]> rtime.felk.cvut.cz Git - lisovros/qemu_apohw.git/blob - migration-rdma.c
apohw: port A0B36APO labs matrix keyboard hardware emulation to QEMU 2.0.
[lisovros/qemu_apohw.git] / migration-rdma.c
1 /*
2  * RDMA protocol and interfaces
3  *
4  * Copyright IBM, Corp. 2010-2013
5  *
6  * Authors:
7  *  Michael R. Hines <mrhines@us.ibm.com>
8  *  Jiuxing Liu <jl@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or
11  * later.  See the COPYING file in the top-level directory.
12  *
13  */
14 #include "qemu-common.h"
15 #include "migration/migration.h"
16 #include "migration/qemu-file.h"
17 #include "exec/cpu-common.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/sockets.h"
20 #include "qemu/bitmap.h"
21 #include "block/coroutine.h"
22 #include <stdio.h>
23 #include <sys/types.h>
24 #include <sys/socket.h>
25 #include <netdb.h>
26 #include <arpa/inet.h>
27 #include <string.h>
28 #include <rdma/rdma_cma.h>
29
30 //#define DEBUG_RDMA
31 //#define DEBUG_RDMA_VERBOSE
32 //#define DEBUG_RDMA_REALLY_VERBOSE
33
34 #ifdef DEBUG_RDMA
35 #define DPRINTF(fmt, ...) \
36     do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF(fmt, ...) \
39     do { } while (0)
40 #endif
41
42 #ifdef DEBUG_RDMA_VERBOSE
43 #define DDPRINTF(fmt, ...) \
44     do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
45 #else
46 #define DDPRINTF(fmt, ...) \
47     do { } while (0)
48 #endif
49
50 #ifdef DEBUG_RDMA_REALLY_VERBOSE
51 #define DDDPRINTF(fmt, ...) \
52     do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
53 #else
54 #define DDDPRINTF(fmt, ...) \
55     do { } while (0)
56 #endif
57
58 /*
59  * Print and error on both the Monitor and the Log file.
60  */
61 #define ERROR(errp, fmt, ...) \
62     do { \
63         fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
64         if (errp && (*(errp) == NULL)) { \
65             error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
66         } \
67     } while (0)
68
69 #define RDMA_RESOLVE_TIMEOUT_MS 10000
70
71 /* Do not merge data if larger than this. */
72 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
73 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
74
75 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
76
77 /*
78  * This is only for non-live state being migrated.
79  * Instead of RDMA_WRITE messages, we use RDMA_SEND
80  * messages for that state, which requires a different
81  * delivery design than main memory.
82  */
83 #define RDMA_SEND_INCREMENT 32768
84
85 /*
86  * Maximum size infiniband SEND message
87  */
88 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
89 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
90
91 #define RDMA_CONTROL_VERSION_CURRENT 1
92 /*
93  * Capabilities for negotiation.
94  */
95 #define RDMA_CAPABILITY_PIN_ALL 0x01
96
97 /*
98  * Add the other flags above to this list of known capabilities
99  * as they are introduced.
100  */
101 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
102
103 #define CHECK_ERROR_STATE() \
104     do { \
105         if (rdma->error_state) { \
106             if (!rdma->error_reported) { \
107                 fprintf(stderr, "RDMA is in an error state waiting migration" \
108                                 " to abort!\n"); \
109                 rdma->error_reported = 1; \
110             } \
111             return rdma->error_state; \
112         } \
113     } while (0);
114
115 /*
116  * A work request ID is 64-bits and we split up these bits
117  * into 3 parts:
118  *
119  * bits 0-15 : type of control message, 2^16
120  * bits 16-29: ram block index, 2^14
121  * bits 30-63: ram block chunk number, 2^34
122  *
123  * The last two bit ranges are only used for RDMA writes,
124  * in order to track their completion and potentially
125  * also track unregistration status of the message.
126  */
127 #define RDMA_WRID_TYPE_SHIFT  0UL
128 #define RDMA_WRID_BLOCK_SHIFT 16UL
129 #define RDMA_WRID_CHUNK_SHIFT 30UL
130
131 #define RDMA_WRID_TYPE_MASK \
132     ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
133
134 #define RDMA_WRID_BLOCK_MASK \
135     (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
136
137 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
138
139 /*
140  * RDMA migration protocol:
141  * 1. RDMA Writes (data messages, i.e. RAM)
142  * 2. IB Send/Recv (control channel messages)
143  */
144 enum {
145     RDMA_WRID_NONE = 0,
146     RDMA_WRID_RDMA_WRITE = 1,
147     RDMA_WRID_SEND_CONTROL = 2000,
148     RDMA_WRID_RECV_CONTROL = 4000,
149 };
150
151 const char *wrid_desc[] = {
152     [RDMA_WRID_NONE] = "NONE",
153     [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
154     [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
155     [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
156 };
157
158 /*
159  * Work request IDs for IB SEND messages only (not RDMA writes).
160  * This is used by the migration protocol to transmit
161  * control messages (such as device state and registration commands)
162  *
163  * We could use more WRs, but we have enough for now.
164  */
165 enum {
166     RDMA_WRID_READY = 0,
167     RDMA_WRID_DATA,
168     RDMA_WRID_CONTROL,
169     RDMA_WRID_MAX,
170 };
171
172 /*
173  * SEND/RECV IB Control Messages.
174  */
175 enum {
176     RDMA_CONTROL_NONE = 0,
177     RDMA_CONTROL_ERROR,
178     RDMA_CONTROL_READY,               /* ready to receive */
179     RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
180     RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
181     RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
182     RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
183     RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
184     RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
185     RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
186     RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
187     RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
188 };
189
190 const char *control_desc[] = {
191     [RDMA_CONTROL_NONE] = "NONE",
192     [RDMA_CONTROL_ERROR] = "ERROR",
193     [RDMA_CONTROL_READY] = "READY",
194     [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
195     [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
196     [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
197     [RDMA_CONTROL_COMPRESS] = "COMPRESS",
198     [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
199     [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
200     [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
201     [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
202     [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
203 };
204
205 /*
206  * Memory and MR structures used to represent an IB Send/Recv work request.
207  * This is *not* used for RDMA writes, only IB Send/Recv.
208  */
209 typedef struct {
210     uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
211     struct   ibv_mr *control_mr;               /* registration metadata */
212     size_t   control_len;                      /* length of the message */
213     uint8_t *control_curr;                     /* start of unconsumed bytes */
214 } RDMAWorkRequestData;
215
216 /*
217  * Negotiate RDMA capabilities during connection-setup time.
218  */
219 typedef struct {
220     uint32_t version;
221     uint32_t flags;
222 } RDMACapabilities;
223
224 static void caps_to_network(RDMACapabilities *cap)
225 {
226     cap->version = htonl(cap->version);
227     cap->flags = htonl(cap->flags);
228 }
229
230 static void network_to_caps(RDMACapabilities *cap)
231 {
232     cap->version = ntohl(cap->version);
233     cap->flags = ntohl(cap->flags);
234 }
235
236 /*
237  * Representation of a RAMBlock from an RDMA perspective.
238  * This is not transmitted, only local.
239  * This and subsequent structures cannot be linked lists
240  * because we're using a single IB message to transmit
241  * the information. It's small anyway, so a list is overkill.
242  */
243 typedef struct RDMALocalBlock {
244     uint8_t  *local_host_addr; /* local virtual address */
245     uint64_t remote_host_addr; /* remote virtual address */
246     uint64_t offset;
247     uint64_t length;
248     struct   ibv_mr **pmr;     /* MRs for chunk-level registration */
249     struct   ibv_mr *mr;       /* MR for non-chunk-level registration */
250     uint32_t *remote_keys;     /* rkeys for chunk-level registration */
251     uint32_t remote_rkey;      /* rkeys for non-chunk-level registration */
252     int      index;            /* which block are we */
253     bool     is_ram_block;
254     int      nb_chunks;
255     unsigned long *transit_bitmap;
256     unsigned long *unregister_bitmap;
257 } RDMALocalBlock;
258
259 /*
260  * Also represents a RAMblock, but only on the dest.
261  * This gets transmitted by the dest during connection-time
262  * to the source VM and then is used to populate the
263  * corresponding RDMALocalBlock with
264  * the information needed to perform the actual RDMA.
265  */
266 typedef struct QEMU_PACKED RDMARemoteBlock {
267     uint64_t remote_host_addr;
268     uint64_t offset;
269     uint64_t length;
270     uint32_t remote_rkey;
271     uint32_t padding;
272 } RDMARemoteBlock;
273
274 static uint64_t htonll(uint64_t v)
275 {
276     union { uint32_t lv[2]; uint64_t llv; } u;
277     u.lv[0] = htonl(v >> 32);
278     u.lv[1] = htonl(v & 0xFFFFFFFFULL);
279     return u.llv;
280 }
281
282 static uint64_t ntohll(uint64_t v) {
283     union { uint32_t lv[2]; uint64_t llv; } u;
284     u.llv = v;
285     return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
286 }
287
288 static void remote_block_to_network(RDMARemoteBlock *rb)
289 {
290     rb->remote_host_addr = htonll(rb->remote_host_addr);
291     rb->offset = htonll(rb->offset);
292     rb->length = htonll(rb->length);
293     rb->remote_rkey = htonl(rb->remote_rkey);
294 }
295
296 static void network_to_remote_block(RDMARemoteBlock *rb)
297 {
298     rb->remote_host_addr = ntohll(rb->remote_host_addr);
299     rb->offset = ntohll(rb->offset);
300     rb->length = ntohll(rb->length);
301     rb->remote_rkey = ntohl(rb->remote_rkey);
302 }
303
304 /*
305  * Virtual address of the above structures used for transmitting
306  * the RAMBlock descriptions at connection-time.
307  * This structure is *not* transmitted.
308  */
309 typedef struct RDMALocalBlocks {
310     int nb_blocks;
311     bool     init;             /* main memory init complete */
312     RDMALocalBlock *block;
313 } RDMALocalBlocks;
314
315 /*
316  * Main data structure for RDMA state.
317  * While there is only one copy of this structure being allocated right now,
318  * this is the place where one would start if you wanted to consider
319  * having more than one RDMA connection open at the same time.
320  */
321 typedef struct RDMAContext {
322     char *host;
323     int port;
324
325     RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
326
327     /*
328      * This is used by *_exchange_send() to figure out whether or not
329      * the initial "READY" message has already been received or not.
330      * This is because other functions may potentially poll() and detect
331      * the READY message before send() does, in which case we need to
332      * know if it completed.
333      */
334     int control_ready_expected;
335
336     /* number of outstanding writes */
337     int nb_sent;
338
339     /* store info about current buffer so that we can
340        merge it with future sends */
341     uint64_t current_addr;
342     uint64_t current_length;
343     /* index of ram block the current buffer belongs to */
344     int current_index;
345     /* index of the chunk in the current ram block */
346     int current_chunk;
347
348     bool pin_all;
349
350     /*
351      * infiniband-specific variables for opening the device
352      * and maintaining connection state and so forth.
353      *
354      * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
355      * cm_id->verbs, cm_id->channel, and cm_id->qp.
356      */
357     struct rdma_cm_id *cm_id;               /* connection manager ID */
358     struct rdma_cm_id *listen_id;
359     bool connected;
360
361     struct ibv_context          *verbs;
362     struct rdma_event_channel   *channel;
363     struct ibv_qp *qp;                      /* queue pair */
364     struct ibv_comp_channel *comp_channel;  /* completion channel */
365     struct ibv_pd *pd;                      /* protection domain */
366     struct ibv_cq *cq;                      /* completion queue */
367
368     /*
369      * If a previous write failed (perhaps because of a failed
370      * memory registration, then do not attempt any future work
371      * and remember the error state.
372      */
373     int error_state;
374     int error_reported;
375
376     /*
377      * Description of ram blocks used throughout the code.
378      */
379     RDMALocalBlocks local_ram_blocks;
380     RDMARemoteBlock *block;
381
382     /*
383      * Migration on *destination* started.
384      * Then use coroutine yield function.
385      * Source runs in a thread, so we don't care.
386      */
387     int migration_started_on_destination;
388
389     int total_registrations;
390     int total_writes;
391
392     int unregister_current, unregister_next;
393     uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
394
395     GHashTable *blockmap;
396 } RDMAContext;
397
398 /*
399  * Interface to the rest of the migration call stack.
400  */
401 typedef struct QEMUFileRDMA {
402     RDMAContext *rdma;
403     size_t len;
404     void *file;
405 } QEMUFileRDMA;
406
407 /*
408  * Main structure for IB Send/Recv control messages.
409  * This gets prepended at the beginning of every Send/Recv.
410  */
411 typedef struct QEMU_PACKED {
412     uint32_t len;     /* Total length of data portion */
413     uint32_t type;    /* which control command to perform */
414     uint32_t repeat;  /* number of commands in data portion of same type */
415     uint32_t padding;
416 } RDMAControlHeader;
417
418 static void control_to_network(RDMAControlHeader *control)
419 {
420     control->type = htonl(control->type);
421     control->len = htonl(control->len);
422     control->repeat = htonl(control->repeat);
423 }
424
425 static void network_to_control(RDMAControlHeader *control)
426 {
427     control->type = ntohl(control->type);
428     control->len = ntohl(control->len);
429     control->repeat = ntohl(control->repeat);
430 }
431
432 /*
433  * Register a single Chunk.
434  * Information sent by the source VM to inform the dest
435  * to register an single chunk of memory before we can perform
436  * the actual RDMA operation.
437  */
438 typedef struct QEMU_PACKED {
439     union QEMU_PACKED {
440         uint64_t current_addr;  /* offset into the ramblock of the chunk */
441         uint64_t chunk;         /* chunk to lookup if unregistering */
442     } key;
443     uint32_t current_index; /* which ramblock the chunk belongs to */
444     uint32_t padding;
445     uint64_t chunks;            /* how many sequential chunks to register */
446 } RDMARegister;
447
448 static void register_to_network(RDMARegister *reg)
449 {
450     reg->key.current_addr = htonll(reg->key.current_addr);
451     reg->current_index = htonl(reg->current_index);
452     reg->chunks = htonll(reg->chunks);
453 }
454
455 static void network_to_register(RDMARegister *reg)
456 {
457     reg->key.current_addr = ntohll(reg->key.current_addr);
458     reg->current_index = ntohl(reg->current_index);
459     reg->chunks = ntohll(reg->chunks);
460 }
461
462 typedef struct QEMU_PACKED {
463     uint32_t value;     /* if zero, we will madvise() */
464     uint32_t block_idx; /* which ram block index */
465     uint64_t offset;    /* where in the remote ramblock this chunk */
466     uint64_t length;    /* length of the chunk */
467 } RDMACompress;
468
469 static void compress_to_network(RDMACompress *comp)
470 {
471     comp->value = htonl(comp->value);
472     comp->block_idx = htonl(comp->block_idx);
473     comp->offset = htonll(comp->offset);
474     comp->length = htonll(comp->length);
475 }
476
477 static void network_to_compress(RDMACompress *comp)
478 {
479     comp->value = ntohl(comp->value);
480     comp->block_idx = ntohl(comp->block_idx);
481     comp->offset = ntohll(comp->offset);
482     comp->length = ntohll(comp->length);
483 }
484
485 /*
486  * The result of the dest's memory registration produces an "rkey"
487  * which the source VM must reference in order to perform
488  * the RDMA operation.
489  */
490 typedef struct QEMU_PACKED {
491     uint32_t rkey;
492     uint32_t padding;
493     uint64_t host_addr;
494 } RDMARegisterResult;
495
496 static void result_to_network(RDMARegisterResult *result)
497 {
498     result->rkey = htonl(result->rkey);
499     result->host_addr = htonll(result->host_addr);
500 };
501
502 static void network_to_result(RDMARegisterResult *result)
503 {
504     result->rkey = ntohl(result->rkey);
505     result->host_addr = ntohll(result->host_addr);
506 };
507
508 const char *print_wrid(int wrid);
509 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
510                                    uint8_t *data, RDMAControlHeader *resp,
511                                    int *resp_idx,
512                                    int (*callback)(RDMAContext *rdma));
513
514 static inline uint64_t ram_chunk_index(const uint8_t *start,
515                                        const uint8_t *host)
516 {
517     return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
518 }
519
520 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
521                                        uint64_t i)
522 {
523     return (uint8_t *) (((uintptr_t) rdma_ram_block->local_host_addr)
524                                     + (i << RDMA_REG_CHUNK_SHIFT));
525 }
526
527 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
528                                      uint64_t i)
529 {
530     uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
531                                          (1UL << RDMA_REG_CHUNK_SHIFT);
532
533     if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
534         result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
535     }
536
537     return result;
538 }
539
540 static int __qemu_rdma_add_block(RDMAContext *rdma, void *host_addr,
541                          ram_addr_t block_offset, uint64_t length)
542 {
543     RDMALocalBlocks *local = &rdma->local_ram_blocks;
544     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
545         (void *) block_offset);
546     RDMALocalBlock *old = local->block;
547
548     assert(block == NULL);
549
550     local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1));
551
552     if (local->nb_blocks) {
553         int x;
554
555         for (x = 0; x < local->nb_blocks; x++) {
556             g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
557             g_hash_table_insert(rdma->blockmap, (void *)old[x].offset,
558                                                 &local->block[x]);
559         }
560         memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
561         g_free(old);
562     }
563
564     block = &local->block[local->nb_blocks];
565
566     block->local_host_addr = host_addr;
567     block->offset = block_offset;
568     block->length = length;
569     block->index = local->nb_blocks;
570     block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
571     block->transit_bitmap = bitmap_new(block->nb_chunks);
572     bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
573     block->unregister_bitmap = bitmap_new(block->nb_chunks);
574     bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
575     block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t));
576
577     block->is_ram_block = local->init ? false : true;
578
579     g_hash_table_insert(rdma->blockmap, (void *) block_offset, block);
580
581     DDPRINTF("Added Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
582            " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
583             local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
584             block->length, (uint64_t) (block->local_host_addr + block->length),
585                 BITS_TO_LONGS(block->nb_chunks) *
586                     sizeof(unsigned long) * 8, block->nb_chunks);
587
588     local->nb_blocks++;
589
590     return 0;
591 }
592
593 /*
594  * Memory regions need to be registered with the device and queue pairs setup
595  * in advanced before the migration starts. This tells us where the RAM blocks
596  * are so that we can register them individually.
597  */
598 static void qemu_rdma_init_one_block(void *host_addr,
599     ram_addr_t block_offset, ram_addr_t length, void *opaque)
600 {
601     __qemu_rdma_add_block(opaque, host_addr, block_offset, length);
602 }
603
604 /*
605  * Identify the RAMBlocks and their quantity. They will be references to
606  * identify chunk boundaries inside each RAMBlock and also be referenced
607  * during dynamic page registration.
608  */
609 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
610 {
611     RDMALocalBlocks *local = &rdma->local_ram_blocks;
612
613     assert(rdma->blockmap == NULL);
614     rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
615     memset(local, 0, sizeof *local);
616     qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
617     DPRINTF("Allocated %d local ram block structures\n", local->nb_blocks);
618     rdma->block = (RDMARemoteBlock *) g_malloc0(sizeof(RDMARemoteBlock) *
619                         rdma->local_ram_blocks.nb_blocks);
620     local->init = true;
621     return 0;
622 }
623
624 static int __qemu_rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset)
625 {
626     RDMALocalBlocks *local = &rdma->local_ram_blocks;
627     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
628         (void *) block_offset);
629     RDMALocalBlock *old = local->block;
630     int x;
631
632     assert(block);
633
634     if (block->pmr) {
635         int j;
636
637         for (j = 0; j < block->nb_chunks; j++) {
638             if (!block->pmr[j]) {
639                 continue;
640             }
641             ibv_dereg_mr(block->pmr[j]);
642             rdma->total_registrations--;
643         }
644         g_free(block->pmr);
645         block->pmr = NULL;
646     }
647
648     if (block->mr) {
649         ibv_dereg_mr(block->mr);
650         rdma->total_registrations--;
651         block->mr = NULL;
652     }
653
654     g_free(block->transit_bitmap);
655     block->transit_bitmap = NULL;
656
657     g_free(block->unregister_bitmap);
658     block->unregister_bitmap = NULL;
659
660     g_free(block->remote_keys);
661     block->remote_keys = NULL;
662
663     for (x = 0; x < local->nb_blocks; x++) {
664         g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
665     }
666
667     if (local->nb_blocks > 1) {
668
669         local->block = g_malloc0(sizeof(RDMALocalBlock) *
670                                     (local->nb_blocks - 1));
671
672         if (block->index) {
673             memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
674         }
675
676         if (block->index < (local->nb_blocks - 1)) {
677             memcpy(local->block + block->index, old + (block->index + 1),
678                 sizeof(RDMALocalBlock) *
679                     (local->nb_blocks - (block->index + 1)));
680         }
681     } else {
682         assert(block == local->block);
683         local->block = NULL;
684     }
685
686     DDPRINTF("Deleted Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
687            " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
688             local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
689             block->length, (uint64_t) (block->local_host_addr + block->length),
690                 BITS_TO_LONGS(block->nb_chunks) *
691                     sizeof(unsigned long) * 8, block->nb_chunks);
692
693     g_free(old);
694
695     local->nb_blocks--;
696
697     if (local->nb_blocks) {
698         for (x = 0; x < local->nb_blocks; x++) {
699             g_hash_table_insert(rdma->blockmap, (void *)local->block[x].offset,
700                                                 &local->block[x]);
701         }
702     }
703
704     return 0;
705 }
706
707 /*
708  * Put in the log file which RDMA device was opened and the details
709  * associated with that device.
710  */
711 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
712 {
713     struct ibv_port_attr port;
714
715     if (ibv_query_port(verbs, 1, &port)) {
716         fprintf(stderr, "FAILED TO QUERY PORT INFORMATION!\n");
717         return;
718     }
719
720     printf("%s RDMA Device opened: kernel name %s "
721            "uverbs device name %s, "
722            "infiniband_verbs class device path %s, "
723            "infiniband class device path %s, "
724            "transport: (%d) %s\n",
725                 who,
726                 verbs->device->name,
727                 verbs->device->dev_name,
728                 verbs->device->dev_path,
729                 verbs->device->ibdev_path,
730                 port.link_layer,
731                 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
732                  ((port.link_layer == IBV_LINK_LAYER_ETHERNET) 
733                     ? "Ethernet" : "Unknown"));
734 }
735
736 /*
737  * Put in the log file the RDMA gid addressing information,
738  * useful for folks who have trouble understanding the
739  * RDMA device hierarchy in the kernel.
740  */
741 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
742 {
743     char sgid[33];
744     char dgid[33];
745     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
746     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
747     DPRINTF("%s Source GID: %s, Dest GID: %s\n", who, sgid, dgid);
748 }
749
750 /*
751  * As of now, IPv6 over RoCE / iWARP is not supported by linux.
752  * We will try the next addrinfo struct, and fail if there are
753  * no other valid addresses to bind against.
754  *
755  * If user is listening on '[::]', then we will not have a opened a device
756  * yet and have no way of verifying if the device is RoCE or not.
757  *
758  * In this case, the source VM will throw an error for ALL types of
759  * connections (both IPv4 and IPv6) if the destination machine does not have
760  * a regular infiniband network available for use.
761  *
762  * The only way to guarantee that an error is thrown for broken kernels is
763  * for the management software to choose a *specific* interface at bind time
764  * and validate what time of hardware it is.
765  *
766  * Unfortunately, this puts the user in a fix:
767  * 
768  *  If the source VM connects with an IPv4 address without knowing that the
769  *  destination has bound to '[::]' the migration will unconditionally fail
770  *  unless the management software is explicitly listening on the the IPv4
771  *  address while using a RoCE-based device.
772  *
773  *  If the source VM connects with an IPv6 address, then we're OK because we can
774  *  throw an error on the source (and similarly on the destination).
775  * 
776  *  But in mixed environments, this will be broken for a while until it is fixed
777  *  inside linux.
778  *
779  * We do provide a *tiny* bit of help in this function: We can list all of the
780  * devices in the system and check to see if all the devices are RoCE or
781  * Infiniband. 
782  *
783  * If we detect that we have a *pure* RoCE environment, then we can safely
784  * thrown an error even if the management software has specified '[::]' as the
785  * bind address.
786  *
787  * However, if there is are multiple hetergeneous devices, then we cannot make
788  * this assumption and the user just has to be sure they know what they are
789  * doing.
790  *
791  * Patches are being reviewed on linux-rdma.
792  */
793 static int qemu_rdma_broken_ipv6_kernel(Error **errp, struct ibv_context *verbs)
794 {
795     struct ibv_port_attr port_attr;
796
797     /* This bug only exists in linux, to our knowledge. */
798 #ifdef CONFIG_LINUX
799
800     /* 
801      * Verbs are only NULL if management has bound to '[::]'.
802      * 
803      * Let's iterate through all the devices and see if there any pure IB
804      * devices (non-ethernet).
805      * 
806      * If not, then we can safely proceed with the migration.
807      * Otherwise, there are no guarantees until the bug is fixed in linux.
808      */
809     if (!verbs) {
810             int num_devices, x;
811         struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
812         bool roce_found = false;
813         bool ib_found = false;
814
815         for (x = 0; x < num_devices; x++) {
816             verbs = ibv_open_device(dev_list[x]);
817
818             if (ibv_query_port(verbs, 1, &port_attr)) {
819                 ibv_close_device(verbs);
820                 ERROR(errp, "Could not query initial IB port");
821                 return -EINVAL;
822             }
823
824             if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
825                 ib_found = true;
826             } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
827                 roce_found = true;
828             }
829
830             ibv_close_device(verbs);
831
832         }
833
834         if (roce_found) {
835             if (ib_found) {
836                 fprintf(stderr, "WARN: migrations may fail:"
837                                 " IPv6 over RoCE / iWARP in linux"
838                                 " is broken. But since you appear to have a"
839                                 " mixed RoCE / IB environment, be sure to only"
840                                 " migrate over the IB fabric until the kernel "
841                                 " fixes the bug.\n");
842             } else {
843                 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
844                             " and your management software has specified '[::]'"
845                             ", but IPv6 over RoCE / iWARP is not supported in Linux.");
846                 return -ENONET;
847             }
848         }
849
850         return 0;
851     }
852
853     /*
854      * If we have a verbs context, that means that some other than '[::]' was
855      * used by the management software for binding. In which case we can actually 
856      * warn the user about a potential broken kernel;
857      */
858
859     /* IB ports start with 1, not 0 */
860     if (ibv_query_port(verbs, 1, &port_attr)) {
861         ERROR(errp, "Could not query initial IB port");
862         return -EINVAL;
863     }
864
865     if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
866         ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
867                     "(but patches on linux-rdma in progress)");
868         return -ENONET;
869     }
870
871 #endif
872
873     return 0;
874 }
875
876 /*
877  * Figure out which RDMA device corresponds to the requested IP hostname
878  * Also create the initial connection manager identifiers for opening
879  * the connection.
880  */
881 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
882 {
883     int ret;
884     struct rdma_addrinfo *res;
885     char port_str[16];
886     struct rdma_cm_event *cm_event;
887     char ip[40] = "unknown";
888     struct rdma_addrinfo *e;
889
890     if (rdma->host == NULL || !strcmp(rdma->host, "")) {
891         ERROR(errp, "RDMA hostname has not been set");
892         return -EINVAL;
893     }
894
895     /* create CM channel */
896     rdma->channel = rdma_create_event_channel();
897     if (!rdma->channel) {
898         ERROR(errp, "could not create CM channel");
899         return -EINVAL;
900     }
901
902     /* create CM id */
903     ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
904     if (ret) {
905         ERROR(errp, "could not create channel id");
906         goto err_resolve_create_id;
907     }
908
909     snprintf(port_str, 16, "%d", rdma->port);
910     port_str[15] = '\0';
911
912     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
913     if (ret < 0) {
914         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
915         goto err_resolve_get_addr;
916     }
917
918     for (e = res; e != NULL; e = e->ai_next) {
919         inet_ntop(e->ai_family,
920             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
921         DPRINTF("Trying %s => %s\n", rdma->host, ip);
922
923         ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
924                 RDMA_RESOLVE_TIMEOUT_MS);
925         if (!ret) {
926             if (e->ai_family == AF_INET6) {
927                 ret = qemu_rdma_broken_ipv6_kernel(errp, rdma->cm_id->verbs);
928                 if (ret) {
929                     continue;
930                 }
931             }
932             goto route;
933         }
934     }
935
936     ERROR(errp, "could not resolve address %s", rdma->host);
937     goto err_resolve_get_addr;
938
939 route:
940     qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
941
942     ret = rdma_get_cm_event(rdma->channel, &cm_event);
943     if (ret) {
944         ERROR(errp, "could not perform event_addr_resolved");
945         goto err_resolve_get_addr;
946     }
947
948     if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
949         ERROR(errp, "result not equal to event_addr_resolved %s",
950                 rdma_event_str(cm_event->event));
951         perror("rdma_resolve_addr");
952         ret = -EINVAL;
953         goto err_resolve_get_addr;
954     }
955     rdma_ack_cm_event(cm_event);
956
957     /* resolve route */
958     ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
959     if (ret) {
960         ERROR(errp, "could not resolve rdma route");
961         goto err_resolve_get_addr;
962     }
963
964     ret = rdma_get_cm_event(rdma->channel, &cm_event);
965     if (ret) {
966         ERROR(errp, "could not perform event_route_resolved");
967         goto err_resolve_get_addr;
968     }
969     if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
970         ERROR(errp, "result not equal to event_route_resolved: %s",
971                         rdma_event_str(cm_event->event));
972         rdma_ack_cm_event(cm_event);
973         ret = -EINVAL;
974         goto err_resolve_get_addr;
975     }
976     rdma_ack_cm_event(cm_event);
977     rdma->verbs = rdma->cm_id->verbs;
978     qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
979     qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
980     return 0;
981
982 err_resolve_get_addr:
983     rdma_destroy_id(rdma->cm_id);
984     rdma->cm_id = NULL;
985 err_resolve_create_id:
986     rdma_destroy_event_channel(rdma->channel);
987     rdma->channel = NULL;
988     return ret;
989 }
990
991 /*
992  * Create protection domain and completion queues
993  */
994 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
995 {
996     /* allocate pd */
997     rdma->pd = ibv_alloc_pd(rdma->verbs);
998     if (!rdma->pd) {
999         fprintf(stderr, "failed to allocate protection domain\n");
1000         return -1;
1001     }
1002
1003     /* create completion channel */
1004     rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1005     if (!rdma->comp_channel) {
1006         fprintf(stderr, "failed to allocate completion channel\n");
1007         goto err_alloc_pd_cq;
1008     }
1009
1010     /*
1011      * Completion queue can be filled by both read and write work requests,
1012      * so must reflect the sum of both possible queue sizes.
1013      */
1014     rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1015             NULL, rdma->comp_channel, 0);
1016     if (!rdma->cq) {
1017         fprintf(stderr, "failed to allocate completion queue\n");
1018         goto err_alloc_pd_cq;
1019     }
1020
1021     return 0;
1022
1023 err_alloc_pd_cq:
1024     if (rdma->pd) {
1025         ibv_dealloc_pd(rdma->pd);
1026     }
1027     if (rdma->comp_channel) {
1028         ibv_destroy_comp_channel(rdma->comp_channel);
1029     }
1030     rdma->pd = NULL;
1031     rdma->comp_channel = NULL;
1032     return -1;
1033
1034 }
1035
1036 /*
1037  * Create queue pairs.
1038  */
1039 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1040 {
1041     struct ibv_qp_init_attr attr = { 0 };
1042     int ret;
1043
1044     attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1045     attr.cap.max_recv_wr = 3;
1046     attr.cap.max_send_sge = 1;
1047     attr.cap.max_recv_sge = 1;
1048     attr.send_cq = rdma->cq;
1049     attr.recv_cq = rdma->cq;
1050     attr.qp_type = IBV_QPT_RC;
1051
1052     ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1053     if (ret) {
1054         return -1;
1055     }
1056
1057     rdma->qp = rdma->cm_id->qp;
1058     return 0;
1059 }
1060
1061 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1062 {
1063     int i;
1064     RDMALocalBlocks *local = &rdma->local_ram_blocks;
1065
1066     for (i = 0; i < local->nb_blocks; i++) {
1067         local->block[i].mr =
1068             ibv_reg_mr(rdma->pd,
1069                     local->block[i].local_host_addr,
1070                     local->block[i].length,
1071                     IBV_ACCESS_LOCAL_WRITE |
1072                     IBV_ACCESS_REMOTE_WRITE
1073                     );
1074         if (!local->block[i].mr) {
1075             perror("Failed to register local dest ram block!\n");
1076             break;
1077         }
1078         rdma->total_registrations++;
1079     }
1080
1081     if (i >= local->nb_blocks) {
1082         return 0;
1083     }
1084
1085     for (i--; i >= 0; i--) {
1086         ibv_dereg_mr(local->block[i].mr);
1087         rdma->total_registrations--;
1088     }
1089
1090     return -1;
1091
1092 }
1093
1094 /*
1095  * Find the ram block that corresponds to the page requested to be
1096  * transmitted by QEMU.
1097  *
1098  * Once the block is found, also identify which 'chunk' within that
1099  * block that the page belongs to.
1100  *
1101  * This search cannot fail or the migration will fail.
1102  */
1103 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1104                                       uint64_t block_offset,
1105                                       uint64_t offset,
1106                                       uint64_t length,
1107                                       uint64_t *block_index,
1108                                       uint64_t *chunk_index)
1109 {
1110     uint64_t current_addr = block_offset + offset;
1111     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1112                                                 (void *) block_offset);
1113     assert(block);
1114     assert(current_addr >= block->offset);
1115     assert((current_addr + length) <= (block->offset + block->length));
1116
1117     *block_index = block->index;
1118     *chunk_index = ram_chunk_index(block->local_host_addr,
1119                 block->local_host_addr + (current_addr - block->offset));
1120
1121     return 0;
1122 }
1123
1124 /*
1125  * Register a chunk with IB. If the chunk was already registered
1126  * previously, then skip.
1127  *
1128  * Also return the keys associated with the registration needed
1129  * to perform the actual RDMA operation.
1130  */
1131 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1132         RDMALocalBlock *block, uint8_t *host_addr,
1133         uint32_t *lkey, uint32_t *rkey, int chunk,
1134         uint8_t *chunk_start, uint8_t *chunk_end)
1135 {
1136     if (block->mr) {
1137         if (lkey) {
1138             *lkey = block->mr->lkey;
1139         }
1140         if (rkey) {
1141             *rkey = block->mr->rkey;
1142         }
1143         return 0;
1144     }
1145
1146     /* allocate memory to store chunk MRs */
1147     if (!block->pmr) {
1148         block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *));
1149         if (!block->pmr) {
1150             return -1;
1151         }
1152     }
1153
1154     /*
1155      * If 'rkey', then we're the destination, so grant access to the source.
1156      *
1157      * If 'lkey', then we're the source VM, so grant access only to ourselves.
1158      */
1159     if (!block->pmr[chunk]) {
1160         uint64_t len = chunk_end - chunk_start;
1161
1162         DDPRINTF("Registering %" PRIu64 " bytes @ %p\n",
1163                  len, chunk_start);
1164
1165         block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1166                 chunk_start, len,
1167                 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1168                         IBV_ACCESS_REMOTE_WRITE) : 0));
1169
1170         if (!block->pmr[chunk]) {
1171             perror("Failed to register chunk!");
1172             fprintf(stderr, "Chunk details: block: %d chunk index %d"
1173                             " start %" PRIu64 " end %" PRIu64 " host %" PRIu64
1174                             " local %" PRIu64 " registrations: %d\n",
1175                             block->index, chunk, (uint64_t) chunk_start,
1176                             (uint64_t) chunk_end, (uint64_t) host_addr,
1177                             (uint64_t) block->local_host_addr,
1178                             rdma->total_registrations);
1179             return -1;
1180         }
1181         rdma->total_registrations++;
1182     }
1183
1184     if (lkey) {
1185         *lkey = block->pmr[chunk]->lkey;
1186     }
1187     if (rkey) {
1188         *rkey = block->pmr[chunk]->rkey;
1189     }
1190     return 0;
1191 }
1192
1193 /*
1194  * Register (at connection time) the memory used for control
1195  * channel messages.
1196  */
1197 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1198 {
1199     rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1200             rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1201             IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1202     if (rdma->wr_data[idx].control_mr) {
1203         rdma->total_registrations++;
1204         return 0;
1205     }
1206     fprintf(stderr, "qemu_rdma_reg_control failed!\n");
1207     return -1;
1208 }
1209
1210 const char *print_wrid(int wrid)
1211 {
1212     if (wrid >= RDMA_WRID_RECV_CONTROL) {
1213         return wrid_desc[RDMA_WRID_RECV_CONTROL];
1214     }
1215     return wrid_desc[wrid];
1216 }
1217
1218 /*
1219  * RDMA requires memory registration (mlock/pinning), but this is not good for
1220  * overcommitment.
1221  *
1222  * In preparation for the future where LRU information or workload-specific
1223  * writable writable working set memory access behavior is available to QEMU
1224  * it would be nice to have in place the ability to UN-register/UN-pin
1225  * particular memory regions from the RDMA hardware when it is determine that
1226  * those regions of memory will likely not be accessed again in the near future.
1227  *
1228  * While we do not yet have such information right now, the following
1229  * compile-time option allows us to perform a non-optimized version of this
1230  * behavior.
1231  *
1232  * By uncommenting this option, you will cause *all* RDMA transfers to be
1233  * unregistered immediately after the transfer completes on both sides of the
1234  * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1235  *
1236  * This will have a terrible impact on migration performance, so until future
1237  * workload information or LRU information is available, do not attempt to use
1238  * this feature except for basic testing.
1239  */
1240 //#define RDMA_UNREGISTRATION_EXAMPLE
1241
1242 /*
1243  * Perform a non-optimized memory unregistration after every transfer
1244  * for demonsration purposes, only if pin-all is not requested.
1245  *
1246  * Potential optimizations:
1247  * 1. Start a new thread to run this function continuously
1248         - for bit clearing
1249         - and for receipt of unregister messages
1250  * 2. Use an LRU.
1251  * 3. Use workload hints.
1252  */
1253 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1254 {
1255     while (rdma->unregistrations[rdma->unregister_current]) {
1256         int ret;
1257         uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1258         uint64_t chunk =
1259             (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1260         uint64_t index =
1261             (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1262         RDMALocalBlock *block =
1263             &(rdma->local_ram_blocks.block[index]);
1264         RDMARegister reg = { .current_index = index };
1265         RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1266                                  };
1267         RDMAControlHeader head = { .len = sizeof(RDMARegister),
1268                                    .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1269                                    .repeat = 1,
1270                                  };
1271
1272         DDPRINTF("Processing unregister for chunk: %" PRIu64
1273                  " at position %d\n", chunk, rdma->unregister_current);
1274
1275         rdma->unregistrations[rdma->unregister_current] = 0;
1276         rdma->unregister_current++;
1277
1278         if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1279             rdma->unregister_current = 0;
1280         }
1281
1282
1283         /*
1284          * Unregistration is speculative (because migration is single-threaded
1285          * and we cannot break the protocol's inifinband message ordering).
1286          * Thus, if the memory is currently being used for transmission,
1287          * then abort the attempt to unregister and try again
1288          * later the next time a completion is received for this memory.
1289          */
1290         clear_bit(chunk, block->unregister_bitmap);
1291
1292         if (test_bit(chunk, block->transit_bitmap)) {
1293             DDPRINTF("Cannot unregister inflight chunk: %" PRIu64 "\n", chunk);
1294             continue;
1295         }
1296
1297         DDPRINTF("Sending unregister for chunk: %" PRIu64 "\n", chunk);
1298
1299         ret = ibv_dereg_mr(block->pmr[chunk]);
1300         block->pmr[chunk] = NULL;
1301         block->remote_keys[chunk] = 0;
1302
1303         if (ret != 0) {
1304             perror("unregistration chunk failed");
1305             return -ret;
1306         }
1307         rdma->total_registrations--;
1308
1309         reg.key.chunk = chunk;
1310         register_to_network(&reg);
1311         ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1312                                 &resp, NULL, NULL);
1313         if (ret < 0) {
1314             return ret;
1315         }
1316
1317         DDPRINTF("Unregister for chunk: %" PRIu64 " complete.\n", chunk);
1318     }
1319
1320     return 0;
1321 }
1322
1323 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1324                                          uint64_t chunk)
1325 {
1326     uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1327
1328     result |= (index << RDMA_WRID_BLOCK_SHIFT);
1329     result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1330
1331     return result;
1332 }
1333
1334 /*
1335  * Set bit for unregistration in the next iteration.
1336  * We cannot transmit right here, but will unpin later.
1337  */
1338 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1339                                         uint64_t chunk, uint64_t wr_id)
1340 {
1341     if (rdma->unregistrations[rdma->unregister_next] != 0) {
1342         fprintf(stderr, "rdma migration: queue is full!\n");
1343     } else {
1344         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1345
1346         if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1347             DDPRINTF("Appending unregister chunk %" PRIu64
1348                     " at position %d\n", chunk, rdma->unregister_next);
1349
1350             rdma->unregistrations[rdma->unregister_next++] =
1351                     qemu_rdma_make_wrid(wr_id, index, chunk);
1352
1353             if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1354                 rdma->unregister_next = 0;
1355             }
1356         } else {
1357             DDPRINTF("Unregister chunk %" PRIu64 " already in queue.\n",
1358                     chunk);
1359         }
1360     }
1361 }
1362
1363 /*
1364  * Consult the connection manager to see a work request
1365  * (of any kind) has completed.
1366  * Return the work request ID that completed.
1367  */
1368 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1369                                uint32_t *byte_len)
1370 {
1371     int ret;
1372     struct ibv_wc wc;
1373     uint64_t wr_id;
1374
1375     ret = ibv_poll_cq(rdma->cq, 1, &wc);
1376
1377     if (!ret) {
1378         *wr_id_out = RDMA_WRID_NONE;
1379         return 0;
1380     }
1381
1382     if (ret < 0) {
1383         fprintf(stderr, "ibv_poll_cq return %d!\n", ret);
1384         return ret;
1385     }
1386
1387     wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1388
1389     if (wc.status != IBV_WC_SUCCESS) {
1390         fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1391                         wc.status, ibv_wc_status_str(wc.status));
1392         fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1393
1394         return -1;
1395     }
1396
1397     if (rdma->control_ready_expected &&
1398         (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1399         DDDPRINTF("completion %s #%" PRId64 " received (%" PRId64 ")"
1400                   " left %d\n", wrid_desc[RDMA_WRID_RECV_CONTROL],
1401                   wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1402         rdma->control_ready_expected = 0;
1403     }
1404
1405     if (wr_id == RDMA_WRID_RDMA_WRITE) {
1406         uint64_t chunk =
1407             (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1408         uint64_t index =
1409             (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1410         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1411
1412         DDDPRINTF("completions %s (%" PRId64 ") left %d, "
1413                  "block %" PRIu64 ", chunk: %" PRIu64 " %p %p\n",
1414                  print_wrid(wr_id), wr_id, rdma->nb_sent, index, chunk,
1415                  block->local_host_addr, (void *)block->remote_host_addr);
1416
1417         clear_bit(chunk, block->transit_bitmap);
1418
1419         if (rdma->nb_sent > 0) {
1420             rdma->nb_sent--;
1421         }
1422
1423         if (!rdma->pin_all) {
1424             /*
1425              * FYI: If one wanted to signal a specific chunk to be unregistered
1426              * using LRU or workload-specific information, this is the function
1427              * you would call to do so. That chunk would then get asynchronously
1428              * unregistered later.
1429              */
1430 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1431             qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1432 #endif
1433         }
1434     } else {
1435         DDDPRINTF("other completion %s (%" PRId64 ") received left %d\n",
1436             print_wrid(wr_id), wr_id, rdma->nb_sent);
1437     }
1438
1439     *wr_id_out = wc.wr_id;
1440     if (byte_len) {
1441         *byte_len = wc.byte_len;
1442     }
1443
1444     return  0;
1445 }
1446
1447 /*
1448  * Block until the next work request has completed.
1449  *
1450  * First poll to see if a work request has already completed,
1451  * otherwise block.
1452  *
1453  * If we encounter completed work requests for IDs other than
1454  * the one we're interested in, then that's generally an error.
1455  *
1456  * The only exception is actual RDMA Write completions. These
1457  * completions only need to be recorded, but do not actually
1458  * need further processing.
1459  */
1460 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1461                                     uint32_t *byte_len)
1462 {
1463     int num_cq_events = 0, ret = 0;
1464     struct ibv_cq *cq;
1465     void *cq_ctx;
1466     uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1467
1468     if (ibv_req_notify_cq(rdma->cq, 0)) {
1469         return -1;
1470     }
1471     /* poll cq first */
1472     while (wr_id != wrid_requested) {
1473         ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1474         if (ret < 0) {
1475             return ret;
1476         }
1477
1478         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1479
1480         if (wr_id == RDMA_WRID_NONE) {
1481             break;
1482         }
1483         if (wr_id != wrid_requested) {
1484             DDDPRINTF("A Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1485                 print_wrid(wrid_requested),
1486                 wrid_requested, print_wrid(wr_id), wr_id);
1487         }
1488     }
1489
1490     if (wr_id == wrid_requested) {
1491         return 0;
1492     }
1493
1494     while (1) {
1495         /*
1496          * Coroutine doesn't start until process_incoming_migration()
1497          * so don't yield unless we know we're running inside of a coroutine.
1498          */
1499         if (rdma->migration_started_on_destination) {
1500             yield_until_fd_readable(rdma->comp_channel->fd);
1501         }
1502
1503         if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
1504             perror("ibv_get_cq_event");
1505             goto err_block_for_wrid;
1506         }
1507
1508         num_cq_events++;
1509
1510         if (ibv_req_notify_cq(cq, 0)) {
1511             goto err_block_for_wrid;
1512         }
1513
1514         while (wr_id != wrid_requested) {
1515             ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1516             if (ret < 0) {
1517                 goto err_block_for_wrid;
1518             }
1519
1520             wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1521
1522             if (wr_id == RDMA_WRID_NONE) {
1523                 break;
1524             }
1525             if (wr_id != wrid_requested) {
1526                 DDDPRINTF("B Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1527                     print_wrid(wrid_requested), wrid_requested,
1528                     print_wrid(wr_id), wr_id);
1529             }
1530         }
1531
1532         if (wr_id == wrid_requested) {
1533             goto success_block_for_wrid;
1534         }
1535     }
1536
1537 success_block_for_wrid:
1538     if (num_cq_events) {
1539         ibv_ack_cq_events(cq, num_cq_events);
1540     }
1541     return 0;
1542
1543 err_block_for_wrid:
1544     if (num_cq_events) {
1545         ibv_ack_cq_events(cq, num_cq_events);
1546     }
1547     return ret;
1548 }
1549
1550 /*
1551  * Post a SEND message work request for the control channel
1552  * containing some data and block until the post completes.
1553  */
1554 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1555                                        RDMAControlHeader *head)
1556 {
1557     int ret = 0;
1558     RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1559     struct ibv_send_wr *bad_wr;
1560     struct ibv_sge sge = {
1561                            .addr = (uint64_t)(wr->control),
1562                            .length = head->len + sizeof(RDMAControlHeader),
1563                            .lkey = wr->control_mr->lkey,
1564                          };
1565     struct ibv_send_wr send_wr = {
1566                                    .wr_id = RDMA_WRID_SEND_CONTROL,
1567                                    .opcode = IBV_WR_SEND,
1568                                    .send_flags = IBV_SEND_SIGNALED,
1569                                    .sg_list = &sge,
1570                                    .num_sge = 1,
1571                                 };
1572
1573     DDDPRINTF("CONTROL: sending %s..\n", control_desc[head->type]);
1574
1575     /*
1576      * We don't actually need to do a memcpy() in here if we used
1577      * the "sge" properly, but since we're only sending control messages
1578      * (not RAM in a performance-critical path), then its OK for now.
1579      *
1580      * The copy makes the RDMAControlHeader simpler to manipulate
1581      * for the time being.
1582      */
1583     assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1584     memcpy(wr->control, head, sizeof(RDMAControlHeader));
1585     control_to_network((void *) wr->control);
1586
1587     if (buf) {
1588         memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1589     }
1590
1591
1592     if (ibv_post_send(rdma->qp, &send_wr, &bad_wr)) {
1593         return -1;
1594     }
1595
1596     if (ret < 0) {
1597         fprintf(stderr, "Failed to use post IB SEND for control!\n");
1598         return ret;
1599     }
1600
1601     ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1602     if (ret < 0) {
1603         fprintf(stderr, "rdma migration: send polling control error!\n");
1604     }
1605
1606     return ret;
1607 }
1608
1609 /*
1610  * Post a RECV work request in anticipation of some future receipt
1611  * of data on the control channel.
1612  */
1613 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1614 {
1615     struct ibv_recv_wr *bad_wr;
1616     struct ibv_sge sge = {
1617                             .addr = (uint64_t)(rdma->wr_data[idx].control),
1618                             .length = RDMA_CONTROL_MAX_BUFFER,
1619                             .lkey = rdma->wr_data[idx].control_mr->lkey,
1620                          };
1621
1622     struct ibv_recv_wr recv_wr = {
1623                                     .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1624                                     .sg_list = &sge,
1625                                     .num_sge = 1,
1626                                  };
1627
1628
1629     if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1630         return -1;
1631     }
1632
1633     return 0;
1634 }
1635
1636 /*
1637  * Block and wait for a RECV control channel message to arrive.
1638  */
1639 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1640                 RDMAControlHeader *head, int expecting, int idx)
1641 {
1642     uint32_t byte_len;
1643     int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1644                                        &byte_len);
1645
1646     if (ret < 0) {
1647         fprintf(stderr, "rdma migration: recv polling control error!\n");
1648         return ret;
1649     }
1650
1651     network_to_control((void *) rdma->wr_data[idx].control);
1652     memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1653
1654     DDDPRINTF("CONTROL: %s receiving...\n", control_desc[expecting]);
1655
1656     if (expecting == RDMA_CONTROL_NONE) {
1657         DDDPRINTF("Surprise: got %s (%d)\n",
1658                   control_desc[head->type], head->type);
1659     } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1660         fprintf(stderr, "Was expecting a %s (%d) control message"
1661                 ", but got: %s (%d), length: %d\n",
1662                 control_desc[expecting], expecting,
1663                 control_desc[head->type], head->type, head->len);
1664         return -EIO;
1665     }
1666     if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1667         fprintf(stderr, "too long length: %d\n", head->len);
1668         return -EINVAL;
1669     }
1670     if (sizeof(*head) + head->len != byte_len) {
1671         fprintf(stderr, "Malformed length: %d byte_len %d\n",
1672                 head->len, byte_len);
1673         return -EINVAL;
1674     }
1675
1676     return 0;
1677 }
1678
1679 /*
1680  * When a RECV work request has completed, the work request's
1681  * buffer is pointed at the header.
1682  *
1683  * This will advance the pointer to the data portion
1684  * of the control message of the work request's buffer that
1685  * was populated after the work request finished.
1686  */
1687 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1688                                   RDMAControlHeader *head)
1689 {
1690     rdma->wr_data[idx].control_len = head->len;
1691     rdma->wr_data[idx].control_curr =
1692         rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1693 }
1694
1695 /*
1696  * This is an 'atomic' high-level operation to deliver a single, unified
1697  * control-channel message.
1698  *
1699  * Additionally, if the user is expecting some kind of reply to this message,
1700  * they can request a 'resp' response message be filled in by posting an
1701  * additional work request on behalf of the user and waiting for an additional
1702  * completion.
1703  *
1704  * The extra (optional) response is used during registration to us from having
1705  * to perform an *additional* exchange of message just to provide a response by
1706  * instead piggy-backing on the acknowledgement.
1707  */
1708 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1709                                    uint8_t *data, RDMAControlHeader *resp,
1710                                    int *resp_idx,
1711                                    int (*callback)(RDMAContext *rdma))
1712 {
1713     int ret = 0;
1714
1715     /*
1716      * Wait until the dest is ready before attempting to deliver the message
1717      * by waiting for a READY message.
1718      */
1719     if (rdma->control_ready_expected) {
1720         RDMAControlHeader resp;
1721         ret = qemu_rdma_exchange_get_response(rdma,
1722                                     &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1723         if (ret < 0) {
1724             return ret;
1725         }
1726     }
1727
1728     /*
1729      * If the user is expecting a response, post a WR in anticipation of it.
1730      */
1731     if (resp) {
1732         ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1733         if (ret) {
1734             fprintf(stderr, "rdma migration: error posting"
1735                     " extra control recv for anticipated result!");
1736             return ret;
1737         }
1738     }
1739
1740     /*
1741      * Post a WR to replace the one we just consumed for the READY message.
1742      */
1743     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1744     if (ret) {
1745         fprintf(stderr, "rdma migration: error posting first control recv!");
1746         return ret;
1747     }
1748
1749     /*
1750      * Deliver the control message that was requested.
1751      */
1752     ret = qemu_rdma_post_send_control(rdma, data, head);
1753
1754     if (ret < 0) {
1755         fprintf(stderr, "Failed to send control buffer!\n");
1756         return ret;
1757     }
1758
1759     /*
1760      * If we're expecting a response, block and wait for it.
1761      */
1762     if (resp) {
1763         if (callback) {
1764             DDPRINTF("Issuing callback before receiving response...\n");
1765             ret = callback(rdma);
1766             if (ret < 0) {
1767                 return ret;
1768             }
1769         }
1770
1771         DDPRINTF("Waiting for response %s\n", control_desc[resp->type]);
1772         ret = qemu_rdma_exchange_get_response(rdma, resp,
1773                                               resp->type, RDMA_WRID_DATA);
1774
1775         if (ret < 0) {
1776             return ret;
1777         }
1778
1779         qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1780         if (resp_idx) {
1781             *resp_idx = RDMA_WRID_DATA;
1782         }
1783         DDPRINTF("Response %s received.\n", control_desc[resp->type]);
1784     }
1785
1786     rdma->control_ready_expected = 1;
1787
1788     return 0;
1789 }
1790
1791 /*
1792  * This is an 'atomic' high-level operation to receive a single, unified
1793  * control-channel message.
1794  */
1795 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1796                                 int expecting)
1797 {
1798     RDMAControlHeader ready = {
1799                                 .len = 0,
1800                                 .type = RDMA_CONTROL_READY,
1801                                 .repeat = 1,
1802                               };
1803     int ret;
1804
1805     /*
1806      * Inform the source that we're ready to receive a message.
1807      */
1808     ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1809
1810     if (ret < 0) {
1811         fprintf(stderr, "Failed to send control buffer!\n");
1812         return ret;
1813     }
1814
1815     /*
1816      * Block and wait for the message.
1817      */
1818     ret = qemu_rdma_exchange_get_response(rdma, head,
1819                                           expecting, RDMA_WRID_READY);
1820
1821     if (ret < 0) {
1822         return ret;
1823     }
1824
1825     qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1826
1827     /*
1828      * Post a new RECV work request to replace the one we just consumed.
1829      */
1830     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1831     if (ret) {
1832         fprintf(stderr, "rdma migration: error posting second control recv!");
1833         return ret;
1834     }
1835
1836     return 0;
1837 }
1838
1839 /*
1840  * Write an actual chunk of memory using RDMA.
1841  *
1842  * If we're using dynamic registration on the dest-side, we have to
1843  * send a registration command first.
1844  */
1845 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1846                                int current_index, uint64_t current_addr,
1847                                uint64_t length)
1848 {
1849     struct ibv_sge sge;
1850     struct ibv_send_wr send_wr = { 0 };
1851     struct ibv_send_wr *bad_wr;
1852     int reg_result_idx, ret, count = 0;
1853     uint64_t chunk, chunks;
1854     uint8_t *chunk_start, *chunk_end;
1855     RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1856     RDMARegister reg;
1857     RDMARegisterResult *reg_result;
1858     RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1859     RDMAControlHeader head = { .len = sizeof(RDMARegister),
1860                                .type = RDMA_CONTROL_REGISTER_REQUEST,
1861                                .repeat = 1,
1862                              };
1863
1864 retry:
1865     sge.addr = (uint64_t)(block->local_host_addr +
1866                             (current_addr - block->offset));
1867     sge.length = length;
1868
1869     chunk = ram_chunk_index(block->local_host_addr, (uint8_t *) sge.addr);
1870     chunk_start = ram_chunk_start(block, chunk);
1871
1872     if (block->is_ram_block) {
1873         chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1874
1875         if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1876             chunks--;
1877         }
1878     } else {
1879         chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1880
1881         if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1882             chunks--;
1883         }
1884     }
1885
1886     DDPRINTF("Writing %" PRIu64 " chunks, (%" PRIu64 " MB)\n",
1887         chunks + 1, (chunks + 1) * (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1888
1889     chunk_end = ram_chunk_end(block, chunk + chunks);
1890
1891     if (!rdma->pin_all) {
1892 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1893         qemu_rdma_unregister_waiting(rdma);
1894 #endif
1895     }
1896
1897     while (test_bit(chunk, block->transit_bitmap)) {
1898         (void)count;
1899         DDPRINTF("(%d) Not clobbering: block: %d chunk %" PRIu64
1900                 " current %" PRIu64 " len %" PRIu64 " %d %d\n",
1901                 count++, current_index, chunk,
1902                 sge.addr, length, rdma->nb_sent, block->nb_chunks);
1903
1904         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
1905
1906         if (ret < 0) {
1907             fprintf(stderr, "Failed to Wait for previous write to complete "
1908                     "block %d chunk %" PRIu64
1909                     " current %" PRIu64 " len %" PRIu64 " %d\n",
1910                     current_index, chunk, sge.addr, length, rdma->nb_sent);
1911             return ret;
1912         }
1913     }
1914
1915     if (!rdma->pin_all || !block->is_ram_block) {
1916         if (!block->remote_keys[chunk]) {
1917             /*
1918              * This chunk has not yet been registered, so first check to see
1919              * if the entire chunk is zero. If so, tell the other size to
1920              * memset() + madvise() the entire chunk without RDMA.
1921              */
1922
1923             if (can_use_buffer_find_nonzero_offset((void *)sge.addr, length)
1924                    && buffer_find_nonzero_offset((void *)sge.addr,
1925                                                     length) == length) {
1926                 RDMACompress comp = {
1927                                         .offset = current_addr,
1928                                         .value = 0,
1929                                         .block_idx = current_index,
1930                                         .length = length,
1931                                     };
1932
1933                 head.len = sizeof(comp);
1934                 head.type = RDMA_CONTROL_COMPRESS;
1935
1936                 DDPRINTF("Entire chunk is zero, sending compress: %"
1937                     PRIu64 " for %d "
1938                     "bytes, index: %d, offset: %" PRId64 "...\n",
1939                     chunk, sge.length, current_index, current_addr);
1940
1941                 compress_to_network(&comp);
1942                 ret = qemu_rdma_exchange_send(rdma, &head,
1943                                 (uint8_t *) &comp, NULL, NULL, NULL);
1944
1945                 if (ret < 0) {
1946                     return -EIO;
1947                 }
1948
1949                 acct_update_position(f, sge.length, true);
1950
1951                 return 1;
1952             }
1953
1954             /*
1955              * Otherwise, tell other side to register.
1956              */
1957             reg.current_index = current_index;
1958             if (block->is_ram_block) {
1959                 reg.key.current_addr = current_addr;
1960             } else {
1961                 reg.key.chunk = chunk;
1962             }
1963             reg.chunks = chunks;
1964
1965             DDPRINTF("Sending registration request chunk %" PRIu64 " for %d "
1966                     "bytes, index: %d, offset: %" PRId64 "...\n",
1967                     chunk, sge.length, current_index, current_addr);
1968
1969             register_to_network(&reg);
1970             ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1971                                     &resp, &reg_result_idx, NULL);
1972             if (ret < 0) {
1973                 return ret;
1974             }
1975
1976             /* try to overlap this single registration with the one we sent. */
1977             if (qemu_rdma_register_and_get_keys(rdma, block,
1978                                                 (uint8_t *) sge.addr,
1979                                                 &sge.lkey, NULL, chunk,
1980                                                 chunk_start, chunk_end)) {
1981                 fprintf(stderr, "cannot get lkey!\n");
1982                 return -EINVAL;
1983             }
1984
1985             reg_result = (RDMARegisterResult *)
1986                     rdma->wr_data[reg_result_idx].control_curr;
1987
1988             network_to_result(reg_result);
1989
1990             DDPRINTF("Received registration result:"
1991                     " my key: %x their key %x, chunk %" PRIu64 "\n",
1992                     block->remote_keys[chunk], reg_result->rkey, chunk);
1993
1994             block->remote_keys[chunk] = reg_result->rkey;
1995             block->remote_host_addr = reg_result->host_addr;
1996         } else {
1997             /* already registered before */
1998             if (qemu_rdma_register_and_get_keys(rdma, block,
1999                                                 (uint8_t *)sge.addr,
2000                                                 &sge.lkey, NULL, chunk,
2001                                                 chunk_start, chunk_end)) {
2002                 fprintf(stderr, "cannot get lkey!\n");
2003                 return -EINVAL;
2004             }
2005         }
2006
2007         send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2008     } else {
2009         send_wr.wr.rdma.rkey = block->remote_rkey;
2010
2011         if (qemu_rdma_register_and_get_keys(rdma, block, (uint8_t *)sge.addr,
2012                                                      &sge.lkey, NULL, chunk,
2013                                                      chunk_start, chunk_end)) {
2014             fprintf(stderr, "cannot get lkey!\n");
2015             return -EINVAL;
2016         }
2017     }
2018
2019     /*
2020      * Encode the ram block index and chunk within this wrid.
2021      * We will use this information at the time of completion
2022      * to figure out which bitmap to check against and then which
2023      * chunk in the bitmap to look for.
2024      */
2025     send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2026                                         current_index, chunk);
2027
2028     send_wr.opcode = IBV_WR_RDMA_WRITE;
2029     send_wr.send_flags = IBV_SEND_SIGNALED;
2030     send_wr.sg_list = &sge;
2031     send_wr.num_sge = 1;
2032     send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2033                                 (current_addr - block->offset);
2034
2035     DDDPRINTF("Posting chunk: %" PRIu64 ", addr: %lx"
2036               " remote: %lx, bytes %" PRIu32 "\n",
2037               chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2038               sge.length);
2039
2040     /*
2041      * ibv_post_send() does not return negative error numbers,
2042      * per the specification they are positive - no idea why.
2043      */
2044     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2045
2046     if (ret == ENOMEM) {
2047         DDPRINTF("send queue is full. wait a little....\n");
2048         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2049         if (ret < 0) {
2050             fprintf(stderr, "rdma migration: failed to make "
2051                             "room in full send queue! %d\n", ret);
2052             return ret;
2053         }
2054
2055         goto retry;
2056
2057     } else if (ret > 0) {
2058         perror("rdma migration: post rdma write failed");
2059         return -ret;
2060     }
2061
2062     set_bit(chunk, block->transit_bitmap);
2063     acct_update_position(f, sge.length, false);
2064     rdma->total_writes++;
2065
2066     return 0;
2067 }
2068
2069 /*
2070  * Push out any unwritten RDMA operations.
2071  *
2072  * We support sending out multiple chunks at the same time.
2073  * Not all of them need to get signaled in the completion queue.
2074  */
2075 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2076 {
2077     int ret;
2078
2079     if (!rdma->current_length) {
2080         return 0;
2081     }
2082
2083     ret = qemu_rdma_write_one(f, rdma,
2084             rdma->current_index, rdma->current_addr, rdma->current_length);
2085
2086     if (ret < 0) {
2087         return ret;
2088     }
2089
2090     if (ret == 0) {
2091         rdma->nb_sent++;
2092         DDDPRINTF("sent total: %d\n", rdma->nb_sent);
2093     }
2094
2095     rdma->current_length = 0;
2096     rdma->current_addr = 0;
2097
2098     return 0;
2099 }
2100
2101 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2102                     uint64_t offset, uint64_t len)
2103 {
2104     RDMALocalBlock *block;
2105     uint8_t *host_addr;
2106     uint8_t *chunk_end;
2107
2108     if (rdma->current_index < 0) {
2109         return 0;
2110     }
2111
2112     if (rdma->current_chunk < 0) {
2113         return 0;
2114     }
2115
2116     block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2117     host_addr = block->local_host_addr + (offset - block->offset);
2118     chunk_end = ram_chunk_end(block, rdma->current_chunk);
2119
2120     if (rdma->current_length == 0) {
2121         return 0;
2122     }
2123
2124     /*
2125      * Only merge into chunk sequentially.
2126      */
2127     if (offset != (rdma->current_addr + rdma->current_length)) {
2128         return 0;
2129     }
2130
2131     if (offset < block->offset) {
2132         return 0;
2133     }
2134
2135     if ((offset + len) > (block->offset + block->length)) {
2136         return 0;
2137     }
2138
2139     if ((host_addr + len) > chunk_end) {
2140         return 0;
2141     }
2142
2143     return 1;
2144 }
2145
2146 /*
2147  * We're not actually writing here, but doing three things:
2148  *
2149  * 1. Identify the chunk the buffer belongs to.
2150  * 2. If the chunk is full or the buffer doesn't belong to the current
2151  *    chunk, then start a new chunk and flush() the old chunk.
2152  * 3. To keep the hardware busy, we also group chunks into batches
2153  *    and only require that a batch gets acknowledged in the completion
2154  *    qeueue instead of each individual chunk.
2155  */
2156 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2157                            uint64_t block_offset, uint64_t offset,
2158                            uint64_t len)
2159 {
2160     uint64_t current_addr = block_offset + offset;
2161     uint64_t index = rdma->current_index;
2162     uint64_t chunk = rdma->current_chunk;
2163     int ret;
2164
2165     /* If we cannot merge it, we flush the current buffer first. */
2166     if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2167         ret = qemu_rdma_write_flush(f, rdma);
2168         if (ret) {
2169             return ret;
2170         }
2171         rdma->current_length = 0;
2172         rdma->current_addr = current_addr;
2173
2174         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2175                                          offset, len, &index, &chunk);
2176         if (ret) {
2177             fprintf(stderr, "ram block search failed\n");
2178             return ret;
2179         }
2180         rdma->current_index = index;
2181         rdma->current_chunk = chunk;
2182     }
2183
2184     /* merge it */
2185     rdma->current_length += len;
2186
2187     /* flush it if buffer is too large */
2188     if (rdma->current_length >= RDMA_MERGE_MAX) {
2189         return qemu_rdma_write_flush(f, rdma);
2190     }
2191
2192     return 0;
2193 }
2194
2195 static void qemu_rdma_cleanup(RDMAContext *rdma)
2196 {
2197     struct rdma_cm_event *cm_event;
2198     int ret, idx;
2199
2200     if (rdma->cm_id && rdma->connected) {
2201         if (rdma->error_state) {
2202             RDMAControlHeader head = { .len = 0,
2203                                        .type = RDMA_CONTROL_ERROR,
2204                                        .repeat = 1,
2205                                      };
2206             fprintf(stderr, "Early error. Sending error.\n");
2207             qemu_rdma_post_send_control(rdma, NULL, &head);
2208         }
2209
2210         ret = rdma_disconnect(rdma->cm_id);
2211         if (!ret) {
2212             DDPRINTF("waiting for disconnect\n");
2213             ret = rdma_get_cm_event(rdma->channel, &cm_event);
2214             if (!ret) {
2215                 rdma_ack_cm_event(cm_event);
2216             }
2217         }
2218         DDPRINTF("Disconnected.\n");
2219         rdma->connected = false;
2220     }
2221
2222     g_free(rdma->block);
2223     rdma->block = NULL;
2224
2225     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2226         if (rdma->wr_data[idx].control_mr) {
2227             rdma->total_registrations--;
2228             ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2229         }
2230         rdma->wr_data[idx].control_mr = NULL;
2231     }
2232
2233     if (rdma->local_ram_blocks.block) {
2234         while (rdma->local_ram_blocks.nb_blocks) {
2235             __qemu_rdma_delete_block(rdma,
2236                     rdma->local_ram_blocks.block->offset);
2237         }
2238     }
2239
2240     if (rdma->qp) {
2241         rdma_destroy_qp(rdma->cm_id);
2242         rdma->qp = NULL;
2243     }
2244     if (rdma->cq) {
2245         ibv_destroy_cq(rdma->cq);
2246         rdma->cq = NULL;
2247     }
2248     if (rdma->comp_channel) {
2249         ibv_destroy_comp_channel(rdma->comp_channel);
2250         rdma->comp_channel = NULL;
2251     }
2252     if (rdma->pd) {
2253         ibv_dealloc_pd(rdma->pd);
2254         rdma->pd = NULL;
2255     }
2256     if (rdma->listen_id) {
2257         rdma_destroy_id(rdma->listen_id);
2258         rdma->listen_id = NULL;
2259     }
2260     if (rdma->cm_id) {
2261         rdma_destroy_id(rdma->cm_id);
2262         rdma->cm_id = NULL;
2263     }
2264     if (rdma->channel) {
2265         rdma_destroy_event_channel(rdma->channel);
2266         rdma->channel = NULL;
2267     }
2268     g_free(rdma->host);
2269     rdma->host = NULL;
2270 }
2271
2272
2273 static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
2274 {
2275     int ret, idx;
2276     Error *local_err = NULL, **temp = &local_err;
2277
2278     /*
2279      * Will be validated against destination's actual capabilities
2280      * after the connect() completes.
2281      */
2282     rdma->pin_all = pin_all;
2283
2284     ret = qemu_rdma_resolve_host(rdma, temp);
2285     if (ret) {
2286         goto err_rdma_source_init;
2287     }
2288
2289     ret = qemu_rdma_alloc_pd_cq(rdma);
2290     if (ret) {
2291         ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2292                     " limits may be too low. Please check $ ulimit -a # and "
2293                     "search for 'ulimit -l' in the output");
2294         goto err_rdma_source_init;
2295     }
2296
2297     ret = qemu_rdma_alloc_qp(rdma);
2298     if (ret) {
2299         ERROR(temp, "rdma migration: error allocating qp!");
2300         goto err_rdma_source_init;
2301     }
2302
2303     ret = qemu_rdma_init_ram_blocks(rdma);
2304     if (ret) {
2305         ERROR(temp, "rdma migration: error initializing ram blocks!");
2306         goto err_rdma_source_init;
2307     }
2308
2309     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2310         ret = qemu_rdma_reg_control(rdma, idx);
2311         if (ret) {
2312             ERROR(temp, "rdma migration: error registering %d control!",
2313                                                             idx);
2314             goto err_rdma_source_init;
2315         }
2316     }
2317
2318     return 0;
2319
2320 err_rdma_source_init:
2321     error_propagate(errp, local_err);
2322     qemu_rdma_cleanup(rdma);
2323     return -1;
2324 }
2325
2326 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2327 {
2328     RDMACapabilities cap = {
2329                                 .version = RDMA_CONTROL_VERSION_CURRENT,
2330                                 .flags = 0,
2331                            };
2332     struct rdma_conn_param conn_param = { .initiator_depth = 2,
2333                                           .retry_count = 5,
2334                                           .private_data = &cap,
2335                                           .private_data_len = sizeof(cap),
2336                                         };
2337     struct rdma_cm_event *cm_event;
2338     int ret;
2339
2340     /*
2341      * Only negotiate the capability with destination if the user
2342      * on the source first requested the capability.
2343      */
2344     if (rdma->pin_all) {
2345         DPRINTF("Server pin-all memory requested.\n");
2346         cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2347     }
2348
2349     caps_to_network(&cap);
2350
2351     ret = rdma_connect(rdma->cm_id, &conn_param);
2352     if (ret) {
2353         perror("rdma_connect");
2354         ERROR(errp, "connecting to destination!");
2355         rdma_destroy_id(rdma->cm_id);
2356         rdma->cm_id = NULL;
2357         goto err_rdma_source_connect;
2358     }
2359
2360     ret = rdma_get_cm_event(rdma->channel, &cm_event);
2361     if (ret) {
2362         perror("rdma_get_cm_event after rdma_connect");
2363         ERROR(errp, "connecting to destination!");
2364         rdma_ack_cm_event(cm_event);
2365         rdma_destroy_id(rdma->cm_id);
2366         rdma->cm_id = NULL;
2367         goto err_rdma_source_connect;
2368     }
2369
2370     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2371         perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2372         ERROR(errp, "connecting to destination!");
2373         rdma_ack_cm_event(cm_event);
2374         rdma_destroy_id(rdma->cm_id);
2375         rdma->cm_id = NULL;
2376         goto err_rdma_source_connect;
2377     }
2378     rdma->connected = true;
2379
2380     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2381     network_to_caps(&cap);
2382
2383     /*
2384      * Verify that the *requested* capabilities are supported by the destination
2385      * and disable them otherwise.
2386      */
2387     if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2388         ERROR(errp, "Server cannot support pinning all memory. "
2389                         "Will register memory dynamically.");
2390         rdma->pin_all = false;
2391     }
2392
2393     DPRINTF("Pin all memory: %s\n", rdma->pin_all ? "enabled" : "disabled");
2394
2395     rdma_ack_cm_event(cm_event);
2396
2397     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2398     if (ret) {
2399         ERROR(errp, "posting second control recv!");
2400         goto err_rdma_source_connect;
2401     }
2402
2403     rdma->control_ready_expected = 1;
2404     rdma->nb_sent = 0;
2405     return 0;
2406
2407 err_rdma_source_connect:
2408     qemu_rdma_cleanup(rdma);
2409     return -1;
2410 }
2411
2412 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2413 {
2414     int ret = -EINVAL, idx;
2415     struct rdma_cm_id *listen_id;
2416     char ip[40] = "unknown";
2417     struct rdma_addrinfo *res;
2418     char port_str[16];
2419
2420     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2421         rdma->wr_data[idx].control_len = 0;
2422         rdma->wr_data[idx].control_curr = NULL;
2423     }
2424
2425     if (rdma->host == NULL) {
2426         ERROR(errp, "RDMA host is not set!");
2427         rdma->error_state = -EINVAL;
2428         return -1;
2429     }
2430     /* create CM channel */
2431     rdma->channel = rdma_create_event_channel();
2432     if (!rdma->channel) {
2433         ERROR(errp, "could not create rdma event channel");
2434         rdma->error_state = -EINVAL;
2435         return -1;
2436     }
2437
2438     /* create CM id */
2439     ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2440     if (ret) {
2441         ERROR(errp, "could not create cm_id!");
2442         goto err_dest_init_create_listen_id;
2443     }
2444
2445     snprintf(port_str, 16, "%d", rdma->port);
2446     port_str[15] = '\0';
2447
2448     if (rdma->host && strcmp("", rdma->host)) {
2449         struct rdma_addrinfo *e;
2450
2451         ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2452         if (ret < 0) {
2453             ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2454             goto err_dest_init_bind_addr;
2455         }
2456
2457         for (e = res; e != NULL; e = e->ai_next) {
2458             inet_ntop(e->ai_family,
2459                 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2460             DPRINTF("Trying %s => %s\n", rdma->host, ip);
2461             ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2462             if (!ret) {
2463                 if (e->ai_family == AF_INET6) {
2464                     ret = qemu_rdma_broken_ipv6_kernel(errp, listen_id->verbs);
2465                     if (ret) {
2466                         continue;
2467                     }
2468                 }
2469                     
2470                 goto listen;
2471             }
2472         }
2473
2474         ERROR(errp, "Error: could not rdma_bind_addr!");
2475         goto err_dest_init_bind_addr;
2476     } else {
2477         ERROR(errp, "migration host and port not specified!");
2478         ret = -EINVAL;
2479         goto err_dest_init_bind_addr;
2480     }
2481 listen:
2482
2483     rdma->listen_id = listen_id;
2484     qemu_rdma_dump_gid("dest_init", listen_id);
2485     return 0;
2486
2487 err_dest_init_bind_addr:
2488     rdma_destroy_id(listen_id);
2489 err_dest_init_create_listen_id:
2490     rdma_destroy_event_channel(rdma->channel);
2491     rdma->channel = NULL;
2492     rdma->error_state = ret;
2493     return ret;
2494
2495 }
2496
2497 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2498 {
2499     RDMAContext *rdma = NULL;
2500     InetSocketAddress *addr;
2501
2502     if (host_port) {
2503         rdma = g_malloc0(sizeof(RDMAContext));
2504         memset(rdma, 0, sizeof(RDMAContext));
2505         rdma->current_index = -1;
2506         rdma->current_chunk = -1;
2507
2508         addr = inet_parse(host_port, NULL);
2509         if (addr != NULL) {
2510             rdma->port = atoi(addr->port);
2511             rdma->host = g_strdup(addr->host);
2512         } else {
2513             ERROR(errp, "bad RDMA migration address '%s'", host_port);
2514             g_free(rdma);
2515             return NULL;
2516         }
2517     }
2518
2519     return rdma;
2520 }
2521
2522 /*
2523  * QEMUFile interface to the control channel.
2524  * SEND messages for control only.
2525  * pc.ram is handled with regular RDMA messages.
2526  */
2527 static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf,
2528                                 int64_t pos, int size)
2529 {
2530     QEMUFileRDMA *r = opaque;
2531     QEMUFile *f = r->file;
2532     RDMAContext *rdma = r->rdma;
2533     size_t remaining = size;
2534     uint8_t * data = (void *) buf;
2535     int ret;
2536
2537     CHECK_ERROR_STATE();
2538
2539     /*
2540      * Push out any writes that
2541      * we're queued up for pc.ram.
2542      */
2543     ret = qemu_rdma_write_flush(f, rdma);
2544     if (ret < 0) {
2545         rdma->error_state = ret;
2546         return ret;
2547     }
2548
2549     while (remaining) {
2550         RDMAControlHeader head;
2551
2552         r->len = MIN(remaining, RDMA_SEND_INCREMENT);
2553         remaining -= r->len;
2554
2555         head.len = r->len;
2556         head.type = RDMA_CONTROL_QEMU_FILE;
2557
2558         ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2559
2560         if (ret < 0) {
2561             rdma->error_state = ret;
2562             return ret;
2563         }
2564
2565         data += r->len;
2566     }
2567
2568     return size;
2569 }
2570
2571 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2572                              int size, int idx)
2573 {
2574     size_t len = 0;
2575
2576     if (rdma->wr_data[idx].control_len) {
2577         DDDPRINTF("RDMA %" PRId64 " of %d bytes already in buffer\n",
2578                     rdma->wr_data[idx].control_len, size);
2579
2580         len = MIN(size, rdma->wr_data[idx].control_len);
2581         memcpy(buf, rdma->wr_data[idx].control_curr, len);
2582         rdma->wr_data[idx].control_curr += len;
2583         rdma->wr_data[idx].control_len -= len;
2584     }
2585
2586     return len;
2587 }
2588
2589 /*
2590  * QEMUFile interface to the control channel.
2591  * RDMA links don't use bytestreams, so we have to
2592  * return bytes to QEMUFile opportunistically.
2593  */
2594 static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf,
2595                                 int64_t pos, int size)
2596 {
2597     QEMUFileRDMA *r = opaque;
2598     RDMAContext *rdma = r->rdma;
2599     RDMAControlHeader head;
2600     int ret = 0;
2601
2602     CHECK_ERROR_STATE();
2603
2604     /*
2605      * First, we hold on to the last SEND message we
2606      * were given and dish out the bytes until we run
2607      * out of bytes.
2608      */
2609     r->len = qemu_rdma_fill(r->rdma, buf, size, 0);
2610     if (r->len) {
2611         return r->len;
2612     }
2613
2614     /*
2615      * Once we run out, we block and wait for another
2616      * SEND message to arrive.
2617      */
2618     ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2619
2620     if (ret < 0) {
2621         rdma->error_state = ret;
2622         return ret;
2623     }
2624
2625     /*
2626      * SEND was received with new bytes, now try again.
2627      */
2628     return qemu_rdma_fill(r->rdma, buf, size, 0);
2629 }
2630
2631 /*
2632  * Block until all the outstanding chunks have been delivered by the hardware.
2633  */
2634 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2635 {
2636     int ret;
2637
2638     if (qemu_rdma_write_flush(f, rdma) < 0) {
2639         return -EIO;
2640     }
2641
2642     while (rdma->nb_sent) {
2643         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2644         if (ret < 0) {
2645             fprintf(stderr, "rdma migration: complete polling error!\n");
2646             return -EIO;
2647         }
2648     }
2649
2650     qemu_rdma_unregister_waiting(rdma);
2651
2652     return 0;
2653 }
2654
2655 static int qemu_rdma_close(void *opaque)
2656 {
2657     DPRINTF("Shutting down connection.\n");
2658     QEMUFileRDMA *r = opaque;
2659     if (r->rdma) {
2660         qemu_rdma_cleanup(r->rdma);
2661         g_free(r->rdma);
2662     }
2663     g_free(r);
2664     return 0;
2665 }
2666
2667 /*
2668  * Parameters:
2669  *    @offset == 0 :
2670  *        This means that 'block_offset' is a full virtual address that does not
2671  *        belong to a RAMBlock of the virtual machine and instead
2672  *        represents a private malloc'd memory area that the caller wishes to
2673  *        transfer.
2674  *
2675  *    @offset != 0 :
2676  *        Offset is an offset to be added to block_offset and used
2677  *        to also lookup the corresponding RAMBlock.
2678  *
2679  *    @size > 0 :
2680  *        Initiate an transfer this size.
2681  *
2682  *    @size == 0 :
2683  *        A 'hint' or 'advice' that means that we wish to speculatively
2684  *        and asynchronously unregister this memory. In this case, there is no
2685  *        guarantee that the unregister will actually happen, for example,
2686  *        if the memory is being actively transmitted. Additionally, the memory
2687  *        may be re-registered at any future time if a write within the same
2688  *        chunk was requested again, even if you attempted to unregister it
2689  *        here.
2690  *
2691  *    @size < 0 : TODO, not yet supported
2692  *        Unregister the memory NOW. This means that the caller does not
2693  *        expect there to be any future RDMA transfers and we just want to clean
2694  *        things up. This is used in case the upper layer owns the memory and
2695  *        cannot wait for qemu_fclose() to occur.
2696  *
2697  *    @bytes_sent : User-specificed pointer to indicate how many bytes were
2698  *                  sent. Usually, this will not be more than a few bytes of
2699  *                  the protocol because most transfers are sent asynchronously.
2700  */
2701 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2702                                   ram_addr_t block_offset, ram_addr_t offset,
2703                                   size_t size, int *bytes_sent)
2704 {
2705     QEMUFileRDMA *rfile = opaque;
2706     RDMAContext *rdma = rfile->rdma;
2707     int ret;
2708
2709     CHECK_ERROR_STATE();
2710
2711     qemu_fflush(f);
2712
2713     if (size > 0) {
2714         /*
2715          * Add this page to the current 'chunk'. If the chunk
2716          * is full, or the page doen't belong to the current chunk,
2717          * an actual RDMA write will occur and a new chunk will be formed.
2718          */
2719         ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2720         if (ret < 0) {
2721             fprintf(stderr, "rdma migration: write error! %d\n", ret);
2722             goto err;
2723         }
2724
2725         /*
2726          * We always return 1 bytes because the RDMA
2727          * protocol is completely asynchronous. We do not yet know
2728          * whether an  identified chunk is zero or not because we're
2729          * waiting for other pages to potentially be merged with
2730          * the current chunk. So, we have to call qemu_update_position()
2731          * later on when the actual write occurs.
2732          */
2733         if (bytes_sent) {
2734             *bytes_sent = 1;
2735         }
2736     } else {
2737         uint64_t index, chunk;
2738
2739         /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2740         if (size < 0) {
2741             ret = qemu_rdma_drain_cq(f, rdma);
2742             if (ret < 0) {
2743                 fprintf(stderr, "rdma: failed to synchronously drain"
2744                                 " completion queue before unregistration.\n");
2745                 goto err;
2746             }
2747         }
2748         */
2749
2750         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2751                                          offset, size, &index, &chunk);
2752
2753         if (ret) {
2754             fprintf(stderr, "ram block search failed\n");
2755             goto err;
2756         }
2757
2758         qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2759
2760         /*
2761          * TODO: Synchronous, guaranteed unregistration (should not occur during
2762          * fast-path). Otherwise, unregisters will process on the next call to
2763          * qemu_rdma_drain_cq()
2764         if (size < 0) {
2765             qemu_rdma_unregister_waiting(rdma);
2766         }
2767         */
2768     }
2769
2770     /*
2771      * Drain the Completion Queue if possible, but do not block,
2772      * just poll.
2773      *
2774      * If nothing to poll, the end of the iteration will do this
2775      * again to make sure we don't overflow the request queue.
2776      */
2777     while (1) {
2778         uint64_t wr_id, wr_id_in;
2779         int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
2780         if (ret < 0) {
2781             fprintf(stderr, "rdma migration: polling error! %d\n", ret);
2782             goto err;
2783         }
2784
2785         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
2786
2787         if (wr_id == RDMA_WRID_NONE) {
2788             break;
2789         }
2790     }
2791
2792     return RAM_SAVE_CONTROL_DELAYED;
2793 err:
2794     rdma->error_state = ret;
2795     return ret;
2796 }
2797
2798 static int qemu_rdma_accept(RDMAContext *rdma)
2799 {
2800     RDMACapabilities cap;
2801     struct rdma_conn_param conn_param = {
2802                                             .responder_resources = 2,
2803                                             .private_data = &cap,
2804                                             .private_data_len = sizeof(cap),
2805                                          };
2806     struct rdma_cm_event *cm_event;
2807     struct ibv_context *verbs;
2808     int ret = -EINVAL;
2809     int idx;
2810
2811     ret = rdma_get_cm_event(rdma->channel, &cm_event);
2812     if (ret) {
2813         goto err_rdma_dest_wait;
2814     }
2815
2816     if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
2817         rdma_ack_cm_event(cm_event);
2818         goto err_rdma_dest_wait;
2819     }
2820
2821     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2822
2823     network_to_caps(&cap);
2824
2825     if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
2826             fprintf(stderr, "Unknown source RDMA version: %d, bailing...\n",
2827                             cap.version);
2828             rdma_ack_cm_event(cm_event);
2829             goto err_rdma_dest_wait;
2830     }
2831
2832     /*
2833      * Respond with only the capabilities this version of QEMU knows about.
2834      */
2835     cap.flags &= known_capabilities;
2836
2837     /*
2838      * Enable the ones that we do know about.
2839      * Add other checks here as new ones are introduced.
2840      */
2841     if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
2842         rdma->pin_all = true;
2843     }
2844
2845     rdma->cm_id = cm_event->id;
2846     verbs = cm_event->id->verbs;
2847
2848     rdma_ack_cm_event(cm_event);
2849
2850     DPRINTF("Memory pin all: %s\n", rdma->pin_all ? "enabled" : "disabled");
2851
2852     caps_to_network(&cap);
2853
2854     DPRINTF("verbs context after listen: %p\n", verbs);
2855
2856     if (!rdma->verbs) {
2857         rdma->verbs = verbs;
2858     } else if (rdma->verbs != verbs) {
2859             fprintf(stderr, "ibv context not matching %p, %p!\n",
2860                     rdma->verbs, verbs);
2861             goto err_rdma_dest_wait;
2862     }
2863
2864     qemu_rdma_dump_id("dest_init", verbs);
2865
2866     ret = qemu_rdma_alloc_pd_cq(rdma);
2867     if (ret) {
2868         fprintf(stderr, "rdma migration: error allocating pd and cq!\n");
2869         goto err_rdma_dest_wait;
2870     }
2871
2872     ret = qemu_rdma_alloc_qp(rdma);
2873     if (ret) {
2874         fprintf(stderr, "rdma migration: error allocating qp!\n");
2875         goto err_rdma_dest_wait;
2876     }
2877
2878     ret = qemu_rdma_init_ram_blocks(rdma);
2879     if (ret) {
2880         fprintf(stderr, "rdma migration: error initializing ram blocks!\n");
2881         goto err_rdma_dest_wait;
2882     }
2883
2884     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2885         ret = qemu_rdma_reg_control(rdma, idx);
2886         if (ret) {
2887             fprintf(stderr, "rdma: error registering %d control!\n", idx);
2888             goto err_rdma_dest_wait;
2889         }
2890     }
2891
2892     qemu_set_fd_handler2(rdma->channel->fd, NULL, NULL, NULL, NULL);
2893
2894     ret = rdma_accept(rdma->cm_id, &conn_param);
2895     if (ret) {
2896         fprintf(stderr, "rdma_accept returns %d!\n", ret);
2897         goto err_rdma_dest_wait;
2898     }
2899
2900     ret = rdma_get_cm_event(rdma->channel, &cm_event);
2901     if (ret) {
2902         fprintf(stderr, "rdma_accept get_cm_event failed %d!\n", ret);
2903         goto err_rdma_dest_wait;
2904     }
2905
2906     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2907         fprintf(stderr, "rdma_accept not event established!\n");
2908         rdma_ack_cm_event(cm_event);
2909         goto err_rdma_dest_wait;
2910     }
2911
2912     rdma_ack_cm_event(cm_event);
2913     rdma->connected = true;
2914
2915     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2916     if (ret) {
2917         fprintf(stderr, "rdma migration: error posting second control recv!\n");
2918         goto err_rdma_dest_wait;
2919     }
2920
2921     qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
2922
2923     return 0;
2924
2925 err_rdma_dest_wait:
2926     rdma->error_state = ret;
2927     qemu_rdma_cleanup(rdma);
2928     return ret;
2929 }
2930
2931 /*
2932  * During each iteration of the migration, we listen for instructions
2933  * by the source VM to perform dynamic page registrations before they
2934  * can perform RDMA operations.
2935  *
2936  * We respond with the 'rkey'.
2937  *
2938  * Keep doing this until the source tells us to stop.
2939  */
2940 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque,
2941                                          uint64_t flags)
2942 {
2943     RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
2944                                .type = RDMA_CONTROL_REGISTER_RESULT,
2945                                .repeat = 0,
2946                              };
2947     RDMAControlHeader unreg_resp = { .len = 0,
2948                                .type = RDMA_CONTROL_UNREGISTER_FINISHED,
2949                                .repeat = 0,
2950                              };
2951     RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
2952                                  .repeat = 1 };
2953     QEMUFileRDMA *rfile = opaque;
2954     RDMAContext *rdma = rfile->rdma;
2955     RDMALocalBlocks *local = &rdma->local_ram_blocks;
2956     RDMAControlHeader head;
2957     RDMARegister *reg, *registers;
2958     RDMACompress *comp;
2959     RDMARegisterResult *reg_result;
2960     static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
2961     RDMALocalBlock *block;
2962     void *host_addr;
2963     int ret = 0;
2964     int idx = 0;
2965     int count = 0;
2966     int i = 0;
2967
2968     CHECK_ERROR_STATE();
2969
2970     do {
2971         DDDPRINTF("Waiting for next request %" PRIu64 "...\n", flags);
2972
2973         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
2974
2975         if (ret < 0) {
2976             break;
2977         }
2978
2979         if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
2980             fprintf(stderr, "rdma: Too many requests in this message (%d)."
2981                             "Bailing.\n", head.repeat);
2982             ret = -EIO;
2983             break;
2984         }
2985
2986         switch (head.type) {
2987         case RDMA_CONTROL_COMPRESS:
2988             comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
2989             network_to_compress(comp);
2990
2991             DDPRINTF("Zapping zero chunk: %" PRId64
2992                     " bytes, index %d, offset %" PRId64 "\n",
2993                     comp->length, comp->block_idx, comp->offset);
2994             block = &(rdma->local_ram_blocks.block[comp->block_idx]);
2995
2996             host_addr = block->local_host_addr +
2997                             (comp->offset - block->offset);
2998
2999             ram_handle_compressed(host_addr, comp->value, comp->length);
3000             break;
3001
3002         case RDMA_CONTROL_REGISTER_FINISHED:
3003             DDDPRINTF("Current registrations complete.\n");
3004             goto out;
3005
3006         case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3007             DPRINTF("Initial setup info requested.\n");
3008
3009             if (rdma->pin_all) {
3010                 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3011                 if (ret) {
3012                     fprintf(stderr, "rdma migration: error dest "
3013                                     "registering ram blocks!\n");
3014                     goto out;
3015                 }
3016             }
3017
3018             /*
3019              * Dest uses this to prepare to transmit the RAMBlock descriptions
3020              * to the source VM after connection setup.
3021              * Both sides use the "remote" structure to communicate and update
3022              * their "local" descriptions with what was sent.
3023              */
3024             for (i = 0; i < local->nb_blocks; i++) {
3025                 rdma->block[i].remote_host_addr =
3026                     (uint64_t)(local->block[i].local_host_addr);
3027
3028                 if (rdma->pin_all) {
3029                     rdma->block[i].remote_rkey = local->block[i].mr->rkey;
3030                 }
3031
3032                 rdma->block[i].offset = local->block[i].offset;
3033                 rdma->block[i].length = local->block[i].length;
3034
3035                 remote_block_to_network(&rdma->block[i]);
3036             }
3037
3038             blocks.len = rdma->local_ram_blocks.nb_blocks
3039                                                 * sizeof(RDMARemoteBlock);
3040
3041
3042             ret = qemu_rdma_post_send_control(rdma,
3043                                         (uint8_t *) rdma->block, &blocks);
3044
3045             if (ret < 0) {
3046                 fprintf(stderr, "rdma migration: error sending remote info!\n");
3047                 goto out;
3048             }
3049
3050             break;
3051         case RDMA_CONTROL_REGISTER_REQUEST:
3052             DDPRINTF("There are %d registration requests\n", head.repeat);
3053
3054             reg_resp.repeat = head.repeat;
3055             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3056
3057             for (count = 0; count < head.repeat; count++) {
3058                 uint64_t chunk;
3059                 uint8_t *chunk_start, *chunk_end;
3060
3061                 reg = &registers[count];
3062                 network_to_register(reg);
3063
3064                 reg_result = &results[count];
3065
3066                 DDPRINTF("Registration request (%d): index %d, current_addr %"
3067                          PRIu64 " chunks: %" PRIu64 "\n", count,
3068                          reg->current_index, reg->key.current_addr, reg->chunks);
3069
3070                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3071                 if (block->is_ram_block) {
3072                     host_addr = (block->local_host_addr +
3073                                 (reg->key.current_addr - block->offset));
3074                     chunk = ram_chunk_index(block->local_host_addr,
3075                                             (uint8_t *) host_addr);
3076                 } else {
3077                     chunk = reg->key.chunk;
3078                     host_addr = block->local_host_addr +
3079                         (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3080                 }
3081                 chunk_start = ram_chunk_start(block, chunk);
3082                 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3083                 if (qemu_rdma_register_and_get_keys(rdma, block,
3084                             (uint8_t *)host_addr, NULL, &reg_result->rkey,
3085                             chunk, chunk_start, chunk_end)) {
3086                     fprintf(stderr, "cannot get rkey!\n");
3087                     ret = -EINVAL;
3088                     goto out;
3089                 }
3090
3091                 reg_result->host_addr = (uint64_t) block->local_host_addr;
3092
3093                 DDPRINTF("Registered rkey for this request: %x\n",
3094                                 reg_result->rkey);
3095
3096                 result_to_network(reg_result);
3097             }
3098
3099             ret = qemu_rdma_post_send_control(rdma,
3100                             (uint8_t *) results, &reg_resp);
3101
3102             if (ret < 0) {
3103                 fprintf(stderr, "Failed to send control buffer!\n");
3104                 goto out;
3105             }
3106             break;
3107         case RDMA_CONTROL_UNREGISTER_REQUEST:
3108             DDPRINTF("There are %d unregistration requests\n", head.repeat);
3109             unreg_resp.repeat = head.repeat;
3110             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3111
3112             for (count = 0; count < head.repeat; count++) {
3113                 reg = &registers[count];
3114                 network_to_register(reg);
3115
3116                 DDPRINTF("Unregistration request (%d): "
3117                          " index %d, chunk %" PRIu64 "\n",
3118                          count, reg->current_index, reg->key.chunk);
3119
3120                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3121
3122                 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3123                 block->pmr[reg->key.chunk] = NULL;
3124
3125                 if (ret != 0) {
3126                     perror("rdma unregistration chunk failed");
3127                     ret = -ret;
3128                     goto out;
3129                 }
3130
3131                 rdma->total_registrations--;
3132
3133                 DDPRINTF("Unregistered chunk %" PRIu64 " successfully.\n",
3134                             reg->key.chunk);
3135             }
3136
3137             ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3138
3139             if (ret < 0) {
3140                 fprintf(stderr, "Failed to send control buffer!\n");
3141                 goto out;
3142             }
3143             break;
3144         case RDMA_CONTROL_REGISTER_RESULT:
3145             fprintf(stderr, "Invalid RESULT message at dest.\n");
3146             ret = -EIO;
3147             goto out;
3148         default:
3149             fprintf(stderr, "Unknown control message %s\n",
3150                                 control_desc[head.type]);
3151             ret = -EIO;
3152             goto out;
3153         }
3154     } while (1);
3155 out:
3156     if (ret < 0) {
3157         rdma->error_state = ret;
3158     }
3159     return ret;
3160 }
3161
3162 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3163                                         uint64_t flags)
3164 {
3165     QEMUFileRDMA *rfile = opaque;
3166     RDMAContext *rdma = rfile->rdma;
3167
3168     CHECK_ERROR_STATE();
3169
3170     DDDPRINTF("start section: %" PRIu64 "\n", flags);
3171     qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3172     qemu_fflush(f);
3173
3174     return 0;
3175 }
3176
3177 /*
3178  * Inform dest that dynamic registrations are done for now.
3179  * First, flush writes, if any.
3180  */
3181 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3182                                        uint64_t flags)
3183 {
3184     Error *local_err = NULL, **errp = &local_err;
3185     QEMUFileRDMA *rfile = opaque;
3186     RDMAContext *rdma = rfile->rdma;
3187     RDMAControlHeader head = { .len = 0, .repeat = 1 };
3188     int ret = 0;
3189
3190     CHECK_ERROR_STATE();
3191
3192     qemu_fflush(f);
3193     ret = qemu_rdma_drain_cq(f, rdma);
3194
3195     if (ret < 0) {
3196         goto err;
3197     }
3198
3199     if (flags == RAM_CONTROL_SETUP) {
3200         RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3201         RDMALocalBlocks *local = &rdma->local_ram_blocks;
3202         int reg_result_idx, i, j, nb_remote_blocks;
3203
3204         head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3205         DPRINTF("Sending registration setup for ram blocks...\n");
3206
3207         /*
3208          * Make sure that we parallelize the pinning on both sides.
3209          * For very large guests, doing this serially takes a really
3210          * long time, so we have to 'interleave' the pinning locally
3211          * with the control messages by performing the pinning on this
3212          * side before we receive the control response from the other
3213          * side that the pinning has completed.
3214          */
3215         ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3216                     &reg_result_idx, rdma->pin_all ?
3217                     qemu_rdma_reg_whole_ram_blocks : NULL);
3218         if (ret < 0) {
3219             ERROR(errp, "receiving remote info!");
3220             return ret;
3221         }
3222
3223         nb_remote_blocks = resp.len / sizeof(RDMARemoteBlock);
3224
3225         /*
3226          * The protocol uses two different sets of rkeys (mutually exclusive):
3227          * 1. One key to represent the virtual address of the entire ram block.
3228          *    (dynamic chunk registration disabled - pin everything with one rkey.)
3229          * 2. One to represent individual chunks within a ram block.
3230          *    (dynamic chunk registration enabled - pin individual chunks.)
3231          *
3232          * Once the capability is successfully negotiated, the destination transmits
3233          * the keys to use (or sends them later) including the virtual addresses
3234          * and then propagates the remote ram block descriptions to his local copy.
3235          */
3236
3237         if (local->nb_blocks != nb_remote_blocks) {
3238             ERROR(errp, "ram blocks mismatch #1! "
3239                         "Your QEMU command line parameters are probably "
3240                         "not identical on both the source and destination.");
3241             return -EINVAL;
3242         }
3243
3244         qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3245         memcpy(rdma->block,
3246             rdma->wr_data[reg_result_idx].control_curr, resp.len);
3247         for (i = 0; i < nb_remote_blocks; i++) {
3248             network_to_remote_block(&rdma->block[i]);
3249
3250             /* search local ram blocks */
3251             for (j = 0; j < local->nb_blocks; j++) {
3252                 if (rdma->block[i].offset != local->block[j].offset) {
3253                     continue;
3254                 }
3255
3256                 if (rdma->block[i].length != local->block[j].length) {
3257                     ERROR(errp, "ram blocks mismatch #2! "
3258                         "Your QEMU command line parameters are probably "
3259                         "not identical on both the source and destination.");
3260                     return -EINVAL;
3261                 }
3262                 local->block[j].remote_host_addr =
3263                         rdma->block[i].remote_host_addr;
3264                 local->block[j].remote_rkey = rdma->block[i].remote_rkey;
3265                 break;
3266             }
3267
3268             if (j >= local->nb_blocks) {
3269                 ERROR(errp, "ram blocks mismatch #3! "
3270                         "Your QEMU command line parameters are probably "
3271                         "not identical on both the source and destination.");
3272                 return -EINVAL;
3273             }
3274         }
3275     }
3276
3277     DDDPRINTF("Sending registration finish %" PRIu64 "...\n", flags);
3278
3279     head.type = RDMA_CONTROL_REGISTER_FINISHED;
3280     ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3281
3282     if (ret < 0) {
3283         goto err;
3284     }
3285
3286     return 0;
3287 err:
3288     rdma->error_state = ret;
3289     return ret;
3290 }
3291
3292 static int qemu_rdma_get_fd(void *opaque)
3293 {
3294     QEMUFileRDMA *rfile = opaque;
3295     RDMAContext *rdma = rfile->rdma;
3296
3297     return rdma->comp_channel->fd;
3298 }
3299
3300 const QEMUFileOps rdma_read_ops = {
3301     .get_buffer    = qemu_rdma_get_buffer,
3302     .get_fd        = qemu_rdma_get_fd,
3303     .close         = qemu_rdma_close,
3304     .hook_ram_load = qemu_rdma_registration_handle,
3305 };
3306
3307 const QEMUFileOps rdma_write_ops = {
3308     .put_buffer         = qemu_rdma_put_buffer,
3309     .close              = qemu_rdma_close,
3310     .before_ram_iterate = qemu_rdma_registration_start,
3311     .after_ram_iterate  = qemu_rdma_registration_stop,
3312     .save_page          = qemu_rdma_save_page,
3313 };
3314
3315 static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3316 {
3317     QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA));
3318
3319     if (qemu_file_mode_is_not_valid(mode)) {
3320         return NULL;
3321     }
3322
3323     r->rdma = rdma;
3324
3325     if (mode[0] == 'w') {
3326         r->file = qemu_fopen_ops(r, &rdma_write_ops);
3327     } else {
3328         r->file = qemu_fopen_ops(r, &rdma_read_ops);
3329     }
3330
3331     return r->file;
3332 }
3333
3334 static void rdma_accept_incoming_migration(void *opaque)
3335 {
3336     RDMAContext *rdma = opaque;
3337     int ret;
3338     QEMUFile *f;
3339     Error *local_err = NULL, **errp = &local_err;
3340
3341     DPRINTF("Accepting rdma connection...\n");
3342     ret = qemu_rdma_accept(rdma);
3343
3344     if (ret) {
3345         ERROR(errp, "RDMA Migration initialization failed!");
3346         return;
3347     }
3348
3349     DPRINTF("Accepted migration\n");
3350
3351     f = qemu_fopen_rdma(rdma, "rb");
3352     if (f == NULL) {
3353         ERROR(errp, "could not qemu_fopen_rdma!");
3354         qemu_rdma_cleanup(rdma);
3355         return;
3356     }
3357
3358     rdma->migration_started_on_destination = 1;
3359     process_incoming_migration(f);
3360 }
3361
3362 void rdma_start_incoming_migration(const char *host_port, Error **errp)
3363 {
3364     int ret;
3365     RDMAContext *rdma;
3366     Error *local_err = NULL;
3367
3368     DPRINTF("Starting RDMA-based incoming migration\n");
3369     rdma = qemu_rdma_data_init(host_port, &local_err);
3370
3371     if (rdma == NULL) {
3372         goto err;
3373     }
3374
3375     ret = qemu_rdma_dest_init(rdma, &local_err);
3376
3377     if (ret) {
3378         goto err;
3379     }
3380
3381     DPRINTF("qemu_rdma_dest_init success\n");
3382
3383     ret = rdma_listen(rdma->listen_id, 5);
3384
3385     if (ret) {
3386         ERROR(errp, "listening on socket!");
3387         goto err;
3388     }
3389
3390     DPRINTF("rdma_listen success\n");
3391
3392     qemu_set_fd_handler2(rdma->channel->fd, NULL,
3393                          rdma_accept_incoming_migration, NULL,
3394                             (void *)(intptr_t) rdma);
3395     return;
3396 err:
3397     error_propagate(errp, local_err);
3398     g_free(rdma);
3399 }
3400
3401 void rdma_start_outgoing_migration(void *opaque,
3402                             const char *host_port, Error **errp)
3403 {
3404     MigrationState *s = opaque;
3405     Error *local_err = NULL, **temp = &local_err;
3406     RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err);
3407     int ret = 0;
3408
3409     if (rdma == NULL) {
3410         ERROR(temp, "Failed to initialize RDMA data structures! %d", ret);
3411         goto err;
3412     }
3413
3414     ret = qemu_rdma_source_init(rdma, &local_err,
3415         s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL]);
3416
3417     if (ret) {
3418         goto err;
3419     }
3420
3421     DPRINTF("qemu_rdma_source_init success\n");
3422     ret = qemu_rdma_connect(rdma, &local_err);
3423
3424     if (ret) {
3425         goto err;
3426     }
3427
3428     DPRINTF("qemu_rdma_source_connect success\n");
3429
3430     s->file = qemu_fopen_rdma(rdma, "wb");
3431     migrate_fd_connect(s);
3432     return;
3433 err:
3434     error_propagate(errp, local_err);
3435     g_free(rdma);
3436     migrate_fd_error(s);
3437 }