]> rtime.felk.cvut.cz Git - lisovros/qemu_apohw.git/blob - bsd-user/main.c
apohw: update for actual FPGA design.
[lisovros/qemu_apohw.git] / bsd-user / main.c
1 /*
2  *  qemu user main
3  *
4  *  Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include <stdlib.h>
20 #include <stdio.h>
21 #include <stdarg.h>
22 #include <string.h>
23 #include <errno.h>
24 #include <unistd.h>
25 #include <machine/trap.h>
26 #include <sys/types.h>
27 #include <sys/mman.h>
28
29 #include "qemu.h"
30 #include "qemu-common.h"
31 /* For tb_lock */
32 #include "cpu.h"
33 #include "tcg.h"
34 #include "qemu-timer.h"
35 #include "envlist.h"
36
37 #define DEBUG_LOGFILE "/tmp/qemu.log"
38
39 int singlestep;
40 #if defined(CONFIG_USE_GUEST_BASE)
41 unsigned long mmap_min_addr;
42 unsigned long guest_base;
43 int have_guest_base;
44 #endif
45
46 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX;
47 const char *qemu_uname_release = CONFIG_UNAME_RELEASE;
48 extern char **environ;
49 enum BSDType bsd_type;
50
51 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
52    we allocate a bigger stack. Need a better solution, for example
53    by remapping the process stack directly at the right place */
54 unsigned long x86_stack_size = 512 * 1024;
55
56 void gemu_log(const char *fmt, ...)
57 {
58     va_list ap;
59
60     va_start(ap, fmt);
61     vfprintf(stderr, fmt, ap);
62     va_end(ap);
63 }
64
65 #if defined(TARGET_I386)
66 int cpu_get_pic_interrupt(CPUState *env)
67 {
68     return -1;
69 }
70 #endif
71
72 /* These are no-ops because we are not threadsafe.  */
73 static inline void cpu_exec_start(CPUState *env)
74 {
75 }
76
77 static inline void cpu_exec_end(CPUState *env)
78 {
79 }
80
81 static inline void start_exclusive(void)
82 {
83 }
84
85 static inline void end_exclusive(void)
86 {
87 }
88
89 void fork_start(void)
90 {
91 }
92
93 void fork_end(int child)
94 {
95     if (child) {
96         gdbserver_fork(thread_env);
97     }
98 }
99
100 void cpu_list_lock(void)
101 {
102 }
103
104 void cpu_list_unlock(void)
105 {
106 }
107
108 #ifdef TARGET_I386
109 /***********************************************************/
110 /* CPUX86 core interface */
111
112 void cpu_smm_update(CPUState *env)
113 {
114 }
115
116 uint64_t cpu_get_tsc(CPUX86State *env)
117 {
118     return cpu_get_real_ticks();
119 }
120
121 static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
122                      int flags)
123 {
124     unsigned int e1, e2;
125     uint32_t *p;
126     e1 = (addr << 16) | (limit & 0xffff);
127     e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
128     e2 |= flags;
129     p = ptr;
130     p[0] = tswap32(e1);
131     p[1] = tswap32(e2);
132 }
133
134 static uint64_t *idt_table;
135 #ifdef TARGET_X86_64
136 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
137                        uint64_t addr, unsigned int sel)
138 {
139     uint32_t *p, e1, e2;
140     e1 = (addr & 0xffff) | (sel << 16);
141     e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
142     p = ptr;
143     p[0] = tswap32(e1);
144     p[1] = tswap32(e2);
145     p[2] = tswap32(addr >> 32);
146     p[3] = 0;
147 }
148 /* only dpl matters as we do only user space emulation */
149 static void set_idt(int n, unsigned int dpl)
150 {
151     set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
152 }
153 #else
154 static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
155                      uint32_t addr, unsigned int sel)
156 {
157     uint32_t *p, e1, e2;
158     e1 = (addr & 0xffff) | (sel << 16);
159     e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
160     p = ptr;
161     p[0] = tswap32(e1);
162     p[1] = tswap32(e2);
163 }
164
165 /* only dpl matters as we do only user space emulation */
166 static void set_idt(int n, unsigned int dpl)
167 {
168     set_gate(idt_table + n, 0, dpl, 0, 0);
169 }
170 #endif
171
172 void cpu_loop(CPUX86State *env)
173 {
174     int trapnr;
175     abi_ulong pc;
176     //target_siginfo_t info;
177
178     for(;;) {
179         trapnr = cpu_x86_exec(env);
180         switch(trapnr) {
181         case 0x80:
182             /* syscall from int $0x80 */
183             if (bsd_type == target_freebsd) {
184                 abi_ulong params = (abi_ulong) env->regs[R_ESP] +
185                     sizeof(int32_t);
186                 int32_t syscall_nr = env->regs[R_EAX];
187                 int32_t arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8;
188
189                 if (syscall_nr == TARGET_FREEBSD_NR_syscall) {
190                     get_user_s32(syscall_nr, params);
191                     params += sizeof(int32_t);
192                 } else if (syscall_nr == TARGET_FREEBSD_NR___syscall) {
193                     get_user_s32(syscall_nr, params);
194                     params += sizeof(int64_t);
195                 }
196                 get_user_s32(arg1, params);
197                 params += sizeof(int32_t);
198                 get_user_s32(arg2, params);
199                 params += sizeof(int32_t);
200                 get_user_s32(arg3, params);
201                 params += sizeof(int32_t);
202                 get_user_s32(arg4, params);
203                 params += sizeof(int32_t);
204                 get_user_s32(arg5, params);
205                 params += sizeof(int32_t);
206                 get_user_s32(arg6, params);
207                 params += sizeof(int32_t);
208                 get_user_s32(arg7, params);
209                 params += sizeof(int32_t);
210                 get_user_s32(arg8, params);
211                 env->regs[R_EAX] = do_freebsd_syscall(env,
212                                                       syscall_nr,
213                                                       arg1,
214                                                       arg2,
215                                                       arg3,
216                                                       arg4,
217                                                       arg5,
218                                                       arg6,
219                                                       arg7,
220                                                       arg8);
221             } else { //if (bsd_type == target_openbsd)
222                 env->regs[R_EAX] = do_openbsd_syscall(env,
223                                                       env->regs[R_EAX],
224                                                       env->regs[R_EBX],
225                                                       env->regs[R_ECX],
226                                                       env->regs[R_EDX],
227                                                       env->regs[R_ESI],
228                                                       env->regs[R_EDI],
229                                                       env->regs[R_EBP]);
230             }
231             if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
232                 env->regs[R_EAX] = -env->regs[R_EAX];
233                 env->eflags |= CC_C;
234             } else {
235                 env->eflags &= ~CC_C;
236             }
237             break;
238 #ifndef TARGET_ABI32
239         case EXCP_SYSCALL:
240             /* syscall from syscall instruction */
241             if (bsd_type == target_freebsd)
242                 env->regs[R_EAX] = do_freebsd_syscall(env,
243                                                       env->regs[R_EAX],
244                                                       env->regs[R_EDI],
245                                                       env->regs[R_ESI],
246                                                       env->regs[R_EDX],
247                                                       env->regs[R_ECX],
248                                                       env->regs[8],
249                                                       env->regs[9], 0, 0);
250             else { //if (bsd_type == target_openbsd)
251                 env->regs[R_EAX] = do_openbsd_syscall(env,
252                                                       env->regs[R_EAX],
253                                                       env->regs[R_EDI],
254                                                       env->regs[R_ESI],
255                                                       env->regs[R_EDX],
256                                                       env->regs[10],
257                                                       env->regs[8],
258                                                       env->regs[9]);
259             }
260             env->eip = env->exception_next_eip;
261             if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
262                 env->regs[R_EAX] = -env->regs[R_EAX];
263                 env->eflags |= CC_C;
264             } else {
265                 env->eflags &= ~CC_C;
266             }
267             break;
268 #endif
269 #if 0
270         case EXCP0B_NOSEG:
271         case EXCP0C_STACK:
272             info.si_signo = SIGBUS;
273             info.si_errno = 0;
274             info.si_code = TARGET_SI_KERNEL;
275             info._sifields._sigfault._addr = 0;
276             queue_signal(env, info.si_signo, &info);
277             break;
278         case EXCP0D_GPF:
279             /* XXX: potential problem if ABI32 */
280 #ifndef TARGET_X86_64
281             if (env->eflags & VM_MASK) {
282                 handle_vm86_fault(env);
283             } else
284 #endif
285             {
286                 info.si_signo = SIGSEGV;
287                 info.si_errno = 0;
288                 info.si_code = TARGET_SI_KERNEL;
289                 info._sifields._sigfault._addr = 0;
290                 queue_signal(env, info.si_signo, &info);
291             }
292             break;
293         case EXCP0E_PAGE:
294             info.si_signo = SIGSEGV;
295             info.si_errno = 0;
296             if (!(env->error_code & 1))
297                 info.si_code = TARGET_SEGV_MAPERR;
298             else
299                 info.si_code = TARGET_SEGV_ACCERR;
300             info._sifields._sigfault._addr = env->cr[2];
301             queue_signal(env, info.si_signo, &info);
302             break;
303         case EXCP00_DIVZ:
304 #ifndef TARGET_X86_64
305             if (env->eflags & VM_MASK) {
306                 handle_vm86_trap(env, trapnr);
307             } else
308 #endif
309             {
310                 /* division by zero */
311                 info.si_signo = SIGFPE;
312                 info.si_errno = 0;
313                 info.si_code = TARGET_FPE_INTDIV;
314                 info._sifields._sigfault._addr = env->eip;
315                 queue_signal(env, info.si_signo, &info);
316             }
317             break;
318         case EXCP01_DB:
319         case EXCP03_INT3:
320 #ifndef TARGET_X86_64
321             if (env->eflags & VM_MASK) {
322                 handle_vm86_trap(env, trapnr);
323             } else
324 #endif
325             {
326                 info.si_signo = SIGTRAP;
327                 info.si_errno = 0;
328                 if (trapnr == EXCP01_DB) {
329                     info.si_code = TARGET_TRAP_BRKPT;
330                     info._sifields._sigfault._addr = env->eip;
331                 } else {
332                     info.si_code = TARGET_SI_KERNEL;
333                     info._sifields._sigfault._addr = 0;
334                 }
335                 queue_signal(env, info.si_signo, &info);
336             }
337             break;
338         case EXCP04_INTO:
339         case EXCP05_BOUND:
340 #ifndef TARGET_X86_64
341             if (env->eflags & VM_MASK) {
342                 handle_vm86_trap(env, trapnr);
343             } else
344 #endif
345             {
346                 info.si_signo = SIGSEGV;
347                 info.si_errno = 0;
348                 info.si_code = TARGET_SI_KERNEL;
349                 info._sifields._sigfault._addr = 0;
350                 queue_signal(env, info.si_signo, &info);
351             }
352             break;
353         case EXCP06_ILLOP:
354             info.si_signo = SIGILL;
355             info.si_errno = 0;
356             info.si_code = TARGET_ILL_ILLOPN;
357             info._sifields._sigfault._addr = env->eip;
358             queue_signal(env, info.si_signo, &info);
359             break;
360 #endif
361         case EXCP_INTERRUPT:
362             /* just indicate that signals should be handled asap */
363             break;
364 #if 0
365         case EXCP_DEBUG:
366             {
367                 int sig;
368
369                 sig = gdb_handlesig (env, TARGET_SIGTRAP);
370                 if (sig)
371                   {
372                     info.si_signo = sig;
373                     info.si_errno = 0;
374                     info.si_code = TARGET_TRAP_BRKPT;
375                     queue_signal(env, info.si_signo, &info);
376                   }
377             }
378             break;
379 #endif
380         default:
381             pc = env->segs[R_CS].base + env->eip;
382             fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
383                     (long)pc, trapnr);
384             abort();
385         }
386         process_pending_signals(env);
387     }
388 }
389 #endif
390
391 #ifdef TARGET_SPARC
392 #define SPARC64_STACK_BIAS 2047
393
394 //#define DEBUG_WIN
395 /* WARNING: dealing with register windows _is_ complicated. More info
396    can be found at http://www.sics.se/~psm/sparcstack.html */
397 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
398 {
399     index = (index + cwp * 16) % (16 * env->nwindows);
400     /* wrap handling : if cwp is on the last window, then we use the
401        registers 'after' the end */
402     if (index < 8 && env->cwp == env->nwindows - 1)
403         index += 16 * env->nwindows;
404     return index;
405 }
406
407 /* save the register window 'cwp1' */
408 static inline void save_window_offset(CPUSPARCState *env, int cwp1)
409 {
410     unsigned int i;
411     abi_ulong sp_ptr;
412
413     sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
414 #ifdef TARGET_SPARC64
415     if (sp_ptr & 3)
416         sp_ptr += SPARC64_STACK_BIAS;
417 #endif
418 #if defined(DEBUG_WIN)
419     printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
420            sp_ptr, cwp1);
421 #endif
422     for(i = 0; i < 16; i++) {
423         /* FIXME - what to do if put_user() fails? */
424         put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
425         sp_ptr += sizeof(abi_ulong);
426     }
427 }
428
429 static void save_window(CPUSPARCState *env)
430 {
431 #ifndef TARGET_SPARC64
432     unsigned int new_wim;
433     new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
434         ((1LL << env->nwindows) - 1);
435     save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
436     env->wim = new_wim;
437 #else
438     save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
439     env->cansave++;
440     env->canrestore--;
441 #endif
442 }
443
444 static void restore_window(CPUSPARCState *env)
445 {
446 #ifndef TARGET_SPARC64
447     unsigned int new_wim;
448 #endif
449     unsigned int i, cwp1;
450     abi_ulong sp_ptr;
451
452 #ifndef TARGET_SPARC64
453     new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
454         ((1LL << env->nwindows) - 1);
455 #endif
456
457     /* restore the invalid window */
458     cwp1 = cpu_cwp_inc(env, env->cwp + 1);
459     sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
460 #ifdef TARGET_SPARC64
461     if (sp_ptr & 3)
462         sp_ptr += SPARC64_STACK_BIAS;
463 #endif
464 #if defined(DEBUG_WIN)
465     printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
466            sp_ptr, cwp1);
467 #endif
468     for(i = 0; i < 16; i++) {
469         /* FIXME - what to do if get_user() fails? */
470         get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
471         sp_ptr += sizeof(abi_ulong);
472     }
473 #ifdef TARGET_SPARC64
474     env->canrestore++;
475     if (env->cleanwin < env->nwindows - 1)
476         env->cleanwin++;
477     env->cansave--;
478 #else
479     env->wim = new_wim;
480 #endif
481 }
482
483 static void flush_windows(CPUSPARCState *env)
484 {
485     int offset, cwp1;
486
487     offset = 1;
488     for(;;) {
489         /* if restore would invoke restore_window(), then we can stop */
490         cwp1 = cpu_cwp_inc(env, env->cwp + offset);
491 #ifndef TARGET_SPARC64
492         if (env->wim & (1 << cwp1))
493             break;
494 #else
495         if (env->canrestore == 0)
496             break;
497         env->cansave++;
498         env->canrestore--;
499 #endif
500         save_window_offset(env, cwp1);
501         offset++;
502     }
503     cwp1 = cpu_cwp_inc(env, env->cwp + 1);
504 #ifndef TARGET_SPARC64
505     /* set wim so that restore will reload the registers */
506     env->wim = 1 << cwp1;
507 #endif
508 #if defined(DEBUG_WIN)
509     printf("flush_windows: nb=%d\n", offset - 1);
510 #endif
511 }
512
513 void cpu_loop(CPUSPARCState *env)
514 {
515     int trapnr, ret, syscall_nr;
516     //target_siginfo_t info;
517
518     while (1) {
519         trapnr = cpu_sparc_exec (env);
520
521         switch (trapnr) {
522 #ifndef TARGET_SPARC64
523         case 0x80:
524 #else
525         /* FreeBSD uses 0x141 for syscalls too */
526         case 0x141:
527             if (bsd_type != target_freebsd)
528                 goto badtrap;
529         case 0x100:
530 #endif
531             syscall_nr = env->gregs[1];
532             if (bsd_type == target_freebsd)
533                 ret = do_freebsd_syscall(env, syscall_nr,
534                                          env->regwptr[0], env->regwptr[1],
535                                          env->regwptr[2], env->regwptr[3],
536                                          env->regwptr[4], env->regwptr[5], 0, 0);
537             else if (bsd_type == target_netbsd)
538                 ret = do_netbsd_syscall(env, syscall_nr,
539                                         env->regwptr[0], env->regwptr[1],
540                                         env->regwptr[2], env->regwptr[3],
541                                         env->regwptr[4], env->regwptr[5]);
542             else { //if (bsd_type == target_openbsd)
543 #if defined(TARGET_SPARC64)
544                 syscall_nr &= ~(TARGET_OPENBSD_SYSCALL_G7RFLAG |
545                                 TARGET_OPENBSD_SYSCALL_G2RFLAG);
546 #endif
547                 ret = do_openbsd_syscall(env, syscall_nr,
548                                          env->regwptr[0], env->regwptr[1],
549                                          env->regwptr[2], env->regwptr[3],
550                                          env->regwptr[4], env->regwptr[5]);
551             }
552             if ((unsigned int)ret >= (unsigned int)(-515)) {
553                 ret = -ret;
554 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
555                 env->xcc |= PSR_CARRY;
556 #else
557                 env->psr |= PSR_CARRY;
558 #endif
559             } else {
560 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
561                 env->xcc &= ~PSR_CARRY;
562 #else
563                 env->psr &= ~PSR_CARRY;
564 #endif
565             }
566             env->regwptr[0] = ret;
567             /* next instruction */
568 #if defined(TARGET_SPARC64)
569             if (bsd_type == target_openbsd &&
570                 env->gregs[1] & TARGET_OPENBSD_SYSCALL_G2RFLAG) {
571                 env->pc = env->gregs[2];
572                 env->npc = env->pc + 4;
573             } else if (bsd_type == target_openbsd &&
574                        env->gregs[1] & TARGET_OPENBSD_SYSCALL_G7RFLAG) {
575                 env->pc = env->gregs[7];
576                 env->npc = env->pc + 4;
577             } else {
578                 env->pc = env->npc;
579                 env->npc = env->npc + 4;
580             }
581 #else
582             env->pc = env->npc;
583             env->npc = env->npc + 4;
584 #endif
585             break;
586         case 0x83: /* flush windows */
587 #ifdef TARGET_ABI32
588         case 0x103:
589 #endif
590             flush_windows(env);
591             /* next instruction */
592             env->pc = env->npc;
593             env->npc = env->npc + 4;
594             break;
595 #ifndef TARGET_SPARC64
596         case TT_WIN_OVF: /* window overflow */
597             save_window(env);
598             break;
599         case TT_WIN_UNF: /* window underflow */
600             restore_window(env);
601             break;
602         case TT_TFAULT:
603         case TT_DFAULT:
604 #if 0
605             {
606                 info.si_signo = SIGSEGV;
607                 info.si_errno = 0;
608                 /* XXX: check env->error_code */
609                 info.si_code = TARGET_SEGV_MAPERR;
610                 info._sifields._sigfault._addr = env->mmuregs[4];
611                 queue_signal(env, info.si_signo, &info);
612             }
613 #endif
614             break;
615 #else
616         case TT_SPILL: /* window overflow */
617             save_window(env);
618             break;
619         case TT_FILL: /* window underflow */
620             restore_window(env);
621             break;
622         case TT_TFAULT:
623         case TT_DFAULT:
624 #if 0
625             {
626                 info.si_signo = SIGSEGV;
627                 info.si_errno = 0;
628                 /* XXX: check env->error_code */
629                 info.si_code = TARGET_SEGV_MAPERR;
630                 if (trapnr == TT_DFAULT)
631                     info._sifields._sigfault._addr = env->dmmuregs[4];
632                 else
633                     info._sifields._sigfault._addr = env->tsptr->tpc;
634                 //queue_signal(env, info.si_signo, &info);
635             }
636 #endif
637             break;
638 #endif
639         case EXCP_INTERRUPT:
640             /* just indicate that signals should be handled asap */
641             break;
642         case EXCP_DEBUG:
643             {
644                 int sig;
645
646                 sig = gdb_handlesig (env, TARGET_SIGTRAP);
647 #if 0
648                 if (sig)
649                   {
650                     info.si_signo = sig;
651                     info.si_errno = 0;
652                     info.si_code = TARGET_TRAP_BRKPT;
653                     //queue_signal(env, info.si_signo, &info);
654                   }
655 #endif
656             }
657             break;
658         default:
659 #ifdef TARGET_SPARC64
660         badtrap:
661 #endif
662             printf ("Unhandled trap: 0x%x\n", trapnr);
663             cpu_dump_state(env, stderr, fprintf, 0);
664             exit (1);
665         }
666         process_pending_signals (env);
667     }
668 }
669
670 #endif
671
672 static void usage(void)
673 {
674     printf("qemu-" TARGET_ARCH " version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
675            "usage: qemu-" TARGET_ARCH " [options] program [arguments...]\n"
676            "BSD CPU emulator (compiled for %s emulation)\n"
677            "\n"
678            "Standard options:\n"
679            "-h                print this help\n"
680            "-g port           wait gdb connection to port\n"
681            "-L path           set the elf interpreter prefix (default=%s)\n"
682            "-s size           set the stack size in bytes (default=%ld)\n"
683            "-cpu model        select CPU (-cpu ? for list)\n"
684            "-drop-ld-preload  drop LD_PRELOAD for target process\n"
685            "-E var=value      sets/modifies targets environment variable(s)\n"
686            "-U var            unsets targets environment variable(s)\n"
687 #if defined(CONFIG_USE_GUEST_BASE)
688            "-B address        set guest_base address to address\n"
689 #endif
690            "-bsd type         select emulated BSD type FreeBSD/NetBSD/OpenBSD (default)\n"
691            "\n"
692            "Debug options:\n"
693            "-d options   activate log (default logfile=%s)\n"
694            "-D logfile   override default logfile location\n"
695            "-p pagesize  set the host page size to 'pagesize'\n"
696            "-singlestep  always run in singlestep mode\n"
697            "-strace      log system calls\n"
698            "\n"
699            "Environment variables:\n"
700            "QEMU_STRACE       Print system calls and arguments similar to the\n"
701            "                  'strace' program.  Enable by setting to any value.\n"
702            "You can use -E and -U options to set/unset environment variables\n"
703            "for target process.  It is possible to provide several variables\n"
704            "by repeating the option.  For example:\n"
705            "    -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
706            "Note that if you provide several changes to single variable\n"
707            "last change will stay in effect.\n"
708            ,
709            TARGET_ARCH,
710            interp_prefix,
711            x86_stack_size,
712            DEBUG_LOGFILE);
713     exit(1);
714 }
715
716 THREAD CPUState *thread_env;
717
718 /* Assumes contents are already zeroed.  */
719 void init_task_state(TaskState *ts)
720 {
721     int i;
722
723     ts->used = 1;
724     ts->first_free = ts->sigqueue_table;
725     for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) {
726         ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1];
727     }
728     ts->sigqueue_table[i].next = NULL;
729 }
730
731 int main(int argc, char **argv)
732 {
733     const char *filename;
734     const char *cpu_model;
735     const char *log_file = DEBUG_LOGFILE;
736     const char *log_mask = NULL;
737     struct target_pt_regs regs1, *regs = &regs1;
738     struct image_info info1, *info = &info1;
739     TaskState ts1, *ts = &ts1;
740     CPUState *env;
741     int optind;
742     const char *r;
743     int gdbstub_port = 0;
744     char **target_environ, **wrk;
745     envlist_t *envlist = NULL;
746     bsd_type = target_openbsd;
747
748     if (argc <= 1)
749         usage();
750
751     if ((envlist = envlist_create()) == NULL) {
752         (void) fprintf(stderr, "Unable to allocate envlist\n");
753         exit(1);
754     }
755
756     /* add current environment into the list */
757     for (wrk = environ; *wrk != NULL; wrk++) {
758         (void) envlist_setenv(envlist, *wrk);
759     }
760
761     cpu_model = NULL;
762 #if defined(cpudef_setup)
763     cpudef_setup(); /* parse cpu definitions in target config file (TBD) */
764 #endif
765
766     optind = 1;
767     for(;;) {
768         if (optind >= argc)
769             break;
770         r = argv[optind];
771         if (r[0] != '-')
772             break;
773         optind++;
774         r++;
775         if (!strcmp(r, "-")) {
776             break;
777         } else if (!strcmp(r, "d")) {
778             if (optind >= argc) {
779                 break;
780             }
781             log_mask = argv[optind++];
782         } else if (!strcmp(r, "D")) {
783             if (optind >= argc) {
784                 break;
785             }
786             log_file = argv[optind++];
787         } else if (!strcmp(r, "E")) {
788             r = argv[optind++];
789             if (envlist_setenv(envlist, r) != 0)
790                 usage();
791         } else if (!strcmp(r, "ignore-environment")) {
792             envlist_free(envlist);
793             if ((envlist = envlist_create()) == NULL) {
794                 (void) fprintf(stderr, "Unable to allocate envlist\n");
795                 exit(1);
796             }
797         } else if (!strcmp(r, "U")) {
798             r = argv[optind++];
799             if (envlist_unsetenv(envlist, r) != 0)
800                 usage();
801         } else if (!strcmp(r, "s")) {
802             r = argv[optind++];
803             x86_stack_size = strtol(r, (char **)&r, 0);
804             if (x86_stack_size <= 0)
805                 usage();
806             if (*r == 'M')
807                 x86_stack_size *= 1024 * 1024;
808             else if (*r == 'k' || *r == 'K')
809                 x86_stack_size *= 1024;
810         } else if (!strcmp(r, "L")) {
811             interp_prefix = argv[optind++];
812         } else if (!strcmp(r, "p")) {
813             qemu_host_page_size = atoi(argv[optind++]);
814             if (qemu_host_page_size == 0 ||
815                 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
816                 fprintf(stderr, "page size must be a power of two\n");
817                 exit(1);
818             }
819         } else if (!strcmp(r, "g")) {
820             gdbstub_port = atoi(argv[optind++]);
821         } else if (!strcmp(r, "r")) {
822             qemu_uname_release = argv[optind++];
823         } else if (!strcmp(r, "cpu")) {
824             cpu_model = argv[optind++];
825             if (strcmp(cpu_model, "?") == 0) {
826 /* XXX: implement xxx_cpu_list for targets that still miss it */
827 #if defined(cpu_list)
828                     cpu_list(stdout, &fprintf);
829 #endif
830                 exit(1);
831             }
832 #if defined(CONFIG_USE_GUEST_BASE)
833         } else if (!strcmp(r, "B")) {
834            guest_base = strtol(argv[optind++], NULL, 0);
835            have_guest_base = 1;
836 #endif
837         } else if (!strcmp(r, "drop-ld-preload")) {
838             (void) envlist_unsetenv(envlist, "LD_PRELOAD");
839         } else if (!strcmp(r, "bsd")) {
840             if (!strcasecmp(argv[optind], "freebsd")) {
841                 bsd_type = target_freebsd;
842             } else if (!strcasecmp(argv[optind], "netbsd")) {
843                 bsd_type = target_netbsd;
844             } else if (!strcasecmp(argv[optind], "openbsd")) {
845                 bsd_type = target_openbsd;
846             } else {
847                 usage();
848             }
849             optind++;
850         } else if (!strcmp(r, "singlestep")) {
851             singlestep = 1;
852         } else if (!strcmp(r, "strace")) {
853             do_strace = 1;
854         } else
855         {
856             usage();
857         }
858     }
859
860     /* init debug */
861     cpu_set_log_filename(log_file);
862     if (log_mask) {
863         int mask;
864         const CPULogItem *item;
865
866         mask = cpu_str_to_log_mask(log_mask);
867         if (!mask) {
868             printf("Log items (comma separated):\n");
869             for (item = cpu_log_items; item->mask != 0; item++) {
870                 printf("%-10s %s\n", item->name, item->help);
871             }
872             exit(1);
873         }
874         cpu_set_log(mask);
875     }
876
877     if (optind >= argc) {
878         usage();
879     }
880     filename = argv[optind];
881
882     /* Zero out regs */
883     memset(regs, 0, sizeof(struct target_pt_regs));
884
885     /* Zero out image_info */
886     memset(info, 0, sizeof(struct image_info));
887
888     /* Scan interp_prefix dir for replacement files. */
889     init_paths(interp_prefix);
890
891     if (cpu_model == NULL) {
892 #if defined(TARGET_I386)
893 #ifdef TARGET_X86_64
894         cpu_model = "qemu64";
895 #else
896         cpu_model = "qemu32";
897 #endif
898 #elif defined(TARGET_SPARC)
899 #ifdef TARGET_SPARC64
900         cpu_model = "TI UltraSparc II";
901 #else
902         cpu_model = "Fujitsu MB86904";
903 #endif
904 #else
905         cpu_model = "any";
906 #endif
907     }
908     tcg_exec_init(0);
909     cpu_exec_init_all();
910     /* NOTE: we need to init the CPU at this stage to get
911        qemu_host_page_size */
912     env = cpu_init(cpu_model);
913     if (!env) {
914         fprintf(stderr, "Unable to find CPU definition\n");
915         exit(1);
916     }
917 #if defined(TARGET_I386) || defined(TARGET_SPARC) || defined(TARGET_PPC)
918     cpu_reset(env);
919 #endif
920     thread_env = env;
921
922     if (getenv("QEMU_STRACE")) {
923         do_strace = 1;
924     }
925
926     target_environ = envlist_to_environ(envlist, NULL);
927     envlist_free(envlist);
928
929 #if defined(CONFIG_USE_GUEST_BASE)
930     /*
931      * Now that page sizes are configured in cpu_init() we can do
932      * proper page alignment for guest_base.
933      */
934     guest_base = HOST_PAGE_ALIGN(guest_base);
935
936     /*
937      * Read in mmap_min_addr kernel parameter.  This value is used
938      * When loading the ELF image to determine whether guest_base
939      * is needed.
940      *
941      * When user has explicitly set the quest base, we skip this
942      * test.
943      */
944     if (!have_guest_base) {
945         FILE *fp;
946
947         if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) {
948             unsigned long tmp;
949             if (fscanf(fp, "%lu", &tmp) == 1) {
950                 mmap_min_addr = tmp;
951                 qemu_log("host mmap_min_addr=0x%lx\n", mmap_min_addr);
952             }
953             fclose(fp);
954         }
955     }
956 #endif /* CONFIG_USE_GUEST_BASE */
957
958     if (loader_exec(filename, argv+optind, target_environ, regs, info) != 0) {
959         printf("Error loading %s\n", filename);
960         _exit(1);
961     }
962
963     for (wrk = target_environ; *wrk; wrk++) {
964         free(*wrk);
965     }
966
967     free(target_environ);
968
969     if (qemu_log_enabled()) {
970 #if defined(CONFIG_USE_GUEST_BASE)
971         qemu_log("guest_base  0x%lx\n", guest_base);
972 #endif
973         log_page_dump();
974
975         qemu_log("start_brk   0x" TARGET_ABI_FMT_lx "\n", info->start_brk);
976         qemu_log("end_code    0x" TARGET_ABI_FMT_lx "\n", info->end_code);
977         qemu_log("start_code  0x" TARGET_ABI_FMT_lx "\n",
978                  info->start_code);
979         qemu_log("start_data  0x" TARGET_ABI_FMT_lx "\n",
980                  info->start_data);
981         qemu_log("end_data    0x" TARGET_ABI_FMT_lx "\n", info->end_data);
982         qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n",
983                  info->start_stack);
984         qemu_log("brk         0x" TARGET_ABI_FMT_lx "\n", info->brk);
985         qemu_log("entry       0x" TARGET_ABI_FMT_lx "\n", info->entry);
986     }
987
988     target_set_brk(info->brk);
989     syscall_init();
990     signal_init();
991
992 #if defined(CONFIG_USE_GUEST_BASE)
993     /* Now that we've loaded the binary, GUEST_BASE is fixed.  Delay
994        generating the prologue until now so that the prologue can take
995        the real value of GUEST_BASE into account.  */
996     tcg_prologue_init(&tcg_ctx);
997 #endif
998
999     /* build Task State */
1000     memset(ts, 0, sizeof(TaskState));
1001     init_task_state(ts);
1002     ts->info = info;
1003     env->opaque = ts;
1004
1005 #if defined(TARGET_I386)
1006     cpu_x86_set_cpl(env, 3);
1007
1008     env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
1009     env->hflags |= HF_PE_MASK;
1010     if (env->cpuid_features & CPUID_SSE) {
1011         env->cr[4] |= CR4_OSFXSR_MASK;
1012         env->hflags |= HF_OSFXSR_MASK;
1013     }
1014 #ifndef TARGET_ABI32
1015     /* enable 64 bit mode if possible */
1016     if (!(env->cpuid_ext2_features & CPUID_EXT2_LM)) {
1017         fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
1018         exit(1);
1019     }
1020     env->cr[4] |= CR4_PAE_MASK;
1021     env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
1022     env->hflags |= HF_LMA_MASK;
1023 #endif
1024
1025     /* flags setup : we activate the IRQs by default as in user mode */
1026     env->eflags |= IF_MASK;
1027
1028     /* linux register setup */
1029 #ifndef TARGET_ABI32
1030     env->regs[R_EAX] = regs->rax;
1031     env->regs[R_EBX] = regs->rbx;
1032     env->regs[R_ECX] = regs->rcx;
1033     env->regs[R_EDX] = regs->rdx;
1034     env->regs[R_ESI] = regs->rsi;
1035     env->regs[R_EDI] = regs->rdi;
1036     env->regs[R_EBP] = regs->rbp;
1037     env->regs[R_ESP] = regs->rsp;
1038     env->eip = regs->rip;
1039 #else
1040     env->regs[R_EAX] = regs->eax;
1041     env->regs[R_EBX] = regs->ebx;
1042     env->regs[R_ECX] = regs->ecx;
1043     env->regs[R_EDX] = regs->edx;
1044     env->regs[R_ESI] = regs->esi;
1045     env->regs[R_EDI] = regs->edi;
1046     env->regs[R_EBP] = regs->ebp;
1047     env->regs[R_ESP] = regs->esp;
1048     env->eip = regs->eip;
1049 #endif
1050
1051     /* linux interrupt setup */
1052 #ifndef TARGET_ABI32
1053     env->idt.limit = 511;
1054 #else
1055     env->idt.limit = 255;
1056 #endif
1057     env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
1058                                 PROT_READ|PROT_WRITE,
1059                                 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1060     idt_table = g2h(env->idt.base);
1061     set_idt(0, 0);
1062     set_idt(1, 0);
1063     set_idt(2, 0);
1064     set_idt(3, 3);
1065     set_idt(4, 3);
1066     set_idt(5, 0);
1067     set_idt(6, 0);
1068     set_idt(7, 0);
1069     set_idt(8, 0);
1070     set_idt(9, 0);
1071     set_idt(10, 0);
1072     set_idt(11, 0);
1073     set_idt(12, 0);
1074     set_idt(13, 0);
1075     set_idt(14, 0);
1076     set_idt(15, 0);
1077     set_idt(16, 0);
1078     set_idt(17, 0);
1079     set_idt(18, 0);
1080     set_idt(19, 0);
1081     set_idt(0x80, 3);
1082
1083     /* linux segment setup */
1084     {
1085         uint64_t *gdt_table;
1086         env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
1087                                     PROT_READ|PROT_WRITE,
1088                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1089         env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
1090         gdt_table = g2h(env->gdt.base);
1091 #ifdef TARGET_ABI32
1092         write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
1093                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1094                  (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
1095 #else
1096         /* 64 bit code segment */
1097         write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
1098                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1099                  DESC_L_MASK |
1100                  (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
1101 #endif
1102         write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
1103                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
1104                  (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
1105     }
1106
1107     cpu_x86_load_seg(env, R_CS, __USER_CS);
1108     cpu_x86_load_seg(env, R_SS, __USER_DS);
1109 #ifdef TARGET_ABI32
1110     cpu_x86_load_seg(env, R_DS, __USER_DS);
1111     cpu_x86_load_seg(env, R_ES, __USER_DS);
1112     cpu_x86_load_seg(env, R_FS, __USER_DS);
1113     cpu_x86_load_seg(env, R_GS, __USER_DS);
1114     /* This hack makes Wine work... */
1115     env->segs[R_FS].selector = 0;
1116 #else
1117     cpu_x86_load_seg(env, R_DS, 0);
1118     cpu_x86_load_seg(env, R_ES, 0);
1119     cpu_x86_load_seg(env, R_FS, 0);
1120     cpu_x86_load_seg(env, R_GS, 0);
1121 #endif
1122 #elif defined(TARGET_SPARC)
1123     {
1124         int i;
1125         env->pc = regs->pc;
1126         env->npc = regs->npc;
1127         env->y = regs->y;
1128         for(i = 0; i < 8; i++)
1129             env->gregs[i] = regs->u_regs[i];
1130         for(i = 0; i < 8; i++)
1131             env->regwptr[i] = regs->u_regs[i + 8];
1132     }
1133 #else
1134 #error unsupported target CPU
1135 #endif
1136
1137     if (gdbstub_port) {
1138         gdbserver_start (gdbstub_port);
1139         gdb_handlesig(env, 0);
1140     }
1141     cpu_loop(env);
1142     /* never exits */
1143     return 0;
1144 }