = NULL, **temp = &local_err;
2276
2277     /*
2278      * Will be validated against destination's actual capabilities
2279      * after the connect() completes.
2280      */
2281     rdma->pin_all = pin_all;
2282
2283     ret = qemu_rdma_resolve_host(rdma, temp);
2284     if (ret) {
2285         goto err_rdma_source_init;
2286     }
2287
2288     ret = qemu_rdma_alloc_pd_cq(rdma);
2289     if (ret) {
2290         ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2291                     " limits may be too low. Please check $ ulimit -a # and "
2292                     "search for 'ulimit -l' in the output");
2293         goto err_rdma_source_init;
2294     }
2295
2296     ret = qemu_rdma_alloc_qp(rdma);
2297     if (ret) {
2298         ERROR(temp, "rdma migration: error allocating qp!");
2299         goto err_rdma_source_init;
2300     }
2301
2302     ret = qemu_rdma_init_ram_blocks(rdma);
2303     if (ret) {
2304         ERROR(temp, "rdma migration: error initializing ram blocks!");
2305         goto err_rdma_source_init;
2306     }
2307
2308     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2309         ret = qemu_rdma_reg_control(rdma, idx);
2310         if (ret) {
2311             ERROR(temp, "rdma migration: error registering %d control!",
2312                                                             idx);
2313             goto err_rdma_source_init;
2314         }
2315     }
2316
2317     return 0;
2318
2319 err_rdma_source_init:
2320     error_propagate(errp, local_err);
2321     qemu_rdma_cleanup(rdma);
2322     return -1;
2323 }
2324
2325 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2326 {
2327     RDMACapabilities cap = {
2328                                 .version = RDMA_CONTROL_VERSION_CURRENT,
2329                                 .flags = 0,
2330                            };
2331     struct rdma_conn_param conn_param = { .initiator_depth = 2,
2332                                           .retry_count = 5,
2333                                           .private_data = &cap,
2334                                           .private_data_len = sizeof(cap),
2335                                         };
2336     struct rdma_cm_event *cm_event;
2337     int ret;
2338
2339     /*
2340      * Only negotiate the capability with destination if the user
2341      * on the source first requested the capability.
2342      */
2343     if (rdma->pin_all) {
2344         DPRINTF("Server pin-all memory requested.\n");
2345         cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2346     }
2347
2348     caps_to_network(&cap);
2349
2350     ret = rdma_connect(rdma->cm_id, &conn_param);
2351     if (ret) {
2352         perror("rdma_connect");
2353         ERROR(errp, "connecting to destination!");
2354         rdma_destroy_id(rdma->cm_id);
2355         rdma->cm_id = NULL;
2356         goto err_rdma_source_connect;
2357     }
2358
2359     ret = rdma_get_cm_event(rdma->channel, &cm_event);
2360     if (ret) {
2361         perror("rdma_get_cm_event after rdma_connect");
2362         ERROR(errp, "connecting to destination!");
2363         rdma_ack_cm_event(cm_event);
2364         rdma_destroy_id(rdma->cm_id);
2365         rdma->cm_id = NULL;
2366         goto err_rdma_source_connect;
2367     }
2368
2369     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2370         perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2371         ERROR(errp, "connecting to destination!");
2372         rdma_ack_cm_event(cm_event);
2373         rdma_destroy_id(rdma->cm_id);
2374         rdma->cm_id = NULL;
2375         goto err_rdma_source_connect;
2376     }
2377     rdma->connected = true;
2378
2379     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2380     network_to_caps(&cap);
2381
2382     /*
2383      * Verify that the *requested* capabilities are supported by the destination
2384      * and disable them otherwise.
2385      */
2386     if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2387         ERROR(errp, "Server cannot support pinning all memory. "
2388                         "Will register memory dynamically.");
2389         rdma->pin_all = false;
2390     }
2391
2392     DPRINTF("Pin all memory: %s\n", rdma->pin_all ? "enabled" : "disabled");
2393
2394     rdma_ack_cm_event(cm_event);
2395
2396     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2397     if (ret) {
2398         ERROR(errp, "posting second control recv!");
2399         goto err_rdma_source_connect;
2400     }
2401
2402     rdma->control_ready_expected = 1;
2403     rdma->nb_sent = 0;
2404     return 0;
2405
2406 err_rdma_source_connect:
2407     qemu_rdma_cleanup(rdma);
2408     return -1;
2409 }
2410
2411 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2412 {
2413     int ret = -EINVAL, idx;
2414     struct rdma_cm_id *listen_id;
2415     char ip[40] = "unknown";
2416     struct rdma_addrinfo *res;
2417     char port_str[16];
2418
2419     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2420         rdma->wr_data[idx].control_len = 0;
2421         rdma->wr_data[idx].control_curr = NULL;
2422     }
2423
2424     if (rdma->host == NULL) {
2425         ERROR(errp, "RDMA host is not set!");
2426         rdma->error_state = -EINVAL;
2427         return -1;
2428     }
2429     /* create CM channel */
2430     rdma->channel = rdma_create_event_channel();
2431     if (!rdma->channel) {
2432         ERROR(errp, "could not create rdma event channel");
2433         rdma->error_state = -EINVAL;
2434         return -1;
2435     }
2436
2437     /* create CM id */
2438     ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2439     if (ret) {
2440         ERROR(errp, "could not create cm_id!");
2441         goto err_dest_init_create_listen_id;
2442     }
2443
2444     snprintf(port_str, 16, "%d", rdma->port);
2445     port_str[15] = '\0';
2446
2447     if (rdma->host && strcmp("", rdma->host)) {
2448         struct rdma_addrinfo *e;
2449
2450         ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2451         if (ret < 0) {
2452             ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2453             goto err_dest_init_bind_addr;
2454         }
2455
2456         for (e = res; e != NULL; e = e->ai_next) {
2457             inet_ntop(e->ai_family,
2458                 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2459             DPRINTF("Trying %s => %s\n", rdma->host, ip);
2460             ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2461             if (!ret) {
2462                 if (e->ai_family == AF_INET6) {
2463                     ret = qemu_rdma_broken_ipv6_kernel(errp, listen_id->verbs);
2464                     if (ret) {
2465                         continue;
2466                     }
2467                 }
2468                     
2469                 goto listen;
2470             }
2471         }
2472
2473         ERROR(errp, "Error: could not rdma_bind_addr!");
2474         goto err_dest_init_bind_addr;
2475     } else {
2476         ERROR(errp, "migration host and port not specified!");
2477         ret = -EINVAL;
2478         goto err_dest_init_bind_addr;
2479     }
2480 listen:
2481
2482     rdma->listen_id = listen_id;
2483     qemu_rdma_dump_gid("dest_init", listen_id);
2484     return 0;
2485
2486 err_dest_init_bind_addr:
2487     rdma_destroy_id(listen_id);
2488 err_dest_init_create_listen_id:
2489     rdma_destroy_event_channel(rdma->channel);
2490     rdma->channel = NULL;
2491     rdma->error_state = ret;
2492     return ret;
2493
2494 }
2495
2496 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2497 {
2498     RDMAContext *rdma = NULL;
2499     InetSocketAddress *addr;
2500
2501     if (host_port) {
2502         rdma = g_malloc0(sizeof(RDMAContext));
2503         memset(rdma, 0, sizeof(RDMAContext));
2504         rdma->current_index = -1;
2505         rdma->current_chunk = -1;
2506
2507         addr = inet_parse(host_port, NULL);
2508         if (addr != NULL) {
2509             rdma->port = atoi(addr->port);
2510             rdma->host = g_strdup(addr->host);
2511         } else {
2512             ERROR(errp, "bad RDMA migration address '%s'", host_port);
2513             g_free(rdma);
2514             rdma = NULL;
2515         }
2516
2517         qapi_free_InetSocketAddress(addr);
2518     }
2519
2520     return rdma;
2521 }
2522
2523 /*
2524  * QEMUFile interface to the control channel.
2525  * SEND messages for control only.
2526  * pc.ram is handled with regular RDMA messages.
2527  */
2528 static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf,
2529                                 int64_t pos, int size)
2530 {
2531     QEMUFileRDMA *r = opaque;
2532     QEMUFile *f = r->file;
2533     RDMAContext *rdma = r->rdma;
2534     size_t remaining = size;
2535     uint8_t * data = (void *) buf;
2536     int ret;
2537
2538     CHECK_ERROR_STATE();
2539
2540     /*
2541      * Push out any writes that
2542      * we're queued up for pc.ram.
2543      */
2544     ret = qemu_rdma_write_flush(f, rdma);
2545     if (ret < 0) {
2546         rdma->error_state = ret;
2547         return ret;
2548     }
2549
2550     while (remaining) {
2551         RDMAControlHeader head;
2552
2553         r->len = MIN(remaining, RDMA_SEND_INCREMENT);
2554         remaining -= r->len;
2555
2556         head.len = r->len;
2557         head.type = RDMA_CONTROL_QEMU_FILE;
2558
2559         ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2560
2561         if (ret < 0) {
2562             rdma->error_state = ret;
2563             return ret;
2564         }
2565
2566         data += r->len;
2567     }
2568
2569     return size;
2570 }
2571
2572 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2573                              int size, int idx)
2574 {
2575     size_t len = 0;
2576
2577     if (rdma->wr_data[idx].control_len) {
2578         DDDPRINTF("RDMA %" PRId64 " of %d bytes already in buffer\n",
2579                     rdma->wr_data[idx].control_len, size);
2580
2581         len = MIN(size, rdma->wr_data[idx].control_len);
2582         memcpy(buf, rdma->wr_data[idx].control_curr, len);
2583         rdma->wr_data[idx].control_curr += len;
2584         rdma->wr_data[idx].control_len -= len;
2585     }
2586
2587     return len;
2588 }
2589
2590 /*
2591  * QEMUFile interface to the control channel.
2592  * RDMA links don't use bytestreams, so we have to
2593  * return bytes to QEMUFile opportunistically.
2594  */
2595 static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf,
2596                                 int64_t pos, int size)
2597 {
2598     QEMUFileRDMA *r = opaque;
2599     RDMAContext *rdma = r->rdma;
2600     RDMAControlHeader head;
2601     int ret = 0;
2602
2603     CHECK_ERROR_STATE();
2604
2605     /*
2606      * First, we hold on to the last SEND message we
2607      * were given and dish out the bytes until we run
2608      * out of bytes.
2609      */
2610     r->len = qemu_rdma_fill(r->rdma, buf, size, 0);
2611     if (r->len) {
2612         return r->len;
2613     }
2614
2615     /*
2616      * Once we run out, we block and wait for another
2617      * SEND message to arrive.
2618      */
2619     ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2620
2621     if (ret < 0) {
2622         rdma->error_state = ret;
2623         return ret;
2624     }
2625
2626     /*
2627      * SEND was received with new bytes, now try again.
2628      */
2629     return qemu_rdma_fill(r->rdma, buf, size, 0);
2630 }
2631
2632 /*
2633  * Block until all the outstanding chunks have been delivered by the hardware.
2634  */
2635 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2636 {
2637     int ret;
2638
2639     if (qemu_rdma_write_flush(f, rdma) < 0) {
2640         return -EIO;
2641     }
2642
2643     while (rdma->nb_sent) {
2644         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2645         if (ret < 0) {
2646             fprintf(stderr, "rdma migration: complete polling error!\n");
2647             return -EIO;
2648         }
2649     }
2650
2651     qemu_rdma_unregister_waiting(rdma);
2652
2653     return 0;
2654 }
2655
2656 static int qemu_rdma_close(void *opaque)
2657 {
2658     DPRINTF("Shutting down connection.\n");
2659     QEMUFileRDMA *r = opaque;
2660     if (r->rdma) {
2661         qemu_rdma_cleanup(r->rdma);
2662         g_free(r->rdma);
2663     }
2664     g_free(r);
2665     return 0;
2666 }
2667
2668 /*
2669  * Parameters:
2670  *    @offset == 0 :
2671  *        This means that 'block_offset' is a full virtual address that does not
2672  *        belong to a RAMBlock of the virtual machine and instead
2673  *        represents a private malloc'd memory area that the caller wishes to
2674  *        transfer.
2675  *
2676  *    @offset != 0 :
2677  *        Offset is an offset to be added to block_offset and used
2678  *        to also lookup the corresponding RAMBlock.
2679  *
2680  *    @size > 0 :
2681  *        Initiate an transfer this size.
2682  *
2683  *    @size == 0 :
2684  *        A 'hint' or 'advice' that means that we wish to speculatively
2685  *        and asynchronously unregister this memory. In this case, there is no
2686  *        guarantee that the unregister will actually happen, for example,
2687  *        if the memory is being actively transmitted. Additionally, the memory
2688  *        may be re-registered at any future time if a write within the same
2689  *        chunk was requested again, even if you attempted to unregister it
2690  *        here.
2691  *
2692  *    @size < 0 : TODO, not yet supported
2693  *        Unregister the memory NOW. This means that the caller does not
2694  *        expect there to be any future RDMA transfers and we just want to clean
2695  *        things up. This is used in case the upper layer owns the memory and
2696  *        cannot wait for qemu_fclose() to occur.
2697  *
2698  *    @bytes_sent : User-specificed pointer to indicate how many bytes were
2699  *                  sent. Usually, this will not be more than a few bytes of
2700  *                  the protocol because most transfers are sent asynchronously.
2701  */
2702 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2703                                   ram_addr_t block_offset, ram_addr_t offset,
2704                                   size_t size, int *bytes_sent)
2705 {
2706     QEMUFileRDMA *rfile = opaque;
2707     RDMAContext *rdma = rfile->rdma;
2708     int ret;
2709
2710     CHECK_ERROR_STATE();
2711
2712     qemu_fflush(f);
2713
2714     if (size > 0) {
2715         /*
2716          * Add this page to the current 'chunk'. If the chunk
2717          * is full, or the page doen't belong to the current chunk,
2718          * an actual RDMA write will occur and a new chunk will be formed.
2719          */
2720         ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2721         if (ret < 0) {
2722             fprintf(stderr, "rdma migration: write error! %d\n", ret);
2723             goto err;
2724         }
2725
2726         /*
2727          * We always return 1 bytes because the RDMA
2728          * protocol is completely asynchronous. We do not yet know
2729          * whether an  identified chunk is zero or not because we're
2730          * waiting for other pages to potentially be merged with
2731          * the current chunk. So, we have to call qemu_update_position()
2732          * later on when the actual write occurs.
2733          */
2734         if (bytes_sent) {
2735             *bytes_sent = 1;
2736         }
2737     } else {
2738         uint64_t index, chunk;
2739
2740         /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2741         if (size < 0) {
2742             ret = qemu_rdma_drain_cq(f, rdma);
2743             if (ret < 0) {
2744                 fprintf(stderr, "rdma: failed to synchronously drain"
2745                                 " completion queue before unregistration.\n");
2746                 goto err;
2747             }
2748         }
2749         */
2750
2751         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2752                                          offset, size, &index, &chunk);
2753
2754         if (ret) {
2755             fprintf(stderr, "ram block search failed\n");
2756             goto err;
2757         }
2758
2759         qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2760
2761         /*
2762          * TODO: Synchronous, guaranteed unregistration (should not occur during
2763          * fast-path). Otherwise, unregisters will process on the next call to
2764          * qemu_rdma_drain_cq()
2765         if (size < 0) {
2766             qemu_rdma_unregister_waiting(rdma);
2767         }
2768         */
2769     }
2770
2771     /*
2772      * Drain the Completion Queue if possible, but do not block,
2773      * just poll.
2774      *
2775      * If nothing to poll, the end of the iteration will do this
2776      * again to make sure we don't overflow the request queue.
2777      */
2778     while (1) {
2779         uint64_t wr_id, wr_id_in;
2780         int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
2781         if (ret < 0) {
2782             fprintf(stderr, "rdma migration: polling error! %d\n", ret);
2783             goto err;
2784         }
2785
2786         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
2787
2788         if (wr_id == RDMA_WRID_NONE) {
2789             break;
2790         }
2791     }
2792
2793     return RAM_SAVE_CONTROL_DELAYED;
2794 err:
2795     rdma->error_state = ret;
2796     return ret;
2797 }
2798
2799 static int qemu_rdma_accept(RDMAContext *rdma)
2800 {
2801     RDMACapabilities cap;
2802     struct rdma_conn_param conn_param = {
2803                                             .responder_resources = 2,
2804                                             .private_data = &cap,
2805                                             .private_data_len = sizeof(cap),
2806                                          };
2807     struct rdma_cm_event *cm_event;
2808     struct ibv_context *verbs;
2809     int ret = -EINVAL;
2810     int idx;
2811
2812     ret = rdma_get_cm_event(rdma->channel, &cm_event);
2813     if (ret) {
2814         goto err_rdma_dest_wait;
2815     }
2816
2817     if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
2818         rdma_ack_cm_event(cm_event);
2819         goto err_rdma_dest_wait;
2820     }
2821
2822     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2823
2824     network_to_caps(&cap);
2825
2826     if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
2827             fprintf(stderr, "Unknown source RDMA version: %d, bailing...\n",
2828                             cap.version);
2829             rdma_ack_cm_event(cm_event);
2830             goto err_rdma_dest_wait;
2831     }
2832
2833     /*
2834      * Respond with only the capabilities this version of QEMU knows about.
2835      */
2836     cap.flags &= known_capabilities;
2837
2838     /*
2839      * Enable the ones that we do know about.
2840      * Add other checks here as new ones are introduced.
2841      */
2842     if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
2843         rdma->pin_all = true;
2844     }
2845
2846     rdma->cm_id = cm_event->id;
2847     verbs = cm_event->id->verbs;
2848
2849     rdma_ack_cm_event(cm_event);
2850
2851     DPRINTF("Memory pin all: %s\n", rdma->pin_all ? "enabled" : "disabled");
2852
2853     caps_to_network(&cap);
2854
2855     DPRINTF("verbs context after listen: %p\n", verbs);
2856
2857     if (!rdma->verbs) {
2858         rdma->verbs = verbs;
2859     } else if (rdma->verbs != verbs) {
2860             fprintf(stderr, "ibv context not matching %p, %p!\n",
2861                     rdma->verbs, verbs);
2862             goto err_rdma_dest_wait;
2863     }
2864
2865     qemu_rdma_dump_id("dest_init", verbs);
2866
2867     ret = qemu_rdma_alloc_pd_cq(rdma);
2868     if (ret) {
2869         fprintf(stderr, "rdma migration: error allocating pd and cq!\n");
2870         goto err_rdma_dest_wait;
2871     }
2872
2873     ret = qemu_rdma_alloc_qp(rdma);
2874     if (ret) {
2875         fprintf(stderr, "rdma migration: error allocating qp!\n");
2876         goto err_rdma_dest_wait;
2877     }
2878
2879     ret = qemu_rdma_init_ram_blocks(rdma);
2880     if (ret) {
2881         fprintf(stderr, "rdma migration: error initializing ram blocks!\n");
2882         goto err_rdma_dest_wait;
2883     }
2884
2885     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2886         ret = qemu_rdma_reg_control(rdma, idx);
2887         if (ret) {
2888             fprintf(stderr, "rdma: error registering %d control!\n", idx);
2889             goto err_rdma_dest_wait;
2890         }
2891     }
2892
2893     qemu_set_fd_handler2(rdma->channel->fd, NULL, NULL, NULL, NULL);
2894
2895     ret = rdma_accept(rdma->cm_id, &conn_param);
2896     if (ret) {
2897         fprintf(stderr, "rdma_accept returns %d!\n", ret);
2898         goto err_rdma_dest_wait;
2899     }
2900
2901     ret = rdma_get_cm_event(rdma->channel, &cm_event);
2902     if (ret) {
2903         fprintf(stderr, "rdma_accept get_cm_event failed %d!\n", ret);
2904         goto err_rdma_dest_wait;
2905     }
2906
2907     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2908         fprintf(stderr, "rdma_accept not event established!\n");
2909         rdma_ack_cm_event(cm_event);
2910         goto err_rdma_dest_wait;
2911     }
2912
2913     rdma_ack_cm_event(cm_event);
2914     rdma->connected = true;
2915
2916     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2917     if (ret) {
2918         fprintf(stderr, "rdma migration: error posting second control recv!\n");
2919         goto err_rdma_dest_wait;
2920     }
2921
2922     qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
2923
2924     return 0;
2925
2926 err_rdma_dest_wait:
2927     rdma->error_state = ret;
2928     qemu_rdma_cleanup(rdma);
2929     return ret;
2930 }
2931
2932 /*
2933  * During each iteration of the migration, we listen for instructions
2934  * by the source VM to perform dynamic page registrations before they
2935  * can perform RDMA operations.
2936  *
2937  * We respond with the 'rkey'.
2938  *
2939  * Keep doing this until the source tells us to stop.
2940  */
2941 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque,
2942                                          uint64_t flags)
2943 {
2944     RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
2945                                .type = RDMA_CONTROL_REGISTER_RESULT,
2946                                .repeat = 0,
2947                              };
2948     RDMAControlHeader unreg_resp = { .len = 0,
2949                                .type = RDMA_CONTROL_UNREGISTER_FINISHED,
2950                                .repeat = 0,
2951                              };
2952     RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
2953                                  .repeat = 1 };
2954     QEMUFileRDMA *rfile = opaque;
2955     RDMAContext *rdma = rfile->rdma;
2956     RDMALocalBlocks *local = &rdma->local_ram_blocks;
2957     RDMAControlHeader head;
2958     RDMARegister *reg, *registers;
2959     RDMACompress *comp;
2960     RDMARegisterResult *reg_result;
2961     static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
2962     RDMALocalBlock *block;
2963     void *host_addr;
2964     int ret = 0;
2965     int idx = 0;
2966     int count = 0;
2967     int i = 0;
2968
2969     CHECK_ERROR_STATE();
2970
2971     do {
2972         DDDPRINTF("Waiting for next request %" PRIu64 "...\n", flags);
2973
2974         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
2975
2976         if (ret < 0) {
2977             break;
2978         }
2979
2980         if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
2981             fprintf(stderr, "rdma: Too many requests in this message (%d)."
2982                             "Bailing.\n", head.repeat);
2983             ret = -EIO;
2984             break;
2985         }
2986
2987         switch (head.type) {
2988         case RDMA_CONTROL_COMPRESS:
2989             comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
2990             network_to_compress(comp);
2991
2992             DDPRINTF("Zapping zero chunk: %" PRId64
2993                     " bytes, index %d, offset %" PRId64 "\n",
2994                     comp->length, comp->block_idx, comp->offset);
2995             block = &(rdma->local_ram_blocks.block[comp->block_idx]);
2996
2997             host_addr = block->local_host_addr +
2998                             (comp->offset - block->offset);
2999
3000             ram_handle_compressed(host_addr, comp->value, comp->length);
3001             break;
3002
3003         case RDMA_CONTROL_REGISTER_FINISHED:
3004             DDDPRINTF("Current registrations complete.\n");
3005             goto out;
3006
3007         case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3008             DPRINTF("Initial setup info requested.\n");
3009
3010             if (rdma->pin_all) {
3011                 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3012                 if (ret) {
3013                     fprintf(stderr, "rdma migration: error dest "
3014                                     "registering ram blocks!\n");
3015                     goto out;
3016                 }
3017             }
3018
3019             /*
3020              * Dest uses this to prepare to transmit the RAMBlock descriptions
3021              * to the source VM after connection setup.
3022              * Both sides use the "remote" structure to communicate and update
3023              * their "local" descriptions with what was sent.
3024              */
3025             for (i = 0; i < local->nb_blocks; i++) {
3026                 rdma->block[i].remote_host_addr =
3027                     (uint64_t)(local->block[i].local_host_addr);
3028
3029                 if (rdma->pin_all) {
3030                     rdma->block[i].remote_rkey = local->block[i].mr->rkey;
3031                 }
3032
3033                 rdma->block[i].offset = local->block[i].offset;
3034                 rdma->block[i].length = local->block[i].length;
3035
3036                 remote_block_to_network(&rdma->block[i]);
3037             }
3038
3039             blocks.len = rdma->local_ram_blocks.nb_blocks
3040                                                 * sizeof(RDMARemoteBlock);
3041
3042
3043             ret = qemu_rdma_post_send_control(rdma,
3044                                         (uint8_t *) rdma->block, &blocks);
3045
3046             if (ret < 0) {
3047                 fprintf(stderr, "rdma migration: error sending remote info!\n");
3048                 goto out;
3049             }
3050
3051             break;
3052         case RDMA_CONTROL_REGISTER_REQUEST:
3053             DDPRINTF("There are %d registration requests\n", head.repeat);
3054
3055             reg_resp.repeat = head.repeat;
3056             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3057
3058             for (count = 0; count < head.repeat; count++) {
3059                 uint64_t chunk;
3060                 uint8_t *chunk_start, *chunk_end;
3061
3062                 reg = &registers[count];
3063                 network_to_register(reg);
3064
3065                 reg_result = &results[count];
3066
3067                 DDPRINTF("Registration request (%d): index %d, current_addr %"
3068                          PRIu64 " chunks: %" PRIu64 "\n", count,
3069                          reg->current_index, reg->key.current_addr, reg->chunks);
3070
3071                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3072                 if (block->is_ram_block) {
3073                     host_addr = (block->local_host_addr +
3074                                 (reg->key.current_addr - block->offset));
3075                     chunk = ram_chunk_index(block->local_host_addr,
3076                                             (uint8_t *) host_addr);
3077                 } else {
3078                     chunk = reg->key.chunk;
3079                     host_addr = block->local_host_addr +
3080                         (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3081                 }
3082                 chunk_start = ram_chunk_start(block, chunk);
3083                 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3084                 if (qemu_rdma_register_and_get_keys(rdma, block,
3085                             (uint8_t *)host_addr, NULL, &reg_result->rkey,
3086                             chunk, chunk_start, chunk_end)) {
3087                     fprintf(stderr, "cannot get rkey!\n");
3088                     ret = -EINVAL;
3089                     goto out;
3090                 }
3091
3092                 reg_result->host_addr = (uint64_t) block->local_host_addr;
3093
3094                 DDPRINTF("Registered rkey for this request: %x\n",
3095                                 reg_result->rkey);
3096
3097                 result_to_network(reg_result);
3098             }
3099
3100             ret = qemu_rdma_post_send_control(rdma,
3101                             (uint8_t *) results, &reg_resp);
3102
3103             if (ret < 0) {
3104                 fprintf(stderr, "Failed to send control buffer!\n");
3105                 goto out;
3106             }
3107             break;
3108         case RDMA_CONTROL_UNREGISTER_REQUEST:
3109             DDPRINTF("There are %d unregistration requests\n", head.repeat);
3110             unreg_resp.repeat = head.repeat;
3111             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3112
3113             for (count = 0; count < head.repeat; count++) {
3114                 reg = &registers[count];
3115                 network_to_register(reg);
3116
3117                 DDPRINTF("Unregistration request (%d): "
3118                          " index %d, chunk %" PRIu64 "\n",
3119                          count, reg->current_index, reg->key.chunk);
3120
3121                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3122
3123                 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3124                 block->pmr[reg->key.chunk] = NULL;
3125
3126                 if (ret != 0) {
3127                     perror("rdma unregistration chunk failed");
3128                     ret = -ret;
3129                     goto out;
3130                 }
3131
3132                 rdma->total_registrations--;
3133
3134                 DDPRINTF("Unregistered chunk %" PRIu64 " successfully.\n",
3135                             reg->key.chunk);
3136             }
3137
3138             ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3139
3140             if (ret < 0) {
3141                 fprintf(stderr, "Failed to send control buffer!\n");
3142                 goto out;
3143             }
3144             break;
3145         case RDMA_CONTROL_REGISTER_RESULT:
3146             fprintf(stderr, "Invalid RESULT message at dest.\n");
3147             ret = -EIO;
3148             goto out;
3149         default:
3150             fprintf(stderr, "Unknown control message %s\n",
3151                                 control_desc[head.type]);
3152             ret = -EIO;
3153             goto out;
3154         }
3155     } while (1);
3156 out:
3157     if (ret < 0) {
3158         rdma->error_state = ret;
3159     }
3160     return ret;
3161 }
3162
3163 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3164                                         uint64_t flags)
3165 {
3166     QEMUFileRDMA *rfile = opaque;
3167     RDMAContext *rdma = rfile->rdma;
3168
3169     CHECK_ERROR_STATE();
3170
3171     DDDPRINTF("start section: %" PRIu64 "\n", flags);
3172     qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3173     qemu_fflush(f);
3174
3175     return 0;
3176 }
3177
3178 /*
3179  * Inform dest that dynamic registrations are done for now.
3180  * First, flush writes, if any.
3181  */
3182 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3183                                        uint64_t flags)
3184 {
3185     Error *local_err = NULL, **errp = &local_err;
3186     QEMUFileRDMA *rfile = opaque;
3187     RDMAContext *rdma = rfile->rdma;
3188     RDMAControlHeader head = { .len = 0, .repeat = 1 };
3189     int ret = 0;
3190
3191     CHECK_ERROR_STATE();
3192
3193     qemu_fflush(f);
3194     ret = qemu_rdma_drain_cq(f, rdma);
3195
3196     if (ret < 0) {
3197         goto err;
3198     }
3199
3200     if (flags == RAM_CONTROL_SETUP) {
3201         RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3202         RDMALocalBlocks *local = &rdma->local_ram_blocks;
3203         int reg_result_idx, i, j, nb_remote_blocks;
3204
3205         head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3206         DPRINTF("Sending registration setup for ram blocks...\n");
3207
3208         /*
3209          * Make sure that we parallelize the pinning on both sides.
3210          * For very large guests, doing this serially takes a really
3211          * long time, so we have to 'interleave' the pinning locally
3212          * with the control messages by performing the pinning on this
3213          * side before we receive the control response from the other
3214          * side that the pinning has completed.
3215          */
3216         ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3217                     &reg_result_idx, rdma->pin_all ?
3218                     qemu_rdma_reg_whole_ram_blocks : NULL);
3219         if (ret < 0) {
3220             ERROR(errp, "receiving remote info!");
3221             return ret;
3222         }
3223
3224         nb_remote_blocks = resp.len / sizeof(RDMARemoteBlock);
3225
3226         /*
3227          * The protocol uses two different sets of rkeys (mutually exclusive):
3228          * 1. One key to represent the virtual address of the entire ram block.
3229          *    (dynamic chunk registration disabled - pin everything with one rkey.)
3230          * 2. One to represent individual chunks within a ram block.
3231          *    (dynamic chunk registration enabled - pin individual chunks.)
3232          *
3233          * Once the capability is successfully negotiated, the destination transmits
3234          * the keys to use (or sends them later) including the virtual addresses
3235          * and then propagates the remote ram block descriptions to his local copy.
3236          */
3237
3238         if (local->nb_blocks != nb_remote_blocks) {
3239             ERROR(errp, "ram blocks mismatch #1! "
3240                         "Your QEMU command line parameters are probably "
3241                         "not identical on both the source and destination.");
3242             return -EINVAL;
3243         }
3244
3245         qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3246         memcpy(rdma->block,
3247             rdma->wr_data[reg_result_idx].control_curr, resp.len);
3248         for (i = 0; i < nb_remote_blocks; i++) {
3249             network_to_remote_block(&rdma->block[i]);
3250
3251             /* search local ram blocks */
3252             for (j = 0; j < local->nb_blocks; j++) {
3253                 if (rdma->block[i].offset != local->block[j].offset) {
3254                     continue;
3255                 }
3256
3257                 if (rdma->block[i].length != local->block[j].length) {
3258                     ERROR(errp, "ram blocks mismatch #2! "
3259                         "Your QEMU command line parameters are probably "
3260                         "not identical on both the source and destination.");
3261                     return -EINVAL;
3262                 }
3263                 local->block[j].remote_host_addr =
3264                         rdma->block[i].remote_host_addr;
3265                 local->block[j].remote_rkey = rdma->block[i].remote_rkey;
3266                 break;
3267             }
3268
3269             if (j >= local->nb_blocks) {
3270                 ERROR(errp, "ram blocks mismatch #3! "
3271                         "Your QEMU command line parameters are probably "
3272                         "not identical on both the source and destination.");
3273                 return -EINVAL;
3274             }
3275         }
3276     }
3277
3278     DDDPRINTF("Sending registration finish %" PRIu64 "...\n", flags);
3279
3280     head.type = RDMA_CONTROL_REGISTER_FINISHED;
3281     ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3282
3283     if (ret < 0) {
3284         goto err;
3285     }
3286
3287     return 0;
3288 err:
3289     rdma->error_state = ret;
3290     return ret;
3291 }
3292
3293 static int qemu_rdma_get_fd(void *opaque)
3294 {
3295     QEMUFileRDMA *rfile = opaque;
3296     RDMAContext *rdma = rfile->rdma;
3297
3298     return rdma->comp_channel->fd;
3299 }
3300
3301 const QEMUFileOps rdma_read_ops = {
3302     .get_buffer    = qemu_rdma_get_buffer,
3303     .get_fd        = qemu_rdma_get_fd,
3304     .close         = qemu_rdma_close,
3305     .hook_ram_load = qemu_rdma_registration_handle,
3306 };
3307
3308 const QEMUFileOps rdma_write_ops = {
3309     .put_buffer         = qemu_rdma_put_buffer,
3310     .close              = qemu_rdma_close,
3311     .before_ram_iterate = qemu_rdma_registration_start,
3312     .after_ram_iterate  = qemu_rdma_registration_stop,
3313     .save_page          = qemu_rdma_save_page,
3314 };
3315
3316 static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3317 {
3318     QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA));
3319
3320     if (qemu_file_mode_is_not_valid(mode)) {
3321         return NULL;
3322     }
3323
3324     r->rdma = rdma;
3325
3326     if (mode[0] == 'w') {
3327         r->file = qemu_fopen_ops(r, &rdma_write_ops);
3328     } else {
3329         r->file = qemu_fopen_ops(r, &rdma_read_ops);
3330     }
3331
3332     return r->file;
3333 }
3334
3335 static void rdma_accept_incoming_migration(void *opaque)
3336 {
3337     RDMAContext *rdma = opaque;
3338     int ret;
3339     QEMUFile *f;
3340     Error *local_err = NULL, **errp = &local_err;
3341
3342     DPRINTF("Accepting rdma connection...\n");
3343     ret = qemu_rdma_accept(rdma);
3344
3345     if (ret) {
3346         ERROR(errp, "RDMA Migration initialization failed!");
3347         return;
3348     }
3349
3350     DPRINTF("Accepted migration\n");
3351
3352     f = qemu_fopen_rdma(rdma, "rb");
3353     if (f == NULL) {
3354         ERROR(errp, "could not qemu_fopen_rdma!");
3355         qemu_rdma_cleanup(rdma);
3356         return;
3357     }
3358
3359     rdma->migration_started_on_destination = 1;
3360     process_incoming_migration(f);
3361 }
3362
3363 void rdma_start_incoming_migration(const char *host_port, Error **errp)
3364 {
3365     int ret;
3366     RDMAContext *rdma;
3367     Error *local_err = NULL;
3368
3369     DPRINTF("Starting RDMA-based incoming migration\n");
3370     rdma = qemu_rdma_data_init(host_port, &local_err);
3371
3372     if (rdma == NULL) {
3373         goto err;
3374     }
3375
3376     ret = qemu_rdma_dest_init(rdma, &local_err);
3377
3378     if (ret) {
3379         goto err;
3380     }
3381
3382     DPRINTF("qemu_rdma_dest_init success\n");
3383
3384     ret = rdma_listen(rdma->listen_id, 5);
3385
3386     if (ret) {
3387         ERROR(errp, "listening on socket!");
3388         goto err;
3389     }
3390
3391     DPRINTF("rdma_listen success\n");
3392
3393     qemu_set_fd_handler2(rdma->channel->fd, NULL,
3394                          rdma_accept_incoming_migration, NULL,
3395                             (void *)(intptr_t) rdma);
3396     return;
3397 err:
3398     error_propagate(errp, local_err);
3399     g_free(rdma);
3400 }
3401
3402 void rdma_start_outgoing_migration(void *opaque,
3403                             const char *host_port, Error **errp)
3404 {
3405     MigrationState *s = opaque;
3406     Error *local_err = NULL, **temp = &local_err;
3407     RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err);
3408     int ret = 0;
3409
3410     if (rdma == NULL) {
3411         ERROR(temp, "Failed to initialize RDMA data structures! %d", ret);
3412         goto err;
3413     }
3414
3415     ret = qemu_rdma_source_init(rdma, &local_err,
3416         s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL]);
3417
3418     if (ret) {
3419         goto err;
3420     }
3421
3422     DPRINTF("qemu_rdma_source_init success\n");
3423     ret = qemu_rdma_connect(rdma, &local_err);
3424
3425     if (ret) {
3426         goto err;
3427     }
3428
3429     DPRINTF("qemu_rdma_source_connect success\n");
3430
3431     s->file = qemu_fopen_rdma(rdma, "wb");
3432     migrate_fd_connect(s);
3433     return;
3434 err:
3435     error_propagate(errp, local_err);
3436     g_free(rdma);
3437     migrate_fd_error(s);
3438 }