]> rtime.felk.cvut.cz Git - lisovros/qemu_apohw.git/blob - memory.c
memory: MemoryRegion: Add may-overlap and priority props
[lisovros/qemu_apohw.git] / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15
16 #include "exec/memory.h"
17 #include "exec/address-spaces.h"
18 #include "exec/ioport.h"
19 #include "qapi/visitor.h"
20 #include "qemu/bitops.h"
21 #include "qom/object.h"
22 #include "trace.h"
23 #include <assert.h>
24
25 #include "exec/memory-internal.h"
26 #include "exec/ram_addr.h"
27 #include "sysemu/sysemu.h"
28
29 //#define DEBUG_UNASSIGNED
30
31 static unsigned memory_region_transaction_depth;
32 static bool memory_region_update_pending;
33 static bool ioeventfd_update_pending;
34 static bool global_dirty_log = false;
35
36 /* flat_view_mutex is taken around reading as->current_map; the critical
37  * section is extremely short, so I'm using a single mutex for every AS.
38  * We could also RCU for the read-side.
39  *
40  * The BQL is taken around transaction commits, hence both locks are taken
41  * while writing to as->current_map (with the BQL taken outside).
42  */
43 static QemuMutex flat_view_mutex;
44
45 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
46     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
47
48 static QTAILQ_HEAD(, AddressSpace) address_spaces
49     = QTAILQ_HEAD_INITIALIZER(address_spaces);
50
51 static void memory_init(void)
52 {
53     qemu_mutex_init(&flat_view_mutex);
54 }
55
56 typedef struct AddrRange AddrRange;
57
58 /*
59  * Note using signed integers limits us to physical addresses at most
60  * 63 bits wide.  They are needed for negative offsetting in aliases
61  * (large MemoryRegion::alias_offset).
62  */
63 struct AddrRange {
64     Int128 start;
65     Int128 size;
66 };
67
68 static AddrRange addrrange_make(Int128 start, Int128 size)
69 {
70     return (AddrRange) { start, size };
71 }
72
73 static bool addrrange_equal(AddrRange r1, AddrRange r2)
74 {
75     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
76 }
77
78 static Int128 addrrange_end(AddrRange r)
79 {
80     return int128_add(r.start, r.size);
81 }
82
83 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
84 {
85     int128_addto(&range.start, delta);
86     return range;
87 }
88
89 static bool addrrange_contains(AddrRange range, Int128 addr)
90 {
91     return int128_ge(addr, range.start)
92         && int128_lt(addr, addrrange_end(range));
93 }
94
95 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
96 {
97     return addrrange_contains(r1, r2.start)
98         || addrrange_contains(r2, r1.start);
99 }
100
101 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
102 {
103     Int128 start = int128_max(r1.start, r2.start);
104     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
105     return addrrange_make(start, int128_sub(end, start));
106 }
107
108 enum ListenerDirection { Forward, Reverse };
109
110 static bool memory_listener_match(MemoryListener *listener,
111                                   MemoryRegionSection *section)
112 {
113     return !listener->address_space_filter
114         || listener->address_space_filter == section->address_space;
115 }
116
117 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
118     do {                                                                \
119         MemoryListener *_listener;                                      \
120                                                                         \
121         switch (_direction) {                                           \
122         case Forward:                                                   \
123             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
124                 if (_listener->_callback) {                             \
125                     _listener->_callback(_listener, ##_args);           \
126                 }                                                       \
127             }                                                           \
128             break;                                                      \
129         case Reverse:                                                   \
130             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
131                                    memory_listeners, link) {            \
132                 if (_listener->_callback) {                             \
133                     _listener->_callback(_listener, ##_args);           \
134                 }                                                       \
135             }                                                           \
136             break;                                                      \
137         default:                                                        \
138             abort();                                                    \
139         }                                                               \
140     } while (0)
141
142 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
143     do {                                                                \
144         MemoryListener *_listener;                                      \
145                                                                         \
146         switch (_direction) {                                           \
147         case Forward:                                                   \
148             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
149                 if (_listener->_callback                                \
150                     && memory_listener_match(_listener, _section)) {    \
151                     _listener->_callback(_listener, _section, ##_args); \
152                 }                                                       \
153             }                                                           \
154             break;                                                      \
155         case Reverse:                                                   \
156             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
157                                    memory_listeners, link) {            \
158                 if (_listener->_callback                                \
159                     && memory_listener_match(_listener, _section)) {    \
160                     _listener->_callback(_listener, _section, ##_args); \
161                 }                                                       \
162             }                                                           \
163             break;                                                      \
164         default:                                                        \
165             abort();                                                    \
166         }                                                               \
167     } while (0)
168
169 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
170 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback)            \
171     MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
172         .mr = (fr)->mr,                                                 \
173         .address_space = (as),                                          \
174         .offset_within_region = (fr)->offset_in_region,                 \
175         .size = (fr)->addr.size,                                        \
176         .offset_within_address_space = int128_get64((fr)->addr.start),  \
177         .readonly = (fr)->readonly,                                     \
178               }))
179
180 struct CoalescedMemoryRange {
181     AddrRange addr;
182     QTAILQ_ENTRY(CoalescedMemoryRange) link;
183 };
184
185 struct MemoryRegionIoeventfd {
186     AddrRange addr;
187     bool match_data;
188     uint64_t data;
189     EventNotifier *e;
190 };
191
192 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
193                                            MemoryRegionIoeventfd b)
194 {
195     if (int128_lt(a.addr.start, b.addr.start)) {
196         return true;
197     } else if (int128_gt(a.addr.start, b.addr.start)) {
198         return false;
199     } else if (int128_lt(a.addr.size, b.addr.size)) {
200         return true;
201     } else if (int128_gt(a.addr.size, b.addr.size)) {
202         return false;
203     } else if (a.match_data < b.match_data) {
204         return true;
205     } else  if (a.match_data > b.match_data) {
206         return false;
207     } else if (a.match_data) {
208         if (a.data < b.data) {
209             return true;
210         } else if (a.data > b.data) {
211             return false;
212         }
213     }
214     if (a.e < b.e) {
215         return true;
216     } else if (a.e > b.e) {
217         return false;
218     }
219     return false;
220 }
221
222 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
223                                           MemoryRegionIoeventfd b)
224 {
225     return !memory_region_ioeventfd_before(a, b)
226         && !memory_region_ioeventfd_before(b, a);
227 }
228
229 typedef struct FlatRange FlatRange;
230 typedef struct FlatView FlatView;
231
232 /* Range of memory in the global map.  Addresses are absolute. */
233 struct FlatRange {
234     MemoryRegion *mr;
235     hwaddr offset_in_region;
236     AddrRange addr;
237     uint8_t dirty_log_mask;
238     bool romd_mode;
239     bool readonly;
240 };
241
242 /* Flattened global view of current active memory hierarchy.  Kept in sorted
243  * order.
244  */
245 struct FlatView {
246     unsigned ref;
247     FlatRange *ranges;
248     unsigned nr;
249     unsigned nr_allocated;
250 };
251
252 typedef struct AddressSpaceOps AddressSpaceOps;
253
254 #define FOR_EACH_FLAT_RANGE(var, view)          \
255     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
256
257 static bool flatrange_equal(FlatRange *a, FlatRange *b)
258 {
259     return a->mr == b->mr
260         && addrrange_equal(a->addr, b->addr)
261         && a->offset_in_region == b->offset_in_region
262         && a->romd_mode == b->romd_mode
263         && a->readonly == b->readonly;
264 }
265
266 static void flatview_init(FlatView *view)
267 {
268     view->ref = 1;
269     view->ranges = NULL;
270     view->nr = 0;
271     view->nr_allocated = 0;
272 }
273
274 /* Insert a range into a given position.  Caller is responsible for maintaining
275  * sorting order.
276  */
277 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
278 {
279     if (view->nr == view->nr_allocated) {
280         view->nr_allocated = MAX(2 * view->nr, 10);
281         view->ranges = g_realloc(view->ranges,
282                                     view->nr_allocated * sizeof(*view->ranges));
283     }
284     memmove(view->ranges + pos + 1, view->ranges + pos,
285             (view->nr - pos) * sizeof(FlatRange));
286     view->ranges[pos] = *range;
287     memory_region_ref(range->mr);
288     ++view->nr;
289 }
290
291 static void flatview_destroy(FlatView *view)
292 {
293     int i;
294
295     for (i = 0; i < view->nr; i++) {
296         memory_region_unref(view->ranges[i].mr);
297     }
298     g_free(view->ranges);
299     g_free(view);
300 }
301
302 static void flatview_ref(FlatView *view)
303 {
304     atomic_inc(&view->ref);
305 }
306
307 static void flatview_unref(FlatView *view)
308 {
309     if (atomic_fetch_dec(&view->ref) == 1) {
310         flatview_destroy(view);
311     }
312 }
313
314 static bool can_merge(FlatRange *r1, FlatRange *r2)
315 {
316     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
317         && r1->mr == r2->mr
318         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
319                                 r1->addr.size),
320                      int128_make64(r2->offset_in_region))
321         && r1->dirty_log_mask == r2->dirty_log_mask
322         && r1->romd_mode == r2->romd_mode
323         && r1->readonly == r2->readonly;
324 }
325
326 /* Attempt to simplify a view by merging adjacent ranges */
327 static void flatview_simplify(FlatView *view)
328 {
329     unsigned i, j;
330
331     i = 0;
332     while (i < view->nr) {
333         j = i + 1;
334         while (j < view->nr
335                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
336             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
337             ++j;
338         }
339         ++i;
340         memmove(&view->ranges[i], &view->ranges[j],
341                 (view->nr - j) * sizeof(view->ranges[j]));
342         view->nr -= j - i;
343     }
344 }
345
346 static bool memory_region_big_endian(MemoryRegion *mr)
347 {
348 #ifdef TARGET_WORDS_BIGENDIAN
349     return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
350 #else
351     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
352 #endif
353 }
354
355 static bool memory_region_wrong_endianness(MemoryRegion *mr)
356 {
357 #ifdef TARGET_WORDS_BIGENDIAN
358     return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
359 #else
360     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
361 #endif
362 }
363
364 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
365 {
366     if (memory_region_wrong_endianness(mr)) {
367         switch (size) {
368         case 1:
369             break;
370         case 2:
371             *data = bswap16(*data);
372             break;
373         case 4:
374             *data = bswap32(*data);
375             break;
376         case 8:
377             *data = bswap64(*data);
378             break;
379         default:
380             abort();
381         }
382     }
383 }
384
385 static void memory_region_oldmmio_read_accessor(MemoryRegion *mr,
386                                                 hwaddr addr,
387                                                 uint64_t *value,
388                                                 unsigned size,
389                                                 unsigned shift,
390                                                 uint64_t mask)
391 {
392     uint64_t tmp;
393
394     tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
395     trace_memory_region_ops_read(mr, addr, tmp, size);
396     *value |= (tmp & mask) << shift;
397 }
398
399 static void memory_region_read_accessor(MemoryRegion *mr,
400                                         hwaddr addr,
401                                         uint64_t *value,
402                                         unsigned size,
403                                         unsigned shift,
404                                         uint64_t mask)
405 {
406     uint64_t tmp;
407
408     if (mr->flush_coalesced_mmio) {
409         qemu_flush_coalesced_mmio_buffer();
410     }
411     tmp = mr->ops->read(mr->opaque, addr, size);
412     trace_memory_region_ops_read(mr, addr, tmp, size);
413     *value |= (tmp & mask) << shift;
414 }
415
416 static void memory_region_oldmmio_write_accessor(MemoryRegion *mr,
417                                                  hwaddr addr,
418                                                  uint64_t *value,
419                                                  unsigned size,
420                                                  unsigned shift,
421                                                  uint64_t mask)
422 {
423     uint64_t tmp;
424
425     tmp = (*value >> shift) & mask;
426     trace_memory_region_ops_write(mr, addr, tmp, size);
427     mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
428 }
429
430 static void memory_region_write_accessor(MemoryRegion *mr,
431                                          hwaddr addr,
432                                          uint64_t *value,
433                                          unsigned size,
434                                          unsigned shift,
435                                          uint64_t mask)
436 {
437     uint64_t tmp;
438
439     if (mr->flush_coalesced_mmio) {
440         qemu_flush_coalesced_mmio_buffer();
441     }
442     tmp = (*value >> shift) & mask;
443     trace_memory_region_ops_write(mr, addr, tmp, size);
444     mr->ops->write(mr->opaque, addr, tmp, size);
445 }
446
447 static void access_with_adjusted_size(hwaddr addr,
448                                       uint64_t *value,
449                                       unsigned size,
450                                       unsigned access_size_min,
451                                       unsigned access_size_max,
452                                       void (*access)(MemoryRegion *mr,
453                                                      hwaddr addr,
454                                                      uint64_t *value,
455                                                      unsigned size,
456                                                      unsigned shift,
457                                                      uint64_t mask),
458                                       MemoryRegion *mr)
459 {
460     uint64_t access_mask;
461     unsigned access_size;
462     unsigned i;
463
464     if (!access_size_min) {
465         access_size_min = 1;
466     }
467     if (!access_size_max) {
468         access_size_max = 4;
469     }
470
471     /* FIXME: support unaligned access? */
472     access_size = MAX(MIN(size, access_size_max), access_size_min);
473     access_mask = -1ULL >> (64 - access_size * 8);
474     if (memory_region_big_endian(mr)) {
475         for (i = 0; i < size; i += access_size) {
476             access(mr, addr + i, value, access_size,
477                    (size - access_size - i) * 8, access_mask);
478         }
479     } else {
480         for (i = 0; i < size; i += access_size) {
481             access(mr, addr + i, value, access_size, i * 8, access_mask);
482         }
483     }
484 }
485
486 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
487 {
488     AddressSpace *as;
489
490     while (mr->container) {
491         mr = mr->container;
492     }
493     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
494         if (mr == as->root) {
495             return as;
496         }
497     }
498     return NULL;
499 }
500
501 /* Render a memory region into the global view.  Ranges in @view obscure
502  * ranges in @mr.
503  */
504 static void render_memory_region(FlatView *view,
505                                  MemoryRegion *mr,
506                                  Int128 base,
507                                  AddrRange clip,
508                                  bool readonly)
509 {
510     MemoryRegion *subregion;
511     unsigned i;
512     hwaddr offset_in_region;
513     Int128 remain;
514     Int128 now;
515     FlatRange fr;
516     AddrRange tmp;
517
518     if (!mr->enabled) {
519         return;
520     }
521
522     int128_addto(&base, int128_make64(mr->addr));
523     readonly |= mr->readonly;
524
525     tmp = addrrange_make(base, mr->size);
526
527     if (!addrrange_intersects(tmp, clip)) {
528         return;
529     }
530
531     clip = addrrange_intersection(tmp, clip);
532
533     if (mr->alias) {
534         int128_subfrom(&base, int128_make64(mr->alias->addr));
535         int128_subfrom(&base, int128_make64(mr->alias_offset));
536         render_memory_region(view, mr->alias, base, clip, readonly);
537         return;
538     }
539
540     /* Render subregions in priority order. */
541     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
542         render_memory_region(view, subregion, base, clip, readonly);
543     }
544
545     if (!mr->terminates) {
546         return;
547     }
548
549     offset_in_region = int128_get64(int128_sub(clip.start, base));
550     base = clip.start;
551     remain = clip.size;
552
553     fr.mr = mr;
554     fr.dirty_log_mask = mr->dirty_log_mask;
555     fr.romd_mode = mr->romd_mode;
556     fr.readonly = readonly;
557
558     /* Render the region itself into any gaps left by the current view. */
559     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
560         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
561             continue;
562         }
563         if (int128_lt(base, view->ranges[i].addr.start)) {
564             now = int128_min(remain,
565                              int128_sub(view->ranges[i].addr.start, base));
566             fr.offset_in_region = offset_in_region;
567             fr.addr = addrrange_make(base, now);
568             flatview_insert(view, i, &fr);
569             ++i;
570             int128_addto(&base, now);
571             offset_in_region += int128_get64(now);
572             int128_subfrom(&remain, now);
573         }
574         now = int128_sub(int128_min(int128_add(base, remain),
575                                     addrrange_end(view->ranges[i].addr)),
576                          base);
577         int128_addto(&base, now);
578         offset_in_region += int128_get64(now);
579         int128_subfrom(&remain, now);
580     }
581     if (int128_nz(remain)) {
582         fr.offset_in_region = offset_in_region;
583         fr.addr = addrrange_make(base, remain);
584         flatview_insert(view, i, &fr);
585     }
586 }
587
588 /* Render a memory topology into a list of disjoint absolute ranges. */
589 static FlatView *generate_memory_topology(MemoryRegion *mr)
590 {
591     FlatView *view;
592
593     view = g_new(FlatView, 1);
594     flatview_init(view);
595
596     if (mr) {
597         render_memory_region(view, mr, int128_zero(),
598                              addrrange_make(int128_zero(), int128_2_64()), false);
599     }
600     flatview_simplify(view);
601
602     return view;
603 }
604
605 static void address_space_add_del_ioeventfds(AddressSpace *as,
606                                              MemoryRegionIoeventfd *fds_new,
607                                              unsigned fds_new_nb,
608                                              MemoryRegionIoeventfd *fds_old,
609                                              unsigned fds_old_nb)
610 {
611     unsigned iold, inew;
612     MemoryRegionIoeventfd *fd;
613     MemoryRegionSection section;
614
615     /* Generate a symmetric difference of the old and new fd sets, adding
616      * and deleting as necessary.
617      */
618
619     iold = inew = 0;
620     while (iold < fds_old_nb || inew < fds_new_nb) {
621         if (iold < fds_old_nb
622             && (inew == fds_new_nb
623                 || memory_region_ioeventfd_before(fds_old[iold],
624                                                   fds_new[inew]))) {
625             fd = &fds_old[iold];
626             section = (MemoryRegionSection) {
627                 .address_space = as,
628                 .offset_within_address_space = int128_get64(fd->addr.start),
629                 .size = fd->addr.size,
630             };
631             MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
632                                  fd->match_data, fd->data, fd->e);
633             ++iold;
634         } else if (inew < fds_new_nb
635                    && (iold == fds_old_nb
636                        || memory_region_ioeventfd_before(fds_new[inew],
637                                                          fds_old[iold]))) {
638             fd = &fds_new[inew];
639             section = (MemoryRegionSection) {
640                 .address_space = as,
641                 .offset_within_address_space = int128_get64(fd->addr.start),
642                 .size = fd->addr.size,
643             };
644             MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
645                                  fd->match_data, fd->data, fd->e);
646             ++inew;
647         } else {
648             ++iold;
649             ++inew;
650         }
651     }
652 }
653
654 static FlatView *address_space_get_flatview(AddressSpace *as)
655 {
656     FlatView *view;
657
658     qemu_mutex_lock(&flat_view_mutex);
659     view = as->current_map;
660     flatview_ref(view);
661     qemu_mutex_unlock(&flat_view_mutex);
662     return view;
663 }
664
665 static void address_space_update_ioeventfds(AddressSpace *as)
666 {
667     FlatView *view;
668     FlatRange *fr;
669     unsigned ioeventfd_nb = 0;
670     MemoryRegionIoeventfd *ioeventfds = NULL;
671     AddrRange tmp;
672     unsigned i;
673
674     view = address_space_get_flatview(as);
675     FOR_EACH_FLAT_RANGE(fr, view) {
676         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
677             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
678                                   int128_sub(fr->addr.start,
679                                              int128_make64(fr->offset_in_region)));
680             if (addrrange_intersects(fr->addr, tmp)) {
681                 ++ioeventfd_nb;
682                 ioeventfds = g_realloc(ioeventfds,
683                                           ioeventfd_nb * sizeof(*ioeventfds));
684                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
685                 ioeventfds[ioeventfd_nb-1].addr = tmp;
686             }
687         }
688     }
689
690     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
691                                      as->ioeventfds, as->ioeventfd_nb);
692
693     g_free(as->ioeventfds);
694     as->ioeventfds = ioeventfds;
695     as->ioeventfd_nb = ioeventfd_nb;
696     flatview_unref(view);
697 }
698
699 static void address_space_update_topology_pass(AddressSpace *as,
700                                                const FlatView *old_view,
701                                                const FlatView *new_view,
702                                                bool adding)
703 {
704     unsigned iold, inew;
705     FlatRange *frold, *frnew;
706
707     /* Generate a symmetric difference of the old and new memory maps.
708      * Kill ranges in the old map, and instantiate ranges in the new map.
709      */
710     iold = inew = 0;
711     while (iold < old_view->nr || inew < new_view->nr) {
712         if (iold < old_view->nr) {
713             frold = &old_view->ranges[iold];
714         } else {
715             frold = NULL;
716         }
717         if (inew < new_view->nr) {
718             frnew = &new_view->ranges[inew];
719         } else {
720             frnew = NULL;
721         }
722
723         if (frold
724             && (!frnew
725                 || int128_lt(frold->addr.start, frnew->addr.start)
726                 || (int128_eq(frold->addr.start, frnew->addr.start)
727                     && !flatrange_equal(frold, frnew)))) {
728             /* In old but not in new, or in both but attributes changed. */
729
730             if (!adding) {
731                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
732             }
733
734             ++iold;
735         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
736             /* In both and unchanged (except logging may have changed) */
737
738             if (adding) {
739                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
740                 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
741                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
742                 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
743                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
744                 }
745             }
746
747             ++iold;
748             ++inew;
749         } else {
750             /* In new */
751
752             if (adding) {
753                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
754             }
755
756             ++inew;
757         }
758     }
759 }
760
761
762 static void address_space_update_topology(AddressSpace *as)
763 {
764     FlatView *old_view = address_space_get_flatview(as);
765     FlatView *new_view = generate_memory_topology(as->root);
766
767     address_space_update_topology_pass(as, old_view, new_view, false);
768     address_space_update_topology_pass(as, old_view, new_view, true);
769
770     qemu_mutex_lock(&flat_view_mutex);
771     flatview_unref(as->current_map);
772     as->current_map = new_view;
773     qemu_mutex_unlock(&flat_view_mutex);
774
775     /* Note that all the old MemoryRegions are still alive up to this
776      * point.  This relieves most MemoryListeners from the need to
777      * ref/unref the MemoryRegions they get---unless they use them
778      * outside the iothread mutex, in which case precise reference
779      * counting is necessary.
780      */
781     flatview_unref(old_view);
782
783     address_space_update_ioeventfds(as);
784 }
785
786 void memory_region_transaction_begin(void)
787 {
788     qemu_flush_coalesced_mmio_buffer();
789     ++memory_region_transaction_depth;
790 }
791
792 static void memory_region_clear_pending(void)
793 {
794     memory_region_update_pending = false;
795     ioeventfd_update_pending = false;
796 }
797
798 void memory_region_transaction_commit(void)
799 {
800     AddressSpace *as;
801
802     assert(memory_region_transaction_depth);
803     --memory_region_transaction_depth;
804     if (!memory_region_transaction_depth) {
805         if (memory_region_update_pending) {
806             MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
807
808             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
809                 address_space_update_topology(as);
810             }
811
812             MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
813         } else if (ioeventfd_update_pending) {
814             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
815                 address_space_update_ioeventfds(as);
816             }
817         }
818         memory_region_clear_pending();
819    }
820 }
821
822 static void memory_region_destructor_none(MemoryRegion *mr)
823 {
824 }
825
826 static void memory_region_destructor_ram(MemoryRegion *mr)
827 {
828     qemu_ram_free(mr->ram_addr);
829 }
830
831 static void memory_region_destructor_alias(MemoryRegion *mr)
832 {
833     memory_region_unref(mr->alias);
834 }
835
836 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
837 {
838     qemu_ram_free_from_ptr(mr->ram_addr);
839 }
840
841 static void memory_region_destructor_rom_device(MemoryRegion *mr)
842 {
843     qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
844 }
845
846 static bool memory_region_need_escape(char c)
847 {
848     return c == '/' || c == '[' || c == '\\' || c == ']';
849 }
850
851 static char *memory_region_escape_name(const char *name)
852 {
853     const char *p;
854     char *escaped, *q;
855     uint8_t c;
856     size_t bytes = 0;
857
858     for (p = name; *p; p++) {
859         bytes += memory_region_need_escape(*p) ? 4 : 1;
860     }
861     if (bytes == p - name) {
862        return g_memdup(name, bytes + 1);
863     }
864
865     escaped = g_malloc(bytes + 1);
866     for (p = name, q = escaped; *p; p++) {
867         c = *p;
868         if (unlikely(memory_region_need_escape(c))) {
869             *q++ = '\\';
870             *q++ = 'x';
871             *q++ = "0123456789abcdef"[c >> 4];
872             c = "0123456789abcdef"[c & 15];
873         }
874         *q++ = c;
875     }
876     *q = 0;
877     return escaped;
878 }
879
880 static void object_property_add_child_array(Object *owner,
881                                             const char *name,
882                                             Object *child)
883 {
884     int i;
885     char *base_name = memory_region_escape_name(name);
886
887     for (i = 0; ; i++) {
888         char *full_name = g_strdup_printf("%s[%d]", base_name, i);
889         Error *local_err = NULL;
890
891         object_property_add_child(owner, full_name, child, &local_err);
892         g_free(full_name);
893         if (!local_err) {
894             break;
895         }
896
897         error_free(local_err);
898     }
899
900     g_free(base_name);
901 }
902         
903
904 void memory_region_init(MemoryRegion *mr,
905                         Object *owner,
906                         const char *name,
907                         uint64_t size)
908 {
909     if (!owner) {
910         owner = qdev_get_machine();
911     }
912
913     object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
914     mr->size = int128_make64(size);
915     if (size == UINT64_MAX) {
916         mr->size = int128_2_64();
917     }
918     mr->name = g_strdup(name);
919
920     if (name) {
921         object_property_add_child_array(owner, name, OBJECT(mr));
922         object_unref(OBJECT(mr));
923     }
924 }
925
926 static void memory_region_get_addr(Object *obj, Visitor *v, void *opaque,
927                                    const char *name, Error **errp)
928 {
929     MemoryRegion *mr = MEMORY_REGION(obj);
930     uint64_t value = mr->addr;
931
932     visit_type_uint64(v, &value, name, errp);
933 }
934
935 static void memory_region_get_container(Object *obj, Visitor *v, void *opaque,
936                                         const char *name, Error **errp)
937 {
938     MemoryRegion *mr = MEMORY_REGION(obj);
939     gchar *path = (gchar *)"";
940
941     if (mr->container) {
942         path = object_get_canonical_path(OBJECT(mr->container));
943     }
944     visit_type_str(v, &path, name, errp);
945     if (mr->container) {
946         g_free(path);
947     }
948 }
949
950 static Object *memory_region_resolve_container(Object *obj, void *opaque,
951                                                const char *part)
952 {
953     MemoryRegion *mr = MEMORY_REGION(obj);
954
955     return OBJECT(mr->container);
956 }
957
958 static void memory_region_get_priority(Object *obj, Visitor *v, void *opaque,
959                                        const char *name, Error **errp)
960 {
961     MemoryRegion *mr = MEMORY_REGION(obj);
962     int32_t value = mr->priority;
963
964     visit_type_int32(v, &value, name, errp);
965 }
966
967 static bool memory_region_get_may_overlap(Object *obj, Error **errp)
968 {
969     MemoryRegion *mr = MEMORY_REGION(obj);
970
971     return mr->may_overlap;
972 }
973
974 static void memory_region_initfn(Object *obj)
975 {
976     MemoryRegion *mr = MEMORY_REGION(obj);
977     ObjectProperty *op;
978
979     mr->ops = &unassigned_mem_ops;
980     mr->enabled = true;
981     mr->romd_mode = true;
982     mr->destructor = memory_region_destructor_none;
983     QTAILQ_INIT(&mr->subregions);
984     QTAILQ_INIT(&mr->coalesced);
985
986     op = object_property_add(OBJECT(mr), "container",
987                              "link<" TYPE_MEMORY_REGION ">",
988                              memory_region_get_container,
989                              NULL, /* memory_region_set_container */
990                              NULL, NULL, &error_abort);
991     op->resolve = memory_region_resolve_container;
992
993     object_property_add(OBJECT(mr), "addr", "uint64",
994                         memory_region_get_addr,
995                         NULL, /* memory_region_set_addr */
996                         NULL, NULL, &error_abort);
997     object_property_add(OBJECT(mr), "priority", "uint32",
998                         memory_region_get_priority,
999                         NULL, /* memory_region_set_priority */
1000                         NULL, NULL, &error_abort);
1001     object_property_add_bool(OBJECT(mr), "may-overlap",
1002                              memory_region_get_may_overlap,
1003                              NULL, /* memory_region_set_may_overlap */
1004                              &error_abort);
1005 }
1006
1007 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1008                                     unsigned size)
1009 {
1010 #ifdef DEBUG_UNASSIGNED
1011     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1012 #endif
1013     if (current_cpu != NULL) {
1014         cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1015     }
1016     return 0;
1017 }
1018
1019 static void unassigned_mem_write(void *opaque, hwaddr addr,
1020                                  uint64_t val, unsigned size)
1021 {
1022 #ifdef DEBUG_UNASSIGNED
1023     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1024 #endif
1025     if (current_cpu != NULL) {
1026         cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1027     }
1028 }
1029
1030 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1031                                    unsigned size, bool is_write)
1032 {
1033     return false;
1034 }
1035
1036 const MemoryRegionOps unassigned_mem_ops = {
1037     .valid.accepts = unassigned_mem_accepts,
1038     .endianness = DEVICE_NATIVE_ENDIAN,
1039 };
1040
1041 bool memory_region_access_valid(MemoryRegion *mr,
1042                                 hwaddr addr,
1043                                 unsigned size,
1044                                 bool is_write)
1045 {
1046     int access_size_min, access_size_max;
1047     int access_size, i;
1048
1049     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1050         return false;
1051     }
1052
1053     if (!mr->ops->valid.accepts) {
1054         return true;
1055     }
1056
1057     access_size_min = mr->ops->valid.min_access_size;
1058     if (!mr->ops->valid.min_access_size) {
1059         access_size_min = 1;
1060     }
1061
1062     access_size_max = mr->ops->valid.max_access_size;
1063     if (!mr->ops->valid.max_access_size) {
1064         access_size_max = 4;
1065     }
1066
1067     access_size = MAX(MIN(size, access_size_max), access_size_min);
1068     for (i = 0; i < size; i += access_size) {
1069         if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1070                                     is_write)) {
1071             return false;
1072         }
1073     }
1074
1075     return true;
1076 }
1077
1078 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
1079                                              hwaddr addr,
1080                                              unsigned size)
1081 {
1082     uint64_t data = 0;
1083
1084     if (mr->ops->read) {
1085         access_with_adjusted_size(addr, &data, size,
1086                                   mr->ops->impl.min_access_size,
1087                                   mr->ops->impl.max_access_size,
1088                                   memory_region_read_accessor, mr);
1089     } else {
1090         access_with_adjusted_size(addr, &data, size, 1, 4,
1091                                   memory_region_oldmmio_read_accessor, mr);
1092     }
1093
1094     return data;
1095 }
1096
1097 static bool memory_region_dispatch_read(MemoryRegion *mr,
1098                                         hwaddr addr,
1099                                         uint64_t *pval,
1100                                         unsigned size)
1101 {
1102     if (!memory_region_access_valid(mr, addr, size, false)) {
1103         *pval = unassigned_mem_read(mr, addr, size);
1104         return true;
1105     }
1106
1107     *pval = memory_region_dispatch_read1(mr, addr, size);
1108     adjust_endianness(mr, pval, size);
1109     return false;
1110 }
1111
1112 static bool memory_region_dispatch_write(MemoryRegion *mr,
1113                                          hwaddr addr,
1114                                          uint64_t data,
1115                                          unsigned size)
1116 {
1117     if (!memory_region_access_valid(mr, addr, size, true)) {
1118         unassigned_mem_write(mr, addr, data, size);
1119         return true;
1120     }
1121
1122     adjust_endianness(mr, &data, size);
1123
1124     if (mr->ops->write) {
1125         access_with_adjusted_size(addr, &data, size,
1126                                   mr->ops->impl.min_access_size,
1127                                   mr->ops->impl.max_access_size,
1128                                   memory_region_write_accessor, mr);
1129     } else {
1130         access_with_adjusted_size(addr, &data, size, 1, 4,
1131                                   memory_region_oldmmio_write_accessor, mr);
1132     }
1133     return false;
1134 }
1135
1136 void memory_region_init_io(MemoryRegion *mr,
1137                            Object *owner,
1138                            const MemoryRegionOps *ops,
1139                            void *opaque,
1140                            const char *name,
1141                            uint64_t size)
1142 {
1143     memory_region_init(mr, owner, name, size);
1144     mr->ops = ops;
1145     mr->opaque = opaque;
1146     mr->terminates = true;
1147     mr->ram_addr = ~(ram_addr_t)0;
1148 }
1149
1150 void memory_region_init_ram(MemoryRegion *mr,
1151                             Object *owner,
1152                             const char *name,
1153                             uint64_t size)
1154 {
1155     memory_region_init(mr, owner, name, size);
1156     mr->ram = true;
1157     mr->terminates = true;
1158     mr->destructor = memory_region_destructor_ram;
1159     mr->ram_addr = qemu_ram_alloc(size, mr);
1160 }
1161
1162 #ifdef __linux__
1163 void memory_region_init_ram_from_file(MemoryRegion *mr,
1164                                       struct Object *owner,
1165                                       const char *name,
1166                                       uint64_t size,
1167                                       bool share,
1168                                       const char *path,
1169                                       Error **errp)
1170 {
1171     memory_region_init(mr, owner, name, size);
1172     mr->ram = true;
1173     mr->terminates = true;
1174     mr->destructor = memory_region_destructor_ram;
1175     mr->ram_addr = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1176 }
1177 #endif
1178
1179 void memory_region_init_ram_ptr(MemoryRegion *mr,
1180                                 Object *owner,
1181                                 const char *name,
1182                                 uint64_t size,
1183                                 void *ptr)
1184 {
1185     memory_region_init(mr, owner, name, size);
1186     mr->ram = true;
1187     mr->terminates = true;
1188     mr->destructor = memory_region_destructor_ram_from_ptr;
1189     mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
1190 }
1191
1192 void memory_region_init_alias(MemoryRegion *mr,
1193                               Object *owner,
1194                               const char *name,
1195                               MemoryRegion *orig,
1196                               hwaddr offset,
1197                               uint64_t size)
1198 {
1199     memory_region_init(mr, owner, name, size);
1200     memory_region_ref(orig);
1201     mr->destructor = memory_region_destructor_alias;
1202     mr->alias = orig;
1203     mr->alias_offset = offset;
1204 }
1205
1206 void memory_region_init_rom_device(MemoryRegion *mr,
1207                                    Object *owner,
1208                                    const MemoryRegionOps *ops,
1209                                    void *opaque,
1210                                    const char *name,
1211                                    uint64_t size)
1212 {
1213     memory_region_init(mr, owner, name, size);
1214     mr->ops = ops;
1215     mr->opaque = opaque;
1216     mr->terminates = true;
1217     mr->rom_device = true;
1218     mr->destructor = memory_region_destructor_rom_device;
1219     mr->ram_addr = qemu_ram_alloc(size, mr);
1220 }
1221
1222 void memory_region_init_iommu(MemoryRegion *mr,
1223                               Object *owner,
1224                               const MemoryRegionIOMMUOps *ops,
1225                               const char *name,
1226                               uint64_t size)
1227 {
1228     memory_region_init(mr, owner, name, size);
1229     mr->iommu_ops = ops,
1230     mr->terminates = true;  /* then re-forwards */
1231     notifier_list_init(&mr->iommu_notify);
1232 }
1233
1234 void memory_region_init_reservation(MemoryRegion *mr,
1235                                     Object *owner,
1236                                     const char *name,
1237                                     uint64_t size)
1238 {
1239     memory_region_init_io(mr, owner, &unassigned_mem_ops, mr, name, size);
1240 }
1241
1242 static void memory_region_finalize(Object *obj)
1243 {
1244     MemoryRegion *mr = MEMORY_REGION(obj);
1245
1246     assert(QTAILQ_EMPTY(&mr->subregions));
1247     assert(memory_region_transaction_depth == 0);
1248     mr->destructor(mr);
1249     memory_region_clear_coalescing(mr);
1250     g_free((char *)mr->name);
1251     g_free(mr->ioeventfds);
1252 }
1253
1254 void memory_region_destroy(MemoryRegion *mr)
1255 {
1256     object_unparent(OBJECT(mr));
1257 }
1258
1259
1260 Object *memory_region_owner(MemoryRegion *mr)
1261 {
1262     Object *obj = OBJECT(mr);
1263     return obj->parent;
1264 }
1265
1266 void memory_region_ref(MemoryRegion *mr)
1267 {
1268     /* MMIO callbacks most likely will access data that belongs
1269      * to the owner, hence the need to ref/unref the owner whenever
1270      * the memory region is in use.
1271      *
1272      * The memory region is a child of its owner.  As long as the
1273      * owner doesn't call unparent itself on the memory region,
1274      * ref-ing the owner will also keep the memory region alive.
1275      * Memory regions without an owner are supposed to never go away,
1276      * but we still ref/unref them for debugging purposes.
1277      */
1278     Object *obj = OBJECT(mr);
1279     if (obj && obj->parent) {
1280         object_ref(obj->parent);
1281     } else {
1282         object_ref(obj);
1283     }
1284 }
1285
1286 void memory_region_unref(MemoryRegion *mr)
1287 {
1288     Object *obj = OBJECT(mr);
1289     if (obj && obj->parent) {
1290         object_unref(obj->parent);
1291     } else {
1292         object_unref(obj);
1293     }
1294 }
1295
1296 uint64_t memory_region_size(MemoryRegion *mr)
1297 {
1298     if (int128_eq(mr->size, int128_2_64())) {
1299         return UINT64_MAX;
1300     }
1301     return int128_get64(mr->size);
1302 }
1303
1304 const char *memory_region_name(MemoryRegion *mr)
1305 {
1306     return mr->name;
1307 }
1308
1309 bool memory_region_is_ram(MemoryRegion *mr)
1310 {
1311     return mr->ram;
1312 }
1313
1314 bool memory_region_is_logging(MemoryRegion *mr)
1315 {
1316     return mr->dirty_log_mask;
1317 }
1318
1319 bool memory_region_is_rom(MemoryRegion *mr)
1320 {
1321     return mr->ram && mr->readonly;
1322 }
1323
1324 bool memory_region_is_iommu(MemoryRegion *mr)
1325 {
1326     return mr->iommu_ops;
1327 }
1328
1329 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1330 {
1331     notifier_list_add(&mr->iommu_notify, n);
1332 }
1333
1334 void memory_region_unregister_iommu_notifier(Notifier *n)
1335 {
1336     notifier_remove(n);
1337 }
1338
1339 void memory_region_notify_iommu(MemoryRegion *mr,
1340                                 IOMMUTLBEntry entry)
1341 {
1342     assert(memory_region_is_iommu(mr));
1343     notifier_list_notify(&mr->iommu_notify, &entry);
1344 }
1345
1346 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1347 {
1348     uint8_t mask = 1 << client;
1349
1350     memory_region_transaction_begin();
1351     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1352     memory_region_update_pending |= mr->enabled;
1353     memory_region_transaction_commit();
1354 }
1355
1356 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1357                              hwaddr size, unsigned client)
1358 {
1359     assert(mr->terminates);
1360     return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1361 }
1362
1363 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1364                              hwaddr size)
1365 {
1366     assert(mr->terminates);
1367     cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size);
1368 }
1369
1370 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1371                                         hwaddr size, unsigned client)
1372 {
1373     bool ret;
1374     assert(mr->terminates);
1375     ret = cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1376     if (ret) {
1377         cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1378     }
1379     return ret;
1380 }
1381
1382
1383 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1384 {
1385     AddressSpace *as;
1386     FlatRange *fr;
1387
1388     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1389         FlatView *view = address_space_get_flatview(as);
1390         FOR_EACH_FLAT_RANGE(fr, view) {
1391             if (fr->mr == mr) {
1392                 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1393             }
1394         }
1395         flatview_unref(view);
1396     }
1397 }
1398
1399 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1400 {
1401     if (mr->readonly != readonly) {
1402         memory_region_transaction_begin();
1403         mr->readonly = readonly;
1404         memory_region_update_pending |= mr->enabled;
1405         memory_region_transaction_commit();
1406     }
1407 }
1408
1409 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1410 {
1411     if (mr->romd_mode != romd_mode) {
1412         memory_region_transaction_begin();
1413         mr->romd_mode = romd_mode;
1414         memory_region_update_pending |= mr->enabled;
1415         memory_region_transaction_commit();
1416     }
1417 }
1418
1419 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1420                                hwaddr size, unsigned client)
1421 {
1422     assert(mr->terminates);
1423     cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1424 }
1425
1426 int memory_region_get_fd(MemoryRegion *mr)
1427 {
1428     if (mr->alias) {
1429         return memory_region_get_fd(mr->alias);
1430     }
1431
1432     assert(mr->terminates);
1433
1434     return qemu_get_ram_fd(mr->ram_addr & TARGET_PAGE_MASK);
1435 }
1436
1437 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1438 {
1439     if (mr->alias) {
1440         return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1441     }
1442
1443     assert(mr->terminates);
1444
1445     return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1446 }
1447
1448 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1449 {
1450     FlatView *view;
1451     FlatRange *fr;
1452     CoalescedMemoryRange *cmr;
1453     AddrRange tmp;
1454     MemoryRegionSection section;
1455
1456     view = address_space_get_flatview(as);
1457     FOR_EACH_FLAT_RANGE(fr, view) {
1458         if (fr->mr == mr) {
1459             section = (MemoryRegionSection) {
1460                 .address_space = as,
1461                 .offset_within_address_space = int128_get64(fr->addr.start),
1462                 .size = fr->addr.size,
1463             };
1464
1465             MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1466                                  int128_get64(fr->addr.start),
1467                                  int128_get64(fr->addr.size));
1468             QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1469                 tmp = addrrange_shift(cmr->addr,
1470                                       int128_sub(fr->addr.start,
1471                                                  int128_make64(fr->offset_in_region)));
1472                 if (!addrrange_intersects(tmp, fr->addr)) {
1473                     continue;
1474                 }
1475                 tmp = addrrange_intersection(tmp, fr->addr);
1476                 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1477                                      int128_get64(tmp.start),
1478                                      int128_get64(tmp.size));
1479             }
1480         }
1481     }
1482     flatview_unref(view);
1483 }
1484
1485 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1486 {
1487     AddressSpace *as;
1488
1489     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1490         memory_region_update_coalesced_range_as(mr, as);
1491     }
1492 }
1493
1494 void memory_region_set_coalescing(MemoryRegion *mr)
1495 {
1496     memory_region_clear_coalescing(mr);
1497     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1498 }
1499
1500 void memory_region_add_coalescing(MemoryRegion *mr,
1501                                   hwaddr offset,
1502                                   uint64_t size)
1503 {
1504     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1505
1506     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1507     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1508     memory_region_update_coalesced_range(mr);
1509     memory_region_set_flush_coalesced(mr);
1510 }
1511
1512 void memory_region_clear_coalescing(MemoryRegion *mr)
1513 {
1514     CoalescedMemoryRange *cmr;
1515     bool updated = false;
1516
1517     qemu_flush_coalesced_mmio_buffer();
1518     mr->flush_coalesced_mmio = false;
1519
1520     while (!QTAILQ_EMPTY(&mr->coalesced)) {
1521         cmr = QTAILQ_FIRST(&mr->coalesced);
1522         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1523         g_free(cmr);
1524         updated = true;
1525     }
1526
1527     if (updated) {
1528         memory_region_update_coalesced_range(mr);
1529     }
1530 }
1531
1532 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1533 {
1534     mr->flush_coalesced_mmio = true;
1535 }
1536
1537 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1538 {
1539     qemu_flush_coalesced_mmio_buffer();
1540     if (QTAILQ_EMPTY(&mr->coalesced)) {
1541         mr->flush_coalesced_mmio = false;
1542     }
1543 }
1544
1545 void memory_region_add_eventfd(MemoryRegion *mr,
1546                                hwaddr addr,
1547                                unsigned size,
1548                                bool match_data,
1549                                uint64_t data,
1550                                EventNotifier *e)
1551 {
1552     MemoryRegionIoeventfd mrfd = {
1553         .addr.start = int128_make64(addr),
1554         .addr.size = int128_make64(size),
1555         .match_data = match_data,
1556         .data = data,
1557         .e = e,
1558     };
1559     unsigned i;
1560
1561     adjust_endianness(mr, &mrfd.data, size);
1562     memory_region_transaction_begin();
1563     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1564         if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1565             break;
1566         }
1567     }
1568     ++mr->ioeventfd_nb;
1569     mr->ioeventfds = g_realloc(mr->ioeventfds,
1570                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1571     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1572             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1573     mr->ioeventfds[i] = mrfd;
1574     ioeventfd_update_pending |= mr->enabled;
1575     memory_region_transaction_commit();
1576 }
1577
1578 void memory_region_del_eventfd(MemoryRegion *mr,
1579                                hwaddr addr,
1580                                unsigned size,
1581                                bool match_data,
1582                                uint64_t data,
1583                                EventNotifier *e)
1584 {
1585     MemoryRegionIoeventfd mrfd = {
1586         .addr.start = int128_make64(addr),
1587         .addr.size = int128_make64(size),
1588         .match_data = match_data,
1589         .data = data,
1590         .e = e,
1591     };
1592     unsigned i;
1593
1594     adjust_endianness(mr, &mrfd.data, size);
1595     memory_region_transaction_begin();
1596     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1597         if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1598             break;
1599         }
1600     }
1601     assert(i != mr->ioeventfd_nb);
1602     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1603             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1604     --mr->ioeventfd_nb;
1605     mr->ioeventfds = g_realloc(mr->ioeventfds,
1606                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1607     ioeventfd_update_pending |= mr->enabled;
1608     memory_region_transaction_commit();
1609 }
1610
1611 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1612 {
1613     hwaddr offset = subregion->addr;
1614     MemoryRegion *mr = subregion->container;
1615     MemoryRegion *other;
1616
1617     memory_region_transaction_begin();
1618
1619     memory_region_ref(subregion);
1620     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1621         if (subregion->may_overlap || other->may_overlap) {
1622             continue;
1623         }
1624         if (int128_ge(int128_make64(offset),
1625                       int128_add(int128_make64(other->addr), other->size))
1626             || int128_le(int128_add(int128_make64(offset), subregion->size),
1627                          int128_make64(other->addr))) {
1628             continue;
1629         }
1630 #if 0
1631         printf("warning: subregion collision %llx/%llx (%s) "
1632                "vs %llx/%llx (%s)\n",
1633                (unsigned long long)offset,
1634                (unsigned long long)int128_get64(subregion->size),
1635                subregion->name,
1636                (unsigned long long)other->addr,
1637                (unsigned long long)int128_get64(other->size),
1638                other->name);
1639 #endif
1640     }
1641     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1642         if (subregion->priority >= other->priority) {
1643             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1644             goto done;
1645         }
1646     }
1647     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1648 done:
1649     memory_region_update_pending |= mr->enabled && subregion->enabled;
1650     memory_region_transaction_commit();
1651 }
1652
1653 static void memory_region_add_subregion_common(MemoryRegion *mr,
1654                                                hwaddr offset,
1655                                                MemoryRegion *subregion)
1656 {
1657     assert(!subregion->container);
1658     subregion->container = mr;
1659     subregion->addr = offset;
1660     memory_region_update_container_subregions(subregion);
1661 }
1662
1663 void memory_region_add_subregion(MemoryRegion *mr,
1664                                  hwaddr offset,
1665                                  MemoryRegion *subregion)
1666 {
1667     subregion->may_overlap = false;
1668     subregion->priority = 0;
1669     memory_region_add_subregion_common(mr, offset, subregion);
1670 }
1671
1672 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1673                                          hwaddr offset,
1674                                          MemoryRegion *subregion,
1675                                          int priority)
1676 {
1677     subregion->may_overlap = true;
1678     subregion->priority = priority;
1679     memory_region_add_subregion_common(mr, offset, subregion);
1680 }
1681
1682 void memory_region_del_subregion(MemoryRegion *mr,
1683                                  MemoryRegion *subregion)
1684 {
1685     memory_region_transaction_begin();
1686     assert(subregion->container == mr);
1687     subregion->container = NULL;
1688     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1689     memory_region_unref(subregion);
1690     memory_region_update_pending |= mr->enabled && subregion->enabled;
1691     memory_region_transaction_commit();
1692 }
1693
1694 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1695 {
1696     if (enabled == mr->enabled) {
1697         return;
1698     }
1699     memory_region_transaction_begin();
1700     mr->enabled = enabled;
1701     memory_region_update_pending = true;
1702     memory_region_transaction_commit();
1703 }
1704
1705 static void memory_region_readd_subregion(MemoryRegion *mr)
1706 {
1707     MemoryRegion *container = mr->container;
1708
1709     if (container) {
1710         memory_region_transaction_begin();
1711         memory_region_ref(mr);
1712         memory_region_del_subregion(container, mr);
1713         mr->container = container;
1714         memory_region_update_container_subregions(mr);
1715         memory_region_unref(mr);
1716         memory_region_transaction_commit();
1717     }
1718 }
1719
1720 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1721 {
1722     if (addr != mr->addr) {
1723         mr->addr = addr;
1724         memory_region_readd_subregion(mr);
1725     }
1726 }
1727
1728 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1729 {
1730     assert(mr->alias);
1731
1732     if (offset == mr->alias_offset) {
1733         return;
1734     }
1735
1736     memory_region_transaction_begin();
1737     mr->alias_offset = offset;
1738     memory_region_update_pending |= mr->enabled;
1739     memory_region_transaction_commit();
1740 }
1741
1742 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1743 {
1744     return mr->ram_addr;
1745 }
1746
1747 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1748 {
1749     const AddrRange *addr = addr_;
1750     const FlatRange *fr = fr_;
1751
1752     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1753         return -1;
1754     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1755         return 1;
1756     }
1757     return 0;
1758 }
1759
1760 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
1761 {
1762     return bsearch(&addr, view->ranges, view->nr,
1763                    sizeof(FlatRange), cmp_flatrange_addr);
1764 }
1765
1766 bool memory_region_present(MemoryRegion *container, hwaddr addr)
1767 {
1768     MemoryRegion *mr = memory_region_find(container, addr, 1).mr;
1769     if (!mr || (mr == container)) {
1770         return false;
1771     }
1772     memory_region_unref(mr);
1773     return true;
1774 }
1775
1776 bool memory_region_is_mapped(MemoryRegion *mr)
1777 {
1778     return mr->container ? true : false;
1779 }
1780
1781 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1782                                        hwaddr addr, uint64_t size)
1783 {
1784     MemoryRegionSection ret = { .mr = NULL };
1785     MemoryRegion *root;
1786     AddressSpace *as;
1787     AddrRange range;
1788     FlatView *view;
1789     FlatRange *fr;
1790
1791     addr += mr->addr;
1792     for (root = mr; root->container; ) {
1793         root = root->container;
1794         addr += root->addr;
1795     }
1796
1797     as = memory_region_to_address_space(root);
1798     if (!as) {
1799         return ret;
1800     }
1801     range = addrrange_make(int128_make64(addr), int128_make64(size));
1802
1803     view = address_space_get_flatview(as);
1804     fr = flatview_lookup(view, range);
1805     if (!fr) {
1806         flatview_unref(view);
1807         return ret;
1808     }
1809
1810     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
1811         --fr;
1812     }
1813
1814     ret.mr = fr->mr;
1815     ret.address_space = as;
1816     range = addrrange_intersection(range, fr->addr);
1817     ret.offset_within_region = fr->offset_in_region;
1818     ret.offset_within_region += int128_get64(int128_sub(range.start,
1819                                                         fr->addr.start));
1820     ret.size = range.size;
1821     ret.offset_within_address_space = int128_get64(range.start);
1822     ret.readonly = fr->readonly;
1823     memory_region_ref(ret.mr);
1824
1825     flatview_unref(view);
1826     return ret;
1827 }
1828
1829 void address_space_sync_dirty_bitmap(AddressSpace *as)
1830 {
1831     FlatView *view;
1832     FlatRange *fr;
1833
1834     view = address_space_get_flatview(as);
1835     FOR_EACH_FLAT_RANGE(fr, view) {
1836         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1837     }
1838     flatview_unref(view);
1839 }
1840
1841 void memory_global_dirty_log_start(void)
1842 {
1843     global_dirty_log = true;
1844     MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1845 }
1846
1847 void memory_global_dirty_log_stop(void)
1848 {
1849     global_dirty_log = false;
1850     MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1851 }
1852
1853 static void listener_add_address_space(MemoryListener *listener,
1854                                        AddressSpace *as)
1855 {
1856     FlatView *view;
1857     FlatRange *fr;
1858
1859     if (listener->address_space_filter
1860         && listener->address_space_filter != as) {
1861         return;
1862     }
1863
1864     if (global_dirty_log) {
1865         if (listener->log_global_start) {
1866             listener->log_global_start(listener);
1867         }
1868     }
1869
1870     view = address_space_get_flatview(as);
1871     FOR_EACH_FLAT_RANGE(fr, view) {
1872         MemoryRegionSection section = {
1873             .mr = fr->mr,
1874             .address_space = as,
1875             .offset_within_region = fr->offset_in_region,
1876             .size = fr->addr.size,
1877             .offset_within_address_space = int128_get64(fr->addr.start),
1878             .readonly = fr->readonly,
1879         };
1880         if (listener->region_add) {
1881             listener->region_add(listener, &section);
1882         }
1883     }
1884     flatview_unref(view);
1885 }
1886
1887 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
1888 {
1889     MemoryListener *other = NULL;
1890     AddressSpace *as;
1891
1892     listener->address_space_filter = filter;
1893     if (QTAILQ_EMPTY(&memory_listeners)
1894         || listener->priority >= QTAILQ_LAST(&memory_listeners,
1895                                              memory_listeners)->priority) {
1896         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1897     } else {
1898         QTAILQ_FOREACH(other, &memory_listeners, link) {
1899             if (listener->priority < other->priority) {
1900                 break;
1901             }
1902         }
1903         QTAILQ_INSERT_BEFORE(other, listener, link);
1904     }
1905
1906     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1907         listener_add_address_space(listener, as);
1908     }
1909 }
1910
1911 void memory_listener_unregister(MemoryListener *listener)
1912 {
1913     QTAILQ_REMOVE(&memory_listeners, listener, link);
1914 }
1915
1916 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
1917 {
1918     if (QTAILQ_EMPTY(&address_spaces)) {
1919         memory_init();
1920     }
1921
1922     memory_region_transaction_begin();
1923     as->root = root;
1924     as->current_map = g_new(FlatView, 1);
1925     flatview_init(as->current_map);
1926     as->ioeventfd_nb = 0;
1927     as->ioeventfds = NULL;
1928     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
1929     as->name = g_strdup(name ? name : "anonymous");
1930     address_space_init_dispatch(as);
1931     memory_region_update_pending |= root->enabled;
1932     memory_region_transaction_commit();
1933 }
1934
1935 void address_space_destroy(AddressSpace *as)
1936 {
1937     MemoryListener *listener;
1938
1939     /* Flush out anything from MemoryListeners listening in on this */
1940     memory_region_transaction_begin();
1941     as->root = NULL;
1942     memory_region_transaction_commit();
1943     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
1944     address_space_destroy_dispatch(as);
1945
1946     QTAILQ_FOREACH(listener, &memory_listeners, link) {
1947         assert(listener->address_space_filter != as);
1948     }
1949
1950     flatview_unref(as->current_map);
1951     g_free(as->name);
1952     g_free(as->ioeventfds);
1953 }
1954
1955 bool io_mem_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size)
1956 {
1957     return memory_region_dispatch_read(mr, addr, pval, size);
1958 }
1959
1960 bool io_mem_write(MemoryRegion *mr, hwaddr addr,
1961                   uint64_t val, unsigned size)
1962 {
1963     return memory_region_dispatch_write(mr, addr, val, size);
1964 }
1965
1966 typedef struct MemoryRegionList MemoryRegionList;
1967
1968 struct MemoryRegionList {
1969     const MemoryRegion *mr;
1970     bool printed;
1971     QTAILQ_ENTRY(MemoryRegionList) queue;
1972 };
1973
1974 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1975
1976 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1977                            const MemoryRegion *mr, unsigned int level,
1978                            hwaddr base,
1979                            MemoryRegionListHead *alias_print_queue)
1980 {
1981     MemoryRegionList *new_ml, *ml, *next_ml;
1982     MemoryRegionListHead submr_print_queue;
1983     const MemoryRegion *submr;
1984     unsigned int i;
1985
1986     if (!mr || !mr->enabled) {
1987         return;
1988     }
1989
1990     for (i = 0; i < level; i++) {
1991         mon_printf(f, "  ");
1992     }
1993
1994     if (mr->alias) {
1995         MemoryRegionList *ml;
1996         bool found = false;
1997
1998         /* check if the alias is already in the queue */
1999         QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2000             if (ml->mr == mr->alias && !ml->printed) {
2001                 found = true;
2002             }
2003         }
2004
2005         if (!found) {
2006             ml = g_new(MemoryRegionList, 1);
2007             ml->mr = mr->alias;
2008             ml->printed = false;
2009             QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2010         }
2011         mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2012                    " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2013                    "-" TARGET_FMT_plx "\n",
2014                    base + mr->addr,
2015                    base + mr->addr
2016                    + (int128_nz(mr->size) ?
2017                       (hwaddr)int128_get64(int128_sub(mr->size,
2018                                                       int128_one())) : 0),
2019                    mr->priority,
2020                    mr->romd_mode ? 'R' : '-',
2021                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2022                                                                        : '-',
2023                    mr->name,
2024                    mr->alias->name,
2025                    mr->alias_offset,
2026                    mr->alias_offset
2027                    + (int128_nz(mr->size) ?
2028                       (hwaddr)int128_get64(int128_sub(mr->size,
2029                                                       int128_one())) : 0));
2030     } else {
2031         mon_printf(f,
2032                    TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
2033                    base + mr->addr,
2034                    base + mr->addr
2035                    + (int128_nz(mr->size) ?
2036                       (hwaddr)int128_get64(int128_sub(mr->size,
2037                                                       int128_one())) : 0),
2038                    mr->priority,
2039                    mr->romd_mode ? 'R' : '-',
2040                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2041                                                                        : '-',
2042                    mr->name);
2043     }
2044
2045     QTAILQ_INIT(&submr_print_queue);
2046
2047     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2048         new_ml = g_new(MemoryRegionList, 1);
2049         new_ml->mr = submr;
2050         QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2051             if (new_ml->mr->addr < ml->mr->addr ||
2052                 (new_ml->mr->addr == ml->mr->addr &&
2053                  new_ml->mr->priority > ml->mr->priority)) {
2054                 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2055                 new_ml = NULL;
2056                 break;
2057             }
2058         }
2059         if (new_ml) {
2060             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2061         }
2062     }
2063
2064     QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2065         mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2066                        alias_print_queue);
2067     }
2068
2069     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2070         g_free(ml);
2071     }
2072 }
2073
2074 void mtree_info(fprintf_function mon_printf, void *f)
2075 {
2076     MemoryRegionListHead ml_head;
2077     MemoryRegionList *ml, *ml2;
2078     AddressSpace *as;
2079
2080     QTAILQ_INIT(&ml_head);
2081
2082     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2083         mon_printf(f, "%s\n", as->name);
2084         mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
2085     }
2086
2087     mon_printf(f, "aliases\n");
2088     /* print aliased regions */
2089     QTAILQ_FOREACH(ml, &ml_head, queue) {
2090         if (!ml->printed) {
2091             mon_printf(f, "%s\n", ml->mr->name);
2092             mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
2093         }
2094     }
2095
2096     QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2097         g_free(ml);
2098     }
2099 }
2100
2101 static const TypeInfo memory_region_info = {
2102     .parent             = TYPE_OBJECT,
2103     .name               = TYPE_MEMORY_REGION,
2104     .instance_size      = sizeof(MemoryRegion),
2105     .instance_init      = memory_region_initfn,
2106     .instance_finalize  = memory_region_finalize,
2107 };
2108
2109 static void memory_register_types(void)
2110 {
2111     type_register_static(&memory_region_info);
2112 }
2113
2114 type_init(memory_register_types)