]> rtime.felk.cvut.cz Git - lisovros/qemu_apohw.git/blob - memory.c
Update version for v2.3.0-rc4 release
[lisovros/qemu_apohw.git] / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15
16 #include "exec/memory.h"
17 #include "exec/address-spaces.h"
18 #include "exec/ioport.h"
19 #include "qapi/visitor.h"
20 #include "qemu/bitops.h"
21 #include "qom/object.h"
22 #include "trace.h"
23 #include <assert.h>
24
25 #include "exec/memory-internal.h"
26 #include "exec/ram_addr.h"
27 #include "sysemu/sysemu.h"
28
29 //#define DEBUG_UNASSIGNED
30
31 static unsigned memory_region_transaction_depth;
32 static bool memory_region_update_pending;
33 static bool ioeventfd_update_pending;
34 static bool global_dirty_log = false;
35
36 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
37     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
38
39 static QTAILQ_HEAD(, AddressSpace) address_spaces
40     = QTAILQ_HEAD_INITIALIZER(address_spaces);
41
42 typedef struct AddrRange AddrRange;
43
44 /*
45  * Note that signed integers are needed for negative offsetting in aliases
46  * (large MemoryRegion::alias_offset).
47  */
48 struct AddrRange {
49     Int128 start;
50     Int128 size;
51 };
52
53 static AddrRange addrrange_make(Int128 start, Int128 size)
54 {
55     return (AddrRange) { start, size };
56 }
57
58 static bool addrrange_equal(AddrRange r1, AddrRange r2)
59 {
60     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
61 }
62
63 static Int128 addrrange_end(AddrRange r)
64 {
65     return int128_add(r.start, r.size);
66 }
67
68 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
69 {
70     int128_addto(&range.start, delta);
71     return range;
72 }
73
74 static bool addrrange_contains(AddrRange range, Int128 addr)
75 {
76     return int128_ge(addr, range.start)
77         && int128_lt(addr, addrrange_end(range));
78 }
79
80 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
81 {
82     return addrrange_contains(r1, r2.start)
83         || addrrange_contains(r2, r1.start);
84 }
85
86 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
87 {
88     Int128 start = int128_max(r1.start, r2.start);
89     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
90     return addrrange_make(start, int128_sub(end, start));
91 }
92
93 enum ListenerDirection { Forward, Reverse };
94
95 static bool memory_listener_match(MemoryListener *listener,
96                                   MemoryRegionSection *section)
97 {
98     return !listener->address_space_filter
99         || listener->address_space_filter == section->address_space;
100 }
101
102 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
103     do {                                                                \
104         MemoryListener *_listener;                                      \
105                                                                         \
106         switch (_direction) {                                           \
107         case Forward:                                                   \
108             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
109                 if (_listener->_callback) {                             \
110                     _listener->_callback(_listener, ##_args);           \
111                 }                                                       \
112             }                                                           \
113             break;                                                      \
114         case Reverse:                                                   \
115             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
116                                    memory_listeners, link) {            \
117                 if (_listener->_callback) {                             \
118                     _listener->_callback(_listener, ##_args);           \
119                 }                                                       \
120             }                                                           \
121             break;                                                      \
122         default:                                                        \
123             abort();                                                    \
124         }                                                               \
125     } while (0)
126
127 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
128     do {                                                                \
129         MemoryListener *_listener;                                      \
130                                                                         \
131         switch (_direction) {                                           \
132         case Forward:                                                   \
133             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
134                 if (_listener->_callback                                \
135                     && memory_listener_match(_listener, _section)) {    \
136                     _listener->_callback(_listener, _section, ##_args); \
137                 }                                                       \
138             }                                                           \
139             break;                                                      \
140         case Reverse:                                                   \
141             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
142                                    memory_listeners, link) {            \
143                 if (_listener->_callback                                \
144                     && memory_listener_match(_listener, _section)) {    \
145                     _listener->_callback(_listener, _section, ##_args); \
146                 }                                                       \
147             }                                                           \
148             break;                                                      \
149         default:                                                        \
150             abort();                                                    \
151         }                                                               \
152     } while (0)
153
154 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback)            \
156     MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
157         .mr = (fr)->mr,                                                 \
158         .address_space = (as),                                          \
159         .offset_within_region = (fr)->offset_in_region,                 \
160         .size = (fr)->addr.size,                                        \
161         .offset_within_address_space = int128_get64((fr)->addr.start),  \
162         .readonly = (fr)->readonly,                                     \
163               }))
164
165 struct CoalescedMemoryRange {
166     AddrRange addr;
167     QTAILQ_ENTRY(CoalescedMemoryRange) link;
168 };
169
170 struct MemoryRegionIoeventfd {
171     AddrRange addr;
172     bool match_data;
173     uint64_t data;
174     EventNotifier *e;
175 };
176
177 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
178                                            MemoryRegionIoeventfd b)
179 {
180     if (int128_lt(a.addr.start, b.addr.start)) {
181         return true;
182     } else if (int128_gt(a.addr.start, b.addr.start)) {
183         return false;
184     } else if (int128_lt(a.addr.size, b.addr.size)) {
185         return true;
186     } else if (int128_gt(a.addr.size, b.addr.size)) {
187         return false;
188     } else if (a.match_data < b.match_data) {
189         return true;
190     } else  if (a.match_data > b.match_data) {
191         return false;
192     } else if (a.match_data) {
193         if (a.data < b.data) {
194             return true;
195         } else if (a.data > b.data) {
196             return false;
197         }
198     }
199     if (a.e < b.e) {
200         return true;
201     } else if (a.e > b.e) {
202         return false;
203     }
204     return false;
205 }
206
207 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
208                                           MemoryRegionIoeventfd b)
209 {
210     return !memory_region_ioeventfd_before(a, b)
211         && !memory_region_ioeventfd_before(b, a);
212 }
213
214 typedef struct FlatRange FlatRange;
215 typedef struct FlatView FlatView;
216
217 /* Range of memory in the global map.  Addresses are absolute. */
218 struct FlatRange {
219     MemoryRegion *mr;
220     hwaddr offset_in_region;
221     AddrRange addr;
222     uint8_t dirty_log_mask;
223     bool romd_mode;
224     bool readonly;
225 };
226
227 /* Flattened global view of current active memory hierarchy.  Kept in sorted
228  * order.
229  */
230 struct FlatView {
231     struct rcu_head rcu;
232     unsigned ref;
233     FlatRange *ranges;
234     unsigned nr;
235     unsigned nr_allocated;
236 };
237
238 typedef struct AddressSpaceOps AddressSpaceOps;
239
240 #define FOR_EACH_FLAT_RANGE(var, view)          \
241     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
242
243 static bool flatrange_equal(FlatRange *a, FlatRange *b)
244 {
245     return a->mr == b->mr
246         && addrrange_equal(a->addr, b->addr)
247         && a->offset_in_region == b->offset_in_region
248         && a->romd_mode == b->romd_mode
249         && a->readonly == b->readonly;
250 }
251
252 static void flatview_init(FlatView *view)
253 {
254     view->ref = 1;
255     view->ranges = NULL;
256     view->nr = 0;
257     view->nr_allocated = 0;
258 }
259
260 /* Insert a range into a given position.  Caller is responsible for maintaining
261  * sorting order.
262  */
263 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
264 {
265     if (view->nr == view->nr_allocated) {
266         view->nr_allocated = MAX(2 * view->nr, 10);
267         view->ranges = g_realloc(view->ranges,
268                                     view->nr_allocated * sizeof(*view->ranges));
269     }
270     memmove(view->ranges + pos + 1, view->ranges + pos,
271             (view->nr - pos) * sizeof(FlatRange));
272     view->ranges[pos] = *range;
273     memory_region_ref(range->mr);
274     ++view->nr;
275 }
276
277 static void flatview_destroy(FlatView *view)
278 {
279     int i;
280
281     for (i = 0; i < view->nr; i++) {
282         memory_region_unref(view->ranges[i].mr);
283     }
284     g_free(view->ranges);
285     g_free(view);
286 }
287
288 static void flatview_ref(FlatView *view)
289 {
290     atomic_inc(&view->ref);
291 }
292
293 static void flatview_unref(FlatView *view)
294 {
295     if (atomic_fetch_dec(&view->ref) == 1) {
296         flatview_destroy(view);
297     }
298 }
299
300 static bool can_merge(FlatRange *r1, FlatRange *r2)
301 {
302     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
303         && r1->mr == r2->mr
304         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
305                                 r1->addr.size),
306                      int128_make64(r2->offset_in_region))
307         && r1->dirty_log_mask == r2->dirty_log_mask
308         && r1->romd_mode == r2->romd_mode
309         && r1->readonly == r2->readonly;
310 }
311
312 /* Attempt to simplify a view by merging adjacent ranges */
313 static void flatview_simplify(FlatView *view)
314 {
315     unsigned i, j;
316
317     i = 0;
318     while (i < view->nr) {
319         j = i + 1;
320         while (j < view->nr
321                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
322             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
323             ++j;
324         }
325         ++i;
326         memmove(&view->ranges[i], &view->ranges[j],
327                 (view->nr - j) * sizeof(view->ranges[j]));
328         view->nr -= j - i;
329     }
330 }
331
332 static bool memory_region_big_endian(MemoryRegion *mr)
333 {
334 #ifdef TARGET_WORDS_BIGENDIAN
335     return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
336 #else
337     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
338 #endif
339 }
340
341 static bool memory_region_wrong_endianness(MemoryRegion *mr)
342 {
343 #ifdef TARGET_WORDS_BIGENDIAN
344     return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
345 #else
346     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
347 #endif
348 }
349
350 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
351 {
352     if (memory_region_wrong_endianness(mr)) {
353         switch (size) {
354         case 1:
355             break;
356         case 2:
357             *data = bswap16(*data);
358             break;
359         case 4:
360             *data = bswap32(*data);
361             break;
362         case 8:
363             *data = bswap64(*data);
364             break;
365         default:
366             abort();
367         }
368     }
369 }
370
371 static void memory_region_oldmmio_read_accessor(MemoryRegion *mr,
372                                                 hwaddr addr,
373                                                 uint64_t *value,
374                                                 unsigned size,
375                                                 unsigned shift,
376                                                 uint64_t mask)
377 {
378     uint64_t tmp;
379
380     tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
381     trace_memory_region_ops_read(mr, addr, tmp, size);
382     *value |= (tmp & mask) << shift;
383 }
384
385 static void memory_region_read_accessor(MemoryRegion *mr,
386                                         hwaddr addr,
387                                         uint64_t *value,
388                                         unsigned size,
389                                         unsigned shift,
390                                         uint64_t mask)
391 {
392     uint64_t tmp;
393
394     if (mr->flush_coalesced_mmio) {
395         qemu_flush_coalesced_mmio_buffer();
396     }
397     tmp = mr->ops->read(mr->opaque, addr, size);
398     trace_memory_region_ops_read(mr, addr, tmp, size);
399     *value |= (tmp & mask) << shift;
400 }
401
402 static void memory_region_oldmmio_write_accessor(MemoryRegion *mr,
403                                                  hwaddr addr,
404                                                  uint64_t *value,
405                                                  unsigned size,
406                                                  unsigned shift,
407                                                  uint64_t mask)
408 {
409     uint64_t tmp;
410
411     tmp = (*value >> shift) & mask;
412     trace_memory_region_ops_write(mr, addr, tmp, size);
413     mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
414 }
415
416 static void memory_region_write_accessor(MemoryRegion *mr,
417                                          hwaddr addr,
418                                          uint64_t *value,
419                                          unsigned size,
420                                          unsigned shift,
421                                          uint64_t mask)
422 {
423     uint64_t tmp;
424
425     if (mr->flush_coalesced_mmio) {
426         qemu_flush_coalesced_mmio_buffer();
427     }
428     tmp = (*value >> shift) & mask;
429     trace_memory_region_ops_write(mr, addr, tmp, size);
430     mr->ops->write(mr->opaque, addr, tmp, size);
431 }
432
433 static void access_with_adjusted_size(hwaddr addr,
434                                       uint64_t *value,
435                                       unsigned size,
436                                       unsigned access_size_min,
437                                       unsigned access_size_max,
438                                       void (*access)(MemoryRegion *mr,
439                                                      hwaddr addr,
440                                                      uint64_t *value,
441                                                      unsigned size,
442                                                      unsigned shift,
443                                                      uint64_t mask),
444                                       MemoryRegion *mr)
445 {
446     uint64_t access_mask;
447     unsigned access_size;
448     unsigned i;
449
450     if (!access_size_min) {
451         access_size_min = 1;
452     }
453     if (!access_size_max) {
454         access_size_max = 4;
455     }
456
457     /* FIXME: support unaligned access? */
458     access_size = MAX(MIN(size, access_size_max), access_size_min);
459     access_mask = -1ULL >> (64 - access_size * 8);
460     if (memory_region_big_endian(mr)) {
461         for (i = 0; i < size; i += access_size) {
462             access(mr, addr + i, value, access_size,
463                    (size - access_size - i) * 8, access_mask);
464         }
465     } else {
466         for (i = 0; i < size; i += access_size) {
467             access(mr, addr + i, value, access_size, i * 8, access_mask);
468         }
469     }
470 }
471
472 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
473 {
474     AddressSpace *as;
475
476     while (mr->container) {
477         mr = mr->container;
478     }
479     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
480         if (mr == as->root) {
481             return as;
482         }
483     }
484     return NULL;
485 }
486
487 /* Render a memory region into the global view.  Ranges in @view obscure
488  * ranges in @mr.
489  */
490 static void render_memory_region(FlatView *view,
491                                  MemoryRegion *mr,
492                                  Int128 base,
493                                  AddrRange clip,
494                                  bool readonly)
495 {
496     MemoryRegion *subregion;
497     unsigned i;
498     hwaddr offset_in_region;
499     Int128 remain;
500     Int128 now;
501     FlatRange fr;
502     AddrRange tmp;
503
504     if (!mr->enabled) {
505         return;
506     }
507
508     int128_addto(&base, int128_make64(mr->addr));
509     readonly |= mr->readonly;
510
511     tmp = addrrange_make(base, mr->size);
512
513     if (!addrrange_intersects(tmp, clip)) {
514         return;
515     }
516
517     clip = addrrange_intersection(tmp, clip);
518
519     if (mr->alias) {
520         int128_subfrom(&base, int128_make64(mr->alias->addr));
521         int128_subfrom(&base, int128_make64(mr->alias_offset));
522         render_memory_region(view, mr->alias, base, clip, readonly);
523         return;
524     }
525
526     /* Render subregions in priority order. */
527     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
528         render_memory_region(view, subregion, base, clip, readonly);
529     }
530
531     if (!mr->terminates) {
532         return;
533     }
534
535     offset_in_region = int128_get64(int128_sub(clip.start, base));
536     base = clip.start;
537     remain = clip.size;
538
539     fr.mr = mr;
540     fr.dirty_log_mask = mr->dirty_log_mask;
541     fr.romd_mode = mr->romd_mode;
542     fr.readonly = readonly;
543
544     /* Render the region itself into any gaps left by the current view. */
545     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
546         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
547             continue;
548         }
549         if (int128_lt(base, view->ranges[i].addr.start)) {
550             now = int128_min(remain,
551                              int128_sub(view->ranges[i].addr.start, base));
552             fr.offset_in_region = offset_in_region;
553             fr.addr = addrrange_make(base, now);
554             flatview_insert(view, i, &fr);
555             ++i;
556             int128_addto(&base, now);
557             offset_in_region += int128_get64(now);
558             int128_subfrom(&remain, now);
559         }
560         now = int128_sub(int128_min(int128_add(base, remain),
561                                     addrrange_end(view->ranges[i].addr)),
562                          base);
563         int128_addto(&base, now);
564         offset_in_region += int128_get64(now);
565         int128_subfrom(&remain, now);
566     }
567     if (int128_nz(remain)) {
568         fr.offset_in_region = offset_in_region;
569         fr.addr = addrrange_make(base, remain);
570         flatview_insert(view, i, &fr);
571     }
572 }
573
574 /* Render a memory topology into a list of disjoint absolute ranges. */
575 static FlatView *generate_memory_topology(MemoryRegion *mr)
576 {
577     FlatView *view;
578
579     view = g_new(FlatView, 1);
580     flatview_init(view);
581
582     if (mr) {
583         render_memory_region(view, mr, int128_zero(),
584                              addrrange_make(int128_zero(), int128_2_64()), false);
585     }
586     flatview_simplify(view);
587
588     return view;
589 }
590
591 static void address_space_add_del_ioeventfds(AddressSpace *as,
592                                              MemoryRegionIoeventfd *fds_new,
593                                              unsigned fds_new_nb,
594                                              MemoryRegionIoeventfd *fds_old,
595                                              unsigned fds_old_nb)
596 {
597     unsigned iold, inew;
598     MemoryRegionIoeventfd *fd;
599     MemoryRegionSection section;
600
601     /* Generate a symmetric difference of the old and new fd sets, adding
602      * and deleting as necessary.
603      */
604
605     iold = inew = 0;
606     while (iold < fds_old_nb || inew < fds_new_nb) {
607         if (iold < fds_old_nb
608             && (inew == fds_new_nb
609                 || memory_region_ioeventfd_before(fds_old[iold],
610                                                   fds_new[inew]))) {
611             fd = &fds_old[iold];
612             section = (MemoryRegionSection) {
613                 .address_space = as,
614                 .offset_within_address_space = int128_get64(fd->addr.start),
615                 .size = fd->addr.size,
616             };
617             MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
618                                  fd->match_data, fd->data, fd->e);
619             ++iold;
620         } else if (inew < fds_new_nb
621                    && (iold == fds_old_nb
622                        || memory_region_ioeventfd_before(fds_new[inew],
623                                                          fds_old[iold]))) {
624             fd = &fds_new[inew];
625             section = (MemoryRegionSection) {
626                 .address_space = as,
627                 .offset_within_address_space = int128_get64(fd->addr.start),
628                 .size = fd->addr.size,
629             };
630             MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
631                                  fd->match_data, fd->data, fd->e);
632             ++inew;
633         } else {
634             ++iold;
635             ++inew;
636         }
637     }
638 }
639
640 static FlatView *address_space_get_flatview(AddressSpace *as)
641 {
642     FlatView *view;
643
644     rcu_read_lock();
645     view = atomic_rcu_read(&as->current_map);
646     flatview_ref(view);
647     rcu_read_unlock();
648     return view;
649 }
650
651 static void address_space_update_ioeventfds(AddressSpace *as)
652 {
653     FlatView *view;
654     FlatRange *fr;
655     unsigned ioeventfd_nb = 0;
656     MemoryRegionIoeventfd *ioeventfds = NULL;
657     AddrRange tmp;
658     unsigned i;
659
660     view = address_space_get_flatview(as);
661     FOR_EACH_FLAT_RANGE(fr, view) {
662         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
663             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
664                                   int128_sub(fr->addr.start,
665                                              int128_make64(fr->offset_in_region)));
666             if (addrrange_intersects(fr->addr, tmp)) {
667                 ++ioeventfd_nb;
668                 ioeventfds = g_realloc(ioeventfds,
669                                           ioeventfd_nb * sizeof(*ioeventfds));
670                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
671                 ioeventfds[ioeventfd_nb-1].addr = tmp;
672             }
673         }
674     }
675
676     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
677                                      as->ioeventfds, as->ioeventfd_nb);
678
679     g_free(as->ioeventfds);
680     as->ioeventfds = ioeventfds;
681     as->ioeventfd_nb = ioeventfd_nb;
682     flatview_unref(view);
683 }
684
685 static void address_space_update_topology_pass(AddressSpace *as,
686                                                const FlatView *old_view,
687                                                const FlatView *new_view,
688                                                bool adding)
689 {
690     unsigned iold, inew;
691     FlatRange *frold, *frnew;
692
693     /* Generate a symmetric difference of the old and new memory maps.
694      * Kill ranges in the old map, and instantiate ranges in the new map.
695      */
696     iold = inew = 0;
697     while (iold < old_view->nr || inew < new_view->nr) {
698         if (iold < old_view->nr) {
699             frold = &old_view->ranges[iold];
700         } else {
701             frold = NULL;
702         }
703         if (inew < new_view->nr) {
704             frnew = &new_view->ranges[inew];
705         } else {
706             frnew = NULL;
707         }
708
709         if (frold
710             && (!frnew
711                 || int128_lt(frold->addr.start, frnew->addr.start)
712                 || (int128_eq(frold->addr.start, frnew->addr.start)
713                     && !flatrange_equal(frold, frnew)))) {
714             /* In old but not in new, or in both but attributes changed. */
715
716             if (!adding) {
717                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
718             }
719
720             ++iold;
721         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
722             /* In both and unchanged (except logging may have changed) */
723
724             if (adding) {
725                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
726                 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
727                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
728                 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
729                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
730                 }
731             }
732
733             ++iold;
734             ++inew;
735         } else {
736             /* In new */
737
738             if (adding) {
739                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
740             }
741
742             ++inew;
743         }
744     }
745 }
746
747
748 static void address_space_update_topology(AddressSpace *as)
749 {
750     FlatView *old_view = address_space_get_flatview(as);
751     FlatView *new_view = generate_memory_topology(as->root);
752
753     address_space_update_topology_pass(as, old_view, new_view, false);
754     address_space_update_topology_pass(as, old_view, new_view, true);
755
756     /* Writes are protected by the BQL.  */
757     atomic_rcu_set(&as->current_map, new_view);
758     call_rcu(old_view, flatview_unref, rcu);
759
760     /* Note that all the old MemoryRegions are still alive up to this
761      * point.  This relieves most MemoryListeners from the need to
762      * ref/unref the MemoryRegions they get---unless they use them
763      * outside the iothread mutex, in which case precise reference
764      * counting is necessary.
765      */
766     flatview_unref(old_view);
767
768     address_space_update_ioeventfds(as);
769 }
770
771 void memory_region_transaction_begin(void)
772 {
773     qemu_flush_coalesced_mmio_buffer();
774     ++memory_region_transaction_depth;
775 }
776
777 static void memory_region_clear_pending(void)
778 {
779     memory_region_update_pending = false;
780     ioeventfd_update_pending = false;
781 }
782
783 void memory_region_transaction_commit(void)
784 {
785     AddressSpace *as;
786
787     assert(memory_region_transaction_depth);
788     --memory_region_transaction_depth;
789     if (!memory_region_transaction_depth) {
790         if (memory_region_update_pending) {
791             MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
792
793             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
794                 address_space_update_topology(as);
795             }
796
797             MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
798         } else if (ioeventfd_update_pending) {
799             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
800                 address_space_update_ioeventfds(as);
801             }
802         }
803         memory_region_clear_pending();
804    }
805 }
806
807 static void memory_region_destructor_none(MemoryRegion *mr)
808 {
809 }
810
811 static void memory_region_destructor_ram(MemoryRegion *mr)
812 {
813     qemu_ram_free(mr->ram_addr);
814 }
815
816 static void memory_region_destructor_alias(MemoryRegion *mr)
817 {
818     memory_region_unref(mr->alias);
819 }
820
821 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
822 {
823     qemu_ram_free_from_ptr(mr->ram_addr);
824 }
825
826 static void memory_region_destructor_rom_device(MemoryRegion *mr)
827 {
828     qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
829 }
830
831 static bool memory_region_need_escape(char c)
832 {
833     return c == '/' || c == '[' || c == '\\' || c == ']';
834 }
835
836 static char *memory_region_escape_name(const char *name)
837 {
838     const char *p;
839     char *escaped, *q;
840     uint8_t c;
841     size_t bytes = 0;
842
843     for (p = name; *p; p++) {
844         bytes += memory_region_need_escape(*p) ? 4 : 1;
845     }
846     if (bytes == p - name) {
847        return g_memdup(name, bytes + 1);
848     }
849
850     escaped = g_malloc(bytes + 1);
851     for (p = name, q = escaped; *p; p++) {
852         c = *p;
853         if (unlikely(memory_region_need_escape(c))) {
854             *q++ = '\\';
855             *q++ = 'x';
856             *q++ = "0123456789abcdef"[c >> 4];
857             c = "0123456789abcdef"[c & 15];
858         }
859         *q++ = c;
860     }
861     *q = 0;
862     return escaped;
863 }
864
865 void memory_region_init(MemoryRegion *mr,
866                         Object *owner,
867                         const char *name,
868                         uint64_t size)
869 {
870     if (!owner) {
871         owner = container_get(qdev_get_machine(), "/unattached");
872     }
873
874     object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
875     mr->size = int128_make64(size);
876     if (size == UINT64_MAX) {
877         mr->size = int128_2_64();
878     }
879     mr->name = g_strdup(name);
880
881     if (name) {
882         char *escaped_name = memory_region_escape_name(name);
883         char *name_array = g_strdup_printf("%s[*]", escaped_name);
884         object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
885         object_unref(OBJECT(mr));
886         g_free(name_array);
887         g_free(escaped_name);
888     }
889 }
890
891 static void memory_region_get_addr(Object *obj, Visitor *v, void *opaque,
892                                    const char *name, Error **errp)
893 {
894     MemoryRegion *mr = MEMORY_REGION(obj);
895     uint64_t value = mr->addr;
896
897     visit_type_uint64(v, &value, name, errp);
898 }
899
900 static void memory_region_get_container(Object *obj, Visitor *v, void *opaque,
901                                         const char *name, Error **errp)
902 {
903     MemoryRegion *mr = MEMORY_REGION(obj);
904     gchar *path = (gchar *)"";
905
906     if (mr->container) {
907         path = object_get_canonical_path(OBJECT(mr->container));
908     }
909     visit_type_str(v, &path, name, errp);
910     if (mr->container) {
911         g_free(path);
912     }
913 }
914
915 static Object *memory_region_resolve_container(Object *obj, void *opaque,
916                                                const char *part)
917 {
918     MemoryRegion *mr = MEMORY_REGION(obj);
919
920     return OBJECT(mr->container);
921 }
922
923 static void memory_region_get_priority(Object *obj, Visitor *v, void *opaque,
924                                        const char *name, Error **errp)
925 {
926     MemoryRegion *mr = MEMORY_REGION(obj);
927     int32_t value = mr->priority;
928
929     visit_type_int32(v, &value, name, errp);
930 }
931
932 static bool memory_region_get_may_overlap(Object *obj, Error **errp)
933 {
934     MemoryRegion *mr = MEMORY_REGION(obj);
935
936     return mr->may_overlap;
937 }
938
939 static void memory_region_get_size(Object *obj, Visitor *v, void *opaque,
940                                    const char *name, Error **errp)
941 {
942     MemoryRegion *mr = MEMORY_REGION(obj);
943     uint64_t value = memory_region_size(mr);
944
945     visit_type_uint64(v, &value, name, errp);
946 }
947
948 static void memory_region_initfn(Object *obj)
949 {
950     MemoryRegion *mr = MEMORY_REGION(obj);
951     ObjectProperty *op;
952
953     mr->ops = &unassigned_mem_ops;
954     mr->enabled = true;
955     mr->romd_mode = true;
956     mr->destructor = memory_region_destructor_none;
957     QTAILQ_INIT(&mr->subregions);
958     QTAILQ_INIT(&mr->coalesced);
959
960     op = object_property_add(OBJECT(mr), "container",
961                              "link<" TYPE_MEMORY_REGION ">",
962                              memory_region_get_container,
963                              NULL, /* memory_region_set_container */
964                              NULL, NULL, &error_abort);
965     op->resolve = memory_region_resolve_container;
966
967     object_property_add(OBJECT(mr), "addr", "uint64",
968                         memory_region_get_addr,
969                         NULL, /* memory_region_set_addr */
970                         NULL, NULL, &error_abort);
971     object_property_add(OBJECT(mr), "priority", "uint32",
972                         memory_region_get_priority,
973                         NULL, /* memory_region_set_priority */
974                         NULL, NULL, &error_abort);
975     object_property_add_bool(OBJECT(mr), "may-overlap",
976                              memory_region_get_may_overlap,
977                              NULL, /* memory_region_set_may_overlap */
978                              &error_abort);
979     object_property_add(OBJECT(mr), "size", "uint64",
980                         memory_region_get_size,
981                         NULL, /* memory_region_set_size, */
982                         NULL, NULL, &error_abort);
983 }
984
985 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
986                                     unsigned size)
987 {
988 #ifdef DEBUG_UNASSIGNED
989     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
990 #endif
991     if (current_cpu != NULL) {
992         cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
993     }
994     return 0;
995 }
996
997 static void unassigned_mem_write(void *opaque, hwaddr addr,
998                                  uint64_t val, unsigned size)
999 {
1000 #ifdef DEBUG_UNASSIGNED
1001     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1002 #endif
1003     if (current_cpu != NULL) {
1004         cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1005     }
1006 }
1007
1008 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1009                                    unsigned size, bool is_write)
1010 {
1011     return false;
1012 }
1013
1014 const MemoryRegionOps unassigned_mem_ops = {
1015     .valid.accepts = unassigned_mem_accepts,
1016     .endianness = DEVICE_NATIVE_ENDIAN,
1017 };
1018
1019 bool memory_region_access_valid(MemoryRegion *mr,
1020                                 hwaddr addr,
1021                                 unsigned size,
1022                                 bool is_write)
1023 {
1024     int access_size_min, access_size_max;
1025     int access_size, i;
1026
1027     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1028         return false;
1029     }
1030
1031     if (!mr->ops->valid.accepts) {
1032         return true;
1033     }
1034
1035     access_size_min = mr->ops->valid.min_access_size;
1036     if (!mr->ops->valid.min_access_size) {
1037         access_size_min = 1;
1038     }
1039
1040     access_size_max = mr->ops->valid.max_access_size;
1041     if (!mr->ops->valid.max_access_size) {
1042         access_size_max = 4;
1043     }
1044
1045     access_size = MAX(MIN(size, access_size_max), access_size_min);
1046     for (i = 0; i < size; i += access_size) {
1047         if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1048                                     is_write)) {
1049             return false;
1050         }
1051     }
1052
1053     return true;
1054 }
1055
1056 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
1057                                              hwaddr addr,
1058                                              unsigned size)
1059 {
1060     uint64_t data = 0;
1061
1062     if (mr->ops->read) {
1063         access_with_adjusted_size(addr, &data, size,
1064                                   mr->ops->impl.min_access_size,
1065                                   mr->ops->impl.max_access_size,
1066                                   memory_region_read_accessor, mr);
1067     } else {
1068         access_with_adjusted_size(addr, &data, size, 1, 4,
1069                                   memory_region_oldmmio_read_accessor, mr);
1070     }
1071
1072     return data;
1073 }
1074
1075 static bool memory_region_dispatch_read(MemoryRegion *mr,
1076                                         hwaddr addr,
1077                                         uint64_t *pval,
1078                                         unsigned size)
1079 {
1080     if (!memory_region_access_valid(mr, addr, size, false)) {
1081         *pval = unassigned_mem_read(mr, addr, size);
1082         return true;
1083     }
1084
1085     *pval = memory_region_dispatch_read1(mr, addr, size);
1086     adjust_endianness(mr, pval, size);
1087     return false;
1088 }
1089
1090 static bool memory_region_dispatch_write(MemoryRegion *mr,
1091                                          hwaddr addr,
1092                                          uint64_t data,
1093                                          unsigned size)
1094 {
1095     if (!memory_region_access_valid(mr, addr, size, true)) {
1096         unassigned_mem_write(mr, addr, data, size);
1097         return true;
1098     }
1099
1100     adjust_endianness(mr, &data, size);
1101
1102     if (mr->ops->write) {
1103         access_with_adjusted_size(addr, &data, size,
1104                                   mr->ops->impl.min_access_size,
1105                                   mr->ops->impl.max_access_size,
1106                                   memory_region_write_accessor, mr);
1107     } else {
1108         access_with_adjusted_size(addr, &data, size, 1, 4,
1109                                   memory_region_oldmmio_write_accessor, mr);
1110     }
1111     return false;
1112 }
1113
1114 void memory_region_init_io(MemoryRegion *mr,
1115                            Object *owner,
1116                            const MemoryRegionOps *ops,
1117                            void *opaque,
1118                            const char *name,
1119                            uint64_t size)
1120 {
1121     memory_region_init(mr, owner, name, size);
1122     mr->ops = ops;
1123     mr->opaque = opaque;
1124     mr->terminates = true;
1125     mr->ram_addr = ~(ram_addr_t)0;
1126 }
1127
1128 void memory_region_init_ram(MemoryRegion *mr,
1129                             Object *owner,
1130                             const char *name,
1131                             uint64_t size,
1132                             Error **errp)
1133 {
1134     memory_region_init(mr, owner, name, size);
1135     mr->ram = true;
1136     mr->terminates = true;
1137     mr->destructor = memory_region_destructor_ram;
1138     mr->ram_addr = qemu_ram_alloc(size, mr, errp);
1139 }
1140
1141 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1142                                        Object *owner,
1143                                        const char *name,
1144                                        uint64_t size,
1145                                        uint64_t max_size,
1146                                        void (*resized)(const char*,
1147                                                        uint64_t length,
1148                                                        void *host),
1149                                        Error **errp)
1150 {
1151     memory_region_init(mr, owner, name, size);
1152     mr->ram = true;
1153     mr->terminates = true;
1154     mr->destructor = memory_region_destructor_ram;
1155     mr->ram_addr = qemu_ram_alloc_resizeable(size, max_size, resized, mr, errp);
1156 }
1157
1158 #ifdef __linux__
1159 void memory_region_init_ram_from_file(MemoryRegion *mr,
1160                                       struct Object *owner,
1161                                       const char *name,
1162                                       uint64_t size,
1163                                       bool share,
1164                                       const char *path,
1165                                       Error **errp)
1166 {
1167     memory_region_init(mr, owner, name, size);
1168     mr->ram = true;
1169     mr->terminates = true;
1170     mr->destructor = memory_region_destructor_ram;
1171     mr->ram_addr = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1172 }
1173 #endif
1174
1175 void memory_region_init_ram_ptr(MemoryRegion *mr,
1176                                 Object *owner,
1177                                 const char *name,
1178                                 uint64_t size,
1179                                 void *ptr)
1180 {
1181     memory_region_init(mr, owner, name, size);
1182     mr->ram = true;
1183     mr->terminates = true;
1184     mr->destructor = memory_region_destructor_ram_from_ptr;
1185
1186     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1187     assert(ptr != NULL);
1188     mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1189 }
1190
1191 void memory_region_set_skip_dump(MemoryRegion *mr)
1192 {
1193     mr->skip_dump = true;
1194 }
1195
1196 void memory_region_init_alias(MemoryRegion *mr,
1197                               Object *owner,
1198                               const char *name,
1199                               MemoryRegion *orig,
1200                               hwaddr offset,
1201                               uint64_t size)
1202 {
1203     memory_region_init(mr, owner, name, size);
1204     memory_region_ref(orig);
1205     mr->destructor = memory_region_destructor_alias;
1206     mr->alias = orig;
1207     mr->alias_offset = offset;
1208 }
1209
1210 void memory_region_init_rom_device(MemoryRegion *mr,
1211                                    Object *owner,
1212                                    const MemoryRegionOps *ops,
1213                                    void *opaque,
1214                                    const char *name,
1215                                    uint64_t size,
1216                                    Error **errp)
1217 {
1218     memory_region_init(mr, owner, name, size);
1219     mr->ops = ops;
1220     mr->opaque = opaque;
1221     mr->terminates = true;
1222     mr->rom_device = true;
1223     mr->destructor = memory_region_destructor_rom_device;
1224     mr->ram_addr = qemu_ram_alloc(size, mr, errp);
1225 }
1226
1227 void memory_region_init_iommu(MemoryRegion *mr,
1228                               Object *owner,
1229                               const MemoryRegionIOMMUOps *ops,
1230                               const char *name,
1231                               uint64_t size)
1232 {
1233     memory_region_init(mr, owner, name, size);
1234     mr->iommu_ops = ops,
1235     mr->terminates = true;  /* then re-forwards */
1236     notifier_list_init(&mr->iommu_notify);
1237 }
1238
1239 void memory_region_init_reservation(MemoryRegion *mr,
1240                                     Object *owner,
1241                                     const char *name,
1242                                     uint64_t size)
1243 {
1244     memory_region_init_io(mr, owner, &unassigned_mem_ops, mr, name, size);
1245 }
1246
1247 static void memory_region_finalize(Object *obj)
1248 {
1249     MemoryRegion *mr = MEMORY_REGION(obj);
1250
1251     assert(QTAILQ_EMPTY(&mr->subregions));
1252     mr->destructor(mr);
1253     memory_region_clear_coalescing(mr);
1254     g_free((char *)mr->name);
1255     g_free(mr->ioeventfds);
1256 }
1257
1258 Object *memory_region_owner(MemoryRegion *mr)
1259 {
1260     Object *obj = OBJECT(mr);
1261     return obj->parent;
1262 }
1263
1264 void memory_region_ref(MemoryRegion *mr)
1265 {
1266     /* MMIO callbacks most likely will access data that belongs
1267      * to the owner, hence the need to ref/unref the owner whenever
1268      * the memory region is in use.
1269      *
1270      * The memory region is a child of its owner.  As long as the
1271      * owner doesn't call unparent itself on the memory region,
1272      * ref-ing the owner will also keep the memory region alive.
1273      * Memory regions without an owner are supposed to never go away,
1274      * but we still ref/unref them for debugging purposes.
1275      */
1276     Object *obj = OBJECT(mr);
1277     if (obj && obj->parent) {
1278         object_ref(obj->parent);
1279     } else {
1280         object_ref(obj);
1281     }
1282 }
1283
1284 void memory_region_unref(MemoryRegion *mr)
1285 {
1286     Object *obj = OBJECT(mr);
1287     if (obj && obj->parent) {
1288         object_unref(obj->parent);
1289     } else {
1290         object_unref(obj);
1291     }
1292 }
1293
1294 uint64_t memory_region_size(MemoryRegion *mr)
1295 {
1296     if (int128_eq(mr->size, int128_2_64())) {
1297         return UINT64_MAX;
1298     }
1299     return int128_get64(mr->size);
1300 }
1301
1302 const char *memory_region_name(const MemoryRegion *mr)
1303 {
1304     if (!mr->name) {
1305         ((MemoryRegion *)mr)->name =
1306             object_get_canonical_path_component(OBJECT(mr));
1307     }
1308     return mr->name;
1309 }
1310
1311 bool memory_region_is_ram(MemoryRegion *mr)
1312 {
1313     return mr->ram;
1314 }
1315
1316 bool memory_region_is_skip_dump(MemoryRegion *mr)
1317 {
1318     return mr->skip_dump;
1319 }
1320
1321 bool memory_region_is_logging(MemoryRegion *mr)
1322 {
1323     return mr->dirty_log_mask;
1324 }
1325
1326 bool memory_region_is_rom(MemoryRegion *mr)
1327 {
1328     return mr->ram && mr->readonly;
1329 }
1330
1331 bool memory_region_is_iommu(MemoryRegion *mr)
1332 {
1333     return mr->iommu_ops;
1334 }
1335
1336 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1337 {
1338     notifier_list_add(&mr->iommu_notify, n);
1339 }
1340
1341 void memory_region_unregister_iommu_notifier(Notifier *n)
1342 {
1343     notifier_remove(n);
1344 }
1345
1346 void memory_region_notify_iommu(MemoryRegion *mr,
1347                                 IOMMUTLBEntry entry)
1348 {
1349     assert(memory_region_is_iommu(mr));
1350     notifier_list_notify(&mr->iommu_notify, &entry);
1351 }
1352
1353 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1354 {
1355     uint8_t mask = 1 << client;
1356
1357     memory_region_transaction_begin();
1358     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1359     memory_region_update_pending |= mr->enabled;
1360     memory_region_transaction_commit();
1361 }
1362
1363 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1364                              hwaddr size, unsigned client)
1365 {
1366     assert(mr->terminates);
1367     return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1368 }
1369
1370 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1371                              hwaddr size)
1372 {
1373     assert(mr->terminates);
1374     cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size);
1375 }
1376
1377 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1378                                         hwaddr size, unsigned client)
1379 {
1380     bool ret;
1381     assert(mr->terminates);
1382     ret = cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1383     if (ret) {
1384         cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1385     }
1386     return ret;
1387 }
1388
1389
1390 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1391 {
1392     AddressSpace *as;
1393     FlatRange *fr;
1394
1395     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1396         FlatView *view = address_space_get_flatview(as);
1397         FOR_EACH_FLAT_RANGE(fr, view) {
1398             if (fr->mr == mr) {
1399                 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1400             }
1401         }
1402         flatview_unref(view);
1403     }
1404 }
1405
1406 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1407 {
1408     if (mr->readonly != readonly) {
1409         memory_region_transaction_begin();
1410         mr->readonly = readonly;
1411         memory_region_update_pending |= mr->enabled;
1412         memory_region_transaction_commit();
1413     }
1414 }
1415
1416 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1417 {
1418     if (mr->romd_mode != romd_mode) {
1419         memory_region_transaction_begin();
1420         mr->romd_mode = romd_mode;
1421         memory_region_update_pending |= mr->enabled;
1422         memory_region_transaction_commit();
1423     }
1424 }
1425
1426 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1427                                hwaddr size, unsigned client)
1428 {
1429     assert(mr->terminates);
1430     cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1431 }
1432
1433 int memory_region_get_fd(MemoryRegion *mr)
1434 {
1435     if (mr->alias) {
1436         return memory_region_get_fd(mr->alias);
1437     }
1438
1439     assert(mr->terminates);
1440
1441     return qemu_get_ram_fd(mr->ram_addr & TARGET_PAGE_MASK);
1442 }
1443
1444 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1445 {
1446     if (mr->alias) {
1447         return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1448     }
1449
1450     assert(mr->terminates);
1451
1452     return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1453 }
1454
1455 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1456 {
1457     FlatView *view;
1458     FlatRange *fr;
1459     CoalescedMemoryRange *cmr;
1460     AddrRange tmp;
1461     MemoryRegionSection section;
1462
1463     view = address_space_get_flatview(as);
1464     FOR_EACH_FLAT_RANGE(fr, view) {
1465         if (fr->mr == mr) {
1466             section = (MemoryRegionSection) {
1467                 .address_space = as,
1468                 .offset_within_address_space = int128_get64(fr->addr.start),
1469                 .size = fr->addr.size,
1470             };
1471
1472             MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1473                                  int128_get64(fr->addr.start),
1474                                  int128_get64(fr->addr.size));
1475             QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1476                 tmp = addrrange_shift(cmr->addr,
1477                                       int128_sub(fr->addr.start,
1478                                                  int128_make64(fr->offset_in_region)));
1479                 if (!addrrange_intersects(tmp, fr->addr)) {
1480                     continue;
1481                 }
1482                 tmp = addrrange_intersection(tmp, fr->addr);
1483                 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1484                                      int128_get64(tmp.start),
1485                                      int128_get64(tmp.size));
1486             }
1487         }
1488     }
1489     flatview_unref(view);
1490 }
1491
1492 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1493 {
1494     AddressSpace *as;
1495
1496     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1497         memory_region_update_coalesced_range_as(mr, as);
1498     }
1499 }
1500
1501 void memory_region_set_coalescing(MemoryRegion *mr)
1502 {
1503     memory_region_clear_coalescing(mr);
1504     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1505 }
1506
1507 void memory_region_add_coalescing(MemoryRegion *mr,
1508                                   hwaddr offset,
1509                                   uint64_t size)
1510 {
1511     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1512
1513     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1514     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1515     memory_region_update_coalesced_range(mr);
1516     memory_region_set_flush_coalesced(mr);
1517 }
1518
1519 void memory_region_clear_coalescing(MemoryRegion *mr)
1520 {
1521     CoalescedMemoryRange *cmr;
1522     bool updated = false;
1523
1524     qemu_flush_coalesced_mmio_buffer();
1525     mr->flush_coalesced_mmio = false;
1526
1527     while (!QTAILQ_EMPTY(&mr->coalesced)) {
1528         cmr = QTAILQ_FIRST(&mr->coalesced);
1529         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1530         g_free(cmr);
1531         updated = true;
1532     }
1533
1534     if (updated) {
1535         memory_region_update_coalesced_range(mr);
1536     }
1537 }
1538
1539 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1540 {
1541     mr->flush_coalesced_mmio = true;
1542 }
1543
1544 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1545 {
1546     qemu_flush_coalesced_mmio_buffer();
1547     if (QTAILQ_EMPTY(&mr->coalesced)) {
1548         mr->flush_coalesced_mmio = false;
1549     }
1550 }
1551
1552 void memory_region_add_eventfd(MemoryRegion *mr,
1553                                hwaddr addr,
1554                                unsigned size,
1555                                bool match_data,
1556                                uint64_t data,
1557                                EventNotifier *e)
1558 {
1559     MemoryRegionIoeventfd mrfd = {
1560         .addr.start = int128_make64(addr),
1561         .addr.size = int128_make64(size),
1562         .match_data = match_data,
1563         .data = data,
1564         .e = e,
1565     };
1566     unsigned i;
1567
1568     adjust_endianness(mr, &mrfd.data, size);
1569     memory_region_transaction_begin();
1570     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1571         if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1572             break;
1573         }
1574     }
1575     ++mr->ioeventfd_nb;
1576     mr->ioeventfds = g_realloc(mr->ioeventfds,
1577                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1578     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1579             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1580     mr->ioeventfds[i] = mrfd;
1581     ioeventfd_update_pending |= mr->enabled;
1582     memory_region_transaction_commit();
1583 }
1584
1585 void memory_region_del_eventfd(MemoryRegion *mr,
1586                                hwaddr addr,
1587                                unsigned size,
1588                                bool match_data,
1589                                uint64_t data,
1590                                EventNotifier *e)
1591 {
1592     MemoryRegionIoeventfd mrfd = {
1593         .addr.start = int128_make64(addr),
1594         .addr.size = int128_make64(size),
1595         .match_data = match_data,
1596         .data = data,
1597         .e = e,
1598     };
1599     unsigned i;
1600
1601     adjust_endianness(mr, &mrfd.data, size);
1602     memory_region_transaction_begin();
1603     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1604         if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1605             break;
1606         }
1607     }
1608     assert(i != mr->ioeventfd_nb);
1609     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1610             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1611     --mr->ioeventfd_nb;
1612     mr->ioeventfds = g_realloc(mr->ioeventfds,
1613                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1614     ioeventfd_update_pending |= mr->enabled;
1615     memory_region_transaction_commit();
1616 }
1617
1618 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1619 {
1620     hwaddr offset = subregion->addr;
1621     MemoryRegion *mr = subregion->container;
1622     MemoryRegion *other;
1623
1624     memory_region_transaction_begin();
1625
1626     memory_region_ref(subregion);
1627     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1628         if (subregion->may_overlap || other->may_overlap) {
1629             continue;
1630         }
1631         if (int128_ge(int128_make64(offset),
1632                       int128_add(int128_make64(other->addr), other->size))
1633             || int128_le(int128_add(int128_make64(offset), subregion->size),
1634                          int128_make64(other->addr))) {
1635             continue;
1636         }
1637 #if 0
1638         printf("warning: subregion collision %llx/%llx (%s) "
1639                "vs %llx/%llx (%s)\n",
1640                (unsigned long long)offset,
1641                (unsigned long long)int128_get64(subregion->size),
1642                subregion->name,
1643                (unsigned long long)other->addr,
1644                (unsigned long long)int128_get64(other->size),
1645                other->name);
1646 #endif
1647     }
1648     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1649         if (subregion->priority >= other->priority) {
1650             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1651             goto done;
1652         }
1653     }
1654     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1655 done:
1656     memory_region_update_pending |= mr->enabled && subregion->enabled;
1657     memory_region_transaction_commit();
1658 }
1659
1660 static void memory_region_add_subregion_common(MemoryRegion *mr,
1661                                                hwaddr offset,
1662                                                MemoryRegion *subregion)
1663 {
1664     assert(!subregion->container);
1665     subregion->container = mr;
1666     subregion->addr = offset;
1667     memory_region_update_container_subregions(subregion);
1668 }
1669
1670 void memory_region_add_subregion(MemoryRegion *mr,
1671                                  hwaddr offset,
1672                                  MemoryRegion *subregion)
1673 {
1674     subregion->may_overlap = false;
1675     subregion->priority = 0;
1676     memory_region_add_subregion_common(mr, offset, subregion);
1677 }
1678
1679 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1680                                          hwaddr offset,
1681                                          MemoryRegion *subregion,
1682                                          int priority)
1683 {
1684     subregion->may_overlap = true;
1685     subregion->priority = priority;
1686     memory_region_add_subregion_common(mr, offset, subregion);
1687 }
1688
1689 void memory_region_del_subregion(MemoryRegion *mr,
1690                                  MemoryRegion *subregion)
1691 {
1692     memory_region_transaction_begin();
1693     assert(subregion->container == mr);
1694     subregion->container = NULL;
1695     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1696     memory_region_unref(subregion);
1697     memory_region_update_pending |= mr->enabled && subregion->enabled;
1698     memory_region_transaction_commit();
1699 }
1700
1701 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1702 {
1703     if (enabled == mr->enabled) {
1704         return;
1705     }
1706     memory_region_transaction_begin();
1707     mr->enabled = enabled;
1708     memory_region_update_pending = true;
1709     memory_region_transaction_commit();
1710 }
1711
1712 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
1713 {
1714     Int128 s = int128_make64(size);
1715
1716     if (size == UINT64_MAX) {
1717         s = int128_2_64();
1718     }
1719     if (int128_eq(s, mr->size)) {
1720         return;
1721     }
1722     memory_region_transaction_begin();
1723     mr->size = s;
1724     memory_region_update_pending = true;
1725     memory_region_transaction_commit();
1726 }
1727
1728 static void memory_region_readd_subregion(MemoryRegion *mr)
1729 {
1730     MemoryRegion *container = mr->container;
1731
1732     if (container) {
1733         memory_region_transaction_begin();
1734         memory_region_ref(mr);
1735         memory_region_del_subregion(container, mr);
1736         mr->container = container;
1737         memory_region_update_container_subregions(mr);
1738         memory_region_unref(mr);
1739         memory_region_transaction_commit();
1740     }
1741 }
1742
1743 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1744 {
1745     if (addr != mr->addr) {
1746         mr->addr = addr;
1747         memory_region_readd_subregion(mr);
1748     }
1749 }
1750
1751 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1752 {
1753     assert(mr->alias);
1754
1755     if (offset == mr->alias_offset) {
1756         return;
1757     }
1758
1759     memory_region_transaction_begin();
1760     mr->alias_offset = offset;
1761     memory_region_update_pending |= mr->enabled;
1762     memory_region_transaction_commit();
1763 }
1764
1765 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1766 {
1767     return mr->ram_addr;
1768 }
1769
1770 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
1771 {
1772     return mr->align;
1773 }
1774
1775 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1776 {
1777     const AddrRange *addr = addr_;
1778     const FlatRange *fr = fr_;
1779
1780     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1781         return -1;
1782     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1783         return 1;
1784     }
1785     return 0;
1786 }
1787
1788 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
1789 {
1790     return bsearch(&addr, view->ranges, view->nr,
1791                    sizeof(FlatRange), cmp_flatrange_addr);
1792 }
1793
1794 bool memory_region_present(MemoryRegion *container, hwaddr addr)
1795 {
1796     MemoryRegion *mr = memory_region_find(container, addr, 1).mr;
1797     if (!mr || (mr == container)) {
1798         return false;
1799     }
1800     memory_region_unref(mr);
1801     return true;
1802 }
1803
1804 bool memory_region_is_mapped(MemoryRegion *mr)
1805 {
1806     return mr->container ? true : false;
1807 }
1808
1809 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1810                                        hwaddr addr, uint64_t size)
1811 {
1812     MemoryRegionSection ret = { .mr = NULL };
1813     MemoryRegion *root;
1814     AddressSpace *as;
1815     AddrRange range;
1816     FlatView *view;
1817     FlatRange *fr;
1818
1819     addr += mr->addr;
1820     for (root = mr; root->container; ) {
1821         root = root->container;
1822         addr += root->addr;
1823     }
1824
1825     as = memory_region_to_address_space(root);
1826     if (!as) {
1827         return ret;
1828     }
1829     range = addrrange_make(int128_make64(addr), int128_make64(size));
1830
1831     rcu_read_lock();
1832     view = atomic_rcu_read(&as->current_map);
1833     fr = flatview_lookup(view, range);
1834     if (!fr) {
1835         goto out;
1836     }
1837
1838     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
1839         --fr;
1840     }
1841
1842     ret.mr = fr->mr;
1843     ret.address_space = as;
1844     range = addrrange_intersection(range, fr->addr);
1845     ret.offset_within_region = fr->offset_in_region;
1846     ret.offset_within_region += int128_get64(int128_sub(range.start,
1847                                                         fr->addr.start));
1848     ret.size = range.size;
1849     ret.offset_within_address_space = int128_get64(range.start);
1850     ret.readonly = fr->readonly;
1851     memory_region_ref(ret.mr);
1852 out:
1853     rcu_read_unlock();
1854     return ret;
1855 }
1856
1857 void address_space_sync_dirty_bitmap(AddressSpace *as)
1858 {
1859     FlatView *view;
1860     FlatRange *fr;
1861
1862     view = address_space_get_flatview(as);
1863     FOR_EACH_FLAT_RANGE(fr, view) {
1864         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1865     }
1866     flatview_unref(view);
1867 }
1868
1869 void memory_global_dirty_log_start(void)
1870 {
1871     global_dirty_log = true;
1872     MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1873 }
1874
1875 void memory_global_dirty_log_stop(void)
1876 {
1877     global_dirty_log = false;
1878     MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1879 }
1880
1881 static void listener_add_address_space(MemoryListener *listener,
1882                                        AddressSpace *as)
1883 {
1884     FlatView *view;
1885     FlatRange *fr;
1886
1887     if (listener->address_space_filter
1888         && listener->address_space_filter != as) {
1889         return;
1890     }
1891
1892     if (global_dirty_log) {
1893         if (listener->log_global_start) {
1894             listener->log_global_start(listener);
1895         }
1896     }
1897
1898     view = address_space_get_flatview(as);
1899     FOR_EACH_FLAT_RANGE(fr, view) {
1900         MemoryRegionSection section = {
1901             .mr = fr->mr,
1902             .address_space = as,
1903             .offset_within_region = fr->offset_in_region,
1904             .size = fr->addr.size,
1905             .offset_within_address_space = int128_get64(fr->addr.start),
1906             .readonly = fr->readonly,
1907         };
1908         if (listener->region_add) {
1909             listener->region_add(listener, &section);
1910         }
1911     }
1912     flatview_unref(view);
1913 }
1914
1915 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
1916 {
1917     MemoryListener *other = NULL;
1918     AddressSpace *as;
1919
1920     listener->address_space_filter = filter;
1921     if (QTAILQ_EMPTY(&memory_listeners)
1922         || listener->priority >= QTAILQ_LAST(&memory_listeners,
1923                                              memory_listeners)->priority) {
1924         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1925     } else {
1926         QTAILQ_FOREACH(other, &memory_listeners, link) {
1927             if (listener->priority < other->priority) {
1928                 break;
1929             }
1930         }
1931         QTAILQ_INSERT_BEFORE(other, listener, link);
1932     }
1933
1934     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1935         listener_add_address_space(listener, as);
1936     }
1937 }
1938
1939 void memory_listener_unregister(MemoryListener *listener)
1940 {
1941     QTAILQ_REMOVE(&memory_listeners, listener, link);
1942 }
1943
1944 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
1945 {
1946     memory_region_ref(root);
1947     memory_region_transaction_begin();
1948     as->root = root;
1949     as->current_map = g_new(FlatView, 1);
1950     flatview_init(as->current_map);
1951     as->ioeventfd_nb = 0;
1952     as->ioeventfds = NULL;
1953     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
1954     as->name = g_strdup(name ? name : "anonymous");
1955     address_space_init_dispatch(as);
1956     memory_region_update_pending |= root->enabled;
1957     memory_region_transaction_commit();
1958 }
1959
1960 static void do_address_space_destroy(AddressSpace *as)
1961 {
1962     MemoryListener *listener;
1963
1964     address_space_destroy_dispatch(as);
1965
1966     QTAILQ_FOREACH(listener, &memory_listeners, link) {
1967         assert(listener->address_space_filter != as);
1968     }
1969
1970     flatview_unref(as->current_map);
1971     g_free(as->name);
1972     g_free(as->ioeventfds);
1973     memory_region_unref(as->root);
1974 }
1975
1976 void address_space_destroy(AddressSpace *as)
1977 {
1978     MemoryRegion *root = as->root;
1979
1980     /* Flush out anything from MemoryListeners listening in on this */
1981     memory_region_transaction_begin();
1982     as->root = NULL;
1983     memory_region_transaction_commit();
1984     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
1985     address_space_unregister(as);
1986
1987     /* At this point, as->dispatch and as->current_map are dummy
1988      * entries that the guest should never use.  Wait for the old
1989      * values to expire before freeing the data.
1990      */
1991     as->root = root;
1992     call_rcu(as, do_address_space_destroy, rcu);
1993 }
1994
1995 bool io_mem_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size)
1996 {
1997     return memory_region_dispatch_read(mr, addr, pval, size);
1998 }
1999
2000 bool io_mem_write(MemoryRegion *mr, hwaddr addr,
2001                   uint64_t val, unsigned size)
2002 {
2003     return memory_region_dispatch_write(mr, addr, val, size);
2004 }
2005
2006 typedef struct MemoryRegionList MemoryRegionList;
2007
2008 struct MemoryRegionList {
2009     const MemoryRegion *mr;
2010     QTAILQ_ENTRY(MemoryRegionList) queue;
2011 };
2012
2013 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
2014
2015 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2016                            const MemoryRegion *mr, unsigned int level,
2017                            hwaddr base,
2018                            MemoryRegionListHead *alias_print_queue)
2019 {
2020     MemoryRegionList *new_ml, *ml, *next_ml;
2021     MemoryRegionListHead submr_print_queue;
2022     const MemoryRegion *submr;
2023     unsigned int i;
2024
2025     if (!mr || !mr->enabled) {
2026         return;
2027     }
2028
2029     for (i = 0; i < level; i++) {
2030         mon_printf(f, "  ");
2031     }
2032
2033     if (mr->alias) {
2034         MemoryRegionList *ml;
2035         bool found = false;
2036
2037         /* check if the alias is already in the queue */
2038         QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2039             if (ml->mr == mr->alias) {
2040                 found = true;
2041             }
2042         }
2043
2044         if (!found) {
2045             ml = g_new(MemoryRegionList, 1);
2046             ml->mr = mr->alias;
2047             QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2048         }
2049         mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2050                    " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2051                    "-" TARGET_FMT_plx "\n",
2052                    base + mr->addr,
2053                    base + mr->addr
2054                    + (int128_nz(mr->size) ?
2055                       (hwaddr)int128_get64(int128_sub(mr->size,
2056                                                       int128_one())) : 0),
2057                    mr->priority,
2058                    mr->romd_mode ? 'R' : '-',
2059                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2060                                                                        : '-',
2061                    memory_region_name(mr),
2062                    memory_region_name(mr->alias),
2063                    mr->alias_offset,
2064                    mr->alias_offset
2065                    + (int128_nz(mr->size) ?
2066                       (hwaddr)int128_get64(int128_sub(mr->size,
2067                                                       int128_one())) : 0));
2068     } else {
2069         mon_printf(f,
2070                    TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
2071                    base + mr->addr,
2072                    base + mr->addr
2073                    + (int128_nz(mr->size) ?
2074                       (hwaddr)int128_get64(int128_sub(mr->size,
2075                                                       int128_one())) : 0),
2076                    mr->priority,
2077                    mr->romd_mode ? 'R' : '-',
2078                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2079                                                                        : '-',
2080                    memory_region_name(mr));
2081     }
2082
2083     QTAILQ_INIT(&submr_print_queue);
2084
2085     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2086         new_ml = g_new(MemoryRegionList, 1);
2087         new_ml->mr = submr;
2088         QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2089             if (new_ml->mr->addr < ml->mr->addr ||
2090                 (new_ml->mr->addr == ml->mr->addr &&
2091                  new_ml->mr->priority > ml->mr->priority)) {
2092                 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2093                 new_ml = NULL;
2094                 break;
2095             }
2096         }
2097         if (new_ml) {
2098             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2099         }
2100     }
2101
2102     QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2103         mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2104                        alias_print_queue);
2105     }
2106
2107     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2108         g_free(ml);
2109     }
2110 }
2111
2112 void mtree_info(fprintf_function mon_printf, void *f)
2113 {
2114     MemoryRegionListHead ml_head;
2115     MemoryRegionList *ml, *ml2;
2116     AddressSpace *as;
2117
2118     QTAILQ_INIT(&ml_head);
2119
2120     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2121         mon_printf(f, "%s\n", as->name);
2122         mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
2123     }
2124
2125     mon_printf(f, "aliases\n");
2126     /* print aliased regions */
2127     QTAILQ_FOREACH(ml, &ml_head, queue) {
2128         mon_printf(f, "%s\n", memory_region_name(ml->mr));
2129         mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
2130     }
2131
2132     QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2133         g_free(ml);
2134     }
2135 }
2136
2137 static const TypeInfo memory_region_info = {
2138     .parent             = TYPE_OBJECT,
2139     .name               = TYPE_MEMORY_REGION,
2140     .instance_size      = sizeof(MemoryRegion),
2141     .instance_init      = memory_region_initfn,
2142     .instance_finalize  = memory_region_finalize,
2143 };
2144
2145 static void memory_register_types(void)
2146 {
2147     type_register_static(&memory_region_info);
2148 }
2149
2150 type_init(memory_register_types)