]> rtime.felk.cvut.cz Git - lisovros/qemu_apohw.git/blob - memory.c
target-i386: Rename cpu_x86_register() to x86_cpu_load_def()
[lisovros/qemu_apohw.git] / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15
16 #include "exec/memory.h"
17 #include "exec/address-spaces.h"
18 #include "exec/ioport.h"
19 #include "qemu/bitops.h"
20 #include "qom/object.h"
21 #include "trace.h"
22 #include <assert.h>
23
24 #include "exec/memory-internal.h"
25 #include "exec/ram_addr.h"
26
27 //#define DEBUG_UNASSIGNED
28
29 static unsigned memory_region_transaction_depth;
30 static bool memory_region_update_pending;
31 static bool global_dirty_log = false;
32
33 /* flat_view_mutex is taken around reading as->current_map; the critical
34  * section is extremely short, so I'm using a single mutex for every AS.
35  * We could also RCU for the read-side.
36  *
37  * The BQL is taken around transaction commits, hence both locks are taken
38  * while writing to as->current_map (with the BQL taken outside).
39  */
40 static QemuMutex flat_view_mutex;
41
42 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
43     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
44
45 static QTAILQ_HEAD(, AddressSpace) address_spaces
46     = QTAILQ_HEAD_INITIALIZER(address_spaces);
47
48 static void memory_init(void)
49 {
50     qemu_mutex_init(&flat_view_mutex);
51 }
52
53 typedef struct AddrRange AddrRange;
54
55 /*
56  * Note using signed integers limits us to physical addresses at most
57  * 63 bits wide.  They are needed for negative offsetting in aliases
58  * (large MemoryRegion::alias_offset).
59  */
60 struct AddrRange {
61     Int128 start;
62     Int128 size;
63 };
64
65 static AddrRange addrrange_make(Int128 start, Int128 size)
66 {
67     return (AddrRange) { start, size };
68 }
69
70 static bool addrrange_equal(AddrRange r1, AddrRange r2)
71 {
72     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
73 }
74
75 static Int128 addrrange_end(AddrRange r)
76 {
77     return int128_add(r.start, r.size);
78 }
79
80 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
81 {
82     int128_addto(&range.start, delta);
83     return range;
84 }
85
86 static bool addrrange_contains(AddrRange range, Int128 addr)
87 {
88     return int128_ge(addr, range.start)
89         && int128_lt(addr, addrrange_end(range));
90 }
91
92 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
93 {
94     return addrrange_contains(r1, r2.start)
95         || addrrange_contains(r2, r1.start);
96 }
97
98 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
99 {
100     Int128 start = int128_max(r1.start, r2.start);
101     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
102     return addrrange_make(start, int128_sub(end, start));
103 }
104
105 enum ListenerDirection { Forward, Reverse };
106
107 static bool memory_listener_match(MemoryListener *listener,
108                                   MemoryRegionSection *section)
109 {
110     return !listener->address_space_filter
111         || listener->address_space_filter == section->address_space;
112 }
113
114 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
115     do {                                                                \
116         MemoryListener *_listener;                                      \
117                                                                         \
118         switch (_direction) {                                           \
119         case Forward:                                                   \
120             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
121                 if (_listener->_callback) {                             \
122                     _listener->_callback(_listener, ##_args);           \
123                 }                                                       \
124             }                                                           \
125             break;                                                      \
126         case Reverse:                                                   \
127             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
128                                    memory_listeners, link) {            \
129                 if (_listener->_callback) {                             \
130                     _listener->_callback(_listener, ##_args);           \
131                 }                                                       \
132             }                                                           \
133             break;                                                      \
134         default:                                                        \
135             abort();                                                    \
136         }                                                               \
137     } while (0)
138
139 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
140     do {                                                                \
141         MemoryListener *_listener;                                      \
142                                                                         \
143         switch (_direction) {                                           \
144         case Forward:                                                   \
145             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
146                 if (_listener->_callback                                \
147                     && memory_listener_match(_listener, _section)) {    \
148                     _listener->_callback(_listener, _section, ##_args); \
149                 }                                                       \
150             }                                                           \
151             break;                                                      \
152         case Reverse:                                                   \
153             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
154                                    memory_listeners, link) {            \
155                 if (_listener->_callback                                \
156                     && memory_listener_match(_listener, _section)) {    \
157                     _listener->_callback(_listener, _section, ##_args); \
158                 }                                                       \
159             }                                                           \
160             break;                                                      \
161         default:                                                        \
162             abort();                                                    \
163         }                                                               \
164     } while (0)
165
166 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
167 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback)            \
168     MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
169         .mr = (fr)->mr,                                                 \
170         .address_space = (as),                                          \
171         .offset_within_region = (fr)->offset_in_region,                 \
172         .size = (fr)->addr.size,                                        \
173         .offset_within_address_space = int128_get64((fr)->addr.start),  \
174         .readonly = (fr)->readonly,                                     \
175               }))
176
177 struct CoalescedMemoryRange {
178     AddrRange addr;
179     QTAILQ_ENTRY(CoalescedMemoryRange) link;
180 };
181
182 struct MemoryRegionIoeventfd {
183     AddrRange addr;
184     bool match_data;
185     uint64_t data;
186     EventNotifier *e;
187 };
188
189 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
190                                            MemoryRegionIoeventfd b)
191 {
192     if (int128_lt(a.addr.start, b.addr.start)) {
193         return true;
194     } else if (int128_gt(a.addr.start, b.addr.start)) {
195         return false;
196     } else if (int128_lt(a.addr.size, b.addr.size)) {
197         return true;
198     } else if (int128_gt(a.addr.size, b.addr.size)) {
199         return false;
200     } else if (a.match_data < b.match_data) {
201         return true;
202     } else  if (a.match_data > b.match_data) {
203         return false;
204     } else if (a.match_data) {
205         if (a.data < b.data) {
206             return true;
207         } else if (a.data > b.data) {
208             return false;
209         }
210     }
211     if (a.e < b.e) {
212         return true;
213     } else if (a.e > b.e) {
214         return false;
215     }
216     return false;
217 }
218
219 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
220                                           MemoryRegionIoeventfd b)
221 {
222     return !memory_region_ioeventfd_before(a, b)
223         && !memory_region_ioeventfd_before(b, a);
224 }
225
226 typedef struct FlatRange FlatRange;
227 typedef struct FlatView FlatView;
228
229 /* Range of memory in the global map.  Addresses are absolute. */
230 struct FlatRange {
231     MemoryRegion *mr;
232     hwaddr offset_in_region;
233     AddrRange addr;
234     uint8_t dirty_log_mask;
235     bool romd_mode;
236     bool readonly;
237 };
238
239 /* Flattened global view of current active memory hierarchy.  Kept in sorted
240  * order.
241  */
242 struct FlatView {
243     unsigned ref;
244     FlatRange *ranges;
245     unsigned nr;
246     unsigned nr_allocated;
247 };
248
249 typedef struct AddressSpaceOps AddressSpaceOps;
250
251 #define FOR_EACH_FLAT_RANGE(var, view)          \
252     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
253
254 static bool flatrange_equal(FlatRange *a, FlatRange *b)
255 {
256     return a->mr == b->mr
257         && addrrange_equal(a->addr, b->addr)
258         && a->offset_in_region == b->offset_in_region
259         && a->romd_mode == b->romd_mode
260         && a->readonly == b->readonly;
261 }
262
263 static void flatview_init(FlatView *view)
264 {
265     view->ref = 1;
266     view->ranges = NULL;
267     view->nr = 0;
268     view->nr_allocated = 0;
269 }
270
271 /* Insert a range into a given position.  Caller is responsible for maintaining
272  * sorting order.
273  */
274 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
275 {
276     if (view->nr == view->nr_allocated) {
277         view->nr_allocated = MAX(2 * view->nr, 10);
278         view->ranges = g_realloc(view->ranges,
279                                     view->nr_allocated * sizeof(*view->ranges));
280     }
281     memmove(view->ranges + pos + 1, view->ranges + pos,
282             (view->nr - pos) * sizeof(FlatRange));
283     view->ranges[pos] = *range;
284     memory_region_ref(range->mr);
285     ++view->nr;
286 }
287
288 static void flatview_destroy(FlatView *view)
289 {
290     int i;
291
292     for (i = 0; i < view->nr; i++) {
293         memory_region_unref(view->ranges[i].mr);
294     }
295     g_free(view->ranges);
296     g_free(view);
297 }
298
299 static void flatview_ref(FlatView *view)
300 {
301     atomic_inc(&view->ref);
302 }
303
304 static void flatview_unref(FlatView *view)
305 {
306     if (atomic_fetch_dec(&view->ref) == 1) {
307         flatview_destroy(view);
308     }
309 }
310
311 static bool can_merge(FlatRange *r1, FlatRange *r2)
312 {
313     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
314         && r1->mr == r2->mr
315         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
316                                 r1->addr.size),
317                      int128_make64(r2->offset_in_region))
318         && r1->dirty_log_mask == r2->dirty_log_mask
319         && r1->romd_mode == r2->romd_mode
320         && r1->readonly == r2->readonly;
321 }
322
323 /* Attempt to simplify a view by merging adjacent ranges */
324 static void flatview_simplify(FlatView *view)
325 {
326     unsigned i, j;
327
328     i = 0;
329     while (i < view->nr) {
330         j = i + 1;
331         while (j < view->nr
332                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
333             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
334             ++j;
335         }
336         ++i;
337         memmove(&view->ranges[i], &view->ranges[j],
338                 (view->nr - j) * sizeof(view->ranges[j]));
339         view->nr -= j - i;
340     }
341 }
342
343 static bool memory_region_big_endian(MemoryRegion *mr)
344 {
345 #ifdef TARGET_WORDS_BIGENDIAN
346     return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
347 #else
348     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
349 #endif
350 }
351
352 static bool memory_region_wrong_endianness(MemoryRegion *mr)
353 {
354 #ifdef TARGET_WORDS_BIGENDIAN
355     return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
356 #else
357     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
358 #endif
359 }
360
361 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
362 {
363     if (memory_region_wrong_endianness(mr)) {
364         switch (size) {
365         case 1:
366             break;
367         case 2:
368             *data = bswap16(*data);
369             break;
370         case 4:
371             *data = bswap32(*data);
372             break;
373         case 8:
374             *data = bswap64(*data);
375             break;
376         default:
377             abort();
378         }
379     }
380 }
381
382 static void memory_region_oldmmio_read_accessor(MemoryRegion *mr,
383                                                 hwaddr addr,
384                                                 uint64_t *value,
385                                                 unsigned size,
386                                                 unsigned shift,
387                                                 uint64_t mask)
388 {
389     uint64_t tmp;
390
391     tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
392     trace_memory_region_ops_read(mr, addr, tmp, size);
393     *value |= (tmp & mask) << shift;
394 }
395
396 static void memory_region_read_accessor(MemoryRegion *mr,
397                                         hwaddr addr,
398                                         uint64_t *value,
399                                         unsigned size,
400                                         unsigned shift,
401                                         uint64_t mask)
402 {
403     uint64_t tmp;
404
405     if (mr->flush_coalesced_mmio) {
406         qemu_flush_coalesced_mmio_buffer();
407     }
408     tmp = mr->ops->read(mr->opaque, addr, size);
409     trace_memory_region_ops_read(mr, addr, tmp, size);
410     *value |= (tmp & mask) << shift;
411 }
412
413 static void memory_region_oldmmio_write_accessor(MemoryRegion *mr,
414                                                  hwaddr addr,
415                                                  uint64_t *value,
416                                                  unsigned size,
417                                                  unsigned shift,
418                                                  uint64_t mask)
419 {
420     uint64_t tmp;
421
422     tmp = (*value >> shift) & mask;
423     trace_memory_region_ops_write(mr, addr, tmp, size);
424     mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
425 }
426
427 static void memory_region_write_accessor(MemoryRegion *mr,
428                                          hwaddr addr,
429                                          uint64_t *value,
430                                          unsigned size,
431                                          unsigned shift,
432                                          uint64_t mask)
433 {
434     uint64_t tmp;
435
436     if (mr->flush_coalesced_mmio) {
437         qemu_flush_coalesced_mmio_buffer();
438     }
439     tmp = (*value >> shift) & mask;
440     trace_memory_region_ops_write(mr, addr, tmp, size);
441     mr->ops->write(mr->opaque, addr, tmp, size);
442 }
443
444 static void access_with_adjusted_size(hwaddr addr,
445                                       uint64_t *value,
446                                       unsigned size,
447                                       unsigned access_size_min,
448                                       unsigned access_size_max,
449                                       void (*access)(MemoryRegion *mr,
450                                                      hwaddr addr,
451                                                      uint64_t *value,
452                                                      unsigned size,
453                                                      unsigned shift,
454                                                      uint64_t mask),
455                                       MemoryRegion *mr)
456 {
457     uint64_t access_mask;
458     unsigned access_size;
459     unsigned i;
460
461     if (!access_size_min) {
462         access_size_min = 1;
463     }
464     if (!access_size_max) {
465         access_size_max = 4;
466     }
467
468     /* FIXME: support unaligned access? */
469     access_size = MAX(MIN(size, access_size_max), access_size_min);
470     access_mask = -1ULL >> (64 - access_size * 8);
471     if (memory_region_big_endian(mr)) {
472         for (i = 0; i < size; i += access_size) {
473             access(mr, addr + i, value, access_size,
474                    (size - access_size - i) * 8, access_mask);
475         }
476     } else {
477         for (i = 0; i < size; i += access_size) {
478             access(mr, addr + i, value, access_size, i * 8, access_mask);
479         }
480     }
481 }
482
483 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
484 {
485     AddressSpace *as;
486
487     while (mr->parent) {
488         mr = mr->parent;
489     }
490     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
491         if (mr == as->root) {
492             return as;
493         }
494     }
495     abort();
496 }
497
498 /* Render a memory region into the global view.  Ranges in @view obscure
499  * ranges in @mr.
500  */
501 static void render_memory_region(FlatView *view,
502                                  MemoryRegion *mr,
503                                  Int128 base,
504                                  AddrRange clip,
505                                  bool readonly)
506 {
507     MemoryRegion *subregion;
508     unsigned i;
509     hwaddr offset_in_region;
510     Int128 remain;
511     Int128 now;
512     FlatRange fr;
513     AddrRange tmp;
514
515     if (!mr->enabled) {
516         return;
517     }
518
519     int128_addto(&base, int128_make64(mr->addr));
520     readonly |= mr->readonly;
521
522     tmp = addrrange_make(base, mr->size);
523
524     if (!addrrange_intersects(tmp, clip)) {
525         return;
526     }
527
528     clip = addrrange_intersection(tmp, clip);
529
530     if (mr->alias) {
531         int128_subfrom(&base, int128_make64(mr->alias->addr));
532         int128_subfrom(&base, int128_make64(mr->alias_offset));
533         render_memory_region(view, mr->alias, base, clip, readonly);
534         return;
535     }
536
537     /* Render subregions in priority order. */
538     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
539         render_memory_region(view, subregion, base, clip, readonly);
540     }
541
542     if (!mr->terminates) {
543         return;
544     }
545
546     offset_in_region = int128_get64(int128_sub(clip.start, base));
547     base = clip.start;
548     remain = clip.size;
549
550     fr.mr = mr;
551     fr.dirty_log_mask = mr->dirty_log_mask;
552     fr.romd_mode = mr->romd_mode;
553     fr.readonly = readonly;
554
555     /* Render the region itself into any gaps left by the current view. */
556     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
557         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
558             continue;
559         }
560         if (int128_lt(base, view->ranges[i].addr.start)) {
561             now = int128_min(remain,
562                              int128_sub(view->ranges[i].addr.start, base));
563             fr.offset_in_region = offset_in_region;
564             fr.addr = addrrange_make(base, now);
565             flatview_insert(view, i, &fr);
566             ++i;
567             int128_addto(&base, now);
568             offset_in_region += int128_get64(now);
569             int128_subfrom(&remain, now);
570         }
571         now = int128_sub(int128_min(int128_add(base, remain),
572                                     addrrange_end(view->ranges[i].addr)),
573                          base);
574         int128_addto(&base, now);
575         offset_in_region += int128_get64(now);
576         int128_subfrom(&remain, now);
577     }
578     if (int128_nz(remain)) {
579         fr.offset_in_region = offset_in_region;
580         fr.addr = addrrange_make(base, remain);
581         flatview_insert(view, i, &fr);
582     }
583 }
584
585 /* Render a memory topology into a list of disjoint absolute ranges. */
586 static FlatView *generate_memory_topology(MemoryRegion *mr)
587 {
588     FlatView *view;
589
590     view = g_new(FlatView, 1);
591     flatview_init(view);
592
593     if (mr) {
594         render_memory_region(view, mr, int128_zero(),
595                              addrrange_make(int128_zero(), int128_2_64()), false);
596     }
597     flatview_simplify(view);
598
599     return view;
600 }
601
602 static void address_space_add_del_ioeventfds(AddressSpace *as,
603                                              MemoryRegionIoeventfd *fds_new,
604                                              unsigned fds_new_nb,
605                                              MemoryRegionIoeventfd *fds_old,
606                                              unsigned fds_old_nb)
607 {
608     unsigned iold, inew;
609     MemoryRegionIoeventfd *fd;
610     MemoryRegionSection section;
611
612     /* Generate a symmetric difference of the old and new fd sets, adding
613      * and deleting as necessary.
614      */
615
616     iold = inew = 0;
617     while (iold < fds_old_nb || inew < fds_new_nb) {
618         if (iold < fds_old_nb
619             && (inew == fds_new_nb
620                 || memory_region_ioeventfd_before(fds_old[iold],
621                                                   fds_new[inew]))) {
622             fd = &fds_old[iold];
623             section = (MemoryRegionSection) {
624                 .address_space = as,
625                 .offset_within_address_space = int128_get64(fd->addr.start),
626                 .size = fd->addr.size,
627             };
628             MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
629                                  fd->match_data, fd->data, fd->e);
630             ++iold;
631         } else if (inew < fds_new_nb
632                    && (iold == fds_old_nb
633                        || memory_region_ioeventfd_before(fds_new[inew],
634                                                          fds_old[iold]))) {
635             fd = &fds_new[inew];
636             section = (MemoryRegionSection) {
637                 .address_space = as,
638                 .offset_within_address_space = int128_get64(fd->addr.start),
639                 .size = fd->addr.size,
640             };
641             MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
642                                  fd->match_data, fd->data, fd->e);
643             ++inew;
644         } else {
645             ++iold;
646             ++inew;
647         }
648     }
649 }
650
651 static FlatView *address_space_get_flatview(AddressSpace *as)
652 {
653     FlatView *view;
654
655     qemu_mutex_lock(&flat_view_mutex);
656     view = as->current_map;
657     flatview_ref(view);
658     qemu_mutex_unlock(&flat_view_mutex);
659     return view;
660 }
661
662 static void address_space_update_ioeventfds(AddressSpace *as)
663 {
664     FlatView *view;
665     FlatRange *fr;
666     unsigned ioeventfd_nb = 0;
667     MemoryRegionIoeventfd *ioeventfds = NULL;
668     AddrRange tmp;
669     unsigned i;
670
671     view = address_space_get_flatview(as);
672     FOR_EACH_FLAT_RANGE(fr, view) {
673         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
674             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
675                                   int128_sub(fr->addr.start,
676                                              int128_make64(fr->offset_in_region)));
677             if (addrrange_intersects(fr->addr, tmp)) {
678                 ++ioeventfd_nb;
679                 ioeventfds = g_realloc(ioeventfds,
680                                           ioeventfd_nb * sizeof(*ioeventfds));
681                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
682                 ioeventfds[ioeventfd_nb-1].addr = tmp;
683             }
684         }
685     }
686
687     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
688                                      as->ioeventfds, as->ioeventfd_nb);
689
690     g_free(as->ioeventfds);
691     as->ioeventfds = ioeventfds;
692     as->ioeventfd_nb = ioeventfd_nb;
693     flatview_unref(view);
694 }
695
696 static void address_space_update_topology_pass(AddressSpace *as,
697                                                const FlatView *old_view,
698                                                const FlatView *new_view,
699                                                bool adding)
700 {
701     unsigned iold, inew;
702     FlatRange *frold, *frnew;
703
704     /* Generate a symmetric difference of the old and new memory maps.
705      * Kill ranges in the old map, and instantiate ranges in the new map.
706      */
707     iold = inew = 0;
708     while (iold < old_view->nr || inew < new_view->nr) {
709         if (iold < old_view->nr) {
710             frold = &old_view->ranges[iold];
711         } else {
712             frold = NULL;
713         }
714         if (inew < new_view->nr) {
715             frnew = &new_view->ranges[inew];
716         } else {
717             frnew = NULL;
718         }
719
720         if (frold
721             && (!frnew
722                 || int128_lt(frold->addr.start, frnew->addr.start)
723                 || (int128_eq(frold->addr.start, frnew->addr.start)
724                     && !flatrange_equal(frold, frnew)))) {
725             /* In old but not in new, or in both but attributes changed. */
726
727             if (!adding) {
728                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
729             }
730
731             ++iold;
732         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
733             /* In both and unchanged (except logging may have changed) */
734
735             if (adding) {
736                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
737                 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
738                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
739                 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
740                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
741                 }
742             }
743
744             ++iold;
745             ++inew;
746         } else {
747             /* In new */
748
749             if (adding) {
750                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
751             }
752
753             ++inew;
754         }
755     }
756 }
757
758
759 static void address_space_update_topology(AddressSpace *as)
760 {
761     FlatView *old_view = address_space_get_flatview(as);
762     FlatView *new_view = generate_memory_topology(as->root);
763
764     address_space_update_topology_pass(as, old_view, new_view, false);
765     address_space_update_topology_pass(as, old_view, new_view, true);
766
767     qemu_mutex_lock(&flat_view_mutex);
768     flatview_unref(as->current_map);
769     as->current_map = new_view;
770     qemu_mutex_unlock(&flat_view_mutex);
771
772     /* Note that all the old MemoryRegions are still alive up to this
773      * point.  This relieves most MemoryListeners from the need to
774      * ref/unref the MemoryRegions they get---unless they use them
775      * outside the iothread mutex, in which case precise reference
776      * counting is necessary.
777      */
778     flatview_unref(old_view);
779
780     address_space_update_ioeventfds(as);
781 }
782
783 void memory_region_transaction_begin(void)
784 {
785     qemu_flush_coalesced_mmio_buffer();
786     ++memory_region_transaction_depth;
787 }
788
789 void memory_region_transaction_commit(void)
790 {
791     AddressSpace *as;
792
793     assert(memory_region_transaction_depth);
794     --memory_region_transaction_depth;
795     if (!memory_region_transaction_depth && memory_region_update_pending) {
796         memory_region_update_pending = false;
797         MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
798
799         QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
800             address_space_update_topology(as);
801         }
802
803         MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
804     }
805 }
806
807 static void memory_region_destructor_none(MemoryRegion *mr)
808 {
809 }
810
811 static void memory_region_destructor_ram(MemoryRegion *mr)
812 {
813     qemu_ram_free(mr->ram_addr);
814 }
815
816 static void memory_region_destructor_alias(MemoryRegion *mr)
817 {
818     memory_region_unref(mr->alias);
819 }
820
821 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
822 {
823     qemu_ram_free_from_ptr(mr->ram_addr);
824 }
825
826 static void memory_region_destructor_rom_device(MemoryRegion *mr)
827 {
828     qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
829 }
830
831 void memory_region_init(MemoryRegion *mr,
832                         Object *owner,
833                         const char *name,
834                         uint64_t size)
835 {
836     mr->ops = &unassigned_mem_ops;
837     mr->opaque = NULL;
838     mr->owner = owner;
839     mr->iommu_ops = NULL;
840     mr->parent = NULL;
841     mr->size = int128_make64(size);
842     if (size == UINT64_MAX) {
843         mr->size = int128_2_64();
844     }
845     mr->addr = 0;
846     mr->subpage = false;
847     mr->enabled = true;
848     mr->terminates = false;
849     mr->ram = false;
850     mr->romd_mode = true;
851     mr->readonly = false;
852     mr->rom_device = false;
853     mr->destructor = memory_region_destructor_none;
854     mr->priority = 0;
855     mr->may_overlap = false;
856     mr->alias = NULL;
857     QTAILQ_INIT(&mr->subregions);
858     memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
859     QTAILQ_INIT(&mr->coalesced);
860     mr->name = g_strdup(name);
861     mr->dirty_log_mask = 0;
862     mr->ioeventfd_nb = 0;
863     mr->ioeventfds = NULL;
864     mr->flush_coalesced_mmio = false;
865 }
866
867 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
868                                     unsigned size)
869 {
870 #ifdef DEBUG_UNASSIGNED
871     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
872 #endif
873     if (current_cpu != NULL) {
874         cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
875     }
876     return 0;
877 }
878
879 static void unassigned_mem_write(void *opaque, hwaddr addr,
880                                  uint64_t val, unsigned size)
881 {
882 #ifdef DEBUG_UNASSIGNED
883     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
884 #endif
885     if (current_cpu != NULL) {
886         cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
887     }
888 }
889
890 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
891                                    unsigned size, bool is_write)
892 {
893     return false;
894 }
895
896 const MemoryRegionOps unassigned_mem_ops = {
897     .valid.accepts = unassigned_mem_accepts,
898     .endianness = DEVICE_NATIVE_ENDIAN,
899 };
900
901 bool memory_region_access_valid(MemoryRegion *mr,
902                                 hwaddr addr,
903                                 unsigned size,
904                                 bool is_write)
905 {
906     int access_size_min, access_size_max;
907     int access_size, i;
908
909     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
910         return false;
911     }
912
913     if (!mr->ops->valid.accepts) {
914         return true;
915     }
916
917     access_size_min = mr->ops->valid.min_access_size;
918     if (!mr->ops->valid.min_access_size) {
919         access_size_min = 1;
920     }
921
922     access_size_max = mr->ops->valid.max_access_size;
923     if (!mr->ops->valid.max_access_size) {
924         access_size_max = 4;
925     }
926
927     access_size = MAX(MIN(size, access_size_max), access_size_min);
928     for (i = 0; i < size; i += access_size) {
929         if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
930                                     is_write)) {
931             return false;
932         }
933     }
934
935     return true;
936 }
937
938 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
939                                              hwaddr addr,
940                                              unsigned size)
941 {
942     uint64_t data = 0;
943
944     if (mr->ops->read) {
945         access_with_adjusted_size(addr, &data, size,
946                                   mr->ops->impl.min_access_size,
947                                   mr->ops->impl.max_access_size,
948                                   memory_region_read_accessor, mr);
949     } else {
950         access_with_adjusted_size(addr, &data, size, 1, 4,
951                                   memory_region_oldmmio_read_accessor, mr);
952     }
953
954     return data;
955 }
956
957 static bool memory_region_dispatch_read(MemoryRegion *mr,
958                                         hwaddr addr,
959                                         uint64_t *pval,
960                                         unsigned size)
961 {
962     if (!memory_region_access_valid(mr, addr, size, false)) {
963         *pval = unassigned_mem_read(mr, addr, size);
964         return true;
965     }
966
967     *pval = memory_region_dispatch_read1(mr, addr, size);
968     adjust_endianness(mr, pval, size);
969     return false;
970 }
971
972 static bool memory_region_dispatch_write(MemoryRegion *mr,
973                                          hwaddr addr,
974                                          uint64_t data,
975                                          unsigned size)
976 {
977     if (!memory_region_access_valid(mr, addr, size, true)) {
978         unassigned_mem_write(mr, addr, data, size);
979         return true;
980     }
981
982     adjust_endianness(mr, &data, size);
983
984     if (mr->ops->write) {
985         access_with_adjusted_size(addr, &data, size,
986                                   mr->ops->impl.min_access_size,
987                                   mr->ops->impl.max_access_size,
988                                   memory_region_write_accessor, mr);
989     } else {
990         access_with_adjusted_size(addr, &data, size, 1, 4,
991                                   memory_region_oldmmio_write_accessor, mr);
992     }
993     return false;
994 }
995
996 void memory_region_init_io(MemoryRegion *mr,
997                            Object *owner,
998                            const MemoryRegionOps *ops,
999                            void *opaque,
1000                            const char *name,
1001                            uint64_t size)
1002 {
1003     memory_region_init(mr, owner, name, size);
1004     mr->ops = ops;
1005     mr->opaque = opaque;
1006     mr->terminates = true;
1007     mr->ram_addr = ~(ram_addr_t)0;
1008 }
1009
1010 void memory_region_init_ram(MemoryRegion *mr,
1011                             Object *owner,
1012                             const char *name,
1013                             uint64_t size)
1014 {
1015     memory_region_init(mr, owner, name, size);
1016     mr->ram = true;
1017     mr->terminates = true;
1018     mr->destructor = memory_region_destructor_ram;
1019     mr->ram_addr = qemu_ram_alloc(size, mr);
1020 }
1021
1022 void memory_region_init_ram_ptr(MemoryRegion *mr,
1023                                 Object *owner,
1024                                 const char *name,
1025                                 uint64_t size,
1026                                 void *ptr)
1027 {
1028     memory_region_init(mr, owner, name, size);
1029     mr->ram = true;
1030     mr->terminates = true;
1031     mr->destructor = memory_region_destructor_ram_from_ptr;
1032     mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
1033 }
1034
1035 void memory_region_init_alias(MemoryRegion *mr,
1036                               Object *owner,
1037                               const char *name,
1038                               MemoryRegion *orig,
1039                               hwaddr offset,
1040                               uint64_t size)
1041 {
1042     memory_region_init(mr, owner, name, size);
1043     memory_region_ref(orig);
1044     mr->destructor = memory_region_destructor_alias;
1045     mr->alias = orig;
1046     mr->alias_offset = offset;
1047 }
1048
1049 void memory_region_init_rom_device(MemoryRegion *mr,
1050                                    Object *owner,
1051                                    const MemoryRegionOps *ops,
1052                                    void *opaque,
1053                                    const char *name,
1054                                    uint64_t size)
1055 {
1056     memory_region_init(mr, owner, name, size);
1057     mr->ops = ops;
1058     mr->opaque = opaque;
1059     mr->terminates = true;
1060     mr->rom_device = true;
1061     mr->destructor = memory_region_destructor_rom_device;
1062     mr->ram_addr = qemu_ram_alloc(size, mr);
1063 }
1064
1065 void memory_region_init_iommu(MemoryRegion *mr,
1066                               Object *owner,
1067                               const MemoryRegionIOMMUOps *ops,
1068                               const char *name,
1069                               uint64_t size)
1070 {
1071     memory_region_init(mr, owner, name, size);
1072     mr->iommu_ops = ops,
1073     mr->terminates = true;  /* then re-forwards */
1074     notifier_list_init(&mr->iommu_notify);
1075 }
1076
1077 void memory_region_init_reservation(MemoryRegion *mr,
1078                                     Object *owner,
1079                                     const char *name,
1080                                     uint64_t size)
1081 {
1082     memory_region_init_io(mr, owner, &unassigned_mem_ops, mr, name, size);
1083 }
1084
1085 void memory_region_destroy(MemoryRegion *mr)
1086 {
1087     assert(QTAILQ_EMPTY(&mr->subregions));
1088     assert(memory_region_transaction_depth == 0);
1089     mr->destructor(mr);
1090     memory_region_clear_coalescing(mr);
1091     g_free((char *)mr->name);
1092     g_free(mr->ioeventfds);
1093 }
1094
1095 Object *memory_region_owner(MemoryRegion *mr)
1096 {
1097     return mr->owner;
1098 }
1099
1100 void memory_region_ref(MemoryRegion *mr)
1101 {
1102     if (mr && mr->owner) {
1103         object_ref(mr->owner);
1104     }
1105 }
1106
1107 void memory_region_unref(MemoryRegion *mr)
1108 {
1109     if (mr && mr->owner) {
1110         object_unref(mr->owner);
1111     }
1112 }
1113
1114 uint64_t memory_region_size(MemoryRegion *mr)
1115 {
1116     if (int128_eq(mr->size, int128_2_64())) {
1117         return UINT64_MAX;
1118     }
1119     return int128_get64(mr->size);
1120 }
1121
1122 const char *memory_region_name(MemoryRegion *mr)
1123 {
1124     return mr->name;
1125 }
1126
1127 bool memory_region_is_ram(MemoryRegion *mr)
1128 {
1129     return mr->ram;
1130 }
1131
1132 bool memory_region_is_logging(MemoryRegion *mr)
1133 {
1134     return mr->dirty_log_mask;
1135 }
1136
1137 bool memory_region_is_rom(MemoryRegion *mr)
1138 {
1139     return mr->ram && mr->readonly;
1140 }
1141
1142 bool memory_region_is_iommu(MemoryRegion *mr)
1143 {
1144     return mr->iommu_ops;
1145 }
1146
1147 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1148 {
1149     notifier_list_add(&mr->iommu_notify, n);
1150 }
1151
1152 void memory_region_unregister_iommu_notifier(Notifier *n)
1153 {
1154     notifier_remove(n);
1155 }
1156
1157 void memory_region_notify_iommu(MemoryRegion *mr,
1158                                 IOMMUTLBEntry entry)
1159 {
1160     assert(memory_region_is_iommu(mr));
1161     notifier_list_notify(&mr->iommu_notify, &entry);
1162 }
1163
1164 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1165 {
1166     uint8_t mask = 1 << client;
1167
1168     memory_region_transaction_begin();
1169     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1170     memory_region_update_pending |= mr->enabled;
1171     memory_region_transaction_commit();
1172 }
1173
1174 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1175                              hwaddr size, unsigned client)
1176 {
1177     assert(mr->terminates);
1178     return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1179 }
1180
1181 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1182                              hwaddr size)
1183 {
1184     assert(mr->terminates);
1185     cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size);
1186 }
1187
1188 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1189                                         hwaddr size, unsigned client)
1190 {
1191     bool ret;
1192     assert(mr->terminates);
1193     ret = cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1194     if (ret) {
1195         cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1196     }
1197     return ret;
1198 }
1199
1200
1201 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1202 {
1203     AddressSpace *as;
1204     FlatRange *fr;
1205
1206     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1207         FlatView *view = address_space_get_flatview(as);
1208         FOR_EACH_FLAT_RANGE(fr, view) {
1209             if (fr->mr == mr) {
1210                 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1211             }
1212         }
1213         flatview_unref(view);
1214     }
1215 }
1216
1217 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1218 {
1219     if (mr->readonly != readonly) {
1220         memory_region_transaction_begin();
1221         mr->readonly = readonly;
1222         memory_region_update_pending |= mr->enabled;
1223         memory_region_transaction_commit();
1224     }
1225 }
1226
1227 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1228 {
1229     if (mr->romd_mode != romd_mode) {
1230         memory_region_transaction_begin();
1231         mr->romd_mode = romd_mode;
1232         memory_region_update_pending |= mr->enabled;
1233         memory_region_transaction_commit();
1234     }
1235 }
1236
1237 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1238                                hwaddr size, unsigned client)
1239 {
1240     assert(mr->terminates);
1241     cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1242 }
1243
1244 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1245 {
1246     if (mr->alias) {
1247         return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1248     }
1249
1250     assert(mr->terminates);
1251
1252     return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1253 }
1254
1255 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1256 {
1257     FlatView *view;
1258     FlatRange *fr;
1259     CoalescedMemoryRange *cmr;
1260     AddrRange tmp;
1261     MemoryRegionSection section;
1262
1263     view = address_space_get_flatview(as);
1264     FOR_EACH_FLAT_RANGE(fr, view) {
1265         if (fr->mr == mr) {
1266             section = (MemoryRegionSection) {
1267                 .address_space = as,
1268                 .offset_within_address_space = int128_get64(fr->addr.start),
1269                 .size = fr->addr.size,
1270             };
1271
1272             MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1273                                  int128_get64(fr->addr.start),
1274                                  int128_get64(fr->addr.size));
1275             QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1276                 tmp = addrrange_shift(cmr->addr,
1277                                       int128_sub(fr->addr.start,
1278                                                  int128_make64(fr->offset_in_region)));
1279                 if (!addrrange_intersects(tmp, fr->addr)) {
1280                     continue;
1281                 }
1282                 tmp = addrrange_intersection(tmp, fr->addr);
1283                 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1284                                      int128_get64(tmp.start),
1285                                      int128_get64(tmp.size));
1286             }
1287         }
1288     }
1289     flatview_unref(view);
1290 }
1291
1292 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1293 {
1294     AddressSpace *as;
1295
1296     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1297         memory_region_update_coalesced_range_as(mr, as);
1298     }
1299 }
1300
1301 void memory_region_set_coalescing(MemoryRegion *mr)
1302 {
1303     memory_region_clear_coalescing(mr);
1304     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1305 }
1306
1307 void memory_region_add_coalescing(MemoryRegion *mr,
1308                                   hwaddr offset,
1309                                   uint64_t size)
1310 {
1311     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1312
1313     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1314     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1315     memory_region_update_coalesced_range(mr);
1316     memory_region_set_flush_coalesced(mr);
1317 }
1318
1319 void memory_region_clear_coalescing(MemoryRegion *mr)
1320 {
1321     CoalescedMemoryRange *cmr;
1322
1323     qemu_flush_coalesced_mmio_buffer();
1324     mr->flush_coalesced_mmio = false;
1325
1326     while (!QTAILQ_EMPTY(&mr->coalesced)) {
1327         cmr = QTAILQ_FIRST(&mr->coalesced);
1328         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1329         g_free(cmr);
1330     }
1331     memory_region_update_coalesced_range(mr);
1332 }
1333
1334 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1335 {
1336     mr->flush_coalesced_mmio = true;
1337 }
1338
1339 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1340 {
1341     qemu_flush_coalesced_mmio_buffer();
1342     if (QTAILQ_EMPTY(&mr->coalesced)) {
1343         mr->flush_coalesced_mmio = false;
1344     }
1345 }
1346
1347 void memory_region_add_eventfd(MemoryRegion *mr,
1348                                hwaddr addr,
1349                                unsigned size,
1350                                bool match_data,
1351                                uint64_t data,
1352                                EventNotifier *e)
1353 {
1354     MemoryRegionIoeventfd mrfd = {
1355         .addr.start = int128_make64(addr),
1356         .addr.size = int128_make64(size),
1357         .match_data = match_data,
1358         .data = data,
1359         .e = e,
1360     };
1361     unsigned i;
1362
1363     adjust_endianness(mr, &mrfd.data, size);
1364     memory_region_transaction_begin();
1365     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1366         if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1367             break;
1368         }
1369     }
1370     ++mr->ioeventfd_nb;
1371     mr->ioeventfds = g_realloc(mr->ioeventfds,
1372                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1373     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1374             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1375     mr->ioeventfds[i] = mrfd;
1376     memory_region_update_pending |= mr->enabled;
1377     memory_region_transaction_commit();
1378 }
1379
1380 void memory_region_del_eventfd(MemoryRegion *mr,
1381                                hwaddr addr,
1382                                unsigned size,
1383                                bool match_data,
1384                                uint64_t data,
1385                                EventNotifier *e)
1386 {
1387     MemoryRegionIoeventfd mrfd = {
1388         .addr.start = int128_make64(addr),
1389         .addr.size = int128_make64(size),
1390         .match_data = match_data,
1391         .data = data,
1392         .e = e,
1393     };
1394     unsigned i;
1395
1396     adjust_endianness(mr, &mrfd.data, size);
1397     memory_region_transaction_begin();
1398     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1399         if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1400             break;
1401         }
1402     }
1403     assert(i != mr->ioeventfd_nb);
1404     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1405             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1406     --mr->ioeventfd_nb;
1407     mr->ioeventfds = g_realloc(mr->ioeventfds,
1408                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1409     memory_region_update_pending |= mr->enabled;
1410     memory_region_transaction_commit();
1411 }
1412
1413 static void memory_region_add_subregion_common(MemoryRegion *mr,
1414                                                hwaddr offset,
1415                                                MemoryRegion *subregion)
1416 {
1417     MemoryRegion *other;
1418
1419     memory_region_transaction_begin();
1420
1421     assert(!subregion->parent);
1422     memory_region_ref(subregion);
1423     subregion->parent = mr;
1424     subregion->addr = offset;
1425     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1426         if (subregion->may_overlap || other->may_overlap) {
1427             continue;
1428         }
1429         if (int128_ge(int128_make64(offset),
1430                       int128_add(int128_make64(other->addr), other->size))
1431             || int128_le(int128_add(int128_make64(offset), subregion->size),
1432                          int128_make64(other->addr))) {
1433             continue;
1434         }
1435 #if 0
1436         printf("warning: subregion collision %llx/%llx (%s) "
1437                "vs %llx/%llx (%s)\n",
1438                (unsigned long long)offset,
1439                (unsigned long long)int128_get64(subregion->size),
1440                subregion->name,
1441                (unsigned long long)other->addr,
1442                (unsigned long long)int128_get64(other->size),
1443                other->name);
1444 #endif
1445     }
1446     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1447         if (subregion->priority >= other->priority) {
1448             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1449             goto done;
1450         }
1451     }
1452     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1453 done:
1454     memory_region_update_pending |= mr->enabled && subregion->enabled;
1455     memory_region_transaction_commit();
1456 }
1457
1458
1459 void memory_region_add_subregion(MemoryRegion *mr,
1460                                  hwaddr offset,
1461                                  MemoryRegion *subregion)
1462 {
1463     subregion->may_overlap = false;
1464     subregion->priority = 0;
1465     memory_region_add_subregion_common(mr, offset, subregion);
1466 }
1467
1468 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1469                                          hwaddr offset,
1470                                          MemoryRegion *subregion,
1471                                          int priority)
1472 {
1473     subregion->may_overlap = true;
1474     subregion->priority = priority;
1475     memory_region_add_subregion_common(mr, offset, subregion);
1476 }
1477
1478 void memory_region_del_subregion(MemoryRegion *mr,
1479                                  MemoryRegion *subregion)
1480 {
1481     memory_region_transaction_begin();
1482     assert(subregion->parent == mr);
1483     subregion->parent = NULL;
1484     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1485     memory_region_unref(subregion);
1486     memory_region_update_pending |= mr->enabled && subregion->enabled;
1487     memory_region_transaction_commit();
1488 }
1489
1490 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1491 {
1492     if (enabled == mr->enabled) {
1493         return;
1494     }
1495     memory_region_transaction_begin();
1496     mr->enabled = enabled;
1497     memory_region_update_pending = true;
1498     memory_region_transaction_commit();
1499 }
1500
1501 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1502 {
1503     MemoryRegion *parent = mr->parent;
1504     int priority = mr->priority;
1505     bool may_overlap = mr->may_overlap;
1506
1507     if (addr == mr->addr || !parent) {
1508         mr->addr = addr;
1509         return;
1510     }
1511
1512     memory_region_transaction_begin();
1513     memory_region_ref(mr);
1514     memory_region_del_subregion(parent, mr);
1515     if (may_overlap) {
1516         memory_region_add_subregion_overlap(parent, addr, mr, priority);
1517     } else {
1518         memory_region_add_subregion(parent, addr, mr);
1519     }
1520     memory_region_unref(mr);
1521     memory_region_transaction_commit();
1522 }
1523
1524 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1525 {
1526     assert(mr->alias);
1527
1528     if (offset == mr->alias_offset) {
1529         return;
1530     }
1531
1532     memory_region_transaction_begin();
1533     mr->alias_offset = offset;
1534     memory_region_update_pending |= mr->enabled;
1535     memory_region_transaction_commit();
1536 }
1537
1538 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1539 {
1540     return mr->ram_addr;
1541 }
1542
1543 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1544 {
1545     const AddrRange *addr = addr_;
1546     const FlatRange *fr = fr_;
1547
1548     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1549         return -1;
1550     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1551         return 1;
1552     }
1553     return 0;
1554 }
1555
1556 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
1557 {
1558     return bsearch(&addr, view->ranges, view->nr,
1559                    sizeof(FlatRange), cmp_flatrange_addr);
1560 }
1561
1562 bool memory_region_present(MemoryRegion *parent, hwaddr addr)
1563 {
1564     MemoryRegion *mr = memory_region_find(parent, addr, 1).mr;
1565     if (!mr || (mr == parent)) {
1566         return false;
1567     }
1568     memory_region_unref(mr);
1569     return true;
1570 }
1571
1572 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1573                                        hwaddr addr, uint64_t size)
1574 {
1575     MemoryRegionSection ret = { .mr = NULL };
1576     MemoryRegion *root;
1577     AddressSpace *as;
1578     AddrRange range;
1579     FlatView *view;
1580     FlatRange *fr;
1581
1582     addr += mr->addr;
1583     for (root = mr; root->parent; ) {
1584         root = root->parent;
1585         addr += root->addr;
1586     }
1587
1588     as = memory_region_to_address_space(root);
1589     range = addrrange_make(int128_make64(addr), int128_make64(size));
1590
1591     view = address_space_get_flatview(as);
1592     fr = flatview_lookup(view, range);
1593     if (!fr) {
1594         flatview_unref(view);
1595         return ret;
1596     }
1597
1598     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
1599         --fr;
1600     }
1601
1602     ret.mr = fr->mr;
1603     ret.address_space = as;
1604     range = addrrange_intersection(range, fr->addr);
1605     ret.offset_within_region = fr->offset_in_region;
1606     ret.offset_within_region += int128_get64(int128_sub(range.start,
1607                                                         fr->addr.start));
1608     ret.size = range.size;
1609     ret.offset_within_address_space = int128_get64(range.start);
1610     ret.readonly = fr->readonly;
1611     memory_region_ref(ret.mr);
1612
1613     flatview_unref(view);
1614     return ret;
1615 }
1616
1617 void address_space_sync_dirty_bitmap(AddressSpace *as)
1618 {
1619     FlatView *view;
1620     FlatRange *fr;
1621
1622     view = address_space_get_flatview(as);
1623     FOR_EACH_FLAT_RANGE(fr, view) {
1624         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1625     }
1626     flatview_unref(view);
1627 }
1628
1629 void memory_global_dirty_log_start(void)
1630 {
1631     global_dirty_log = true;
1632     MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1633 }
1634
1635 void memory_global_dirty_log_stop(void)
1636 {
1637     global_dirty_log = false;
1638     MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1639 }
1640
1641 static void listener_add_address_space(MemoryListener *listener,
1642                                        AddressSpace *as)
1643 {
1644     FlatView *view;
1645     FlatRange *fr;
1646
1647     if (listener->address_space_filter
1648         && listener->address_space_filter != as) {
1649         return;
1650     }
1651
1652     if (global_dirty_log) {
1653         if (listener->log_global_start) {
1654             listener->log_global_start(listener);
1655         }
1656     }
1657
1658     view = address_space_get_flatview(as);
1659     FOR_EACH_FLAT_RANGE(fr, view) {
1660         MemoryRegionSection section = {
1661             .mr = fr->mr,
1662             .address_space = as,
1663             .offset_within_region = fr->offset_in_region,
1664             .size = fr->addr.size,
1665             .offset_within_address_space = int128_get64(fr->addr.start),
1666             .readonly = fr->readonly,
1667         };
1668         if (listener->region_add) {
1669             listener->region_add(listener, &section);
1670         }
1671     }
1672     flatview_unref(view);
1673 }
1674
1675 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
1676 {
1677     MemoryListener *other = NULL;
1678     AddressSpace *as;
1679
1680     listener->address_space_filter = filter;
1681     if (QTAILQ_EMPTY(&memory_listeners)
1682         || listener->priority >= QTAILQ_LAST(&memory_listeners,
1683                                              memory_listeners)->priority) {
1684         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1685     } else {
1686         QTAILQ_FOREACH(other, &memory_listeners, link) {
1687             if (listener->priority < other->priority) {
1688                 break;
1689             }
1690         }
1691         QTAILQ_INSERT_BEFORE(other, listener, link);
1692     }
1693
1694     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1695         listener_add_address_space(listener, as);
1696     }
1697 }
1698
1699 void memory_listener_unregister(MemoryListener *listener)
1700 {
1701     QTAILQ_REMOVE(&memory_listeners, listener, link);
1702 }
1703
1704 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
1705 {
1706     if (QTAILQ_EMPTY(&address_spaces)) {
1707         memory_init();
1708     }
1709
1710     memory_region_transaction_begin();
1711     as->root = root;
1712     as->current_map = g_new(FlatView, 1);
1713     flatview_init(as->current_map);
1714     as->ioeventfd_nb = 0;
1715     as->ioeventfds = NULL;
1716     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
1717     as->name = g_strdup(name ? name : "anonymous");
1718     address_space_init_dispatch(as);
1719     memory_region_update_pending |= root->enabled;
1720     memory_region_transaction_commit();
1721 }
1722
1723 void address_space_destroy(AddressSpace *as)
1724 {
1725     /* Flush out anything from MemoryListeners listening in on this */
1726     memory_region_transaction_begin();
1727     as->root = NULL;
1728     memory_region_transaction_commit();
1729     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
1730     address_space_destroy_dispatch(as);
1731     flatview_unref(as->current_map);
1732     g_free(as->name);
1733     g_free(as->ioeventfds);
1734 }
1735
1736 bool io_mem_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size)
1737 {
1738     return memory_region_dispatch_read(mr, addr, pval, size);
1739 }
1740
1741 bool io_mem_write(MemoryRegion *mr, hwaddr addr,
1742                   uint64_t val, unsigned size)
1743 {
1744     return memory_region_dispatch_write(mr, addr, val, size);
1745 }
1746
1747 typedef struct MemoryRegionList MemoryRegionList;
1748
1749 struct MemoryRegionList {
1750     const MemoryRegion *mr;
1751     bool printed;
1752     QTAILQ_ENTRY(MemoryRegionList) queue;
1753 };
1754
1755 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1756
1757 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1758                            const MemoryRegion *mr, unsigned int level,
1759                            hwaddr base,
1760                            MemoryRegionListHead *alias_print_queue)
1761 {
1762     MemoryRegionList *new_ml, *ml, *next_ml;
1763     MemoryRegionListHead submr_print_queue;
1764     const MemoryRegion *submr;
1765     unsigned int i;
1766
1767     if (!mr || !mr->enabled) {
1768         return;
1769     }
1770
1771     for (i = 0; i < level; i++) {
1772         mon_printf(f, "  ");
1773     }
1774
1775     if (mr->alias) {
1776         MemoryRegionList *ml;
1777         bool found = false;
1778
1779         /* check if the alias is already in the queue */
1780         QTAILQ_FOREACH(ml, alias_print_queue, queue) {
1781             if (ml->mr == mr->alias && !ml->printed) {
1782                 found = true;
1783             }
1784         }
1785
1786         if (!found) {
1787             ml = g_new(MemoryRegionList, 1);
1788             ml->mr = mr->alias;
1789             ml->printed = false;
1790             QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
1791         }
1792         mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
1793                    " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
1794                    "-" TARGET_FMT_plx "\n",
1795                    base + mr->addr,
1796                    base + mr->addr
1797                    + (int128_nz(mr->size) ?
1798                       (hwaddr)int128_get64(int128_sub(mr->size,
1799                                                       int128_one())) : 0),
1800                    mr->priority,
1801                    mr->romd_mode ? 'R' : '-',
1802                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
1803                                                                        : '-',
1804                    mr->name,
1805                    mr->alias->name,
1806                    mr->alias_offset,
1807                    mr->alias_offset
1808                    + (int128_nz(mr->size) ?
1809                       (hwaddr)int128_get64(int128_sub(mr->size,
1810                                                       int128_one())) : 0));
1811     } else {
1812         mon_printf(f,
1813                    TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
1814                    base + mr->addr,
1815                    base + mr->addr
1816                    + (int128_nz(mr->size) ?
1817                       (hwaddr)int128_get64(int128_sub(mr->size,
1818                                                       int128_one())) : 0),
1819                    mr->priority,
1820                    mr->romd_mode ? 'R' : '-',
1821                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
1822                                                                        : '-',
1823                    mr->name);
1824     }
1825
1826     QTAILQ_INIT(&submr_print_queue);
1827
1828     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
1829         new_ml = g_new(MemoryRegionList, 1);
1830         new_ml->mr = submr;
1831         QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1832             if (new_ml->mr->addr < ml->mr->addr ||
1833                 (new_ml->mr->addr == ml->mr->addr &&
1834                  new_ml->mr->priority > ml->mr->priority)) {
1835                 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
1836                 new_ml = NULL;
1837                 break;
1838             }
1839         }
1840         if (new_ml) {
1841             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
1842         }
1843     }
1844
1845     QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1846         mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
1847                        alias_print_queue);
1848     }
1849
1850     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
1851         g_free(ml);
1852     }
1853 }
1854
1855 void mtree_info(fprintf_function mon_printf, void *f)
1856 {
1857     MemoryRegionListHead ml_head;
1858     MemoryRegionList *ml, *ml2;
1859     AddressSpace *as;
1860
1861     QTAILQ_INIT(&ml_head);
1862
1863     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1864         mon_printf(f, "%s\n", as->name);
1865         mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
1866     }
1867
1868     mon_printf(f, "aliases\n");
1869     /* print aliased regions */
1870     QTAILQ_FOREACH(ml, &ml_head, queue) {
1871         if (!ml->printed) {
1872             mon_printf(f, "%s\n", ml->mr->name);
1873             mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
1874         }
1875     }
1876
1877     QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
1878         g_free(ml);
1879     }
1880 }